
Quercetin-mediated 3-D hierarchical BiOI-Q and BiOI-Q-Ag nanostructures with enhanced 

photodegradation efficiency  

 

Abstract  

The nanostructured BiOI-Ag composite was successfully synthesized by quercetin-mediated 

hydrolysis method under varying Ag+ amounts. The morphologies, phase structures, optical 

properties and certain other characteristics of the samples were examined under microscopic and 

spectroscopic investigations. The results revealed that the Ag nanoparticles were effectively grown 

on the BiOI nanoflowers, and a higher density was observed with increasing amount of Ag+. In 

addition, quercetin provided high stability and effectively controlled the size of the composites, 

and it also assisted in the formation of multiple heterojunctions, which triggered effective charge 

transference and higher separating efficiency of the photoinduced charges. Moreover, the 

photocatalytic activities of the as-synthesized BiOI-Ag(1), BiOI-Ag(2), and BiOI-Ag (3) samples 

were observed for the methyl orange disintegration (MO) and antibacterial activity against four 

different bacteria i.e. S. aureus, P. burmani, pseuodomonas, and P, aurgesa under visible light 

irradiation. The BiOI-Ag composites exhibited much higher photocatalytic efficacy over BiOI, 

and the optimized ratio was obtained to be BiOI-Ag (2). Moreover, the three photoinduced active 

species i.e. h+, *OH, and *O2
- were the dominant active species in the photodisintegration process, 

and the stability of BiOI-Ag composites was observed for the cycling experiments.   

Introduction  

In the recent years, the visible-light-driven photocatalysts have been studied broadly 

because of their tremendous success in the environmental remediation [1-3]. Until now, TiO2 has 

been used extensively for the decontamination of toxic pollutants because of its chemical stability 

and catalytic activity. However, because of its large band gap of 3.2 eV, it is UV-light responsive 

which constitutes less than 5 % of the total solar radiations [4-7]. Therefore, functionalization of 

TiO2 has been implemented with various other semiconductors such as, transition metal/non-

metals [8-11], narrow band gap semiconductors [12, 13], and dye-sensitizers [14, 15] etc. Despite, 

major failures were observed such as residual toxicity, instability, and self photodegradation.  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SZTE Publicatio Repozitórium - SZTE - Repository of Publications

https://core.ac.uk/display/387218745?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Therefore, visible-light-driven photocatalysts offers an immense potential in the optimum 

utilization of the natural sunlight. Bismuth oxyhalides, BiOX (X= Cl, Br, and I) belonging to the 

class V-VI-VII ternary oxide semiconductors offer substantial photocatalytic applications in the 

decontamination of toxic pollutants [16, 17]. The BiOX possesses a particular layered geometry 

containing [Bi2O2]
2+ slabs interleaved by double slabs of Iodine atoms that promotes the separation 

efficacy of photoinduced charges [18]. Moreover, out of the BiOX group members, BiOI has the 

lowest bang gap (1.7-1.9 eV), thus time taken for photogeneration of induced charges is relatively 

low in comparison to other group members. However, high recombining tendency of photoinduced 

charges is still a matter of concern for BiOI. Therefore, it has been functionalized with various 

materials such as, TiO2[19], BiVO4[20], BiPO4 [21], WO3 [22], Bi2S3 [23], carbon quantum dots [24], 

and CdS [25] etc.  

Modification of semiconductors with noble metal offers a remarkable way of improving 

the photocatalytic efficacy of a material. It is well-established that the associating noble metal with 

a semiconductor facilitates the trapping of the photoinduced electrons, leading to high separating 

tendency of the photoinduced charges [26, 27]. Among the various noble metals such as, Au, Rh, 

Pd, Pt, etc., Ag is considered as a suitable dopant for numerous semiconductors owing to its 

economic viability, minimal toxicity and high antibacterial action. Therefore, the coupling of Ag 

with BiOI can effectively boost the decontamination of the pollutants along with antibacterial 

action. Recently, Lin et al.[28] coupled Ag with BiOI and found that Ag/BiOI disintegrated higher 

rhodamine B (RhB) than the pristine BiOI. In another study, Liu et al. [29] have reported a series 

of Ag/BiOI composites with varying Ag amounts, and it was obtained that the 0.6% Ag/BiOI 

showed the highest photocatalytic efficacy towards the disintegration of acid orange II, MO and 

RhB. Similarly, Zhong et al. [30] have also reported the Ag/BiOI composite with superior 

photodisintegration efficacy towards RhB.  

Considering the aforementioned and certain other reports on BiOI and Ag/BiOI 

composites, few conclusions can be drawn i.e. the synthesis method which involves a reducing or 

stabilizing agent tends to produce BiOI with 3D hierarchical structures [28, 29]; in contrast, 

without the use of any reducing or stabilizing agent, a nanoplate-like structure of BiOI was 

observed [31, 32]. Our study aims to utilized a flavonoid constituent i.e. quercetin in the synthesis 

process as a natural stabilizing agent to eliminate the chemical stabilizers and solvents that may 



inflict secondary pollution. Quercetin occurs naturally in many plants such as Azadirachta indica, 

Ocimum sanctum, Saraca indica, tomato, caper, blackberry, onion, etc. [33]. It possesses 

antioxidant and stabilizing characteristics due to the presence of phenolic and ketonic groups in 

the structure, which can readily form chelates with the metals ions [34]. Motivating by these facts, 

we have synthesized quercetin-mediated BiOI and BiOI-Ag composites, and a detailed mechanism 

has been discussed regarding the complexation of quercetin with the BiOI-Ag. 

2. Materials and method  

2.1. Chemicals   

The chemicals i.e. bismuth nitrate pentahydrate (Bi(NO3)3.5H2O), silver nitrate (AgNO3), 

potassium iodide (KI), methyl orange (MO) were procured from Merck India. quercetin? 

2.2. Synthesis of BiOI and BiOI-Ag 

A stock solution of quercetin was obtained by dissolving a yellow coloured quercetin 

powder in 10 mL mixture [water/ethanol (v/v ratio)] and a 0.1 M solution was prepared. To 

synthesize BiOI, a 0.05 M solution of Bi (NO3)3.5H2O was prepared and added dropwise to the 

0.1 M quercetin solution under magnetic stirring. Thereafter, a 0.05 M solution of KI was added 

dropwise to the above slurry under vigorous stirring at room temperature, with subsequent heating 

at 60° C in an oven for 1 h. The precipitated material was separated via centrifugation and it was 

washed several times with ethanol and double distilled water to decontaminate the sample. Finally, 

the products were dried overnight at 60° C.  

For the synthesis of BiOI-Ag, a photoreduction method was used. 500 mg of as-prepared 

BiOI was dispersed in 30 mL quercetin solution. Then, a 100 mL of AgNO3 solution with varying 

molar concentrations i.e. 0.001 M, 0.002 M and 0.003 M was added to the BiOI suspension and 

stirred in the dark for 1h. Later, the obtained suspension was irradiatd under 40 W UV lamp for 

3h with vigorous stirring. Finally, the BiOI-Ag samples was filtered, washed and dried at 60ºC 

overnight. The obtained samples were labelled as BiOI-Ag(1), BiOI-Ag(2), and BiOI-Ag(3), 

respectively.   

2.4. Valuation of photocatalytic effectiveness 



The photocatalytic efficacy of the BiOI, BiOI-Ag(1), BiOI-Ag(2) and BiOI-Ag(3) samples 

was judged via photo-disintegration of MO. Concisely: 100 mg of the photocatalyst was added to 

a 100 mL MO solution (20 mg L-1) in a 250 mL beaker. Formerly, the slurry was agitated in the 

dark conditions for certain time intervals i.e. 30 min, 60 min and 90 min to establish an adsorption-

desorption equilibrium. Then, the visible light source [Four compact fluorescent lamps (4×28 W)] 

was illuminated on the setup under constant stirring and a 50 g L-1 NaNO2 solution was employed 

as a UV cut-off filter. At precise time intervals, 3 mL of the sample was withdrawn from the 

beaker, and the absorbance of the sample was analyzed at 465 nm. Similar conditions were applied 

in testing antibacterial activity against S. aureus, P. burmani, pseuodomonas, and P, aurgesa. 

Characterization techniques??? 

3. Results and discussion 

3.1. Characteristics of BiOI, BiOI-Ag(1), BiOI-Ag(2), and BiOI-Ag(3) samples  

 The crystal structure and phase composition of the BiOI, BiOI-Ag(1), BiOI-Ag(2), and 

BiOI-Ag(3) samples were scrutinized via XRD. All the identified peaks corresponding to (002), 

(102), (110), (112), (004), (200), (114), (212), and (106) planes [Fig. 1(a)] are in accord with 

JCPDS card No. 73-2062 [35] and signifying the tetragonal phase of BiOI. In addition, the use of 

quercetin as stabilizer for BiOI resulted in slight degradation of crystallinity, which could be due 

crystal defects generation in the lattice that created a charge imbalance and reformed stoichiometry 

of the BiOI and BiOI-Ag samples. Moreover, no diffraction peaks of Ag species can be observed 

in the Ag-doped samples i.e. BiOI-Ag(1), BiOI-Ag(2), and BiOI-Ag(3), which can be attributed 

to the smaller concentrations of Ag (0.001 M to 0.003 M).       



 

Fig. 1. XRD patterns of BiOI, BiOI-Ag(1), BiOI-Ag(2), and BiOI-Ag(3). XPS spectra of BiOI-

Ag(2) sample: (b) survey, (c) Bi 4f, (d) O 1s, (e) I 3d, and (f) Ag 3d. 

The chemical configuration and surface chemical states of BiOI-Ag(2) sample were 

scrutinized by XPS. [Fig. 1(b)], BiOI-Ag(2) comprised of Bi, O, I, and Ag elements. [Fig. 1(c)], 

the peaks originating at 156.1 eV and 165.8 eV binding energies to Bi 4f7/2 and Bi 4f5/2, which 

shows Bi3+ in the BiOI samples. The O 1s profile showed two identical peaks positioned at 527.7 

eV and 528.4 eV, signifying two individual O species in the sample. The O 1s peak originated at 

529.4 eV and 530.4 eV were ascribed to crystal lattice O atoms of the Bi-O bonds in the [Bi2O2] 

slabs of BiOI, and the abundant surface oxygen due to the presence of quercetin containing oxygen 

rich groups in the structure. In the XPS spectrum of I 3d [Fig. 1(f)], the two distinguished peaks at 

618.09 eV and 630.12 eV accounts for the binding energies of I 3d5/2 and I 3d3/2, confirming the 

presence of I- in BiOI-Ag(2) sample. The peaks identified at 368.1 eV and 374.3 eV [Fig. 1(f)] 

were attributed to the Ag 3d5/2 and Ag 3d3/2, respectively.  Hence, the results established the 

existence of Bi, O, I and AG elements BiOI-Ag(2) structure and the Ag species mainly existed in 

the Ag (zero) state which were heterogeneously dispersed on the nanoplates of the 3d hierarchical 

BiOI nanoflowers.     
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Fig. 2. SEM images of (a, b) BiOI (c) BiOI-Ag(1), (d) BiOI-Ag(2), (e) BiOI-Ag(3). EDAX images 

of (f) BiOI, and (g) BiOI-Ag(2). TEM and HRTEM images of (h) BiOI and (i) BiOI-Ag(2) 

The morphologies of the as-prepared BiOI, BiOI-Ag(1), BiOI-Ag(2), and BiOI-Ag(3) 

samples were analyzed using SEM. As shown in Fig. 2(a), pure BiOI comprised of a uniform 3D 

nanoflower-like structure with particle size varying from 5 µm to 10 µm, respectively. On higher 

magnification [Fig. 2(b)], it can be observed that the nanoplates appeared to be interwoven with 

the neighboring plates to form a dense hierarchical 3D porous structure. In addition, the doping of 

Ag in BiOI through photoreduction approach didn’t much affect the morphology. Observably, the 

Ag nanoparticles were loaded in the 3D matrix of pure BiOI and became more profound with the 

increasing doping concentration [Fig. 2(c-e)]. In addition, the TEM images [Fig. 2(f and g)] further 

confirmed the 3D nanoplate-like structure of BiOI and the Ag nanoparticles seemed to be well 

dispersed on the surface of the nanoplates of BiOI. Furthermore, the HRTEM images present that 

the lattice fringes with d spacing of 0.279 nm corresponded to the (110) crystal plane of BiOI 

whereas that of 0.209 nm could be indexed to the (200) plane of metallic Ag [(Fig. 2(h)], indicating 

that Ag/BiOI heterojunction was formed. EDAX analysis of BiOI and BiOI-Ag(2)  samples shows 



that the samples were composed of Bi, O, I and Ag atoms [(Fig. 2(i and j)]. The excess oxygen 

might arise from the incorporation of quercetin in the matrix of BiOI, which contains oxygen rich 

functional groups such as phenolic and carbonyl groups.  

 

Fig. 3. (a) nitrogen adsorption/desorption, (b) pore of BiOI and BiOI-Ag(2) samples; (c, d) UV-

Vis DRS and Plot of (αhυ)n v/s hυ of BiOI and BiOI-Ag composites (e) IR is missing!!! 

The specific surface areas and porosity in the structure of the BiOI and BiOI-Ag(2) samples 

were inspected via BET isotherms. As shown in Fig. 3a, the BET for both the samples were found 

to be almost similar with hysteresis loops at relative pressures (P/P0) close to unity, signifying the 

existence of large mesopores that can be classified as type IV with H3 hysteresis loop. Due to the 

regular, the hierarchical arrangement and aggregation of the nanoplates a slit-like highly pores 

structure was formed, which accounted for a wide pore size distribution ranging from 2 nm to 30 

nm, further confirming the existence of mesopores. Furthermore, data in Table 1 indicates that the 

BiOI-Ag(2) sample possessed slightly higher specific surface areas than the pristine BiOI, which 

can be attributed to the Ag nanoparticles that were firmly attached on the BiOI nanoflowers and 

possessed certainly high specific surface area. Hence, it would be reasonable to conclude that there 

is a crucial role of Ag nanoparticles in enhancing the specific surface area that could be favorable 

for improving the photocatalytic performances of the BiOI-Ag samples studied. The study of band 
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structure and optical property of a semiconductor photocatalyst holds a key importance in 

influencing the photocatalytic performance. The UV–vis diffuse reflectance spectra of the as-

prepared samples are displayed in Fig. 4(a), which revealed that the BiOI-Ag composites in 

comparison to BiOI showed an enhanced absorption and an apparent red-shift in the band gap 

transition. Among them, the value of n for BiOI and BiOI-Ag composites is 4 for the indirect 

transition [29]; subsequently, the band gap energy of the samples were determined by plotting 

(αhv)1/2 versus photon energy (hv). As shown in Fig. 5b, the intercept of the tangent to the X axis 

provided an approximate analysis of the band gap energy and the calculated band gap energies of 

the samples are summarized in Table 1. The BiOI sample displayed a band gap of 1.75 eV, which 

is slightly lower than most of the studies reported on BiOI [ref???]. The reason for lowering of 

band gap of BiOI can be attributed to the quercetin, which we have also reported in our previous 

paper [34], mainly the quercetin comprises of hydroxyl and carbonyl groups that interacts with the 

central metal ion in BiOI i.e. Bi3+ and forms a chelate, resulting into lowering of band gap [36]. In 

addition, the band gap values of BiOI-Ag composites range from 1.72 eV to 1.65 eV with the 

increasing Ag content in BiOI (0.001 M to 0.003 M). This shift in the band gap towards the 

narrower region can be attributed to the chemical interaction between BiOI and Ag. Hence, the 

narrower band gap of the BiOI-Ag composites signifies the enhanced efficiency to absorb the 

incident light which is favorable for the photocatalytic performance. The FTIR spectra of the as-

prepared BiOI and BiOI-Ag(2) samples was recorded (400-4000 cm-1 range) to scrutinize the 

functional groups accountable for higher absorption of the incident light. In the spectra of the 

samples [Fig. 4(g)], a wide band originated at 3296 cm-1 can be assigned to the –OH stretching 

mode of water, meanwhile; the peak at 503 cm-1 was ascribed to the stretching vibrations of the 

Bi-O bond [37],[38]. Interestingly, many distinctive peaks were witnessed and highlighted in the 

pink region. The strong bands occurring in the range of 1730-1740 cm-1 are recognized as the 

carbonyl group (C=O) vibrations. The infrared absorption and stretching mode of the alkene group 

(C=C) covered a wide range from 1489-1715 cm-1. In addition, the peaks occurring at 1053 cm-1, 

1296 cm-1, 1376 cm-1 and 1487 cm-1 are credited to the ester linkage, asymmetric-CH deformation 

mode of alkyl group (-CH3) and phenolic stretching mode of the –OH group. Therefore, the wide 

range of peaks confirms the incorporation of quercetin in the BiOI and BiOI-Ag samples that is 

vital for absorption of incident light to produce the photoinduced charges [39-41]. 

Table1: Parameters of as-prepared samples 



Sample SBET (m2 g-1) Average pore 

size (nm) 

Pore volume 

(cm3 g-1) 

Band Gap Eg 

(eV) 

BiOI 72 8.2 0.25 1.75 

BiOI-Ag(1) - - - 1.72 

BiOI-Ag(2) - - - 1.69 

BiOI-Ag(3) 83 5.8 0.14 1.65 

 

3.2. Photocatalytic activity  

The photocatalytic efficacy of BiOI, BiOI-Ag(1), BiOI-Ag(2), and BiOI-Ag(3) samples, 

disintegration of a typical organic pollutant MO was selected as the photoreaction probe. The blank 

test signified that the MO is stable and cannot be disintegrated without the photocatalyst. In 

addition, the adsorption study was conducted in the dark for different time intervals i.e. 20 min, 

40 min, and 60 min to ensure adequate interaction between the samples and the MO solution. As 

shown in Fig. 7, a large percentage of MO i.e. 36 %, 41 %, 45 %, and 47 % was adsorbed on the 

corresponding BiOI, BiOI-Ag(1), BiOI-Ag(2), and BiOI-Ag(3) samples. In comparison to our 

previous report on BiOI i.e. BiOI-C (without quercetin),  the quercetin-mediated BiOI in the 

present study showed much enhanced photocatalytic performance and degraded 91 % of MO, 

which is almost 20 times higher than that of BiOI-C, the probable reason for the increase in the 

photocatalytic performance has been discussed in the latter sections. Moreover, the photocatalytic 

activities of BiOI-Ag composites were further enhanced and the MO over corresponding BiOI-Ag 

samples reached 97-100 %. The results suggested that Ag content in the BiOI-Ag composites 

improved photocatalytic efficacy. The smaller Ag content (0.001 M) in BiOI improved the MO 

disintegration from 91 % to 97 %, and complete disintegration of MO was achieved on further 

increasing the Ag content (0.002 M). However, the photocatalytic performance reduced when the 

Ag amount rose to 0.003 M, which can be due to the excessive trapping sites initiated by the 

increased doping concentration of Ag that assisted the recombination of photoinduced charges. 

According to the results obtained from the photocatalytic performances, the optimized doping 

concentration of Ag in the BiOI-Ag composites was 0.002 M. The rate constants evaluated from 

the data plotted and are shown in Fig. 7. The rate constant for BiOI-Ag(2) to remove MO is 2.3952 

min-1, which is ∼3.19 times as large as that of BiOI (0.7497 min-1).  



 

Fig. 5. (a) Photodisintegration of MO by BiOI and BiOI-Ag composites (b) kinetic linear 

simulation curves and pseudo first-order kinetic rate constants k for MO degradation over the 

samples, (c) Photodisintegration of MO by BiOI-Ag(2) in the presence of different scavengers, (d) 

Images of bacterial colonies formed by mycropoppus lylae, S. aureus, P. burmani, pseuodomonas, 

and P, aurgesa cells treated by as-optimized BiOI-Ag(2) composite after 7 h irradation 

(concentration of catalysts: 1g L-1). 

Moreover, the Fig. 6b, represents the photos of colonies formed after treatment. When 

being irradiated, results show that BiOCl-Ag could strongly suppress the growth and reproduction 

of both bacteria. As a result, no colony was found. Such excellent antibacterial efficiency may be 

due to both the photocatalytic effect and antibacterial effect of Ag NPs. 

3.7. Photocatalytic Mechanism 

The photocatalytic efficacy of a photocatalyst is mainly gravitated on the effectual 

separation of the photoinduced charges, hence; the rapid and even responses to each ON/OFF light 

intervals signifies an effectual reproducibility of the equivalent samples. As shown in Fig. 6(a), an 

insignificant difference between the photocurrent intensities of the BiOI and BiOI-Ag(2) samples 
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can be observed, which could well be attributed to the complex formation between the functional 

groups of quercetin and the Bi3+ ion of the pristine BiOI. Meanwhile, the coupling of Ag with the 

quercetin-mediated BiOI resulted in the formation of heterojunctions among the BiOI, Ag and the 

quercetin molecule, due to which the BiOI-Ag(2) sample displayed an elevated photocurrent 

intensity than that of BiOI. The prolonged lifetime of the photoinduced charges can further be 

confirmed with the EIS and PL study [Fig. 6(b and c)], which can be utilized to understand the 

charge transfer mechanism in the BiOI-Ag(2) sample. 

 

Fig. 6. (a) Photocurrent response, (b) EIS, (c) PL spectra of BiOI and BiOI-Ag(2). 

In our previous study [34], we have successfully shown the role of quercetin as a potential 

stabilizer and sensitizer as it possesses an electron-accepting nature, which allows the high 

absorption of the incident light for the massive production of the photoinduced electron-hole pairs. 
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The quercetin molecule shows higher energy levels than that of BiOI and I-/I3- redox couple 

electrolyte (4.75 V) that sufficiently facilitated the charge migration and regeneration of the 

photoinduced charges. Meanwhile, due to higher Fermi level the BiOI could easily transfer the 

electrons to the Ag metal, resulting in the formation of heterojunctions among quercetin, BiOI and 

Ag that subsequently inhibited the recombining tendency of the photogenerated charges. 

Therefore, O2 molecules adsorbed on the photocatalyst surface can readily form *O2
-, and 

subsequently, the other active species such as *OH and h+ can also be produced via series of chain 

reaction. Hence, all the active species formed during the photo-reduction and photo-oxidation step 

actively participates in the antibacterial activity and degrades MO.  

 

Fig. 7. Photocatalytic degradation mechanism of contaminants with BiOI-Ag(2). 

4. Conclusions  

A novel BiOI-Ag photocatalyst with tremendous photocatalytic efficacy was successfully prepared 

through quercetin-mediated hydrolysis process followed by a photo-deposited methodology. The 

quercetin provided 3D nanoflower morphology and also significantly enhanced the solar 

absorption. In addition, the coupling of Ag with BiOI further resulted in the substantial progress 



in the antibacterial action towards four different bacteria and complete MO disintegration under 

visible light exposure. The heterojunctions formed among the quercetin molecule, BiOI and Ag 

successfully inhibited the recombining ability of the photogenerated charges and prolonged the 

charge transfer process, thereby stimulating the photocatalytic efficacy. Hence, it can be speculated 

that the as-optimized quercetin-assisted BiOI-Ag photocatalysts holds great potential for 

environmental remediation. 
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