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Abstract

Smartphones offer a natural platform for building decen-
tralized systems for the common good. A very important
problem in such systems is understanding the limitations of
building a peer-to-peer (P2P) overlay network, given that
today’s networking infrastructure is designed with central-
ized services in mind. We performed measurements over
smartphones over several years and collected large amounts
of data about, among other things, P2P connection success.
Here, we train models of P2P connection success using ma-
chine learning based on several features that are observ-
able by the devices. We argue that connection success is
a non-trivial function of many such features. Besides this,
the predictive models are also rather dynamic and a good
model can perform rather badly if it is based on data that is
more than a year old. The degree distribution of the P2P net-
work based on this model has an interesting structure. We
can identify two modes that roughly correspond to “very
closed”, and “average” nodes, and a rather long tail that con-
tains relatively open nodes. Our model allows us to perform
realistic simulations of very large overlay networks, when
combined with device measurement traces. This enables us
to have a more informed design of decentralized applica-
tions.

CCS Concepts: • Computer systems organization →

Peer-to-peer architectures; • Computing methodolo-

gies→ Supervised learning by classification.

Keywords: peer-to-peer networks, modeling connections,
smartphone trace
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1 Introduction

Over the past few decades, we have witnessed an explo-
sive growth of mobile and smart devices. These devices are
present in almost every aspect of our daily lives. This trend
has led to the creation of numerous intelligent applications
based on data mining [37] that, however, is usually per-
formed at a central location based on the collected data. This
conventional process has become evermore problematic due
to the increasing public awareness of the privacy issue. In
the last few years stricter privacy protection laws have come
into force [1]. For this reason, there is an increasing inter-
est in methods that allow us to keep our private data in our
devices and process them using collaborative algorithms.
There are, of course, many ways to address this challenge

[14, 20]. One of the approaches is gossip learning [27] that
is fully decentralized, hence no central server is needed.
Nodes exchange and aggregate models directly. This gives
a good opportunity for startups or communities with low
budgets to provide robust intelligent smartphone services.
Although we focus on collaborative mobile platforms [29],
gossip learning applications can be found in smart meter-
ing [32] and over Internet of Things platforms [35] as well.
In this domain, it is vital to fully understand the capa-

bilities and limitations of the devices and their network ac-
cess as well. Understanding such limitations could answer
the question of what applications are feasible without cloud
support, and what applications are of little use. We studied
churn patterns previously based on traces we collected from
mobile devices [34]. Here, we focus on modeling the proba-
bility of building a P2P connection between mobile devices.
We propose and evaluate multiple predictive models to clas-
sify pairs of nodes to see whether a P2P connection can be
established between them. These models are built using ma-
chine learning based on real measurement data. We then
study the structure of the network, in which links are pre-
dicted based on our model.
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2 Related Works

In recent years, edge computing and ad hoc smartphone net-
works have witnessed a renewed interest, but there have
always been efforts to utilize such decentralized platforms
for meaningful purposes. A key aspect of this research was
to analyze the various attributes of the network connection
and its constraints, such as NAT deployment. For instance,
in 2016 a study was published highlighting the deployment
rate of carrier-grade NATs [33] that hide entire networks
behind a single IP address. A later paper by Livadariu et al.
[16] found that the deployment rate of carrier-grade NATs
was growing rapidly.

The capabilities and behaviors of smartphone based net-
works have also been studied [9, 25, 26]. One of the major
problems is that the classic P2P algorithms were designed
without energy efficiency in mind [4]. The energy efficiency
on smartphone P2P networks is itself the subject of several
ongoing research efforts [11, 23]. Qian et al., for example,
developed the Device Analyzer crowd-sourcing project [31]
to predict energy consumption based on network access and
the applications running on the device.
Besides energy efficiency, the other major challenge is

building the P2P network itself. The most widely used ap-
proach is based on a signaling server to share the con-
nectivity information among the possible network nodes.
While several researchers employed a custom implementa-
tion [15, 36], one of the most popular tools is the WebRTC
project [17]. Its efficiency, performance, and quality of ser-
vice over mobile devices has been benchmarked and tested
[5, 12, 19].
The possible applications of these serverless, autonomous

smartphone networks cover a wide range from providing
communication channels in disaster scenarios [8] to estab-
lishing ad hoc mobile networks [21]. Even Google started
registering various patents describing various aspects of a
P2P smartphone network [7].
The novelty of our contribution lies in building ma-

chine learning models for predicting P2P connection suc-
cess. Such models can enable the simulation of potentially
very large networks.

3 Data Collection Methodology

We developed and deployed an Android app that collects
data covering most of the aspects that are relevant to the
design of P2P protocols over networks of smartphones [34].
The collected data includes time series of network and bat-
tery status, complete with information about NAT type,
network type, network provider and WebRTC capabilities.
Most of these values can easily be queried from the Android
operating system.
Real P2P connection measurements are also performed

every time a measurement is made. They are based on the
WebRTC protocol [2], with Firebase as a signaling server
[22], and a STUN server [18]. Only direct connections are

built and measured; that is, the TURN protocol for relaying
is not used. Every node that is online attempts in every 10
minutes to connect to a peer. (By online, we mean the node
has a network access and it is on a charger.) To do this, the
node sends a request to the Firebase server after collecting
its own network data. The server attempts to find a random
online peer and manages the information exchange using
the Session Description Protocol (SDP) to help create a two-
way P2P connection over UDP. If the two-way channel is
successfully opened then a tiny data message is exchanged.
The channel is always closed at the end of the measurement.

One connection is allowed at a time and every addi-
tional offer is rejected. The signaling server maintains an
online membership list. Besides the P2P measurement, the
WebRTC capabilities of a device are also tested. This is done
by having the node try to open a connection with itself.
WebRTC test measurement results are completely indepen-
dent from the signaling server.
The NAT type is detected with the help of the STUN pro-

tocol using public STUN servers. We collect data only when
the phone is on a charger. In an effort to save energy, back-
ground processes are not supported in recent Android ver-
sions, while the device is not on a charger.

4 Modeling connections

Here, we define a machine learning problem to model P2P
connection success between two nodes. Our data set � =

{(G1,~1), . . . , (G=,~=)} contains = = 281, 368 P2P connec-
tion measurements. One example (G,~) consists of a feature
vector G ∈ '3 that contains the features of two mobile de-
vices, and a class label ~ ∈ {yes,no} that indicates the suc-
cess of the observed connection attempt. That is, we have
a binary classification problem. By a successful attempt we
mean that a node connected successfully to its neighbor and
a datamessage exchangewas also performed via their direct
channel.
There are 120,585 positive (successful) and 160,783 nega-

tive (unsuccessful) examples. We only include those mea-
surements where the signaling process was successful. A
signaling error can occur if the server contacts a possible
peer but the peer replies with a reject message, or it does
not reply in time, or we cannot see proof in the trace that
any peer was actually contacted. Note that a peer rejects a
connection if it has an ongoing connection attempt of its
own. All of these measurements are omitted from our mod-
eling process because these errors are related to signaling
and not to the establishing of an actual P2P connection.
The problem of classification is expressed as finding the

parameters F of a function 5F : '3 → {yes, no} that can
correctly classify as many examples in � as possible, as well
as outside � (this latter property is called generalization).
Here, 5F is called the model of the data set.
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Table 1. Scenario A

Size Collected between

Data set 281,368 01/2019 - 09/2020
Training set 258,862 01/2019 - 08/2020
Validation set 5,450 01/2019 - 08/2020
Test set 8,174 01/2019 - 08/2020

4.1 Features

Our data set containsmany irrelevant features of the devices
such as temperature of the battery, and so on. The nine fea-
tures that we applied in the P2P connection prediction task
are the following: time (only the hour value), Android ver-
sion; wifi bandwidth or the mobile network type; whether
on roaming (binary), NAT type,WebRTC test result (binary),
country, and network service provider. The features of both
of the devices are available that participated in a connection
attempt. Since connection success is not always symmetric
(sometimes node A can connect to node B but not vice versa)
the order of the nodes is significant. Since the time is com-
mon, we have 17 different features altogether for a connec-
tion attempt. These features are all categorical or binary.
It is interesting to stress that here we treat the wifi band-

width as a categorical feature, and not a continuous one.
However, when encoded as a continuous (ordinal) feature,
the models had a somewhat worse performance. A possible
explanation is that different reported bandwidth values may
correlate with different router types.

4.2 Training Scenarios

For training a model, the labeled data set � must be split
into three non-overlapping subsets; namely a training and a
validation set for optimizing the parametersF of the model
and a test set for measuring the generalization performance
of the optimized model. We created several such splits to
test the sensitivity of the models to the time interval, as our
data set covers almost two years.

Scenario A:. The measurements in the test set are from
the same time interval as the training and the validation sets,
as shown in Table 1.

Scenario B:. We train on the first six months and then we
evaluate the model in subsequent time intervals, as shown
in Table 2. Here, we can examine the sensitivity of themodel
to time, and we can test the prediction quality in the rela-
tively distant future.

Scenario C:. We use the test sets as described in Scenario
B, but we use a cumulative training set. That is, we first train
on the first six months and test on the next time interval. We
then add the previous test set to the training and validation
sets, we train a new model over this extended set, and then
we test on the following time interval. In this scenario, we

Table 2. Scenario B.

Size Collected between

Data set 281,368 01/2019 - 09/2020
Training set 178,556 01/2019 - 06/2019
Validation set 9,398 01/2019 - 06/2019
Test set 1 9,352 06/2019 - 09/2019
Test set 2 9,792 09/2019 - 10/2019
Test set 3 9,224 11/2019 - 12/2019
Test set 4 9,230 12/2019 - 01/2020
Test set 5 9,233 01/2020 - 02/2020
Test set 6 9,283 02/2020 - 03/2020
Test set 7 9,915 03/2020 - 05/2020
Test set 8 9,916 05/2020 - 07/2020
Test set 9 8,587 07/2020 - 08/2020
Test set 10 8,882 08/2020 - 09/2020

can examine the prediction capabilities of the model regard-
ing the immediate future.

4.3 Evaluation Metrics

Wewill use multiple metrics to measure the performance of
the models including accuracy, precision and the �1 score
[30]. Precision (that is, the ratio of true positives and pre-
dicted positives) is the most interesting metric for us, as we
want to avoid false positives, which means we want high
precision. In otherwords, wewish to create pessimistic mod-
els that will not overestimate the possibilities for P2P con-
nection. This allows for conservative predictions for P2P ap-
plication success.
However, focusing only on precision is dangerous, be-

cause a model that never predicts success also maximizes
precision. So, we include more balanced measures as well
such as accuracy and the �1 score that characterize the over-
all performance for predicting both positive and negative
examples.

4.4 Learning methods

We will present the evaluation results of two deep neu-
ral networks [10] with different architectures. We used
Keras [6] for implementing and evaluating these models.
Both neural networks were trained by ADAM [13] as the
optimizer with a minibatch size of 128. In both networks,
we use an input embedding layer. For this reason, we trans-
form all the feature values of all the 17 features to a unique
integer, thereby creating a vocabulary of size 976. The em-
bedding layer learns a : dimensional embedding for each
element of the vocabulary, thereby transforming our 17 fea-
tures into a real vector of : · 17 elements. The embedding
layer is trained as part of the whole deep network.
Thefirst deep networkwill be calledDNN-relu. Its embed-

ding layer creates a : = 100 dimensional dense embedding,
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Table 3. Results in Scenario A.

Learning model Precision Accuracy �1 score

Ensemble Voting 0.8512 0.8812 0.8618

Random Forest 0.8474 0.8663 0.8415
DNN-relu 0.8482 0.8881 0.8612
DNN-tanh 0.8295 0.8776 0.8510
Random 0.4227 0.5074 0.4267

which is followed by 3 layers with 1000 fully connected neu-
rons per layer. The activation function of the hidden layers
is the ReLU function. To avoid overfitting, we used early
stopping. The last layer is a single neuron with sigmoid ac-
tivation.
The second network we call DNN-tanh. It is a much

smaller model. Its embedding layer is : = 40 dimensional,
and it has only one hidden fully connected layer with 350
neurons. In this hidden layer, we use hyperbolic tangent
(tanh) as the activation function. It is fully connected, but we
apply dropout during training to prevent overfitting. Dur-
ing each training epoch, individual nodes are dropped out
of the net with probability 0.5. The last layer is a single neu-
ron with sigmoid activation.
Apart from the neural networks, we also used the ran-

dom forest [3, 28] model. Here, we first transformed all our
17 features to one-hot encoded vectors. Our model contains
1,500 decision trees. The allowed maximum depth is 85. The
number of features to consider when looking for the best
split is the logarithm of the total number of features.
Moreover, we also experimented with ensemble voting to

combine the models above (DNN-relu, DNN-tanh and ran-
dom forest).
Wemade the data set and the implementation of ourmod-

els publicly available at h�ps://github.com/arppy/p2pcm.

4.5 Results

Table 3 summarizes our results in Scenario A. Asmentioned
earlier, we are interested primarily in precision because
avoiding false positives is rather important. In terms of pre-
cision, ensemble voting showed the best performance. Re-
garding accuracy and the �1 score, ensemble voting is very
competitive as well. Therefore, in Section 5 we will apply
ensemble voting to generate the simulated P2P connectiv-
ity topologies.
Next, we wanted to see whether our models generalize

well over time. These results of Scenario B are shown in Fig-
ure 1. Here, random forest outperforms the other models on
almost every test set. However, most of our models degrade
in precision significantly after one and a half years.
This degradation is not due to the problem becoming

harder. Indeed, we examined Scenario C (see Figure 2) to see
whether relatively fresh data helps improve performance.
Here, ensemble voting had the best precision on 5 test sets,
random forest had the best performance on 4 test sets and
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Figure 1. The precision metric in Scenario B.
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Figure 2. The precision metric in Scenario C.

DNN-tanh won over 1 test set. Overall, the precision is fluc-
tuating but it is markedly better than in Scenario B.

5 Properties of the P2P Topology

Using our ensemble voting model, here we simulate the
structure of a P2P overlay network over a realistic trace
of smartphones. We have traces of varying lengths har-
vested from 3,825 different users. We divided these traces
into one-day segments, resulting in 117,247 segments alto-
gether. With the help of these segments, we can simulate
a virtual period of up to one day by assigning a different,
randomly selected segment to each simulated node. The net-
work size is 100,000.

We build networks by first selecting a point in time dur-
ing the simulated day, then nodes attempt to connect to
some peers, and the success is predicted by ensemble vot-
ing. We examine two different ways to determine the set of
peers nodes try to connect to. The first one is called Fixed-

100, where every node has a fixed random list of 100 peers

https://github.com/arppy/p2pcm
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Figure 3. Fixed-100 scenario, top: at 12:00 (when the least
nodes are online), bottom: at 21:00 (when the most nodes
are online).

(these are not guaranteed to be online). Every node tries to
connect to all its 100 candidates. The results are illustrated
in Figure 3. From the histograms, we can identify roughly
two kinds of nodes based on the twomodes: closed and open
ones. We can also see a relatively long tail containing more
open nodes.
The second scenario is called Minimum-20. In this sce-

nario, a node iterates over all the nodes in the network at
random until it can connect to at least 20 neighbors, or un-
til there are no more candidates. Note that the final degree
of a node can be much larger than 20 because of potential
incoming links. In this scenario, most of the nodes (with a
few exceptions) manage to collect 20 connections, so the his-
togram in Figure 4 essentially illustrates the indegree (in-
creased by 20). It is interesting that we can now see a third,
although very flat, mode in the long tail, which corresponds
to the very open nodes.
The histograms are clearly different from the random net-

work that decides at randomwhether a connection succeeds
or not. Table 4 shows a further comparison. The diameter
of the P2P topology is close to that of the random network
but its assortativity [24] (that is, the correlation between the
node degrees of nodes connected by a link) is very different.
In the P2P network, assortativity is strongly negative, that
is, high degree nodes are connected to low degree nodes.

6 Conclusions

We created predictive models of P2P connection success us-
ing machine learning, based on a collected trace of more
than 100,000 actual connection attempts. In decentralized
application development, models such as those presented

Table 4. Properties of examined networks. d: diameter; r:
assortativity coefficient

Fixed-100 Minimum-20
# model random model random

hour online d r d r d r d r

00:00 13550 7 -0.37 7 -0.01 5 -0.50 4 -0.01
03:00 13323 7 -0.37 7 0.00 5 -0.49 4 -0.01
06:00 13441 7 -0.36 7 0.00 5 -0.50 4 -0.01
09:00 12622 8 -0.35 7 0.00 5 -0.50 4 -0.01
12:00 11792 7 -0.31 7 0.00 5 -0.48 4 -0.01
15:00 13839 7 -0.28 6 0.00 5 -0.46 4 -0.01
18:00 15323 7 -0.29 6 0.00 5 -0.45 4 -0.01
21:00 15137 7 -0.32 6 0.00 5 -0.47 4 -0.01

here play an important role, because they allow for a re-
alistic simulation. We demonstrated that the model works
well when it is trained on fresh data but predictions can
quickly become outdated. This means connectivity is a dy-
namic, highly non-trivial property, something that goeswell
beyond simply considering NAT types. The P2P overlay net-
works that are simulated based on this model reflect a cate-
gorization of the nodes into roughly three groups according
to openness.
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