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Background: Non-spherical titanium dioxide (TiO2) nanoparticles have been increasingly 
applied in various biomedical and technological fields. Their toxicological characterization 
is, however, less complete than that of roundish nanoparticles.
Materials and Methods: Anatase form TiO2 nanorods, ca. 15x65 nm in size, were applied 
to cultured astrocytes in vitro and to the airways of young adult Wistar rats in vivo in 5, 10, 
and 8 mg/kg BW dose for altogether 28 days. Presence of nanorods and cellular damage was 
investigated in the astrocytes and in rat lungs and kidneys. Functional damage of the nervous 
system was studied by electrophysiological methods.
Results: The treated astrocytes showed loss of viability without detectable apoptosis. In rats, 
TiO2 nanorods applied to the airways reached the blood and various organs including the lungs, 
kidneys, and the central nervous system. In lung and kidney samples, nanorods were observed 
within (partly damaged) phagolysosomes and attached to organelles, and apoptotic cell death 
was also detected. In cortical and peripheral electrophysiological activity, alterations correspond
ing to energy shortage (resulting possibly from mitochondrial damage) and astrocytic dysfunc
tion were detected. Local titanium levels and relative weight of the investigated organs, apoptotic 
cell death in the lungs and kidneys, and changes in the central and peripheral nervous activity 
were mostly proportional to the applied doses, and viability loss of the cultured astrocytes was 
also dose-dependent, suggesting causal relationship of treatments and effects.
Conclusion: Based on localization of the visualized nanorods, on neuro-functional changes, 
and on literature data, the toxic mechanism involved mitochondrial damage, oxidative stress, 
and apoptotic cell death. These indicate potential human toxicity and occupational risk in 
case of exposure to rod-shaped TiO2 nanoparticles.
Keywords: apoptosis, nanoparticles, neuro-functional changes, tissue damage, toxicity

Introduction
Titanium dioxide nanoparticles (TiO2 NPs) of various shape and size are currently 
found in numerous applications. This involves possible human exposure in occupa
tional settings (during manufacturing and processing of the nanomaterial) and via 
certain consumers’ goods (eg, sunscreens or accidental presence of NPs in pigment- 
grade TiO2 powder used in food and drugs).1

One of the major technical advantages of nano-TiO2 is spontaneous or photo
catalytic oxidative action, which is utilized among others in self-cleaning, self- 
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sanitizing surfaces, and antimicrobial treatment of textile 
items.2,3 For some of such applications, non-spherical, 
elongated NPs have been found preferable.4 On the other 
hand, oxidative activity is a source of risk when TiO2 NPs 
come into interaction with living organisms including 
humans.

A general property of NPs is that they cause redox imbal
ance and oxidative stress in cells, resulting from their high 
surface-to-volume ratio (a parameter influenced also by the 
NPs’ shape) and from surface characteristics such as defects 
of crystal structure, surface atoms with free valence elec
trons, and adsorbed redox active metal ions.5,6 In the aqueous 
microenvironment of living tissues, the reactive oxygen spe
cies (ROS) generated as a result of the NPs’ surface activity 
will damage biomolecules if antioxidant capacity of the cells 
is insufficient.7 Organs of high energy demand, such as the 
brain or the kidneys, show special sensitivity to oxidative 
stress because of their intense mitochondrial activity.8,9 

Oxidative stress in the brain evoked by TiO2 NP exposure 
has been repeatedly reported in the literature.10 Renal oxida
tive stress and cell death in TiO2 NP treated animals have 
also been described.11

The above mentioned widespread application and the 
properties of TiO2 NPs have led to concerns about their 
possible health effects.12 The most likely form of TiO2 

(and other) NPs in the environment is nano-aerosol in the 
air. Consequently, a significant part of human exposure to 
nano-TiO2 is via the airways, resulting in possible damage 
both locally in the lungs and in distant organs via blood 
and lymphatic flow. Occupational exposure by airborne 
nano-TiO2 was associated with oxidative stress, inflamma
tion, and lung damage, indicated by the workers’ serum 
biomarkers.13 In rats, a single inhaled dose of several sizes 
of anatase TiO2 NPs induced an increase in various cyto
kines and cytotoxicity markers in the lungs; the strongest 
effect was seen in case of 10–30 nm spherical particles.14 

In one of our previous studies, rod-shaped TiO2 NPs 
induced several inflammatory cytokines in the lungs of 
rats exposed to the nanorods subacutely via the airways.15

The kidneys, exerting the function of removing xeno
biotics, showed oxidative stress, increased inflammation 
markers, as well as functional and histological damages 
due to tubular necrosis in rats treated orally with (unspe
cified) nano-TiO2.16 In another study, lipid peroxidation, 
reduced antioxidant activity, and proximal tubular apopto
sis has been observed in the kidneys of rats after oral 
administration of spherical TiO2 NPs of <100 nm in size 
for 3 weeks.17

Inhaled NPs can reach the brain by crossing the alveo
lar and blood–brain barriers (BBB) or by migrating along 
olfactory and other afferent nerve fibers.18 The vagus 
nerve, innervating large sections of the respiratory and 
digestive tracts, can convey both inhaled and ingested 
NPs up to the brainstem.19

The size and shape of NPs can be crucial in crossing 
barriers. Particles below 30–35 nm size were found to 
migrate from the alveoli to the bloodstream, whereas larger 
ones stayed on the epithelial surface.20 A difference in pene
tration has been reported between approx. 30 nm in nano
spheres and approx. 20x40 nm in nanorods of TiO2 through 
modeled human BBB in vitro and to rat brain in vivo.21 

Furthermore, individual fibers of the olfactory nerve cannot 
forward particles above approx. 100 nm size.22 On the other 
hand, barrier crossing of NPs is promoted by caveola 
formation23 and endothelial weakening,24 and the latter was 
also found to be size/shape dependent.21

In rats that inhaled an aerosol of 10 mg/m3 nano-TiO2 

(20–25 nm spheres, mostly anatase) for 6 hours daily, 5 
days a week for 4 weeks, damage to the brain was indi
cated by an increased level of inflammation markers and a 
decreased expression of synaptophysin, but no deposition 
of titanium could be detected.25 In another study, TiO2 

NPs (5–10 nm spheres, anatase) given to rats orally for 2 
months caused lower acetylcholinesterase activity and 
higher glial fibrillary acidic protein (GFAP) reactivity 
and interleukin-6 (IL-6) levels in the brain.26 In postmor
tem brain samples of persons exposed to NP-laden pol
luted urban air, protein markers of Alzheimer’s and 
Parkinson’s diseases were associated to the presence of 
Ti-rich NPs.19 Exposure to titanium-based pigment parti
cles in the workplace atmosphere has been reported to 
cause neurological symptoms.27

In contrast to molecular and biochemical studies, there 
is only a low number of papers describing TiO2 NP- 
induced nervous system damage by means of electrophy
siological recording.10 In neuronal networks of mouse 
frontal cortex origin, which were cultured in vitro and 
treated with TiO2 NPs (of 90–100 nm diameter, 10 µg/ 
cm2 culture area, 24 hours), uptake of the NPs into the 
cells and substantial decrease of discharge activity were 
observed.28 In mice, neuronal degeneration and dose- 
dependent reduction of hippocampal long-term potentia
tion were observed in vivo, after a 90-day intranasal 
administration of suspended anatase TiO2 NPs (ca. 300 
nm agglomerates of 5–6 nm primary particles).29 In one of 
our previous works performed in rats with subacute 
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intratracheal application of spherical anatase TiO2 NPs, 
effects on cortical and peripheral electrophysiological phe
nomena indicating functional damage were observed, and 
these alterations had a clear relationship to Ti levels and 
oxidative stress detected in the blood and brain.30

Overwhelming oxidative stress at cellular level often 
leads to cell death. Alveolar macrophages isolated from 
rats following a single intratracheal instillation of TiO2 

NPs showed signs of oxidative stress and cytotoxicity, 
but the mechanism of cell death has not been clarified.31 

Cells of the HT22 mouse hippocampal neuronal line 
showed apoptosis with increased Ca2+ and ROS levels on 
exposure to TiO2 nanospheres of approx. 50 nm size.32 

Additionally, in the majority of studies suggesting that 
nano-TiO2 affects the human brain, results have been 
achieved by using in vitro models based on human ner
vous system derived cells. Mitochondrial damage, reduced 
growth, and NP internalization were described in neuronal 
and glial cell lines of human origin exposed to TiO2 nano
spheres of approx. 15 nm size.33 In a cultured human- 
derived neuronal cell line (SH-SY5Y), internalized TiO2 

NPs of 25 nm of nominal size have been found to cause 
apoptosis and altered cell cycle but no oxidative stress.34

Besides the size and surface features, the shape of the 
NPs determines their suitability for various technical 
applications. In several cases, elongated particles, such as 
nanorods, nanotubes, or nanowires, have been proven to 
be more advantageous than the spherical/isometric ones, 
eg, in solar cells, drug delivery, or antimicrobial treatment 
of fabrics.4,35,36 Nanorods used in boosting the immune 
function and surface nanostructures of dental and orthope
dic implants (from which particles can be released due to 
wear) were in the same size range as the nanorods used in 
the present study.37–39

In spite of the actual or potential applications of non- 
spherical NPs outlined above, the majority of available 
literature focuses on effects (including toxicity) exerted 
on biological objects by TiO2 nanospheres. Furthermore, 
most of the papers published on the action of TiO2 NPs 
describe effects exerted on single organs, even if the 
literature suggests that events at (sub)cellular level, first 
of all, oxidative stress and apoptotic cell death, are uni
versally present, and may be responsible for various altera
tions (morphological and/or functional) in different organs 
of nano-TiO2 exposed experimental animals.

Based on the above findings and our previous results with 
spherical TiO2 NPs, in the present study, rod-shaped TiO2 

NPs of 10–20x50–100 nm (diameter x length) size range 

were administered to the rats via the airways to obtain a 
realistic model of exposure to airborne NPs. In a multi- 
organ approach, the presence of the nanorods and the induced 
cell damage were studied in the treated rat lungs and kidneys, 
and the functional alterations of the nervous system were 
investigated by analyzing cortical, subcortical, and peripheral 
electrophysiological phenomena. Electrophysiological signs 
can be simply and non-invasively recorded in humans. They 
may provide the base of developing functional biomarkers of 
toxicity, provided that the relationship of toxic exposure, eg, 
to nano-TiO2, and electrophysiological alterations are 
described. The effects on cultured astrocytes, a cell type 
fulfilling several essential roles in the functioning of the 
brain, were examined in vitro. We assessed the pathomor
phological effects (cellular and subcellular signs of cytotoxi
city induced in different organs by the nanorods) and changes 
of the nervous electrophysiological activity, concerning the 
extent to which they were similar to or different from those 
which have been described with NPs of other size and shape.

Materials and Methods
Manufacturing and Characterization of 
Nanorods
Using a simple alkali hydrothermal method, Degussa P25 
TiO2 nano-powder (Sigma-Aldrich, St. Louis, PA, USA) 
was processed first to nanotubes as intermediate products, 
and finally, to nanorods of TiO2 with approx. 15x65 nm 
size and of anatase crystal structure.40 The particle size 
was checked by X-ray diffraction in dry state and by 
transmission electron microscopy (TEM) and dynamic 
light scattering (DLS) after suspending the nanomaterial 
in the application medium (phosphate-buffered saline at 
pH 7.0 with 1% polyacrylic acid (PAA) added for suspen
sion stability). The crystal structure of the nanorods was 
predominantly anatase, which is known to have higher 
chemical activity (including ROS generation).41 TEM 
and DLS were performed both on freshly made suspension 
and after 3 months of storage at room temperature to prove 
suspension stability. Details of preparation of the TiO2 

NPs and the suspension, and the characteristics of them, 
were published by Horváth et al.15

In vitro Investigations
Isolation and Culture of Primary Mouse Astrocytes
Astrocytes were isolated from the brain of 1-day-old 
mouse pups (strain: BALB/cAnNCrl, Charles River 
Laboratories, USA; the SPF breeding stock was kept 
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under standard conditions in the Central Animal House of 
the Biological Research Center) by mechanical dissocia
tion. After passing through a 40 µm pore-size strainer 
(Corning Inc., Corning, NY, USA), the collected cells 
were seeded onto poly-L-lysine-coated dishes and kept in 
a CO2 incubator (5% CO2, 37°C, 85–95% humidity) in 
low-glucose Dulbecco’s Modified Eagle Medium 
(DMEM; Thermo Fisher Scientific, Waltham, MA, USA) 
supplemented with 10% fetal bovine serum (FBS; Merck- 
Sigma, St. Louis, MO, USA). The medium was replaced 
twice a week. The cell layer reached confluency after 2 
weeks, and the cultures were subsequently used for the 
experiments.

Cell Viability Test
The effect of TiO2 NPs on the viability of the primary 
mouse astrocytes was tested by MTT assay after adding 
the nanosuspension to the culture medium in final concen
trations ranging from 0.05 to 2.00 mg/mL for 24 and 48 
hours. In parallel, the action of the corresponding amounts 
of 1% PAA-containing vehicle was tested on astrocytes as 
well. Following the treatments, the astrocytes were rinsed 
with PBS and incubated in a culture medium with the 
addition of 0.5 mg/mL MTT reagent (Serva, Heidelberg, 
Germany) for 1 h at 37°C. Formazan crystals generated by 
the living cells were solubilized in 100 µL DMSO. The 
absorbance was measured at 570 nm with a Synergy HTX 
plate reader (BioTek, Winooski, VT, USA). MTT mea
surements were repeated three times, using at least three 
independent biological replicates.

Apoptosis Detection by Means of Annexin V– 
Propidium Iodide Staining
Apoptosis induced in the cultured astrocytes after expo
sure to TiO2 nanorods was examined by Annexin V and 
propidium iodide (PI) staining. The 2-week-old cultures 
were treated either with 0.1 mg/mL TiO2 NPs or with the 
corresponding dose of PAA for 24 hours. Then, the cells 
were stained with Alexa488-conjugated Annexin V and 
with PI as described in the manufacturer’s guideline 
(Thermo Fisher Scientific, Waltham, MA, USA). The 
intensity of fluorescence was measured by a 
FACSCalibur flow cytometer (BD, Franklin Lakes, NJ, 
USA) on 10,000 cells, and the FACS data were analyzed 
by the FlowJo V10 software. The detection of apoptosis 
was repeated three times using at least two biological 
replicates.

Detection of TiO2 Nanorods in the Cultured 
Astrocytes by Means of Scanning Electron Microscopy 
and Energy Dispersive X-Ray Spectroscopy
For this investigation, the freshly isolated cells were 
seeded onto plastic cover slips (Sarstedt, Nümbrecht, 
Germany) positioned in the wells of standard 6-well 
plates, and were cultured for 2 weeks as described 
above. Then, the cells were treated with 0.1 mg/mL TiO2 

NPs for 24 hours, rinsed, and fixed by means of 2.5% 
glutaraldehyde (dissolved in modified Sörensen buffer, pH 
7.6). Dehydration was done in an ascending ethanol series, 
and then, in a series of tert-butanol/ethanol mixture at 
room temperature. After that, the cells were incubated in 
tert-butanol overnight at 4°C, and finally, lyophilized. The 
cover slips were fixed on specimen stubs by an electrically 
conductive double-sided adhesive tape, and a gold-palla
dium layer of 4–5 nm was applied to reduce charging 
artefacts and radiation damage to the sample. Scanning 
electron microscopic (SEM) images were obtained using 
a Hitachi S4700 electron microscope (Hitachi High- 
Technologies Europe GmbH, Krefeld, Germany) with 
accelerating voltage and emission current set to 10 kV 
and 10 µA, respectively. The presence of Ti was verified 
by energy dispersive spectroscopy (EDS) by means of a 
Röntec QX2 EDS detector mounted on the SEM with 10 
kV and 10 µA at multiple points from the cells with 
attached, visually identified NPs and also from the back
ground. The presence of Ti was confirmed based on the Kα 
peak of the element at 4.508 keV.

In vivo Investigations
Animals and Housing
Young adult male SPF Crl:WIBr Wistar rats (6 weeks old, 
170±20 g body weight), altogether 50 animals, were 
obtained from Toxi-Coop Ltd (Budapest, Hungary). They 
were housed in an animal facility providing good labora
tory practice-equivalent conditions (two animals per cage, 
12–12-hour light/dark cycle with light on at 06:00; tem
perature 22±3°C, relative humidity 30–70%). Access to 
standard rodent food (Ssniff R/M-Z+H, Toxi-Coop Ltd) 
and tap water was unlimited. The rats were acclimated for 
1 week, and then randomized to 5 treatment groups of 10 
rats each.

During the whole study, the principles of the Ethics 
Committee for the Protection of Animals in Research of 
the University of Szeged were strictly followed. The study 
was approved by the authority competent in animal wel
fare issues (License No. XXI/151/2013 issued by the 
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Csongrád County Government Office, Directorate for 
Food Chain Safety).

Treatment
The treatment of the five groups was the following: The 
control group (C) was given saline. The vehicle treated 
(VT) group received the suspension medium of the NPs, 
and the treated groups (LD, MD, HD) were given TiO2 

nanorods suspended in the vehicle. The rats received the 
corresponding treatment by intratracheal instillation of 1 
mL/kg BW volume, performed in brief anesthesia once 
daily, 5 days per week, altogether 28 times over a 6-week 
period, always between 8:00 am and 10:00 am as 
described in.42 Before application, the nano-TiO2 suspen
sion was sonicated to counteract aggregation. Table 1 
shows the coding and treatment of each group. The doses 
applied were identical to those used in a previous work on 
nano-TiO2 nanorods effects on rats lungs,15 with the aim 
of generalizing the earlier findings this time to a more 
complex approach.

General Toxicology: Investigation of Weight Gain and 
Clinical Symptoms
The body weight (as a parameter of general toxicity) of the 
rats was measured every treatment day, in the morning 
before administration of the substances, to assess the 
appropriate amount to be instilled. The effect of nano- 
TiO2 dependent toxicity on growth was investigated on 
the basis of body weight measured at equal 7-day intervals 
(Monday to Monday). The resulting growth rate was ana
lyzed in relation to doses and the age of the rats (increas
ing with the treatment weeks). Visible clinical symptoms 
(eg, rough fur or unusual behavior) or death, indicating 
general toxicity, were also observed and registered daily.

Investigation of Central and Peripheral 
Electrophysiological Activities
On the day following the last treatment, the rats were 
prepared for electrophysiological recording and tissue 

sampling in terminal anesthesia using urethane (Molar, 
Budapest, Hungary) in 1000 mg/kg BW dose given 
intraperitoneally.43 Hind leg withdrawal reflex was used 
to assess the depth of anesthesia.44

The parietal bone above the left hemisphere was 
removed, and the dura was protected from drying by a 
thin layer of white petrolatum (for details of preparation, 
see).42 The prepared rats were covered in a warm cloth to 
maintain body temperature and were allowed to recover 
for at least 30 min before recording.

The head of the rat was fixed for recording in the 
stereotaxic frame of the electrophysiological setup. A ther
mostated (+36.5°C) base plate provided support to the rat’s 
underside and body temperature stabilization during 
recording. Recording electrodes (silver wire, ball-tipped) 
were placed on the dura over the primary somatosensory 
(SS) projection area of the whisker pad and over the 
primary visual (VIS) and auditory (AUD) focuses. The 
sites were located with the aid of a somatotopic map,45 

and the electrodes were fine positioned by finding the 
punctum maximum of the evoked response. A stainless 
steel clamp was attached to the cut skin edge as indifferent 
electrode.

Spontaneous electrical activity (electrocorticogram, 
ECoG) was taken from the three sites for 6 min. From 
that, the relative spectral power of the frequency bands 
(delta, theta, alpha, beta1, beta2, and gamma; standard 
human EEG bands)46 was automatically determined. The 
“ECoG index” (a handy, albeit simplifying descriptor of 
the ECoG spectrum)47 was calculated from the relative 
band powers as: ([delta]+[theta])/([beta1]+[beta2]).

Then, sensory evoked potentials (EPs) were elicited and 
recorded. SS stimuli were square electric pulses (3−4 V; 
0.05 ms) delivered through a pair of needles inserted into 
the contralateral whisker pad. VIS stimulation was per
formed by flashes of a white high-luminescence LED direc
ted into the rat’s contralateral eye. For AUD stimulation, 

Table 1 Groups of Rats Used in the in vivo Work with Their Coding and Treatment

Group Code Substance Dose Volume

Control C Normal saline (NaCl 0.9%) —

1 mL/kg BWVehicle treated VT Phosphate buffered saline with 1% PAA —

Low dose treated LD

TiO2 nanorods suspended in the vehicle

5 mg/kg BW

Medium dose treated MD 10 mg/kg BW
High dose treated HD 18 mg/kg BW

Abbreviations: BW, body weight; PAA, polyacrylic acid.
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clicks (approx. 40 dB) were applied into the contralateral 
ear of the rat from a mini earphone through the hollow ear 
bar of the stereotaxic frame. In each modality, one series of 
50 stimuli was applied with 1 Hz frequency, and the onset 
latency of the recorded EPs was measured after averaging 
(for details of measuring, see Supplementary Figure 1). It 
has been described in previous studies that the dynamic 
interaction of successive excitation processes in a sensory 
pathway, a phenomenon reflecting the actual state of the 
CNS, can be examined by varying the frequency of 
stimulation.48 Hence, SS EPs were also recorded using 
one series of stimuli with 2 and 10 Hz frequency beyond 
the standard 1 Hz.

Based on the observed effects of nano-TiO2 on motor 
behavior,49 it was examined if the connection between the 
motor cortical area and the caudato-putamen was influ
enced by the treatment. The cortex was stimulated by 
applying the stimulus trains of 50 described above, at 1 
Hz frequency, via a bipolar electrode. Evoked activity of 
the caudate-putamen (CPu) was led off with a steel needle 
electrode (stereotaxic coordinates: cortical site; AP −1, L 
2; CPu; AP 0, L 3, V −5).45 The biphasic responses 
obtained from the CPu were evaluated the same way as 
the cortical EPs.

The recording session was ended with obtaining com
pound action potentials (CAP) of the tail nerve. A pair of 
stimulating needle electrodes were inserted at the base of 
the tail (delivering similar electric stimuli to the ones used 
for whisker stimulation), and the CAPs were recorded 
50 mm distally by another pair of needles. From the 
onset latency of the CAP and the distance of the electro
des, conduction velocity of the tail nerve was obtained. 
The relative refractory period of the tail nerve was calcu
lated by double-pulse stimulation, from the ratio of the 
latency of the second and first CAP at different inter- 
stimulus intervals. The complete recording and evaluation 
was performed by means of the NEUROSYS 1.11 soft
ware (Experimetria Ltd, Budapest, Hungary).

Complex Post-Mortem Investigation: Further 
General Toxicological and Chemical (A), Biochemical 
(B), and Pathomorphological (C) Examinations
Investigation A – Relative Organ Weights and Ti-Levels of 
Tissues 
When the electrophysiological recording was finished, the 
rats were sacrificed with overdosed urethane (two-fold of 
the anesthetic dose secured gentle and quick sacrifice). 
After the last breath, necropsy started with opening the 

thorax and taking 3–4 mL blood from the left ventricle for 
the measurement of Ti concentration. Then, the rats were 
perfused transcardially with 300 mL cooled saline (4°C) to 
rinse blood from the organs and were dissected.

The brain (complete with both hemispheres and cere
bellum) was removed, weighed, shock-frozen in liquid 
nitrogen, and stored at –20°C. The lungs, hilar lymph 
nodes, thymus, heart, liver, spleen, kidneys, and adrenals 
were removed and weighed. The right half of the lung and 
the right kidney were shock-frozen and stored as above, 
while the left lung and kidney and the lymph nodes were 
fixed in 4% neutral buffered formalin for pathological 
investigation (see below). The relative organ weights 
(related to 1/100 body weight and to brain weight) were 
obtained for all the listed organs.

The level of titanium in the frozen blood, brain, lung, and 
kidney samples was determined by single-particle induc
tively coupled plasma mass spectrometry (ICP-MS; quadru
pole 7700x; Agilent, Santa Clara, CA, USA). The samples 
were processed for ICP-MS measurement as described 
earlier.15,30 The liquid obtained was filtered on 0.45 nm 
hydrophilic membrane filter and diluted to 100 mL final 
volume.

Investigation B – Oxidative Tissue Damage 
In the lung samples, the extent of oxidative damage was 
assessed by measuring lipid peroxidation (thiobarbiturate 
reaction, TBARS) and catalase activity, using lysates of 
freeze-dried lung tissue. Lipid peroxidation was measured 
as µM malondialdehyde/mg protein, and catalase activity, in 
“Bergmeyer units” (BU/mg protein). For details, see Ref. 15.

Investigation C – Light and Electron Microscopy and 
Immunohistochemistry 
In the samples of the lungs and of renal cortex and medulla, 
pathomorphological alterations were investigated by light 
and electron microscopy. For light microscopy (LM), slices 
of 3 µm thickness were made of formalin-fixed and paraffin- 
embedded tissue blocks, and were stained by hematoxylin- 
eosin (HE) for observing abnormalities at cellular level such 
as macrophages laden with NPs or signs of cell injuries 
(necrosis, apoptosis, or autophagy).

TiO2 NPs were identified and their relationship to sub
cellular components and the damage caused in them were 
determined by TEM and EDS. Tissue blocks were depar
affinated and re-embedded in epoxy resin (Embed 812; 
Sigma-Aldrich, St. Louis, PA, USA) using a routine 
TEM sample preparation protocol. Ultrathin slices of 70 
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nm thickness were cut, stained with uranyl acetate and 
lead citrate, and placed on standard copper grids. The 
samples were analyzed in a JEM-1400Flash transmission 
electron microscope (JEOL; Tokyo, Japan).

First, the sections were systematically screened at low 
magnification (1000–5000×) to find NPs. To identify these 
as TiO2 NPs by means of EDS, the sections were exam
ined at 80,000–120,000× magnification with the EM- 
14620SIOD scanning transmission detector (JEOL) oper
ated at 120 kV acceleration voltage. A Dry SD30GV SDD 
30 mm2 X-ray detector (JEOL) was used for the electron 
probe X-ray microanalysis. Although this method is sel
dom used on tissue specimens, it is regarded as highly 
accurate and reliable.50

The X-ray spectra were recorded in the 0–40 keV 
energy range for 100 seconds live time and were analyzed 
by the Visual Identification- and Thin Film Standardless 
Quantitative Analysis Program of the JED-2300 Analysis 
Station (JEOL). The characteristic X-ray fingerprint of 
titanium was identified by its Kα transition line at 
4.508 keV.

To what extent the cell damage, observed by light and 
electron microscopy, corresponded to apoptosis was exam
ined by the TUNEL (terminal deoxynucleotidyl transferase 
dUTP nick end labeling) assay. Lung and kidney sections 
cut to 8 µm from paraffin-embedded blocks were laid on 
silanized slides, stained with Click-iT Plus TUNEL Assay 
using Alexa Fluor 488 dye (C10617; Invitrogen, Carlsbad, 
CA, USA) and counterstained with DAPI (4′,6-diamidino- 
2-phenylindole; Sigma D9542; Sigma-Aldrich, St. Louis, 
PA, USA) following the manufacturer’s instructions. The 
sections were covered with Vectashield mounting medium 
(H-1000-10, Vector Laboratories, Inc., Burlingame, CA, 
USA). Microphotographs were taken with an Olympus 
Fv10i-W compact confocal microscope system (Olympus) 
with Fv10i software (V2.1; Olympus Ltd, Tokyo, Japan) at 
60x magnification (NA: 1.35). For counting the apoptotic 
and total (DAPI-stained) number of nuclei of the cells, Cell 
Counter plugin of the NIH ImageJ analysis software was 
used (imagej.nih.gov/ij). Control (n=3), vehicle-treated 
(n=3), low dose (n=6), medium dose (n=6), and high dose 
(n=6) treated animals were analyzed. Apoptosis was quan
tified in five randomly selected images per animal (techni
cal replicates); data were expressed as percentage of 
TUNEL+/DAPI ratio and averaged for each animal (biolo
gical replicates). Representative images were further pro
cessed with the GNU Image Manipulation Program (GIMP 
2.10.10; gimp.org).

Statistics
Individual data were processed to group means and stan
dard deviation (SD). Normality of data distribution was 
checked by the Kolmogorov–Smirnov test. In case of 
sufficiently normal distribution, one-way ANOVA (for 
organ weight and 24-hour astrocyte viability) and general 
linear model (GLM) with repeated measures (for body 
weight and body weight growth rate) main tests and post 
hoc Tukey’s test were used. In case of non-normal distri
bution of data, non-parametric Kruskal–Wallis ANOVA 
and post hoc Mann–Whitney U-test with Holm correction 
was applied (for electrophysiological, chemical, biochem
ical data, and 48-hour astrocyte viability). The significance 
limit of was set at p<0.05 for each test. SPSS version 24.0 
(IBM, Armonk, NY, USA) and RStudio version 3.6.1 (for 
the TUNEL test; RStudio, Inc., Boston, MA, USA) were 
used. Linear correlation between data sets was searched 
for by means of the “linear fit” function in MS Excel 
(which applies the least square method to fit a straight 
line to the measurement data and tests the strength of 
relationship with Fisher’s F-test).

Results
In vitro Effects on the Cultured Astrocytes
Presence of TiO2 NPs
The presence of the nanorods on the surface of the cul
tured astrocytes, in vitro representatives of the nervous 
tissue, was directly confirmed by means of SEM-EDS. In 
Figure 1, NPs are visualized on the surface of a cultured 
astrocyte, and the EDS spectrum obtained from that spot 
(but not from a background spot) shows the presence of Ti 
(Kα transition line at 4.508 keV).

Effect of the TiO2 Nanorods on the Astrocytes
The treatment of the cultured astrocytes with various con
centrations of TiO2 NP resulted in dose-dependent loss of 
viability. As seen in Figure 2, cell viability decreased 
monotonously with the increasing doses of nano-TiO2. 
At higher doses, treatment with the vehicle had some 
effect, but that was mild and clearly distinguishable from 
the cytotoxicity of the nanorods. The higher nano-TiO2 

doses had stronger effect after 48 hours than after 24 
hours, but the calculated IC50 was nearly identical (24 
hours: IC50=612.1 μg/mL; 48 hours: IC50=610.4 μg/mL).

In spite of the viability loss, no apoptosis (shown by 
the similarity of cell numbers in the Q2 and Q3 quadrants 
in control and treated samples) and no necrosis (shown by 
the similarity of cell numbers in the Q1 quadrant) were 
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detected in the treated cultures by means of the Annexin 
V–propidium iodide staining method (Figure 2C). All the 
same, dose dependence of the viability loss of the treated 
astrocytes and the verified presence of Ti-containing NPs 
on them underlined the causal relationship between 
the two.

In vivo Effects Observed in the Treated 
Rats
Presence of Chemically Detected Ti in the Rats’ 
Tissue Samples
Among the treated rats, first of all in group HD, the level of Ti 
detected by ICP-MS was elevated vs both C and VT. In the 
lungs, the increase was highly significant, and it was also 
significant in the kidneys and in the liver (Supplementary 
Figure 2). In the brain and blood samples, the increase was 
moderate and remained below significance.

General Toxic Effects Observed in the Rats
Treatment on altogether 28 days with the anatase TiO2 

nanorods caused no clinical signs in the treated animals 
compared to the control ones. During daily routine handling, 

no death, no external abnormalities (such as rough fur), and 
no unusual behavior, motion, or posture was observed in the 
treated rats.

There was no noteworthy effect on body weight gain as 
shown by the data in Supplementary Figure 3. There was no 
significant difference between the control and the treated rats 
in their body weight measured always on the same day of the 
week (Monday) (Supplementary Figure 3A). Estimated mar
ginal means of the weekly body weights were significantly 
dependent on the rats’ age (Supplementary Figure 3B) show
ing a significant decrease with increasing age, but the treat
ment had no effect on the weight gain, and there was no 
interaction between the treatment weeks (that is, age of the 
rats) and treatment doses. In groups LD and MD, the rate of 
weight gain was lower than in groups VT and HD 
(Supplementary Figure 3C).

From the organs examined, the body weight related 
weight of the lungs, kidneys, brain, and liver is shown in 
Supplementary Table 1. Lung, kidney, and liver weights 
were affected but not the brain weight. Other organs, ie, 
spleen and heart, were not affected either.

Figure 1 Presence of titanium in treated astrocytes. (A) Scanning electron micrograph of an astrocyte with cell-attached NPs (red cross). (B) Sites of energy dispersive 
spectroscopic sampling indicated at the NPs and at a background spot. (C) EDS spectrum taken from the site marked with red cross in A, showing massive presence of Ti 
(Kα peak at 4.508 nm, arrow). (D) EDS spectrum taken from a background site where the presence of Ti was minimal.  
Abbreviations: EDS, energy dispersive spectroscopy; NP, nanoparticle; Ti, titanium.
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Biochemical and Pathomorphological Changes in the 
Treated Rats’ Lungs and Kidneys
Increased oxidative stress in the lungs was indicated both 
by a non-enzymatic (lipid peroxidation) and an enzymatic 
(catalase activity) parameter as shown in Supplementary 
Figure 4. In the lungs of rats treated identically in a 
previous study, several pro-inflammatory cytokines (such 
as IL-1α and CINC1) were elevated, and these findings are 
in line with the changes of the oxidative stress indicators 
presented in this study.16

Light microscopy of HE stained lung sections showed 
histological alterations in the nano-TiO2 treated rats. 
Intermingled areas with mild atelectasis or emphysema 
were seen with destroyed alveolar septa in the latter. In 
the atelectatic areas, blackish–brown pigmented particles 
were found in the cytoplasm of macrophages or extracel
lularly, the latter surrounded by focal minimal lymphocy
tosis, hyperemia, and non-specific extravasation, as also 
seen previously.16

In contrast, the structure of the kidney cortex and 
medulla was not altered in any of the treated groups. No 
inflammatory reaction or focal extravasation was induced 
by the nanorods. Moreover, no macrophages (histiocytes) 
with phagocyted NPs were observed in the kidney sections 
by light microscopy (not shown).

However, the TEM images of lung tissue samples from 
control and treated rats (Figure 3) showed sharp-con
toured, elongated objects, which were supposed (and sub
sequently confirmed, see Figure 4) to be TiO2 nanorods 
only in the treated rats’ lungs (groups LD, MD, and HD). 
In these groups, phagolysosomes laden with these dense 
nanorods were seen in interstitially localized macrophages. 
In group HD, the phagolysosomes seemed to have a 
damaged membrane, suggesting disturbed lysosomal flux 
as a source of cell damage. Nanorods were observed also 
free in the cytoplasm and near to or attached to organelles 
(mitochondria or endoplasmic reticulum). In the controls 
(C and VT), the small, round, blurred grains were 

Figure 2 The effect of nano-TiO2 treatment on the survival of the cultured astrocytes. Dose-dependent decrease of viability after 24 hours (A) and 48 hours (B) of 
exposure to TiO2 nanorods or the vehicle (PAA). (C) flow cytometry graphs showing no difference in apoptosis (quadrants Q2 and Q3) and necrosis (quadrant Q1) 
between control and treated cells.  
Notes: Bar graphs: means+SD, n=4. *, **, ***; p<0.05, 0.01, 0.001 vs 0 mg/mL dose; #, ### p<0.05, 0.001 vs 0.05 mg/mL dose; ooop<0.001 vs 0.1 mg/mL dose; &&&p<0.001 vs 
0.5 mg/mL dose; ˄˄˄p<0.001 vs 1 mg/mL dose.  
Abbreviations: PAA, polyacrylic acid; SD, standard deviation; TiO2, titanium oxide.
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Figure 3 Transmission electron micrographs of lung sections from group C ((A) 5000×, scale bar 2 μm; (B) 15,000×, scale bar 500 nm); VT ((C) 4000×, scale bar 2 μm; (D) 
12,000×, scale bar 500 nm); LD ((E) 5000×, scale bar 1 μm; (F) 12,000×, scale bar 500 nm); MD ((G) 4000×, scale bar 2 μm; (H) 12,000×, scale bar 200 nm); and HD ((I) 
8000×, scale bar 1 μm; (J) 20,000×, scale bar 200 nm).  
Abbreviations: C, control; VT, vehicle treated; LD, low dose treated; MD, medium dose treated; HD, high dose treated.
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dissimilar to the above mentioned elongated objects (these 
grains contained Pb, Si, and U, and might be impurities 
caused by the histological work).

By applying higher magnification and EDS analysis, 
the identity of the elongated objects could be confirmed. 

Figure 4 shows clusters of dense nanorods, probably from 
disintegrated multivesicular bodies near the nuclear mem
brane of an alveolar macrophage (TEM image, Figure 4A). 
The presence of Ti was verified by EDS applied on the 
clusters; the spectrum in Figure 4C was taken from the 

Figure 4 The presence of TiO2 nanorods in the lung tissue of a treated rat from the high dose (HD) group. (A) Transmission electron micrograph (80,000×, scale bar 200 
nm) of nanorods clumped in a roundish object, probably a disintegrated multivesicular body. (B) Energy dispersive spectroscopic mapping shows presence of Ti in the 
nanorods visualized in A. (C) spectrum taken from the area marked by red cross in (A) featuring a very strong TiO2 Kɑ peak (arrow).  
Abbreviations: Ti, titanium; TiO2, titanium oxide.
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spot marked by the red cross in the biggest cluster. The 
identical shape of the nanorod clusters in Figure 4A and 
the Ti-positive sites on the EDS map in Figure 4B proved 
that the dense elongated objects were in fact Ti-contain
ing NPs.

In the kidney cortex of treated rats, the dense objects were 
seen in the glomeruli and in proximal tubular epithelial cells 
free in the cytoplasm or attached to organelles, especially to 
mitochondria, and engulfed in lysosomes like in the lung 
tissue. Figure 5 shows that similarly to what was observed 
in the lungs, small, roundish granules were seen in the control 
rats’ samples, in the cytoplasm and mitochondria of tubular 
epithelial cells (group C, Figure 5A and B) or in smooth 
muscle cells (group VT, Figure 5C and D). Rod-shaped 
objects appeared only in treated animals’ renal tissue; in the 
mesenchyme (group LD, Figure 5E and F), in distal tubular 
epithelial cells, free or associated to lysosomes (group MD, 
Figure 5G and H), or the cytoplasm of an endothelial cell 
(group HD, Figure 5I and J). In the renal medulla of HD rats, 
however, no nanorods, only small, unsharply contoured, 
roundish granules (like those in the control rats) were 
observed (Figure 5K and L). Figure 6 shows the result of 
the EDS analysis on kidney sections. NPs around and 
adhered to a mitochondrion in a cortical tubular epithelial 
cell of a rat from group MD are seen in Figure 6A. Again, the 
overlap of the visualized particles with the Ti-positive spots 
in Figure 6B verified that TiO2 nanorods were present in the 
kidneys.

Ruptured phagolysosomes, nanorods attached to mito
chondria and near the nuclear membrane, together with 
the detected oxidative stress in case of the lungs, sug
gested cell damage. The TEM images of lung and kidney 
tissues, however, showed no clear signs of apoptosis. 
Hence, apoptosis detection was applied on the lung and 
kidney samples by means of TUNEL assay. As seen in 
Figures 7 and 8, there was a dose-dependent increase of 
TUNEL positive (that is, apoptotic) cells in the same 
treated rat’s lung (alveolar region) and kidney cortex 
samples (glomerulus and the surrounding tubules), 
respectively, and the change in the groups MD and HD 
was significant.

The presence of TiO2 nanorods and cell loss was thus 
verified in the treated rats’ lungs and kidneys and also in 
cultured astrocytes. This, and the (albeit moderate) 
increase in brain Ti content in the treated rats suggested 
that the nervous system may also be affected.

Changes in the Cortical and Peripheral 
Electrophysiological Nervous Activity
The general trend of change in the evoked forms of 
cortical electrical activity in the treated rats was slow
ing. Latency lengthening of the cortical EPs was pre
sent in all three modalities (Figure 9). The extra 
lengthening of latency of SS EPs with increasing sti
mulation frequency was also more pronounced in the 
treated rats (Figure 9A). The amplitude was also mea
sured on the SS EPs, and the frequency-dependent 
decrease of mean amplitude of the 50 EPs in a series 
was dose-dependently stronger in the treated rats com
pared to mean EP amplitude of the controls 
(Figure 9B). The latter change implied increased fati
gue (a possible sign of insufficient energy supply) of 
the ascending somatosensory pathway, which was also 
observed on the ratio of the latency of the last and first 
SS EPs within the series of 50 (Figure 9C). The VIS 
and AUD EPs also showed significant dose-dependent 
latency lengthening (Figure 9D).

The frequency spectrum of the spontaneous cortical 
activity was characterized by the ECoG index (see 
Methods). Its decreasing trend, indicating relatively more 
high frequency and/or less low frequency components, 
was uniform for all three cortical areas but remained 
below significance (Supplementary Figure 5).

The response, obtained in the CPu by stimulating the 
motor cortex characterizing cortico-subcortical motor con
trol, was also affected. Both peaks of the biphasic response 
had increased latency in the HD group, and the first peak 
also in the MD group (Figure 10).

CAP of the tail nerve, obtained from control and trea
ted rats, indicated decreased conduction velocity and 
increased relative refractory period vs controls 
(Figure 11A). Both effects were dose-dependent. In the 
treated rats, the decrease of conduction velocity with 
increasing stimulation frequency was also more intense 
(Figure 11B). This and the data of the refractory period 
showed that the tail nerve in TiO2-exposed rats was less 
able to follow frequent stimulation (an effect that was in 
line with the frequency-dependent latency increase of the 
SS Eps, shown in Figure 9).

The dose-dependence of changes in the electrophysio
logical parameters and tissue Ti levels suggested a causal 
relationship, which was further examined by obtaining the 
correlation of SS EP latency and cortical Ti levels as well 
as tail nerve conduction velocity and blood Ti levels. The 
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Figure 5 (A–J) Transmission electron micrograms of kidney cortical sections from group C ((A) 6000×, scale bar 2 μm; (B) 10,000×, scale bar 1 μm); VT ((C) 6000×, scale 
bar 2 μm; (D) 12,000×, scale bar 1 μm); LD ((E) 5000×, scale bar 2 μm; (F) 10,000×, scale bar 1 μm); MD ((G) 5000×, scale bar 1 μm; (H) 20,000×, scale bar 200 nm); HD 
((I) 4000×, scale bar 2 μm; (J) 10,000×, scale bar 1 μm). (K and L) Kidney medullar sections from group HD ((K) 20 000×, scale bar 200 nm; (L) 60,000×, scale bar 100 nm). 
Abbreviations: C, control; VT, vehicle treated; LD, low dose treated; MD, medium dose treated; HD, high dose treated.
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correlations were fair (Supplementary Figure 6) as mea
sured in cortical and peripheral electrophysiological 
changes providing and indirect proof that all detected 
neuro-functional effects had the same background, pre
sence of elevated amounts of Ti, in form of NPs, and the 
NPs’ cellular effects.

Discussion
In this work, intratracheal application of TiO2 nanorods 
resulted in elevated Ti levels in tissue samples of the 
lungs, brain, and kidneys, as well as in blood; moreover, 
in lung and kidney samples, the presence of nanorods was 
directly confirmed. This meant that the treatment resulted 

Figure 6 Presence of TiO2 nanorods in the kidney cortical tissue of a treated rat from the medium dose (MD) group. (A) Transmission electron micrograph showing 
nanorods attached to a mitochondrion (25,000×, scale bar 200 nm). (B) Energy dispersive spectroscopic mapping shows presence of Ti in the nanorods visualized in (A). (C) 
spectrum taken from the area marked by red cross in (A) featuring a very strong TiO2 Kɑ peak (arrow).  
Abbreviations: Ti, titanium; TiO2, titanium oxide.
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in an effective internal dose, which was probably respon
sible for the tissue/cell damages and neuro-functional 
alterations observed. In parallel to that, TiO2 nanorods 
were detected attached to treated cultured astrocytes in 
vitro. The in vivo doses applied here were in the same 
range as it has been found effective in previous works with 
spherical TiO2 NPs.30,49 Compared to the human exposure 
limit mostly referred to (0.3 mg/m3 for nano-TiO2; 
NIOSH),51 our in vivo doses were about two orders of 
magnitude higher, but the time span of application (28 
times over 6 weeks) was rather short. Details of this 
comparison were described in Ref. 16.

The highest Ti level was measured in the lung samples, 
suggesting deposition of a considerable fraction of the 
applied nanorods in that organ. It was partly in line with 
a paper reporting that TiO2 NPs instilled to rats were 
completely retained in the lungs for several days.52 

However, in our case, detectable amounts of the adminis
tered NPs passed the alveolar barrier, in which 

macrophages may have played a role by migrating from 
the alveolar space to the interstitium after engulfing, but 
not decomposing the amounts of NPs (see NP-laden pha
golysosomes in Figure 3).

In the lungs themselves, the subacute exposure to TiO2 

nanorods resulted in tissue damage, which manifested in 
mild atelectasis or emphysema, and macrophages with pha
gocyted NPs were observed by TEM. Beyond such patho
morphological changes, increased apoptosis (TUNEL 
positivity, see Figure 7) indicated the damage caused by the 
TiO2 nanorods in the treated rats’ lungs. After a single 
intratracheal instillation of 25 nm spherical TiO2 NPs, 
dose-dependent occurrence of neutrophil infiltration and 
granulomatous lesions were described in the rat lungs.53 

When mice were instilled with very small (<10 nm) anatase 
TiO2 NPs for 90 days, dose-dependently increased relative 
lung weight, increased oxidative stress markers, and various 
histopathological alterations including emphysema were 
found,54 similarly to our in vivo observations in rats. 

Figure 7 Apoptosis detection in lung tissue sections. Sample micrographs: (A) group C; (B) group VT; (C) LD; (D) MD; (E) HD. Scale bar 50 μm. Bar graph, (F) Ratio of 
TUNEL positivity and DAPI staining showing significantly elevated number of apoptotic cells in sections from MD and HD rats.  
Notes: Green, TUNEL staining; blue, DAPI staining. Bar graph: Means+SD, n=3 or 6 (see Methods); *p<0.05 vs C; #p<0.05 vs VT; °p<0.05 vs LD.  
Abbreviations: TUNEL, terminal deoxynucleotidyl transferase dUTP nick end labeling; DAPI, 4′,6-diamidino-2-phenylindole; C, control; VT, vehicle treated; LD, low dose 
treated; MD, medium dose treated; HD, high dose treated.
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Human lung damage (functional loss, elevated markers of 
oxidative stress, and inflammation) on exposure to airborne 
nano-TiO2 has also been reported.13

The results of chemical Ti measurement 
(Supplementary Figure 2), and partly of TEM-EDS identi
fication of the NPs (Figures 4 and 6), showed that the 
instilled nanorods could pass the lungs (traveling probably 
in macrophages as mentioned above) and reach the blood 
and distant organs, notably the kidneys and the brain. 
Similarly to the lungs (site of entry for the TiO2 NPs), 
nanorods were identified (Figure 6) and apoptotic cell 
damage detected by TUNEL assay (Figure 8) in the cortex 
of kidneys (the organ where NPs are accumulated and/or 
excreted). Because of technical difficulties, EDS has infre
quently been applied to tissue specimens, but in this case, 
successful application was crucial in the identification of 
TiO2 NPs. In rats orally treated with 10 nm anatase NPs 
(100 mg/kg BW, 2 months), the kidneys showed Ti accu
mulation, functional damage, and abnormal glomerular 

morphology with the infiltration of mononuclear cells, 
and these effects were counteracted by an antioxidant.55

The cited data and our results suggest that apoptosis 
may be one of the final outcomes of cell damage induced 
by nanoparticulate TiO2 in different tissues and organs and 
that this cell damage is largely due to oxidative stress. In 
vitro, cell lines of human lung origin showed increased 
ROS generation and apoptotic death on exposure to sphe
rical TiO2 NPs (of <50 nm size and anatase crystal 
structure).56 Mitochondrial damage (depolarization), lipid 
peroxidation, and other features of oxidative stress were 
also described in cell lines of glial origin, treated with 
anatase NPs of <50 nm size,57 which is in line with 
viability loss seen in our work on mouse astrocytes 
exposed to TiO2 nanorods (Figure 2).

Generally, tissues of high energy demand and rich in 
mitochondria may be especially vulnerable to damage by 
NPs; the NPs’ migration to mitochondria and the imped
ing oxidative phosphorylation may be involved in that.22 

Figure 8 Apoptosis detection in kidney cortical tissue sections. Sample micrographs: (A) group C; (B) group VT; (C) group LD; (D) group MD; (E) group HD. Scale bar 50 
µm. Bar graph, (F) Ratio of TUNEL positivity and DAPI staining showing significantly elevated number of apoptotic cells in sections from MD and HD rats.  
Notes: Greenish–blue, TUNEL staining; blue, DAPI staining. Bar graph: Means+SD, n=3 or 6 (see Methods). **, ***p<0.01, 0.001 vs C; ###p<0.001 vs VT; °°°p<0.001 vs LD. 
Abbreviations: TUNEL, terminal deoxynucleotidyl transferase dUTP nick end labeling; DAPI, 4′,6-diamidino-2-phenylindole; C, control; VT, vehicle treated; LD, low dose 
treated; MD, medium dose treated; HD, high dose treated.
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In the present work, nanorods were identified around the 
mitochondria and attached to them in 105x magnification 
TEM images from the kidney cortex of the MD rats. 
Similar to the observed glomerular capillary endothelial 
and proximal tubular epithelial cells, organelle-specific 
deposition of TiO2 NPs and disturbed cell signaling 
related to mitochondrial dysfunction58 may also be pre
sent in other mitochondria-rich tissues, such as skeletal 
and heart muscles, or in certain parts of the nervous 
system.59,60

When neuronal and glial cell lines of human origin 
were exposed in vitro to 15 nm TiO2 NPs, damage to the 
mitochondria (together with ROS generation) was 
found.33 On treating primary astrocytes isolated from 
rat pups with variations of nano-TiO2, including 50 nm 
spherical anatase at concentrations similar to those in our 
in vitro experiment, substantial viability loss, elevated 
ROS production, mitochondrial deterioration, and 
impaired glutamate uptake were observed.61 In mitochon
dria isolated from rat brain, indicators of oxidative 
damage were increased and reactions of terminal oxida
tion were decreased on treatment with 30 nm nano-TiO2, 

highlighting the role of mitochondrial damage in the 
neurotoxicity of TiO2 NPs.62

Kidney and liver are also organs of high energy turn
over. Intravenously applied nano-TiO2 (10–20 nm, spheri
cal) caused massive oxidative stress, DNA damage, and 
mitochondria-mediated apoptosis in the kidneys and liver 
of rats.63 The changes of relative weight and Ti content of 
these organs were similar to those observed in the present 
study (Supplementary Table 1, Supplementary Figure 2). 
With oral application of nano-TiO2 to rats, apoptosis in the 
proximal tubules, together with histological and functional 
damage, and attenuation of the damages by the antioxidant 
quercetin, has been described.17

To reach the brain, TiO2 NPs must cross the BBB or 
migrate along afferent nerve fibers; both of these mechan
isms have been described as feasible.18 In contrast, the 
access of free Ti ions to the brain, released from the sur
face of the NPs in the low pH interior of phagosomes, is 
not likely because of the minimal solubility of TiO2 NPs.64 

Consequently, the chemical detection of Ti in brain and 
other tissues was a sufficient proof of presence of TiO2 

NPs in our work. Rats inhaling nano-TiO2 have been 

Figure 9 Effect of TiO2 nanorods on the cortical evoked potentials. (A) Latency of the SS EP in control and treated rats at 1, 2 and 10 Hz stimulation frequency. (B) Fatigue 
in the SS EPs, demonstrated by relative amplitudes. (C) Fatigue in the SS EPs demonstrated by the ratio of the latency of the last and first EPs. (D) Latency of the VIS and 
AUD EPs in control and treated rats.  
Notes: Means+SD, n=10. *, **, ***p<0.05, 0.01, 0.001 vs C; #, ##, ###p<0.05, 0.01, 0.001 vs VT; °°, °°°p<0.01, 0.001 vs 1 Hz stimulation within the same treatment group. 
Abbreviations: C, control; VT, vehicle treated; LD, low dose treated; MD, medium dose treated; HD, high dose treated; EP, evoked potential; SS, somatosensory; VIS, 
visual; AUD, auditory; TiO2, titanium oxide.
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reported to show damage in BBB, which may promote the 
uptake of the nanorods into the brain.25

TiO2 nanorods, reaching the brain substance, could 
induce the functional alterations described above by indu
cing oxidative stress and/or neuroinflammation, and finally 
apoptosis.65 If membrane lipids are oxidized, membrane 
fluidity can change affecting axonal conduction and synap
tic transmission, both of which depend on the normal 
functioning of the cell membrane.65 In a previous study 
with spherical TiO2 NPs, TBARS reaction (used to indi
cate oxidative stress in the present study as well) was 
increased in the brain and lung samples of rats receiving 
10 mg/kg BW nano-TiO2 for 28 days; and the latency 
increase of SS EP (regarded in the present work as the 
indicator of functional damage) was proportional to the 
level of both Ti and TBARS in the brain.30 In a study with 
another metal oxide NP (MnO2), treatment with an anti
oxidant reversed the alterations of cortical electrical activ
ity, similarly to those seen in the treated rats in the present 
work, which argued for the role of oxidative mechanism in 
NP-induced neuro-functional damage.66

Numerical parameters (eg, latency and amplitude) of 
sensory cortical EPs reflect changes both in axonal con
duction and synaptic transmission. Both processes depend 
highly on mitochondrial energy production, and so these 
parameters may serve as sensitive biomarkers of neuro
toxicity. Energy shortage resulting from NP-induced mito
chondrial damage affects neuronal and glial cells alike. 

Among glial cells, astrocytes fulfil the function of support
ing neuronal activity in various ways. These cells remove 
glutamate, the most important excitatory transmitter in the 
CNS, from the synaptic cleft by a co-transport with Na+ 

along the concentration gradient of the latter, metabolize it 
to glutamine, and supply that as a transmitter precursor for 
both glutamatergic and GABAergic neurons.67 The 
decrease in transmitter turnover supported by the astro
cytes, due to cell/function loss reported in60 and observed 
in our in vitro model, may disturb the balance of excitation 
and inhibition, partly due to excess free glutamate, and 
partly to loss of negative feedback between glutamate and 
GABA, in case glutamate-uptake induced GABA release 
from the astrocytes is missing.68 Finally, failing glutamate 
transport, due to NP-induced astrocyte damage manifested 
in reduced ion pump or enzyme activity, may result in an 
abnormally high perisynaptic glutamate level, which will 
disturb transmission.69

Ion pumps weakened by energy shortage also affect 
transmembrane ion gradients involved in nerve pulse 
conduction. A similar pattern of changes in EP latency 
and tail nerve conduction velocity suggested that the 
effect of TiO2 nanorods on axonal conduction and synap
tic transmission was both involved in the mechanism of 
the observed changes. Increased fatigability of the SS 
sensory pathway (Figure 9B and C) and the tail nerve 
(Figure 11) in the treated rats might also point to energy 
shortage.

Figure 10 Latency of the biphasic evoked response recorded from the CPu on stimulating the motor cortex in the control and treated rats.  
Notes: Means+SD, n=10. *p<0.05 vs C; #p<0.05 vs VT.  
Abbreviations: C, control; VT, vehicle treated; LD, low dose treated; MD, medium dose treated; HD, high dose treated; CPu, caudato-putamen.
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Slowed corticostriatal evoked response (Figure 10) might 
indicate altered motor control in the treated rats. Caudato- 
putamen, the site of recording, is a key element in striatal 
plasticity, and thus in adaptive motor control and procedural 
memory.70 In our previous studies, altered open field and grip 
strength test performance were detected in rats treated with 
spherical TiO2 NPs.49,71 In mice, deterioration of spatial 
memory, together with biochemical and electrophysiological 
signs of neuronal damage, have been reported.18

In a state of energy shortage due to mitochondrial damage, 
spontaneous cortical activity is expected to become slower as 
it is known in mitochondriopathies.72 The mild shift of ECoG 
to higher frequencies (see Supplementary Figure 5) observed 
in the present work is in contrast to that, but fits well, together 
with lengthened EP latencies, with decreased cholinesterase 
activity, an effect described in rats after a 2-month oral treat
ment with TiO2 NPs.26 If the ascending reticular cholinergic 
activation of the cortex is abnormally strong, spontaneous 
cortical activity will be increased, leading to depressed evoked 
activity.73,74

It was found in the present work that anatase TiO2 

nanorods, applied to the airways of rats by intratracheal 
instillation, reached the blood and various organs includ
ing the kidneys, the liver, and the CNS. Locally detected 
Ti levels and relative weights of the investigated organs, 
apoptotic cell death in the lungs and kidneys, and altera
tions in central and peripheral electrophysiological ner
vous activity were mostly proportional to the applied 
doses and reached a significant level in animals receiving 
the high or high and medium dose. Viability loss of cul
tured astrocytes, used as an in vitro model of CNS effect, 
was also dose-dependent. This suggested a causal relation
ship of treatments and effects. Based on the localization of 
the visualized nanorods and on literature data, mitochon
drial damage, oxidative stress, and apoptotic cell death 
were likely involved in the toxic mechanism.

The mentioned widespread application of rod-shaped 
and other TiO2 NPs makes human exposure likely, which 
in turn may contribute to the causation or aggravation of 
several chronic non-infectious diseases of the organs 
investigated in the present study (asthma COPD, chronic 
renal insufficiency, as well as neurological diseases, eg, 
Leigh’s syndrome of MERRF). Persons having such dis
eases may be at increased risk in case of job-related 
exposure to TiO2 NPs. Oxidative stress, possibly caused 
by NPs, is probably involved in the mechanism of hyper
tension, a widespread chronic disease in itself and risk 
factor of further circulatory and central nervous diseases.75 

Inhaled TiO2 nanorods and other metal-containing NPs 
were found to be associated with mitochondrial damage, 
protein misfolding, and other subcellular abnormalities 
leading to neurodegenerative disorders early in life.76

The effects observed in the present work were mostly in 
line with the effects described in studies with other shapes 
and/or sizes of nano-TiO2. This and the probable health 
consequences in humans underline the importance of gain
ing comprehensive toxicological information on TiO2 

nanorods, a nanomaterial with widespread application.

Conclusion
In the present work, subacute intratracheal exposure of rats 
to anatase TiO2 nanorods resulted in pathomorphological 
alterations in the lungs and kidneys and functional altera
tions in the CNS, with directly or indirectly verified pre
sence of the nanorods in the affected organs. However, no 
clinical signs of toxicity were observed. The damages 
were likely due to apoptotic cell death initiated by NPs 

Figure 11 Conduction velocity and relative refractory period of the rats’ tail nerve 
(A) and frequency dependence of the conduction velocity (B).  
Notes: Means+SD, n=10. *, **, ***p<0.05, 0.01, 0.001 vs C; ##, ### p<0.01, 0.001 vs VT. 
Abbreviations: Cond. vel., nerve conduction velocity; Rel. refr., relative refractory 
period; C, control; VT, vehicle treated; LD, low dose treated; MD, medium dose 
treated; HD, high dose treated.
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affecting, first of all, the mitochondria and causing oxida
tive stress.

The lungs, kidneys, and the CNS are involved in several 
chronic diseases of humans, in the background of which 
oxidative stress and chronic inflammation were identified or 
supposed. It is possible that exposure to nano-TiO2, whether 
related to jobs, environmental pollution, or certain consu
mers’ goods, may contribute to their causation or aggrava
tion. On the one hand, this is one more reason why adequate 
safety measures, based on research data, are needed. On the 
other hand, the results of the present work may provide the 
base of developing effect biomarkers of TiO2 and other NPs 
for human application.
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