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ABSTRACT: An easily constructed and inexpensive polarimeter
with an optical rotation angle resolution of about 0.5° is presented.
It is made from small pieces of polarizing film, 2 LEDs, a
protractor, and a few wires, all held in place with plastic
interlocking toy bricks, such as Lego bricks. The instrument was
used to demonstrate the optical rotation of plane polarized light as
a function of concentration, path length, temperature, and
wavelength, and to determine enantiomeric excess in solutions of
arabinose, the amount of limonene in citrus ski wax remover, and
optical rotations of various types of honeys and essential oils.
Results were comparable to values obtained on a commercial
scientific instrument, and with literature values.

KEYWORDS: High School/Introductory Chemistry, First-Year Undergraduate/General, Second-Year Undergraduate,
Upper-Division Undergraduate, Analytical Chemistry, Organic Chemistry, Laboratory Instructions, Hands-On Learning/Manipulatives,
Chirality/Optical Activity, Spectroscopy

■ INTRODUCTION

Students encounter polarimetry in high school in connection
with stereochemistry. The classical schematic representation of
a polarimeter is illustrative and easy to understand, an asset not
shared by the modern polarimeter, where basic features are
hidden. Many simple, self-constructed polarimeters have been
reported for use in demonstrations and student experi-
ments.1−11 Overheads have earlier been used as a light
source.2−5 These have now been replaced by LEDs,6,7 lasers,8,9

and LCD screens.10,11 We have previously published
descriptions of simple instruments constructed with plastic
interlocking toy bricks, such as Lego, and LEDs for UV−vis
absorption and fluorescence measurements intended for
student experiments.12−14 We add here polarimetry, extending
the range of spectroscopic methods possible with the same
basic building blocks. The polarimeter has the same layout as a
classical polarimeter, making it easy to explain fundamental
principles and instrumental design. It is not a black box system;
it is inexpensive, easy to assemble, and flexible; can be used for
many different compounds at varying concentrations; and has
a precision and resolution sufficient for students’ use. This
makes it a convenient device for a range of quantitative
measurements.
The emphasis in this article is on the design and application

of the polarimeter. First, the design is explained. Second, basic
properties such as optical rotation as a function of
concentration, path length, temperature, and wavelength are
demonstrated. Third, applications are presented: finding the

enantiomeric excess in arabinose solutions and limonene in a
citrus ski wax remover as well as the optical rotation of honeys,
syrups, and essential oils.

■ EQUIPMENT SETUP
Figure 1 illustrates the arrangement of the instrument when
the observer faces the detector.
It is also possible to face the light source. This can be

achieved by turning the protractor and arrow toward the
detector side. However, independent of which direction
observations are made in, the light from the source must hit
the polarizing film before the plastic sheet that constitutes the
dial, as plastic films depolarize plane polarized light.
The flexibility obtained by using Lego bricks makes it simple

to increase and reduce the path length and to change
wavelengths. Optical rotation is often reported using the D-
line of sodium at 589 nm; thus, a yellow LED with a peak λ at
592 nm has been used in most of the experiments here. Optical
rotation readings of solutions are made relative to zero
readings with solvent (or air). All readings are undertaken at
minimum light intensity because readings at maximum light
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intensity are less accurate.5,8 The resolution is about 0.5°; thus,
small rotations have correspondingly larger error margins. See
Supporting Information (SI) for detailed instructions.
The layout closely resembles the classical schematic

representation of optical rotation by chiral compounds. It is
easy to demonstrate that the amount of radiation (light)
passing through the second polarizing film is dependent on the
rotatory power of the solution in the cuvette, and the degree of
rotation of the second polarizing film.

■ EXPERIMENTAL SECTION

Polarizing film was purchased from American Polarizer (AP42-
007T-12X19). Polarizing films intended for physics experi-
ments in schools (from Amazon.com, without specifications)
gave almost the same results and may be used. Cuvettes/cells
used were of optical glass (path length; 1.0, 2.0, 4.0, and 10.0
cm) and purchased through Amazon.com. Plastic cuvettes
cannot be used as plastic depolarizes plane polarized light. For
the measurement of rotation as a function of wavelength, LEDs
with wavelengths in the range 405−660 nm were used. For all
other experiments, a yellow LED with a peak lambda of 592
nm and a bandwidth of 20 nm was used. See SI for more
information and instructions for making the protractor, plastic
dial, and pieces of polarizing film; for assembling the
instrument; and for peforming measurements.
Solutions were made of fructose, sucrose, arabinose,

limonene, citrus ski wax remover, and some of the honeys
and syrups. The essential oils were used neat. See SI for
detailed information.
Rotation measurements were made at minimum light

transmission (lowest reading of the voltmeter connected to
the detector LED) in a dimly lit room. Control measurements
were regularly performed on a commercial scientific instru-
ment (Anton Paar MCP 5100, 589 nm) for comparison.
Measurements were made at ambient temperature (20−23
°C), unless otherwise stated. This is in the same range as the
literature values.

■ HAZARDS

With respect to chemicals, the following apply: The
carbohydrates are nonhazardous. Limonene, ethanol, citrus
ski wax remover, and essential oils are both flammable and
irritating. The preparation of solutions of limonene and citrus

ski wax remover in ethanol and measurements of these
solutions and essential oils require a properly ventilated
location, preferably a fume hood. Goggles, gloves, and lab coat
should be used. Experiments with sugars in water represent no
hazards. Use a lid or something similar like a microscope slide
to cover the cuvette if necessary.
There are no hazards in constructing the device. None of the

LEDs used here are in a wavelength range harmful to the eyes.
However, the contrast between the light source and the
environment can be strong in dim lighting, especially for high
intensity LEDs. We advise to build extra walls of Lego-bricks
or to cover with small pieces of material to shield the light.
This is not a problem with the 592 nm yellow LED used in
most experiments. The LEDs are cold-running and will not get
warm. The voltage used is low, and the risk associated with this
voltage is minimal.

■ BASIC PROPERTIES: OPTICAL ROTATION VS
CONCENTRATION, PATH LENGTH,
TEMPERATURE, AND WAVELENGTH

Optical rotation measurements as a function of concentration
were performed with (R)- and (S)-limonene (Figure 2). The
linearity between concentration and observed rotation is good
for both enantiomers.
Optical rotation as a function of path length and

temperature was determined using D-fructose, increased with
path length (Figure 3), and decreased with temperature
(Figure 4).
Optical rotatory dispersion (ORD) is often demonstrated

simply as a color change when white light is rotated by a
solution of a chiral compound.2,3,15 With LEDs of different
wavelengths, this can easily be done quantitatively. Specific
rotation as a function of wavelength (ORD) was determined
for both D-fructose and D-sucrose. Specific rotations were
calculated from observed optical rotation according to eq 1
where [α] is specific rotation, α is observed optical rotation, l is
the length of the cuvette in dm, and c is the concentration in g/
mL.

l c
α α[ ] =

× (1)

Specific rotation increased with decreasing wavelength
(Figure 5) displaying a plain ORD curve. The results are in

Figure 1. Self-constructed polarimeter. (a) From left to right: LED used as a light source (592 nm), polarizing film fixed between two Lego bricks,
sample cuvette, and second polarizing film superimposed onto the end of a plastic dial that can rotate around the protractor. (b) LED used as a
detector connected to a multimeter with a high internal resistance (>10 MΩ).14
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accordance with literature values.11,16−19 Extracted values for
D-sucrose from Figure 4 in Mahurin et al.16 are included in
Figure 5 for comparison.

■ SOME APPLICATIONS OF POLARIMETRY
We present here identification of unknown samples of D-
fructose, D-sucrose, and D-glucose; quantification of (R)-
limonene in citrus ski wax remover; and determination of
enantiomeric excess in a mixture of D- and L-arabinose, as well

as discovery of chirality in natural compounds, such as honeys,
syrups, and essential oils.
Identification

Identification of unknown solutions of carbohydrates such as
glucose, fructose, and sucrose by polarimetry is a common
laboratory exercise.20 Unknown solutions of D-fructose, D-
sucrose, and D-glucose were measured by students on the self-
constructed polarimeter, and by the teacher both on the self-
constructed polarimeter and on a commercial polarimeter
(Anton Paar). The results are shown in Table 1 together with

literature values. The calculated specific rotations for the
student measurements agreed well with both the teacher’s
results, measurements on a commercial instrument and
literature values. Experimental details are given in SI, section
5.3.
Quantification

Quantification has been done by determining the content of
(R)-limonene in citrus ski wax remover. Limonene is mostly
known as a fragrance and a flavor, but it is also used as a green
solvent with a number of different applications including
cleaning products, and it is being explored as a starting material
and for use in functionalized foods.21 The amount of limonene
was calculated to be 25% using Figure 2 as the calibrating
curve. See SI section 5.4 for experimental details.

Figure 2. Optical rotation vs concentration for (R)-(+)-limonene
(diamond) and (S)-(−)-limonene (circle). Self-constructed polar-
imeter: filled symbols; wavelength = 592 nm; path length = 4 cm.
Anton Paar: open symbols; wavelength = 589 nm.

Figure 3. Optical rotation vs path length for D-(−)-fructose (0.5 g/
mL). Wavelength = 592 nm.

Figure 4. Optical rotation vs temperature of D-(−)-fructose (0.5 g/
mL). Wavelength = 592 nm. Path length = 4 cm.

Figure 5. Specific rotation vs wavelength. D-(−)-Fructose and D-
(+)-sucrose both at 0.5 g/mL. Self-constructed polarimeter: filled
symbols; wavelength = 405, 428, 470, 500, 525, 592, 626, 635, and
660 nm; path length = 4 cm. Anton Paar: open symbols; wavelength =
436, 546, 579, and 589 nm; path length = 10 cm. Extracted values
from Mahurin et al.:16 star symbol.

Table 1. Optical Rotation Data for Identification of
Unknown Sugar Solutions

Solution
Student Result

[α]592
Teacher
[α]592

Anton Paar
[α]589

Literature
Valuea [α]589

(A) D-
(−)-Fructose

−94.8° ± 3.3 −93.5° −93.7° −92° ± 2

(B) D-
(+)-Sucrose

+66.5° ± 2.5 +66.8° +65.9° +66.5° ± 1

(C) D-
(+)-Glucose

+52.9° ± 2.2 +54.5° +53.6° +53° ± 2

aThe source for these values is Sigma-Aldrich (now Merck).
Temperature: 20 °C. Preparation: 10% in H2O.
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Enantiomeric Excess

Determination of enantiomeric excess is an important
application in organic chemistry. Most carbohydrates exist in
nature almost exclusively as the D-enantiomer making it
expensive to purchase the “unnatural” L-enantiomer. Arabi-
nose, on the other hand, exists as both enantiomers in nature.
The L-enantiomer is the most common and is found in
hemicelluloses, pectin, and gums and is easily obtainable.22−26

The D-enantiomer is synthesized from D-glucose22,27−29 and
can also be purchased at a reasonable price. L-Arabinose is
sometimes used as “sugar replacement”, as it apparently
inhibits uptake of sucrose.23,25,30 Arabinose is harmless and
water-soluble and has a high specific optical rotation. It is
therefore a suitable compound for investigating quantitative
aspects such as enantiomeric excess (ee, most commonly given
in %) in a mixture of enantiomers. The results from measuring
commercial samples of L- and D-arabinose, a mixture of L- and
D-arabinose, together with literature values for the enantiomers
are presented in Table 2.

Enantiomeric excess in percent is calculated according to eq
2:

% ee
mixture

pure enatiomer
100%D

D

α
α

=
[ ]

[ ]
×

(2)

As seen in Table 2, the specific optical rotation [α]D of the
mixture of L- and D-arabinose is +52.5°, showing an excess of
the L-(+)-enantiomer. Using [α]D = +105° for the L-
enantiomer gives ee = 50% which is in accordance with the
prepared mixture of 25% L- and 75% D-arabinose. It is simple
for the teacher to hand out a range of mixtures and let the
students determine the enantiomeric excess (ee) using the self-
constructed polarimeter.
Honeys and Syrups

Polarimetry is used frequently in the sugar industry. Having
performed measurements with glucose, fructose, and sucrose, it
makes sense to continue with an industrial application of
polarimetry on sugar-containing compounds such as in
analyses of honeys and syrups.31−37

As these viscous liquids can be somewhat nontransparent in
the visual (VIS) region of the electromagnetic spectrum but
transparent in the near-infrared (NIR) region, NIR polarimetry
is preferred for accurate measurements. Nevertheless, it is
possible to apply VIS polarimetry semiquantitatively di-
rectly.31,38 Honeys and syrups rotate plane polarized light
both to the left (levorotatory, −) and right (dextrorotatory, +)

mirroring predominantly the amount of D-glucose (+), D-
sucrose (+), and D-fructose (−) in them. Honey is a complex
mixture. However, fructose dominates in floral honey,36,37 and
in general, the net optical rotation will be levorotatory. In
honeydew, on the other hand, glucose together with other
strongly dextrorotatory carbohydrates make the total optical
rotation dextrorotatory.36,37 Honeydew is not produced from
flower nectar like floral honey, but from secretions of living
plants or excretions from plant-sucking insects on plants.37 If a
honey is dextrorotatory, it could also be adulterated honey.36

In our case (see Table 3), three of the honeys were
levorotatory, consistent with floral honeys, while the fourth
(Serbian honey) was dextrorotatory and is most likely
honeydew.

Syrups are dextrorotatory containing relatively more sucrose
and glucose than fructose; however, there are also different
types of syrups. Golden syrups are generally made from
refiners’ return syrup (leftover liquid with sucrose from
production of white sugar from sugar canes) where most of
the sucrose is hydrolyzed (inverted) to glucose and
fructose.39,40 Maple syrup is concentrated maple sap that has
not been hydrolyzed and contains mostly sucrose and only
small amounts of fructose and glucose.41−43 These relative
amounts of sucrose, fructose, and glucose are reflected in the
optical rotations where Lyle golden syrup has a lower rotation
than maple syrup due to the higher content of fructose. See SI
section 5.9 for experimental details.
Enantiomers and Essential Oils

Nature is an important pool for chiral compounds. Chiral
fragrant compounds are often used in organic chemistry
textbooks to explain different activities of enantiomers in
biological systems. The significance is of course greater for
chiral drugs, but with fragrant compounds the students can
themselves experience the difference. Olfactory discrimination
of enantiomers is an intriguing field.44−47

Most known are perhaps carvone and limonene. (R)-
(−)-Carvone has a sweet mint smell and is naturally found in
spearmint oil. (S)-(+)-Carvone has a more spicy smell and is
the major compound in oil from caraway seeds.44,48,49

Limonene is even more common. (R)-(+)-Limonene is the
major component in oil from citrus peel and is in particular
associated with oranges. (S)-(−)-Limonene has a more piney
and turpentine smell.44

Many essential oils contain fragrant chiral compounds, and
they rotate plane polarized light both levorotatory and
dextrorotatory. Measuring the optical rotation of essential
oils shows the diversity of optically active compounds in
natural compounds. These oils also lend themselves to
investigation, combining a literature study about chiral

Table 2. Optical Rotation Data of L-(+)- and D-
(−)-Arabinose

Solution (20% in
H2O)

Optical Rotation α
(deg) 592 nm

(10 cm)

Specific Optical
Rotation

[α]592 (deg)

Literature
Valuea

[α]589 (deg)

L-(+)-Arabinose +21 +105 +103 to +105
D-(−)-Arabinose −19.5 −97.5 −105 to −103
L-(+)-Arabinose:

D-(−)-Arabinos
e = 3:1

+10.5 +52.5b

aThe source for these values is Sigma-Aldrich (now Merck).
Temperature: 20 °C. Preparation: 10% in H2O for L-(+)-arabinose
and 4% in H2O for D-(−)-arabinose. bThe mixture was also measured
on an Anton Paar (589 nm) instrument, resulting in a specific optical
rotation of +52.1°.

Table 3. Optical Rotation Data from Some Honeys and
Syrups

Type of Honey/Syrup
Calculated Optical Rotation α (deg)

for Neat

Kjartan’s honey dew/forest honey −8
Liquid mountain honey European
acacia

−6

Kjartan’s raspberry honey −4
Serbian forest honey +4
Lyle golden syrup +12.5
Maple syrup Winnitou +22
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compounds in oils, their uses, and practical experiments for
their extraction.50−53 To facilitate exploration, the measured
optical rotations of some essential oils together with their
major chiral compounds as found in literature reports are given
in Table 4. The net rotation is, of course, dependent on all
chiral compounds present, and their relative amounts. There is
no simple direct correlation between the net rotation of the
essential oils and the compounds included in Table 4. The
exact amounts of different compounds can vary depending on
season, variety, and origin and so may also the optical rotation.

■ SUMMARY
A simple, inexpensive, and flexible polarimeter was made from
two LEDs, a polarizing film, a few wires, a single resistor, a
battery, a few Lego bricks, and one multimeter. This
polarimeter is used to demonstrate basic properties of
polarimetry such as optical rotation as a function of
concentration, path length, temperature, and wavelength, as
well as to investigate some applications such as determining
the enantiomeric excess in a solution of arabinose, the amount
of limonene in citrus ski wax remover, and the optical rotations
of syrups, honeys, and essential oils.
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fSee refs 69−72. gSee ref 73−75. hSee ref 76. iSee refs 76 and 77.
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(74) Sjödin, K.; Persson, M.; Borg-Karlson, A.-K.; Norin, T.
Enantiomeric Composition of Monoterpene Hydrocarbons in Differ-
ent Tissues of Four Individuals of Pinus Sylvestris. Phytochemistry
1996, 41 (2), 439−445.
(75) Ochocka, R. J.; Asztemborska, M.; Sybilska, D.; Langa, W.
Determination of Enantiomers of Terpenic Hydrocarbons in Essential
Oils Obtained from Species of Pinus and Abies. Pharm. Biol. 2002, 40
(5), 395−399.
(76) Bonaccorsi, I.; Sciarrone, D.; Cotroneo, A.; Mondello, L.;
Dugo, P.; Dugo, G. Enantiomeric distribution of key volatile
components in Citrus essential oils. Rev. Bras. Farmacogn. 2011, 21
(5), 841−849.
(77) Gok, A.ı; Ismail Kirbaslar, S.; Gulay Kirbaslar, F. Comparison
of lemon oil composition after using different extraction methods. J.
Essent. Oil Res. 2015, 27 (1), 17−22.

Journal of Chemical Education pubs.acs.org/jchemeduc Article

https://dx.doi.org/10.1021/acs.jchemed.9b00763
J. Chem. Educ. 2020, 97, 2196−2202

2202

https://dx.doi.org/10.1021/jf60176a035
https://dx.doi.org/10.1002/jhrc.1240130507
https://dx.doi.org/10.1002/jhrc.1240130507
https://dx.doi.org/10.1002/jhrc.1240130507
https://dx.doi.org/10.1002/anie.201107204
https://dx.doi.org/10.1016/S0926-6690(96)00200-2
https://dx.doi.org/10.1016/S0926-6690(96)00200-2
https://dx.doi.org/10.1016/S0926-6690(96)00200-2
https://dx.doi.org/10.1186/0717-6287-48-7
https://dx.doi.org/10.1186/0717-6287-48-7
https://dx.doi.org/10.1002/ffj.1033
https://dx.doi.org/10.1002/ffj.1033
https://dx.doi.org/10.1002/ffj.1033
https://dx.doi.org/10.1021/jf981310s
https://dx.doi.org/10.1021/jf981310s
https://dx.doi.org/10.1021/jf981310s
https://dx.doi.org/10.1021/jf981310s
https://dx.doi.org/10.1016/S0021-9673(00)91276-7
https://dx.doi.org/10.1016/S0021-9673(00)91276-7
https://dx.doi.org/10.1016/S0021-9673(00)91276-7
https://dx.doi.org/10.1016/S0021-9673(02)00653-2
https://dx.doi.org/10.1016/S0021-9673(02)00653-2
https://dx.doi.org/10.1016/S0021-9673(02)00653-2
https://dx.doi.org/10.1016/S0021-9673(02)00653-2
https://dx.doi.org/10.1016/S0021-9673(02)00653-2
https://dx.doi.org/10.1016/j.indcrop.2018.09.010
https://dx.doi.org/10.1016/j.indcrop.2018.09.010
https://dx.doi.org/10.1002/(SICI)1521-4168(19980201)21:2<107::AID-JHRC107>3.0.CO;2-A
https://dx.doi.org/10.1002/(SICI)1521-4168(19980201)21:2<107::AID-JHRC107>3.0.CO;2-A
https://dx.doi.org/10.1080/10412905.2001.9699691
https://dx.doi.org/10.1080/10412905.2001.9699691
https://dx.doi.org/10.1080/10412905.2001.9699691
https://dx.doi.org/10.1080/10412905.2005.9698855
https://dx.doi.org/10.1080/10412905.2005.9698855
https://dx.doi.org/10.1080/10412905.2005.9698855
https://dx.doi.org/10.1002/(SICI)1099-1026(199605)11:3<191::AID-FFJ568>3.0.CO;2-M
https://dx.doi.org/10.1002/(SICI)1099-1026(199605)11:3<191::AID-FFJ568>3.0.CO;2-M
https://dx.doi.org/10.1002/(SICI)1099-1026(199605)11:3<191::AID-FFJ568>3.0.CO;2-M
https://dx.doi.org/10.1002/jsfa.3827
https://dx.doi.org/10.1002/jsfa.3827
https://dx.doi.org/10.1002/jsfa.3827
https://dx.doi.org/10.1021/jf00060a013
https://dx.doi.org/10.1021/jf00060a013
https://dx.doi.org/10.1080/0972060X.2012.10644040
https://dx.doi.org/10.1080/0972060X.2012.10644040
https://dx.doi.org/10.1080/0972060X.2012.10644040
https://dx.doi.org/10.1080/0972060X.2012.10644040
https://dx.doi.org/10.1007/s11274-015-1845-y
https://dx.doi.org/10.1007/s11274-015-1845-y
https://dx.doi.org/10.1007/s11274-015-1845-y
https://dx.doi.org/10.1007/s11101-014-9338-4
https://dx.doi.org/10.1007/s11101-014-9338-4
https://dx.doi.org/10.1007/s11101-014-9338-4
https://dx.doi.org/10.1016/0031-9422(95)00652-4
https://dx.doi.org/10.1016/0031-9422(95)00652-4
https://dx.doi.org/10.1076/phbi.40.5.395.8452
https://dx.doi.org/10.1076/phbi.40.5.395.8452
https://dx.doi.org/10.1590/S0102-695X2011005000123
https://dx.doi.org/10.1590/S0102-695X2011005000123
https://dx.doi.org/10.1080/10412905.2014.982872
https://dx.doi.org/10.1080/10412905.2014.982872
pubs.acs.org/jchemeduc?ref=pdf
https://dx.doi.org/10.1021/acs.jchemed.9b00763?ref=pdf

