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Abstract— The DeGroot–Friedkin model describes how an
individual’s self-confidence in his or her own opinion evolves
as that individual participates in a group discussing a sequence
of topics; as the individual has more impact or less impact
(termed social power) on a given topic discussion, his or her self-
confidence increases or decreases due to the process of reflected
self-appraisal. This paper proposes a broad generalisation of
the DeGroot–Friedkin model by allowing each individual’s self-
appraisal process to be distorted by behavioural characteristics
such as humility. We establish the generalised dynamical model
for the evolution of individuals’ social power (a measure of an
individual’s contribution to each topic discussion). For some
types of individuals, whom we term “humble” and “unreactive”,
results are provided on the existence of equilibria, whether
such equilibria are unique, and convergence to said equilibria.
Simulations are used to illustrate that networks of “emotional”
individuals, who at times act like humble individuals and at
other times like arrogant individuals, can have at least two
attractive equilibria.

I. INTRODUCTION

In recent years, the systems and control community has
become increasingly interested in models of opinion dynam-
ics [1], in part due to its close relation with algorithms for
coordination of multi-agent systems. Opinion dynamics mod-
els describe how an individual’s opinion(s) evolve as he or
she learns of, and processes, the opinion(s) of neighbouring
individuals in the network by way of interactions.

The discrete-time French–DeGroot model (or simply De-
Groot model) [2], [3] is the fundamental model of opinion
dynamics. The DeGroot model has been expanded in many
major directions, including the incorporation of confidence
bounds in the Hegselmann–Krause model to capture ho-
mophily [4], [5], negative weights to capture antagonistic
interactions in the Altafini model [6]–[8], and an individual’s
prejudice to his or her initial opinion in the Friedkin–Johnsen
model [9]. We do not further detail such works, and instead
refer the reader to survey papers such as [1].

This paper does deal with a significant and recent advance-
ment of the DeGroot model, namely the DeGroot–Friedkin
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model [10]. In the theory of reflected self-appraisal (or sim-
ply self-appraisal) [11]–[13], an individual may update his
or her “self-confidence” during group activities depending
on how much impact he or she is having on said activity.
Naturally, there is interest in capturing this process in opinion
dynamics models. In the DeGroot model, a consensus of
opinions (in which every individual has the same opinion) is
eventually reached if the network satisfies some connectivity
requirements, and it is possible to quantify the amount of
relative contribution, or social power, each individual had
in determining the final consensus value. The DeGroot–
Friedkin model therefore proposed to capture an individual’s
self-appraisal dynamics to investigate how an individual’s
self-confidence in his or her own opinion value evolves along
a sequence of topic discussions.

The dynamics of the DeGroot–Friedkin model was stud-
ied theoretically in [10] for strongly connected networks,
weakly connected networks in [14]. These works show that
for constant interaction topologies, each individual’s self-
confidence asymptotically converges to a steady state value,
dependent only on the network structure, in the limit of the
topic sequence. The works [15], [16] extended the model to
incorporate dynamic (topic-varying) interaction topologies,
and showed that each individual’s initial self-confidence was
forgotten exponentially fast. Noise in the self-appraisal pro-
cess, and memory of past discussions, was introduced in [17].
Empirical tests were conducted on a modified self-appraisal
model, in which the Friedkin–Johnsen model replaces the
DeGroot model [18].

The DeGroot–Friedkin model proposes that after a given
topic discussion has reached a consensus, an individual
updates his or her self-confidence for the next topic to be
equal to the relative contribution, termed social power, he
or she had in that given topic. Thus, in the above discussed
literature, an individual’s “self-confidence” is synonymous
with “social power”. One can however postulate that some
individuals may not update their self-confidence to be equal
to their social power due to individual behaviour traits. For
example, certain individuals are “arrogant” or “humble”, and
so might approach the next discussion with a higher or lower
self-confidence than a “well-adjusted” individual given the
same social power in the current issue.

A primary novel contribution of this paper to generalise
the DeGroot–Friedkin model by proposing that each indi-
vidual may have different behaviours, captured by a smooth
mapping, so that an individual’s self-confidence arising from
the self-appraisal mechanism may be distorted from his
or her true social power. This advance leads to a more



realistic model, but which has significantly more complicated
dynamics than the original model in [10]. We then establish
the dynamical equations governing social power evolution
for the generalised model and prove that the self-confidence
trajectories retain desired properties of the original model,
e.g. that consensus is reached for every issue. Four new
classes of behaviour functions are proposed in addition to the
original model function. Above, we already gave examples
of an “arrogant” individual and a “humble” individual. Two
other types of behaviour functions are also defined, which
we term “emotional” and “unreactive”. We then establish
the existence of at least one non-trivial equilibrium for
(possibly mixed) networks of humble, unreactive, and well-
adjusted (original model function) individuals. For networks
that have either humble and well-adjusted individuals, this
equilibrium is unique, and convergence occurs for almost all
initial conditions exponentially fast. Last, we present illus-
trative simulations to show that for networks of emotional
individuals, multiple attractive equilibria can exist.

The rest of the paper is organised as follows. Section II
provides mathematical notation and an introduction to graph
theory. Section III introduces the original DeGroot–Friedkin
model and our proposed generalisation to incorporate in-
dividual behaviour. Section IV provides several theoretical
results which establish properties of the self-confidence tra-
jectories. Conjectures arising from simulations are presented
in Section V, and the paper is concluded in Section VI.

II. NOTATION AND PRELIMINARIES

To begin, we establish the mathematical notation to be
used in this paper. The n-column vector of all ones and zeros
is given by 1n and 0n, respectively. The n×n identity matrix
is given by In. The ith canonical base unit vector of Rn is
denoted as ei. The 1-norm of a matrix is denoted by ‖ · ‖1.

We say that a matrix A is nonnegative (respectively
positive) if all of its entries aij are nonnegative (respectively
positive), and is denoted by A ≥ 0 and A > 0 respectively.
A square matrix A ≥ 0 is said to be row-stochastic if, for
all i = 1, . . . , n, there holds

∑n
j=1 aij = 1. The matrix

diag(xi) is the diagonal matrix with the ith diagonal entry
being xi. For a real square matrix A, spectral radius is
denoted by ρ(A), while λi(A) denotes the ith eigenvalue
of A. The n-simplex is ∆n = {x ∈ Rn : 0 ≤ x,1>

nx = 1},
while the simplex excluding the corner points and the
interior of the simplex are ∆̃n = ∆n\{e1, . . . , en}
and int(∆n) = {x ∈ Rn : 0 < x,1>

nx = 1}, respectively.
We further define the sets Ξn = {x ∈ Rn : 0 ≤ xi ≤
1, i ∈ {1, . . . , n}}, int(Ξn) = {x ∈ Rn : 0 < xi < 1, i ∈
{1, . . . , n}}. A square matrix A ≥ 0 is primitive if ∃k ∈ N
such that Ak > 0 [19, Definition 1.12].

A. Graph Theory

For a given not necessarily symmetric matrix A ≥ 0,
we associate with it a directed graph G[A] = (V, E [A],A),
where V = {v1, . . . , vn} is the set of vertices of G[A] and
in the context of this paper, each vertex (node) represents an
individual in a population of size n. An edge eij = (vi, vj) is

in the set of ordered edges E [A] ⊆ V×V if and only if aji >
0. A self-loop for node vi exists if eii ∈ E [A]. The edge eij
is said to be incoming with respect to vj and outgoing with
respect to vi, and connotes that vj learns of some information
(typically an opinion value) from vi. A directed path is
a sequence of edges of the form (vp1

, vp2
), (vp2

, vp3
), ...,

where vpi ∈ V are distinct and epipi+1 ∈ E . A graph G[A]
is strongly connected if and only if there is a path from
every node to every other node, which is equivalent to A
being irreducible [20]. A directed spanning tree is a directed
graph formed by directed edges of the graph that connects
all the nodes, and where every vertex apart from the root
has exactly one incoming edge. A graph is said to contain
a directed spanning tree if a subset of the edges forms a
directed spanning tree. A directed cycle is a directed path that
starts and ends at the same vertex, and contains no repeated
vertex except for the initial (which is also the final) vertex.
A graph is aperiodic if the largest integer k that divides the
length of every cycle of the graph is k = 1 [19]. Note that
any graph with a self-loop is aperiodic. Results linking G[A]
to the primitivity of A, and eigenvectors of A, are now given.

Lemma 1 ([19, Proposition 1.35]). The graph G[A] is
strongly connected and aperiodic if and only if A is primi-
tive.

Lemma 2 (Perron-Frobenius Theorem [20]). For a row-
stochastic irreducible A, there are strictly positive left and
right eigenvectors u> and 1n associated with the simple
eigenvalue 1. With normalisation satisfying u>1n = 1, we
call u> and 1n the dominant left and right eigenvectors of
A, respectively.

III. SELF-APPRAISAL DYNAMICS WITH INDIVIDUAL
BEHAVIOUR

In this section, we introduce the original DeGroot–
Friedkin model and then present a generalisation of the
model. Consider a population of n ≥ 3 individuals, labelled
as 1, . . . n, with index I = {1, . . . , n}. The n individuals
sequentially discuss topics, with the topic sequence being
indexed by S = {0, 1, 2 . . . , }. For topic s ∈ S , let zi(s, t) ∈
R denote individual i’s opinion at time t = 0, 1, 2, . . .. For
any s ∈ S , individual i’s opinion evolves as

zi(s, t+1) = wii(s)zi(s, t)+(1−wii(s))

n∑
j=1

cijzj(s, t) (1)

where wii(s) ∈ [0, 1] is individual i’s self-confidence or
self-weight, and wij(s) = (1 − wii(s))cij is the weight
assigned by individual i to individual j’s opinion zj(s, t).
Here, cij is the relative1 interpersonal weight individual i
accords the opinion zj(s, t) of individual j. We assume that∑n

j=1 cij = 1 and cii = 0 for any i ∈ I, which implies that∑n
j=1 wij(s) = 1 for all s and i. For simplicity, we denote

yi(s) = wii(s), and assume that the initial conditions satisfy

1The term relative is used to stress that cii = 0. In this model, individual
i’s self-confidence wii(s) = yi(s) evolves over s ∈ S, and thus the weight
individual i accords to individual j 6= i’s opinion is adjusted using 1 −
wii(s) and the relative weight cij .



Assumption 1. The initial self-confidence yi(0) satisfies 0 ≤
yi(0) < 1, ∀ i ∈ I and ∃j ∈ I : yj(0) > 0.

In compact form, one can then write

z(s, t+ 1) = W (s)z(s, t), (2)

where z(s, t) = [z1(s, t), . . . , zn(s, t)]
> is the vector of

individuals’ opinions and

W (s) = Y (s)− (In − Y (s))C (3)

is the row-stochastic influence matrix. Here, Y (s) =
diag(yi(s)) is a diagonal matrix of the individuals’ self-
confidences and C = {cij} is the matrix of relative in-
terpersonal weights among the network of n individuals. A
strongly connected graph is a star graph if and only if there
exists a unique “centre” node vi such that every edge of the
graph is incoming or outgoing with respect to vi. We make
the following assumption regarding the network structure.

Assumption 2. The graph G[C] is strongly connected, it is
not a star graph2, and is constant for all s ∈ S .

Under Assumption 2, C is irreducible, and we choose a
corresponding left positive eigenvector γ> = [γ1, . . . , γn] as
the associated left eigenvector (see Lemma 2). Importantly,
for non-star G[C], we have that γi < 1/2 for all i ∈ I [10].

If ∃i ∈ I such that yi(s) = wii(s) > 0 and @j ∈ I such
that yj(s) = 1, then one can show that the graph G[W (s)] is
strongly connected and aperiodic, i.e. W (s) is primitive. If
there exists a unique i ∈ I such that yi(s) = 1 and yj(s) < 1
for all j 6= i, then we can similarly show that G[W (s)] has a
directed spanning tree with vi as the root node and vi having
no incoming edges. We will show in the sequel that for all
yi(0) satisfying Assumption 1, G[W (s)] is either strongly
connected and aperiod, or has a directed spanning tree with
the root node having no incoming edges, for all s ∈ S . In
both these cases, standard results on the DeGroot model [1]
show that Eq. (2) converges as

lim
t→∞

z(s, t) = 1nx
>(s)z(s, 0) (4)

where x>(s) is the left eigenvector of W (s) associated
with the simple eigenvalue at 1. In particular, if G[W (s)]
is strongly connected and aperiodic, x>(s) is the dominant
left eigenvector (see Lemma 2), and if G[W (s)] has a
directed spanning tree with root node vi having no incoming
edges, then x(s) = ei. This implies that the opinions reach
a consensus value of x(s)>z(s, 0). Thus, xi(s) ∈ [0, 1]
represents the relative contribution of individual i towards
the final consensus value, and is termed the social power of
individual i for issue s in [10], [16] to reflect this relative
contribution.

The DeGroot–Friedkin model aims to capture the evo-
lution of yi(s) by modelling reflected self-appraisal. More
specifically, assuming convergence as in Eq. (4) is obtained,

2Star graphs result in convergence to lims→∞ y(s) = ei for general
initial conditions yi(0), i ∈ I, where vi is the centre node, which is a
special case of the DeGroot–Friedkin dynamics.

then for every i ∈ I , individual i’s self-confidence at the
next issue s+ 1 becomes

yi(s+ 1) = xi(s). (5)

In other words, at the end of discussion for topic s, individual
i takes note of his or her relative contribution (social power)
xi(s), and sets his or her self-confidence yi(s+1) for the next
topic to be his or her social power xi(s). Then, discussion
on topic s + 1 begins, again using the DeGroot dynamics
in Eq. (1) but with s + 1 replacing s in that equation. It is
worth noting that as yi changes to yi(s + 1), the constant
relative weights cij are still used to scale the wij , j 6= i to
ensure that

∑n
j=1 wij = 1 holds for all i ∈ I as required in

the DeGroot model. Let y = [y1, . . . , yn]
>. We summarise

the key results on y(s), s ∈ S in the following lemma.

Lemma 3 ([10], [16]). Suppose that Assumptions 1 and 2
hold and that every individual i ∈ I updates his or her self-
confidence yi(s) according to Eq. (5) with opinion evolution
captured by Eq. (1). Then, the following holds

1) The vector y(s) converges exponentially fast as
lims→∞ y(s) = y∗, with the point y∗ ∈ int(∆n).

2) For any i, j ∈ I, one has y∗i > y∗j or y∗i = y∗j if and
only if γi > γj or γi = γj , respectively, where γi is the
ith entry of the dominant left eigenvector γ> of C.

A. Generalisation of the DeGroot–Friedkin Model

We now propose a generalisation of the DeGroot–Friedkin
model to capture an individual’s behaviour during the self-
appraisal process. In particular, we replace Eq. (5) with

yi(s+ 1) = φi(xi(s)) (6)

where φi(xi(s)) is a function capturing individual i’s be-
haviour during the reflected self-appraisal process. The fol-
lowing assumption is placed on φi.

Assumption 3. For every i ∈ I, φi(xi) : [0, 1] → [0, 1] is
a smooth monotonically increasing function satisfying φi =
0 ⇔ xi = 0 and φi = 1 ⇔ xi = 1.

Note that the xi(s) for a fixed s necessarily sum to
1, because of how they are defined. However, no such
restriction applies to the yi(s). Nevertheless, because of the
restriction on the xi(s), it follows easily from Assumption 3
that if any yi(s) takes the value 1 for s > 0, the other
yj(s), j 6= i all assume the value 0.

The map φi is a function modifying individual i’s per-
ception of social power. That is, individual i’s social power
on topic s is xi(s), but due to behaviour, e.g. arrogance or
humility, observes a distorted value of social power φi(xi(s))
and thus updates his or her self-confidence for topic s + 1,
yi(s+ 1), to be equal to the observed (and distorted) social
power φi(xi(s)). Obviously, the original DeGroot–Friedkin
model is just Eq. (6) with φi as the identity map. In the
sequel, we will propose and study four new classes of
maps for φi to capture different types of behaviours. We
now establish the dynamical equations for xi(s) (which is
equivalent to establishing the dynamical equations for yi(s)



given that φi is surjective for all i). Let us define a mapping
Φ : x(s) 7→ y(s + 1) by stacking together the functions
φi in the obvious way. The following result establishes the
mapping we shall use to study the dynamics of x(s), s ∈ S .

Theorem 1. Suppose that Assumptions 1, 2 and 3 hold, and
that for any topic s ∈ S , the n individuals in the network
discuss opinions according to Eq. (2) and update their self-
confidence according to Eq. (6). Then,

x(s+ 1) = F (y(s+ 1)) = F (Φ(x(s))) (7)

where

F (y) =



ei if yi = 1 for any i

α(y)


γ1

1−y1

...
γn

1−yn

 otherwise
(8)

with α(y) = 1/
∑n

i=1
γi

1−yi
. The map F ◦Φ : ∆n 7→ ∆n is

continuous and smooth on ∆n, and x(s) ∈ ∆n and y(s) ∈
Ξn for all s ∈ S .

Proof. First, let us consider the case where yi(s) = 1 for
some s ∈ S, and without loss of generality further assume
that i = 1. (As already noted, there can be at most one yi(s)
assuming the value 1). Since y1(s) = 1, one can verify using
Eq. (3) that W (s) takes the form of

W (s) =

[
1 0>

n−1

W 21 W 22

]
(9)

where W 21 ∈ Rn−1
≥0 and W 22 ∈ R(n−1)×(n−1)

≥0 . In par-
ticular, one can show that G[W ] has a directed spanning
tree with root node v1 having no incoming edges. Our
discussions below Eq. (2) then allows us to conclude that
x(s) = [1, 0, . . . , 0]>. Replacing s with s + 1, it is then
clear that x(s+ 1) = F (y(s+ 1)) as claimed.

We now consider the case where @i : yi(s+1) = 1. Using
equation Eq. (3) for W (s+ 1) it is evident that

γ>(In − Y (s+ 1))−1W (s+ 1)

=γ>(In − Y (s+ 1))−1Y (s+ 1) + γ>C

=γ>(In − Y (s+ 1))−1Y (s+ 1)

+ γ>(In − Y (s+ 1))−1(In − Y (s+ 1))

=γ>(In − Y (s+ 1))−1 (10)

The positivity of the γi and the fact that yi(s + 1) < 1
guarantees that each entry of γ>(In − Y (s + 1))−1 is
positive, and the vector is a left eigenvector of W (s + 1)
corresponding to the simple unity eigenvalue. Normalisation
of γ>(In − Y (s+ 1))−1 then yields the map in Eq. (8).

That F is smooth and continuous was proved in [16,
Corollary 2]. Assumption 3 yields that Φ : Ξn 7→ ∆n

is continuous and smooth; the composition of two smooth
and continuous maps is also smooth and continuous. Since∑n

i=1 Fi = 1, we have x(s) ∈ ∆n for all s ∈ S , and from
Assumption 3 we conclude that y(s) ∈ Ξn for all s ∈ S .

We remark here that the slight abuse of notation x(s+1) =
F (y(s + 1)) arises because the DeGroot–Friedkin model
is a two-stage model. For any given issue s, the vector of
individuals’ self-confidences y(s) helps to define the opinion
dynamics matrix W (s), as in Eq. (3). The network first
discusses opinions according to Eq. (2). Then, and at the end
of discussion, i.e. when a consensus of opinions is reached,
the social power vector x(s) is obtained and each individual
i evaluates his or her self-confidence for the next issue s+1
as yi(s+ 1) = φi(xi(s)), giving rise to Eq. (7).

If y(s′) = ei for some i ∈ I and s′ ∈ S , then clearly that
individual i will continue to have maximal self-confidence
and self-confidence, yi(s) = 1 and xi(s) = 1, while all
other individual j 6= i will have no self-confidence and social
power for all s > s′. Thus, initial conditions satisfying ∃i :
yi(0) = 1 and yj < 1∀ j 6= i leads to trivial and non-generic
dynamics. The remainder of this paper therefore focuses
on more general initial conditions satisfying Assumption 1
(which does not preclude the possibility that y(s′) = ek for
some k ∈ I and s′ > 0).

B. Classes of Behaviour Functions

We now introduce four classes of behaviour functions,
each of which is illustrated in Fig. 1a-1d.

Humble Individuals: An individual i is said to be humble
if φi(xi) < xi for all xi ∈ (0, 1). With each individual i
using Eq. (6) to update self-confidence yi(s), it follows that
a humble individual almost always (except for xi = 0, 1)
evaluates his or her social power to be lower than the true
social power xi.

Arrogant Individuals: An individual i is said to be arrogant
if φi(xi) > xi for all xi ∈ (0, 1). As a consequence,
an arrogant individual will almost always perceive himself
or herself to have a higher social power than the true
contribution he or she had to the discussion, xi.

Emotional Individuals: Emotional individuals have a
φi(xi) function which, for some x′

i ∈ (0, 1), satisfies
φi(xi) < xi for all xi ∈ (0, x′

i), φi(x
′
i) = x′

i and φi(xi) > xi

for all xi ∈ (x′
i, 1). The “turning point” x′

i identifies the
value of social power above which individual i overrates his
or her contribution to the discussion, and below which he or
she underrates his or her contribution to the discussion.

Unreactive Individuals: An individual i is said to be
unreactive if, for some x′

i ∈ (0, 1), φi(xi) satisfies φi(xi) >
xi for all xi ∈ (0, x′

i), φi(x
′
i) = x′

i and φi(xi) < xi for
all xi ∈ (x′

i, 1). In contrast to an emotional individual, the
“turning point” x′

i identifies the value of social power above
which individual i underrates his or her contribution to the
discussion, and below which he or she overrates his or her
contribution to the discussion.

Individuals for which φ(x) = x, ∀x are termed well-
adjusted individuals. The proposed function classes satisfy
Assumption 3, and may contain a wide range of different
functions. Specific functional forms may be studied in future
to obtain full convergence results, while this paper aims to
establish an analysis framework and preliminary properties
of the trajectory y(s), s ≥ 0 for the general functions.
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(a) A humble individual.

xi

φ(xi)

0 1

1

(b) An arrogant individual.

xi

φ(xi)
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(c) An emotional individual.

xi

φ(xi)
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1

(d) An unreactive individual.

Fig. 1: Illustrative examples of φi(xi) (blue lines) which distort individual i’s self-confidence yi from true social power xi.
The dotted red line is a “well-adjusted” individual from the original DeGroot–Friedkin model, φi(xi) = xi.

IV. ANALYSIS OF THE SYSTEM

Just as in the case where all φi are identity maps (which
corresponds to the original problem examined in [10], [16]),
it is of interest to consider whether there is a (unique)
fixed point of the composite mapping F ◦ Φ, whether it is
stable, under what conditions is convergence to a fixed point
guaranteed, etc. First, we show that for networks containing
only humble, unreactive, or well-adjusted individuals, F ◦Φ
has a fixed point in int(∆n). Then, we analyse the Jacobian
and establish that for networks of humble or well-adjusted
individuals, there is a unique fixed point in int(∆n) that is
convergent for all initial conditions satisfying Assumption 1.

Theorem 2. Suppose that Assumptions 1, 2, and 3 hold, and
that every individual is either humble, unreactive, or well-
adjusted as defined in Section III-B. Define, for every j ∈ I,

rj = min
j∈{1,...,n}

{1− 2γj
1− γj

, 1− x′
j

}
(11)

where γj is the jth entry of the dominant eigenvector γ> of
C, and x′

j is the inflection point of φj if individual j is an
unreactive individual, and x′

j = 1 if j is a humble individual.
Then, for any r ∈ (0, rj ] there holds

xj = 1− r ⇒ Gj(x) < 1− r (12)

where Gj is the jth entry of the composite map G , F ◦Φ
in Eq. (7). Moreover, G has a fixed point x∗ ∈ int(∆n).

Proof. The positivity of γi and the fact that yi(0) < 1 for
all i guarantees that xi(1) > 0 for all i ∈ I. We now prove
that Eq. (12) holds for s = 1, and by induction, one can
immediately prove that Eq. (12) holds for all s ≥ 0.

With r ≤ rj , and dropping the argument s = 1, there
holds

Gj(x) = α(Φ(x))
γj

1− φj(xj)

=
1

γj

1−φj(xj)
(1 +

∑n
k 6=j γk/(1−φk(xk))

γj/(1−φj(xj))
)

γj
1− φj(xj)

≤ 1

1 +
∑n

k 6=j
r
γj

γk

(1−φk(xk))

(13)

because r = 1− xj ⇒ r ≤ 1− φj(xj). For well-adjusted or
humble individuals, this is clear to see, since φj(xj) ≤ xj

for all xj ∈ [0, 1]. For unreactive individuals observe that
r ≤ rj and from Eq. (11) we have rj ≤ 1−x′

j . This implies

that 1 − xj ≤ 1 − x′
j ⇒ xj ≥ x′

j . Since φj(xj) ≤ xj for
xj ≥ x′

j , we have r ≤ 1− φj(xj). Because 1− xk < 1, we
obtain γk/(1− xk) > γk, which implies that the right hand
side of Eq. (13) obeys

1

1 +
∑n

k 6=j
r
γj

γk

(1−φk(xk))

<
1

1 +
∑n

k 6=j
γkr
γj

=
γj

γj+(1−γj)r

(14)

because
∑n

k 6=j γk = 1 − γj from the definition of γ. It
follows from Eq. (13) and Eq. (14) that

1− r −Gj(x) > 1− r − γj
γj + (1− γj)r

=
γj + (1− γj)r − rγj − (1− γj)r

2 − γj
γj + (1− γj)r

=
r(1− 2γj)− r2(1− γj)

γj + (1− γj)r

=
r(1− γj)

[
1−2γj

1−γj
− r

]
γj + (1− γj)r

(15)

From the definition of rj in Eq. (11) and the fact that γj <
1/2 for non-star graphs, we conclude that 1−2γj

1−γj
− r ≥ 0 for

every r ≤ rj , which implies the right hand side of Eq. (15)
is nonnegative. It follows that 1− r > Gj(x).

Next, define the convex and compact set A = {x : 0 ≤
xi ≤ 1 − r̄, ∀ i ∈ I}, where r̄ = minj∈I

1−2γj

1−γj
. Eq. (12)

implies that G(A) ⊆ A, and from Brouwer’s Fixed Point
Theorem [21], we conclude that there is at least one fixed
point, call it x∗, of G in A. Since xi(s) > 0, ∀ i ∈ I for all
s > 0, we further conclude that x∗ ∈ int(∆n).

For networks containing arrogant or emotional individuals,
the results in Theorem 2 do not necessarily hold. In fact,
simulation counter-examples have been identified in which
Eq. (12) is violated.

A. Incremental behaviour of the update map for the social
power vector

It was discovered in [16] that the Jacobian of the mapping
from x(s) to x(s + 1) was useful for determining whether
convergence to a fixed point occurred and whether this
fix point was unique. We now explore the Jacobian, but
it is necessarily more complicated since the corresponding
mapping now involves the more general φi.



The function F is the mapping of y(s + 1) to x(s + 1).
Notice that the mapping as we have defined it is actually s-
independent. So in computing the Jacobian, denoted JF , and
similar quantities, we shall often drop the dependence on s.
We obtain that (see [16, Theorem 3] calculation details)

∂Fi

∂yi
=

xi(1− xi)

1− yi
(16)

∂Fi

∂yj
= − xixj

1− yj
i 6= j

We remark that this calculation does not rely on the xi

summing to 1. For future use below, we also introduce the
matrix H = diag

(
(1− xi)

−1
)
JF diag (1− yj) for xi ∈

(0, 1). Observe that

hii = xi and hij = − xixj

1− xi
, j 6= i (17)

A number of properties of the matrix H are established
in [16]. For convenience, these are summarised as follows.

Lemma 4 ([16]). Consider a set of xi, i = 1, . . . , n, xi ∈
(0, 1) summing to 1, and a matrix H defined as in Eq. (17).
Then H has one zero eigenvalue and all other eigenvalues
are real, lie in (0, 1) and sum to 1. Moreover, ‖H‖1 < 1.

Given the mapping Φ : x(s) → y(s + 1) as defined
above Theorem 1, let JΦ denote the Jacobian, which is
diag(φ′

i(xi)) with φ′
i denoting the derivative of φi with

respect to xi. Evidently the Jacobian of G = F ◦ Φ is
JG = JFJΦ. However, with the above definition of H we
see that (with insertion of the topic indexing s)

JG = diag(1− xi(s+ 1))H diag
(

φ′
j(xj(s))

1− φj(xj(s))

)
(18)

The eigenvalues of JG are the same as those of the matrix

K = H diag
(
1− xj(s+ 1)

1− φj(xj(s))
φ′
j(xj(s))

)
(19)

We remark that in [16], the corresponding expression was
K = H diag( 1−xj(s+1)

1−xj(s)
) and this corresponds to taking

yj(s+ 1) = φj(xj(s)) = xj(s) in the expression for K.
We are interested in fixed points of the mapping G, and

their stability. The stability of a fixed point x∗ of G can be
inferred from the eigenvalues of K at the fixed point [22],
and we note then that, at such a point,

K = H diag
( 1− x∗

j

1− φj(x∗
j )
φ′
j(x

∗
j )
)

(20)

Lemma 5. Adopt the same hypothesis as Lemma 4 and let
the functions φi, i ∈ I satisfy Assumption 3. Then, if

1− xj

1− φj(xj)
φ′
j(xj) ≤ 1 ∀xj ∈ (0, 1), ∀j (21)

the matrix K satisfies ‖K‖1 < 1.

Proof. Denoting kij as the ijth entry of K, the condition
Eq. (21) implies that ‖K‖1 , maxi∈{1,...,n}

∑n
j=1 kji ≤

maxi∈{1,...,n}
∑n

j=1 hji , ‖H‖1. Thus, ‖K‖1 ≤ ‖H‖1 <
1 (see Lemma 4).

We remark that the condition on the φj(xj) given in
Lemma 5 is quite restrictive. In fact, an integration and
use of the boundary condition that φj(0) = 0 for all j
yields φj(xj) ≤ xj for all xj ∈ [0, 1]. In other words,
Lemma 5 is applicable for networks with individuals that are
either humble or well-adjusted. Nonetheless, the advantages
of studying the incremental behaviour, viz. the Jacobian of
G, are evident and further study may allow us to expand
our results to include other individual types. Nonetheless, an
immediate consequence of Lemma 5 is the following result.

Theorem 3. Suppose that Assumptions 1, 2 and 3 hold,
and that for any topic s ∈ S , the network of n individuals
discuss opinions according to Eq. (2) and update their self-
confidence according to Eq. (6). Suppose further that each
individual i ∈ I is either (i) humble, or (ii) well-adjusted,
as defined in Section III-B. Then, lims→∞ x(s) = x∗

exponentially fast, where x∗ ∈ int(∆n) is the unique fixed
point of the map G.

Proof. The proof is similar to the proof of convergence in
[16, Theorem 3] for when G = F , i.e. Φ is the identity
mapping. The technical details, including application of
nonlinear contraction analysis, are therefore omitted.

V. SIMULATIONS

We now present a set of illustrative simulations to illustrate
the existence of multiple attractive equilibria.

We consider a network of n = 8 individuals with an
arbitrarily generated non-star graph G[C] satisfying Assump-
tion 2. We initialise the individuals with the self-confidence
vector ŷ(0), which satisfies Assumption 1: ŷ1(0) = 0.9, and
ŷj(0) = 0.3, ∀ j 6= 1. In Fig. 2a, every individual i ∈ I is
“well-adjusted”, i.e. φi(xi) = xi, ∀xi ∈ [0, 1]. Consistent
with Lemma 3, the social power vector x(s) converges
exponentially fast to an equilibrium, x∗ ∈ int(∆n). In
Fig. 2b, every individual i ∈ I is “emotional” with φi(xi) =
−0.5 cos(πxi) + 0.5 (such a φ satisfies Assumption 3). The
initial conditions are again ŷ(0), and we see convergence
of x(s) to a steady state x∗

1 ∈ int(∆n) (with convergence
appearing to be exponentially fast). Last, consider Fig. 2c, in
which every individual is “emotional”, with the same type of
φi function as in the simulation of Fig. 2b. We now initialise
using ỹ(0), where ỹ1(0) = 0.91, and ỹj(0) = ŷj(0) =
0.3, ∀ j 6= 1 which again satisfies Assumption 1, and differs
from ŷ(0) only in that individual 1 has a slightly higher
initial self-confidence. In this case, lims→∞ x(s) = e1,
which is different to x∗

1, and corresponds to individual 1
eventually holding all of the social power in the network.

Several notable conclusion can be drawn from these simu-
lations. First, consider the original DeGroot–Friedkin model.
When initial conditions satisfy 0 ≤ yi(0) < 1, ∀ i ∈ I and
∃j ∈ I : yj(0) > 0, there holds lims→∞ x(s) = ei for some
i ∈ I if and only if G[C] is a star graph, with centre node
vi. From Fig. 2c, it is clear that emotional individuals can
significantly alter the self-appraisal dynamics of the network
to the extent that even for non-star networks, it is possible for
a single individual to eventually hold all of the social power.
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(a) well-adjusted individuals with ŷ(0).
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(b) Emotional individuals, with ŷ(0).
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(c) Emotional individuals, with ỹ(0).

Fig. 2: Illustrative examples of the evolution of social power, xi(s), for a network of 8 individuals. Well-adjusted individuals
have φi(xi) = xi, while emotional individuals have φi(xi) = −0.5 cos(πxi) + 0.5. Note that ŷ(0) 6= ỹ(0).

Second, in comparing the simulations for Fig. 2b and 2c, it
is obvious that networks of emotional individuals may have
multiple attractive equilibria, one of which is in int(∆n).
In the original DeGroot–Friedkin model, there is a unique
x∗ ∈ int(∆n) which admits almost global convergence,
while all other equilbria are unstable [16, Corollary 2]. Last,
and although not obvious due to the figure size, we observed
that x∗ 6= x∗

1; the emotional function changes the steady
state social power of each individual. These observations are
helpful indicators for future work directions.

VI. CONCLUSIONS

In this paper, we proposed a generalisation of the
DeGroot–Friedkin model by allowing each individual’s self–
appraisal behaviour to be captured by a function. We es-
tablished the dynamical equations that govern the evolution
of social power for the generalised model, and proposed
four new function classes to describe “humble”, “arrogant”,
“emotional”, and “unreactive” individuals in addition to
the original “well-adjusted” individuals. We showed that
networks having a mixture of humble, unreactive and well-
adjusted individuals had at least one equilibrium inside the
unit simplex.By studying the Jacobian of a relevant mapping,
we then established that for networks containing a mixture
of humble and well-adjusted individuals, and for almost
all initial conditions, convergence to a unique equilibrium
was guaranteed, with an exponential rate. Last, we used
simulations to establish insight into networks of emotional
individuals, including the existence of multiple attractive
equilibria. Future work will focus on comprehensive con-
vergence analysis for networks of arrogant, emotional, or
unreactive individuals, and further analysis of the equilibria.
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[7] J. Liu, X. Chen, T. Başar, and M.-A. Belabbas, “Exponential Conver-
gence of the Discrete- and Continuous-Time Altafini Models,” IEEE
Transaction on Automatic Control, vol. 62, no. 12, pp. 6168–6182,
2017.

[8] W. Xia, M. Cao, and K. Johansson, “Structural Balance and Opinion
Separation in Trust–Mistrust Social Networks,” IEEE Transactions on
Control of Network Systems, vol. 3, no. 1, pp. 46–56, 2016.

[9] N. E. Friedkin and E. C. Johnsen, “Social Influence and Opinions,”
Journal of Mathematical Sociology, vol. 15, no. 3-4, pp. 193–206,
1990.

[10] P. Jia, A. MirTabatabaei, N. E. Friedkin, and F. Bullo, “Opinion
Dynamics and the Evolution of Social Power in Influence Networks,”
SIAM Review, vol. 57, no. 3, pp. 367–397, 2015.

[11] C. H. Cooley, Human Nature and the Social Order. Transaction
Publishers, 1992.

[12] J. S. Shrauger and T. J. Schoeneman, “Symbolic interactionist view
of self-concept: Through the looking glass darkly.” Psychological
Bulletin, vol. 86, no. 3, p. 549, 1979.

[13] V. Gecas and M. L. Schwalbe, “Beyond the Looking-Glass Self:
Social Structure and Efficacy-Based Self-Esteem,” Social Psychology
Quarterly, pp. 77–88, 1983.

[14] P. Jia, N. E. Friedkin, and F. Bullo, “Opinion Dynamics and Social
Power Evolution over Reducible Influence Networks,” SIAM Journal
on Control and Optimization, vol. 55, no. 2, pp. 1280–1301, 2017.

[15] M. Ye, J. Liu, B. D. O. Anderson, C. Yu, and T. Başar, “On the Analy-
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