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S U M M A R Y
Computation of gravimetric terrain corrections (TCs) is a numerical challenge, especially
when using very high-resolution (say, ∼30 m or less) digital elevation models (DEMs). TC
computations can use spatial or/and spectral techniques: Spatial domain methods are more
exact but can be very time-consuming; the discrete/fast Fourier transform (D/FFT) implemen-
tation of a binomial expansion is efficient, but fails to achieve a convergent solution for terrain
slopes >45◦. We show that this condition must be satisfied for each and every computation-
roving point pair in the whole integration domain, not just at or near the computation points.
A combination of spatial and spectral methods has been advocated by some through dividing
the integration domain into inner and outer zones, where the TC is computed from the su-
perposition of analytical mass-prism integration and the D/FFT. However, there remain two
unresolved issues with this combined approach: (1) deciding upon a radius that best separates
the inner and outer zones and (2) analytical mass-prism integration in the inner zone remains
time-consuming, particularly for high-resolution DEMs. This paper provides a solution by
proposing: (1) three methods to define the radius separating the inner and outer zones and (2)
a numerical solution for near-zone TC computations based on the trapezoidal and Simpson’s
rules that is sufficiently accurate w.r.t. the exact analytical solution, but which can reduce the
computation time by almost 50 per cent.

Key words: Gravity anomalies and Earth structure; Fourier analysis; Numerical approxima-
tions and analysis; Numerical solutions.

1 I N T RO D U C T I O N

The gravimetric terrain correction (TC) is computed to account for the gravitational effect of deviations of the Earth’s topography from some
simplified model for which an exact analytical solution for the gravitational acceleration exists. Arguably the most common simplified model
is the Bouguer Plate of thickness equal to the height of the terrain, either relative to some arbitrary height or the geoid depending whether
the application is geophysical or geodetic, respectively (cf. Nowell 1999). There are several other geometries that can be used (e.g. Bouguer
shell or cap), but which will not be reviewed here. Instead, we only work with planar TCs as these are still efficient for local geodetic (e.g.
Majkrakova et al. 2016; Benedek et al. 2018; Dransfield & Chen 2019; McCubbine et al. 2019; Sobh et al. 2019) and geophysical applications
(e.g. Pasteka et al. 2017; Saragih & Brotopuspito 2018; Zahorec et al. 2019; Ariane Darolle Fofie et al. 2019; Fauzi et al. 2019).

Although, in this paper, we only consider the simplest case of the Bouguer plate by considering the planar TC for localized computations
(out to ∼100 km), but our proposed methods can be adapted and extended to more complicated geometries for the earth model. Our motivation
is to seek simultaneously accurate and numerically efficient algorithms for the computation of local TCs for very high-resolution digital
height models, such as those derived from the Shuttle Radar Topography Mission (SRTM; Farr et al. 2007), the Advanced Spaceborne
Thermal Emission and Reflection Radiometer (ASTER; Meyer et al. 2011) or Multi-Error-Removed Improved-Terrain (MERIT; Yamazaki
et al. 2017). We acknowledge that SRTM and ASTER are strictly digital surface models, not digital elevation models (DEMs) like MERIT,
but we have used the 1′′ × 1′′ SRTM as if it is a DEM in our numerical experiments. The term DEM will be used throughout this paper for
simplicity.

With the generally free availability of high-resolution (1′′ × 1′′) near-global DEMs, the time to compute TCs with space-domain methods
can be prohibitive, even using supercomputers. For example, in an area of just 1◦ × 1◦, the number of computation points for a 1′′ × 1′′ DEM
(12 960 000) is increased eight-fold compared to a 3′′ × 3′′ DEM (1 440 000). Therefore, the use of spectral methods becomes attractive.
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Despite the computational efficiency offered by spectral methods, there are two principal restrictions attached to the use of discrete or fast
Fourier transforms (D/FFTs). First, a convergence criterion due to the use of a binomial expansion (e.g. Huang 2012: sect 2.3v) restricts the
use of D/FFTs when terrain gradients are >45◦ (e.g. Sideris 1984; Forsberg 1985; Martinec et al. 1996; Sampietro et al. 2016). Secondly, a
decision is needed on the truncation limit of the binomial expansion to obtain a convergent TC solution. Some existing strategies to address
these restrictions are summarized in the Appendix A1.

From previous TC computations (e.g. Nagy 1966; Forsberg 1984; Tsoulis 1998, 2001; Heck & Seitz 2007; Tsoulis et al. 2009) the
right-rectangular prism is the most commonly recommended elementary mass body for TC computations. The mass-point and mass-line
approximations of the mass-prism, while computationally faster, are not sufficiently accurate (Li & Sideris 1994; Heck & Seitz 2007). Thus,
we only use the mass-prism herein.

All the derivations and computations in this paper follow the planar approximation, which is sufficient for local TCs. Tsoulis et al.
(2009) show that by simulating the spherical approximation using ‘super-elevation’ (Forsberg 1984), the change in the horizontal distance
between the computation and roving point at a distance of 100 km is only –4 m, so can be neglected. The effect of laterally and radially
varying topographic bulk density on TC is also an important aspect. A constant difference of 100 kg m–3 in the density can result in an
approximate error of 0.037 × TC (with ρ = 2670 kg m–3) mGal in TC computation and a ∼3.5 mGal error in the Bouguer gravity anomaly
for an elevation of 840 m (Hinze 2003). Since the focus of this study is on the use of high-resolution DEMs, we work only with the constant
density assumption. However, it is suggested that for either a precise geodetic application (e.g. Tziavos & Featherstone 2001; Caratori Tontini
et al. 2007; Janák et al. 2017; Yang et al. 2018) or an unambiguous geophysical interpretation (e.g. Uwiduhaye et al. 2018; Saibi et al. 2019;
Tschirhart et al. 2019; Rathnayake et al. 2020), a topographic bulk density model (e.g. Blom et al. 2017; Tenzer et al. 2018; Sheng et al. 2019)
should be used as an input with the presented methodology and following the formulation provided by Tziavos et al. (1996) and Tziavos &
Sideris (2013).

Subject to the above conditions, we propose a modification to the combined spatial-spectral approach for local planar TC computation
under the assumption of a constant topographic density, in which the FFT is applied in the outer zone and mass-prism integration used in the
inner zone. We also propose a strategy to divide the inner and outer zones and choose the truncation limit of the binominal expansion in such
ways that the D/FFT-driven convergence criterion is satisfied. Additionally, a new faster numerical mass-prism solution is presented based
on the trapezoidal and Simpson’s rules. Our numerical experiments are conducted in the Himalayas, which hosts among some of the most
rugged topographies on Earth.

2 D / F F T O U T E R Z O N E T C C O M P U TAT I O N

2.1 Limitations of existing solutions

TC computation using the D/FFT was first presented by Parker (1973), but had geodetic limitations in that the computation points must lie
above the topography; a case complying more with aeromagnetic and oceanographic than geodetic applications. Sideris (1984) proposed
a revised formulation of Parker (1973) to provide TCs on the topographic surface that is more suited to geodetic application. However, a
convergence criterion is attached to this method; also see Forsberg (1984, 1985), Sideris (1985), Martinec et al. (1996) and Tsoulis (1998).

The spatial form of the integral for computation of the planar TC that can be expressed as a convolution is (e.g. Sideris 1984)

T C = Gρ
�
E

⎛
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l

⎡
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where G is the universal gravitational constant, ρ is topographic bulk density (herein assumed constant), l =
√

(x p − xi )
2 + (yp − yi )

2 is
the planar Euclidean distance, �z = h p − hi , and (x p, yp, h p) and (xi , yi , hi ) are the coordinates of computation point and running point,
respectively.

Making use of the binomial expansion of (1 + x)−1/2 according to

(1 + x)−1/2 = 1 − 1
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one can series-expand (1 + ( �z
l )

2
)−1/2 in eq. (1) and rearrange terms to give

T C ≈ Gρ

x2∫
x1

y2∫
y1

[
�z2

2l3
− 3�z4

8l5
+ 5�z6

16l7
− 35�z8

128l9
+ 63�z10

256l11
− 231�z12

1024l13
+ ....

]
dxdy (3)

where we abbreviate each as

T C ≈ T C1 + T C2 + T C3 + T C4 + T C5 + T C6 + .....

with each term retains the appropriate sign according to eq. (3). This formulation is a convolution, so can be solved numerically efficiently
using the D/FFT (e.g. Schwarz et al. 1990).
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Figure 1. Hypothetical DEM with 5 m resolution. The numbers in the cells represent height. The red cell is the computation point. The yellow cell is one that
violates the <45◦ slope condition.

Figure 2. The terrain slope has to be computed in all to identify computation-roving point pairs that are steeper than 45◦, otherwise violating the convergence
criterion for TC computation.

The convergence criterion for using the binomial expansion in eq. (2) is −1 < x ≤ 1. Therefore, if using eq. (3), the TC can only be
computed when the condition

− 1 <

(
�z

l

)2

≤ 1 ⇒
∣∣∣∣�z

l

∣∣∣∣ ≤ 1 ∀l (4)

is met. This limitation is often referred to as the convergence criterion, which restricts the implementation of eq. (3) to domains having terrain
slopes of <45◦. The condition ∀l in eq. (4) must be satisfied for each and every combination of computation and roving points in the whole
integration domain. However, in some literature, this condition has been misinterpreted as a requirement that only the slope of the terrain at
or immediately surrounding the computation point should not exceed 45◦ (e.g. Forsberg 1985; Sideris 1985; Klose & Ilk 1993; McCubbine
et al. 2017; among others).

To exemplify this, consider a hypothetical DEM with a 5 m spatial resolution, as shown in Fig. 1, where the yellow roving cell is distant
from the red computation point but which violates the <45◦ slope condition. Therefore, unless the slope is computed for each and every
computation-roving point pair (a time-consuming process as depicted in Fig. 2), and before/during TC computation, numerical convergence

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/221/3/1820/5780228 by C

urtin U
niversity Library user on 08 February 2021



A method for computing local terrain corrections 1823

Table 1. TC values (in μGal) after deliberately vi-
olating the <45◦ convergence criterion at only one
DEM cell. While the effect may appear small here,
we could make it arbitrary larger by increasing the
cell height by more or by including more cells that
violate the <45◦ convergence criterion.

TC term
Unchanged
SRTM DEM

Single cell height
changed to 6731 m

T C1 331.2 332.7
T C2 –2.3 –3.7
T C3 3 × 10−2 1.3
T C4 –5 × 10−4 –1.3
T C5 1 × 10−5 1.4
T C6 –2 × 10−7 –1.5
T C7 5 × 10−9 1.6
T C8 –1 × 10−10 –1.7
T C =
�T C1...T C8

328.9 327.9

will not be assured. However, we do acknowledge that it is plausible that the presence of only a few such roving points may not always provide
noticeably divergent TC results.

To quantify the above statements, TCs were computed up to the eighth order binomial term (T C8) at the central red cell for a region
bounded by 20◦N–21◦N, latitude and 81◦E–82◦E longitude using the SRTM V3.0 1′′x1’ DEM (Farr et al. 2007), with height of the central cell
being 531 m. TC values (only from the outer zone beyond an arbitrarily selected 1 km) were computed for two scenarios: (1) the unchanged
DEM for which all cells satisfy the convergence criterion and (2) after changing the height of only one DEM cell at l ≈ 6 km (200 grid cells)
from 495 m to 6731 m in order to deliberately violate the convergence criterion (|�z| ≤ l) at a single point. The results in Table 1 reveal that
the presence of even a single point violating the converging criterion causes the solution to diverge.

2.2 Radius separating the inner and outer zones

This and the next subsection provide our proposed solutions to satisfy the convergence criterion in the D/FFT method when used in the
combined spatial-spectral approach to local planar TC computation. Recall that the D/FFT method is to be used in our so-called outer zone and
the mass-prism method is to be used in our so-called inner zone. The motivation behind this combined approach is to achieve computational
efficiency while not compromising accuracy. This raises the question of how best to select the integration radius that separates the inner and
outer zones.

There is, however, one further choice of integration radius, which we term the bounding radius (BR) that encloses the outer zone [as
we define it here]. In the following, we will assume that the BR of the outer zone is sufficiently large so as to capture the entire planar TC,
but we do not consider Earth curvature. A common empirical approach is to increment the BR to a distance beyond which the change to the
planar TC becomes negligible. We acknowledge that for non-planar geometries, the far/remote zones beyond the BR may not be negligible
(cf. Kuhn et al. 2009).

We consider three scenarios to select the radius separating inner and outer zones for the planar TC (Fig. 3). We term them: height-defined
separating radius (HSR), exact separating radius (ESR) and optimal separating radius (OSR), as follows.

(i) HSR follows directly from eq. (4), which is a radius that is equal to the magnitude of the maximum height difference in the study area,
that is

H S R = |�zmax| (5)

(ii) ESR is calculated from the magnitude of the maximum height difference among all the pairs of computation (P) and rover (R) points in
the area bounded by a circle of radius equal to the HSR. This gives the ESR, beyond which the solution will always diverge. Computation of the
ESR is time-consuming, especially when the maximum height difference is large, the size of the study area is large, and for a high-resolution
DEM. We thus define the ESR as

E S R = |max(�zP R)| ∀
{

P (xP , yP ) ⊆ (xmin ≤ xP ≤ xmax, ymin ≤ yP ≤ ymax)
&R (x, y) :

(
(x − xP )2 + (y − yP )2 − �z2

max ≤ 0
)

}
(6)

(iii) OSR is the upper range in the study area. The range is computed by taking the difference between the maximum and the minimum
height values in an area around each cell, bounded by a circle of radius equal to the HSR. The upper range is the maximum of these range
values in the entire study area. OSR can be computed faster than the ESR because

O S R = max(rangeN ); rangeN = (
max (z)N − min (z)N

) ∀N ≡ P(xP , yP ) → R(x, y) (7)
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Figure 3. The four integration domains. BR is the bounding radius of the whole integration area. HSR, OSR and ESR are the height-dependent, optimal and
exact separating radii, respectively.

Table 2. Details of the five study areas (SA) from SRTM 1′′ v3.0 (SA5 includes Mount Everest).

Study Latitude Longitude Heights (m)
area bounds bounds Min Max Mean STD

SA1 29◦N–30◦N 86◦E–87◦E 4111 6399 5161.7 371.5
SA2 28◦N–29◦N 86◦E–87◦E 2535 8291 5067.4 545.3
SA3 27◦N–28◦N 88◦E–89◦E 182 8314 3389.0 1673.8
SA4 27◦N–28◦N 87◦E–88◦E 176 8250 2830.4 1586.7
SA5 27◦N–28◦N 86◦E–87◦E 190 8748 2572.1 1605.9

Table 3. Empirically determined choices of
separating radii (in metres).

Study area HSR ESR OSR

SA1 2288 1642 1977
SA2 5756 3071 3354
SA3 8132 4290 5381
SA4 8074 3637 4724
SA5 8558 4261 5456

2.3 Numerical choice of separating integration radius

To test the convergence of the TC solution using the proposed choices of separating radii (HSR, ESR and OSR), computations were carried
out in five rugged topographies in the Himalayas (Table 2). Table 3 lists the values of the three computed radii for the five study areas using
the SRTM 1′′ V3.0 DEM. A MATLABTM subroutine was written to compute the ESR. The focal statistics tool in ArcGISTM was used to
compute the OSR. Table 3 confirms the relative sizes of the separating radii depicted in Table 3.

2.4 Effect of separation radius on TC convergence

To analyse the effect of truncating the binomial expansion of the D/FFT (eq. 3) at different orders, the TC terms are computed up to the tenth
order for SA5 (Table 4) using the three different choices of separating radius (Table 3). All computations were performed for outer zones
defined by subtracting the three different separating radii (HSR, ESR and OSR) from the BR, arbitrarily selected to be 111 320 m which
was driven solely by the size of the data area. No optimization of the BR was attempted because this is only an illustrative example of the
convergence.

Recalling from Fig. 3 and Table 3, HSR > OSR > ESR. From Table 4, fewer TC terms are needed to achieve convergence (to <0.1
μGal) with the HSR. However, the HSR makes the inner zone larger, which will increase the computation time for the mass-prism integration
(Section 3). Conversely, the ESR makes inner zone smallest but needs the largest number of TC terms which will require more computer
memory. Also, it takes a longer time to compute the ESR value, especially for a high-resolution DEM.

The OSR offers a compromise that balances the computation of its radius, the number of TC terms required to achieve numerical
convergence, and computation time of the inner zone by mass-prisms. Not presented here, this also holds true for the other four study areas in
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Table 4. Descriptive statistics of planar TC values (mGal) in the outer zone up to the tenth order for SA5
with the separating radii of HSR = 8558 m, ESR = 4261 m and OSR = 5456 m and BR = 111 320 m.

TC term Separating radius Min Max Mean STD

T C1 HSR 1.237 76.047 9.195 5.393
ESR 1.299 124.770 12.648 7.717
OSR 1.278 107.603 11.361 6.865

T C2 HSR –2.45 –8.71 × 10−4 –7.07 × 10−2 1.00 × 10−1

ESR –11.399 –8.95 × 10−4 –2.01 × 10−1 3.19 × 10−1

OSR –7.402 –8.8 × 10−4 –1.40 × 10−1 2.16 × 10−1

T C3 HSR 1.10 × 10−6 1.73 × 10−1 1.74 × 10−3 4.30 × 10−3

ESR 1.11 × 10−6 2.299 1.19 × 10−2 3.58 × 10−2

OSR 1.10 × 10−6 1.128 6.15 × 10−3 1.75 × 10−2

T C4 HSR −1.69 × 10−6 −1.84 × 10−9 −7.84 × 10−5 2.89 × 10−4

ESR −6.50 × 10−1 −1.85 × 10−9 −1.32 × 10−3 6.66 × 10−3

OSR −2.27 × 10−1 −1.84 × 10−9 −5.00 × 10−4 2.31 × 10−3

T C5 HSR 3.61 × 10−12 1.92 × 10−3 4.95 × 10−6 2.54 × 10−5

ESR 3.58 × 10−12 2.30 × 10−1 2.11 × 10−4 1.67 × 10−3

OSR 3.60 × 10−12 5.32 × 10−2 5.78 × 10−5 4.00 × 10−4

T C6 HSR −2.40 × 10−4 −7.88 × 10−15 −3.90 × 10−7 2.66 × 10−6

ESR −8.97 × 10−2 1.51 × 10−13 −4.34 × 10−5 5.06 × 10−4

OSR −1.36 × 10−2 −4.70 × 10−15 −8.45 × 10−6 8.27 × 10−5

T C7 HSR −7.23 × 10−18 3.48 × 10−5 3.60 × 10−8 3.15 × 10−7

ESR −2.52 × 10−9 3.71 × 10−2 1.07 × 10−5 1.74 × 10−4

OSR −5.5 × 10−11 3.76 × 10−3 1.46 × 10−6 1.92 × 10−5

T C8 HSR −5.31 × 10−6 7.60 × 10−13 −3.74 × 10−9 4.08 × 10−8

ESR −1.61 × 10−6 9.71 × 10−8 −3.05 × 10−6 6.60 × 10−5

OSR −1.08 × 10−3 1.70 × 10−9 −2.86 × 10−7 4.88 × 10−6

T C9 HSR −2.97 × 10−12 8.45 × 10−7 4.26 × 10−10 5.67 × 10−9

ESR −1.96 × 10−6 7.24 × 10−3 9.71 × 10−7 2.66 × 10−5

OSR −1.51 × 10−8 3.28 × 10−4 6.17 × 10−8 1.31 × 10−6

T C10 HSR −1.39 × 10−7 1.19 × 10−11 −5.24 × 10−11 8.32 × 10−10

ESR −3.33 × 10−3 3.50 × 10−6 −3.37 × 10−7 1.13 × 10−5

OSR −1.02 × 10−4 1.67 × 10−7 −1.44 × 10−8 3.74 × 10−7

Table 2. We acknowledge that the exact number of TC terms required will vary depending on the study area, but we have deliberately chosen
the extreme example of a 30 m DEM over Mount Everest, where convergence is achieved using six terms with HSR and nine terms with
OSR. Also not presented here, we used the D/FFT to compute TCs from the outer zone for 198 2◦ × 2◦ tiles covering parts of India, Pakistan,
Sri Lanka, Nepal and China. Convergence was achieved in all cases with the same number of terms.

3 A NA LY T I C A L A N D N U M E R I C A L I N N E R Z O N E T C C O M P U TAT I O N

In this section, we begin by stating the formula for analytical mass-prism integration (cf. Banerjee & Gupta 1977). This is followed by
derivation of our proposed numerical integration techniques utilizing the trapezoidal and Simpson’s rules for linear integration extended
to double integrals. The analytical mass-prism integral of the TC is a volumetric integral solution. The approach suggested here utilises
numerical surface integration of the analytical linear solution of TC integral with respect to the z-direction (height).

3.1 Mass-prism integration

This method assumes that the cells in the DEM grid define right-rectangular prisms with length and width given by the resolution of the DEM
in the x and y directions, respectively. The height of the prism is defined by the height difference of the computation and rover points (�z).

According to Forsberg (1984), the planar TC can be represented as

T C = Gρ

x2∫
x1

y2∫
y1

z2∫
z1

z

r 3
dxdydz, (8)

where r =
√

x2 + y2 + z2 is Euclidean distance (see below). The analytical solution of eq. (8) is

T C =
⎡
⎣
[[

x(log(y + r ) + y log(x + r ) − ztan−1 xy

zr

]x2

x1

]y2

y1

⎤
⎦

z2

z1

(9)
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which is a simplified, efficient and accurate version (Banerjee & Gupta 1977; Forsberg 1984) of the solution given by Nagy (1966).
Expanding eq. (9) with respect to its limits, gives

T C = x2 log(y2 + r222) − x2 log(y2 + r221) − x2 log(y1 + r212) + x2 log(y1 + r211)

− x1 log(y2 + r122) − x1 log(y2 + r121) − x1 log(y1 + r112) + x1 log(y1 + r111)

+ y2 log(x2 + r222) − y2 log(x2 + r221) − y2 log(x1 + r122) + y2 log(x1 + r121)

− y1 log(x2 + r212) + y1 log(x2 + r211) + y1 log(x1 + r112) − y1 log(x1 + r111)

− z2tan−1
(

x2 y2
z2r222

)
+ z2tan−1

(
x2 y1

z2r212

)
+ z2tan−1

(
x1 y2

z2r122

)
− z2tan−1

(
x1 y1

z2r112

)
+ z1tan−1

(
x2 y2

z1r221

)
− z1tan−1

(
x2 y1

z1r211

)
− z1tan−1

(
x1 y2

z1r121

)
+ z1tan−1

(
x1 y1

z1r111

)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (10)

where z1 = 0; z2 = h p − hi ; h p is the height of the computation point and hi the height of the roving point. x1, x2, y1, y2 are the planar
coordinates of a prism assuming the computation point to be at the origin of the planar coordinate system. The order of subscripts of
r =

√
x2 + y2 + z2 represents the order of coordinates (x, y, z) and the subscript value represents the lower or upper bound of that coordinate.

For example, r122 represents
√

x2
1 + y2

2 + z2
2, etc.

Rearranging the terms in eq. (10), the analytical formula for the TC using right-rectangular mass prisms (TCM) is

T C M = x2

[
log

(
(y2+r222)(y1+r211)
(y2+r221)(y1+r212)

)]
− x1

[
log

(
(y2+r122)(y1+r111)
(y2+r121)(y1+r112)

)]
+ y2

[
log

(
(x2+r222)(x1+r121)
(x2+r221)(x1+r122)

)]
− y1

[
log

(
(x2+r212)(x1+r111)
(x2+r211)(x1+r112)

)]
− z2

[
tan−1

(
x2 y2

z2r222

)
− tan−1

(
x2 y1

z2r212

)
− tan−1

(
x1 y2

z2r122

)
+ tan−1

(
x1 y1

z2r112

)]
+ z1

[
tan−1

(
x2 y2

z1r221

)
− tan−1

(
x2 y1

z1r211

)
− tan−1

(
x1 y2

z1r121

)
+ tan−1

(
x1 y1

z1r111

)]

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

. (11)

3.2 Trapezoidal rule integration

Solving the TC integral (eq. 8) with respect to ‘z’ is convenient compared to ‘x’ and ‘y’. Therefore, in this method, the trapezoidal rule for
single integration is extended to double integration for solving the surface integral achieved after analytical linear integration of eq. (8) with
respect to ‘z’. According to the trapezoidal rule for single integration with n = 2 subintervals (refer to the end of Section 3.4 for further
discussion), we have

b∫
a

f (x)dx ≈ g

2

[
f (a) + 2 f

(
a + b

2

)
+ f (b)

]
, g = b − a

n
. (12)

Extending eq. (12) to solve double integration gives

b∫
a

(
d∫

c

f (x, y)dy

)
dx ≈

b∫
a

(
(d−c)

4

[
f (x, c) + 2 f

(
x, c+d

2

) + f (x, d)
])

dx

=
b∫

a

(
d−c

4

)
f (x, c)dx+

b∫
a

2
(

d−c
4

)
f
(
x, c+d

2

)
dx+

b∫
a

(
d−c

4

)
f (x, d)dx

= T T 1 + T T 2 + T T 3

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

, (13)

where T T 1, T T 2, T T 3 represent the three integral terms in eq. (13). By applying the trapezoidal rule for n = 2 to these three terms
individually, we get

T T 1 = (
b−a

4

) (
d−c

4

) [
f (a, c) + 2 f

(
a, c+d

2

) + f (a, d)
]

T T 2 = 2
(

b−a
4

) (
d−c

4

) [
f
(

a+b
2 , c

) + 2 f
(

a+b
2 , c+d

2

) + f
(

a+b
2 , d

)]
T T 3 = (

b−a
4

) (
d−c

4

) [
f (b, c) + 2 f

(
b, c+d

2

) + f (b, d)
]

⎫⎪⎪⎬
⎪⎪⎭ . (14)

The analytical linear integral solution of the TC with respect to ‘z’ can be written as

T C = Gρ

[�
E

z2=h p−hi∫
z1=0

z
r3 dzdydx

]

= Gρ

[
x2∫

x1

y2∫
y1

(
1

r (x,y,z1) − 1
r (x,y,z2)

)
dydx

]
⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. (15)
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Table 5. Geographical bounds of the study areas and their respective height statistics.

Study Latitude Longitude SRTM heights (m)
area bound bound Min Max Mean STD

SAA 19.25◦N–19.75◦N 73.25◦E–73.75◦E 2 1537 299 264
SAB 26.25◦N–26.75◦N 80.25◦E–80.75◦E 94 155 123 5
SAC 28.25◦N–28.75◦N 83.25◦E–83.75◦E 723 8141 2976 1334

Using the following substitutions in eq. (14)

a = x1, b = x2, c = y1, d = y2

b − a = x2 − x1 = �x, c − d = y2 − y1 = �y
z1 = 0, z2 = h p − hi = �z
a+b

2 = x1+x2
2 = x̄, c+d

2 = y1+y2
2 = ȳ

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(16)

and rearranging terms, the TC with the trapezoidal rule (TCT) can be calculated as

T CT = Gρ
{(

�x
4

) (
�y
4

) [(
1

r (x1,y1) − 1
r (x1,y1,�z)

)
+ 2

(
1

r (x1,ȳ) − 1
r (x1,ȳ,�z)

)
+

(
1

r (x1,y2) − 1
r (x1,y2,�z)

)]
+ 2

(
�x
4

) (
�y
4

) [(
1

r (x̄,y1) − 1
r (x̄,y1,�z)

)
+ 2

(
1

r (x̄,ȳ) − 1
r (x̄,ȳ,�z)

)
+

(
1

r (x̄,y2) − 1
r (x̄,y2,�z)

)]
+ (

�x
4

) (
�y
4

) [(
1

r (x2,y1) − 1
r (x2,y1,�z)

)
+ 2

(
1

r (x2,ȳ) − 1
r (x2,ȳ,�z)

)
+

(
1

r (x2,y2) − 1
r (x2,y2,�z)

)]}

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. (17)

3.3 Simpson’s rule integration

According to Simpson’s rule for single integration, again with n = 2 subintervals (again refer to the end of Section 3.4), we have

b∫
a

f (x)dx ≈ t

3

[
f (a) + 4 f

(
a + b

2

)
+ f (b)

]
, t = b − a

n
. (18)

For double integration, eq. (17) takes the form

b∫
a

(
d∫
c

f (x, y)dy

)
dx ≈

b∫
a

(
(d−c)

6

[
f (x, c) + 4 f

(
x, c+d

2

) + f (x, d)
])

dx

=
b∫

a

(
d−c

6

)
f (x, c)dx+

b∫
a

4
(

d−c
6

)
f
(
x, c+d

2

)
dx+

b∫
a

(
d−c

6

)
f (x, d)dx

= ST 1 + ST 2 + ST 3

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

, (19)

where ST 1, ST 2, ST 3 represent the three integral terms in eq. (19). By applying Simpson’s rule to the three terms individually, we get

ST 1 = (
b−a

6

) (
d−c

6

) [
f (a, c) + 4 f

(
a, c+d

2

) + f (a, d)
]

ST 2 = 4
(

b−a
6

) (
d−c

6

) [
f
(

a+b
2 , c

) + 4 f
(

a+b
2 , c+d

2

) + f
(

a+b
2 , d

)]
ST 3 = (

b−a
6

) (
d−c

6

) [
f (b, c) + 4 f

(
b, c+d

2

) + f (b, d)
]

⎫⎪⎪⎬
⎪⎪⎭ . (20)

The numerical solution of TC using Simpson’s rule (TCS) is obtained using the substitutions from eq. (16) in eq. (20) to yield

T C S = Gρ
{(

�x
6

) (
�y
6

) [(
1

r (x1,y1) − 1
r (x1,y1,�z)

)
+ 4

(
1

r (x1,ȳ) − 1
r (x1,ȳ,�z)

)
+

(
1

r (x1,y2) − 1
r (x1,y2,�z)

)]
+ 4

(
�x
6

) (
�y
6

) [(
1

r (x̄,y1) − 1
r (x̄,y1,�z)

)
+ 4

(
1

r (x̄,ȳ) − 1
r (x̄,ȳ,�z)

)
+

(
1

r (x̄,y2) − 1
r (x̄,y2,�z)

)]
+ (

�x
6

) (
�y
6

) [(
1

r (x2,y1) − 1
r (x2,y1,�z)

)
+ 4

(
1

r (x2,ȳ) − 1
r (x2,ȳ,�z)

)
+

(
1

r (x2,y2) − 1
r (x2,y2,�z)

)]}

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. (21)

3.4 Numerical analyses

The proposed numerical methods for mass-prism integration are tested on three different smaller study areas (that exhibit varying terrain
roughness) again using the SRTM 1′′ v3.0 DEM (Table 5). Mass-prism TC values were computed with the separating radius defined by the
OSR computed individually for each study area (Table 6). Computations were performed using MATLABTM parallelization on 18 cores of
an Intel R© Xeon R© E7–8870 v3 @2.10 GHz CPU having 251 GB of RAM. The statistics and time required for TC computation using the
analytical (TCM) and numerical (TCT and TCS) methods for the three study areas are given in Table 6. The statistics of the difference between
the TC values computed using analytical and numerical methods are given in Table 7.

Although there is no significant variation among the overall TC statistics (Table 6) using the three different methods, TCT provides
comparatively better results compared to the TCM than TCS (Table 7). An important observation from Table 6 is that the time required for
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Table 6. Statistics of 1′′x1’ TC values computed using the three methods (equations 11, 17 and 21) for three different study
areas [TCs are in mGal and CPU time is rounded to the nearest second].

SAA, OSR = 1141 m SAB, OSR = 46 m SAC, OSR = 6078 m
TCM TCT TCS TCM TCT TCS TCM TCT TCS

Min 0.000 0.000 0.000 0.000 0.000 0.000 4.542 4.546 4.531
Max 22.779 22.713 22.627 1.032 0.897 0.839 126.646 126.623 126.563
Mean 0.722 0.720 0.711 0.003 0.003 0.002 22.180 22.162 22.110
STD 1.487 1.483 1.472 0.005 0.004 0.004 11.898 11.892 11.882
RMS 1.653 1.649 1.635 0.006 0.005 0.005 25.170 25.151 25.101
Time 428 201 199 38 12 12 37746 17539 17481

Table 7. Statistics of the difference between TC values computed using analytical (TCM)
and numerical (TCS and TCT) methods [units in mGal].

SAA SAB SAC
TCM-TCT TCM-TCS TCM-TCT TCM-TCS TCM-TCT TCM-TCS

Min − 0.031 0.000 − 0.006 0.000 − 0.036 0.000
Max 0.136 0.246 0.135 0.192 0.144 0.248
Mean 0.002 0.011 0.001 0.001 0.017 0.070
STD 0.006 0.019 0.001 0.001 0.022 0.040
RMS 0.007 0.022 0.001 0.002 0.028 0.080

TC computation using our proposed methods (both TCT and TCS) is almost half of what is required for analytical TCM. Table 7 confirms
that the TCT and TCS are consistent with respect to (i) the ruggedness of topography (cf. Table 5) and (ii) the size of the OSR (cf. Table 6).

In the trapezoidal and Simpson’s rules of integration (TCT and TCS), the numerical results can be improved by increasing the number of
subintervals, but at some computational cost. TCT and TCS were rederived using a combination of n = 2 subintervals for the inner limit and
n = 4 for the outer limit. This was done because only an even number of subintervals can be used in Simpson’s rule. The derived formulas
were tested on SAC. Not significant, but an improvement was observed in the results versus TCM. However, time taken for the computations
became equivalent to the TCM.

4 C O N C LU D I N G R E M A R K S

The free availability of high-resolution (∼30 m or less) near-global digital elevation models poses a substantial challenge for the numerical
computation of gravimetric TCs. One computationally attractive option is to divide the integration domain into inner and outer zones, where
spectral methods are used in the outer zone and analytical or discretized numerical mass-prism integration is used in the inner zone. However,
this spatial-spectral combination suffers from a few unresolved issues: (1) the need to ascertain that the D/FFT implementation of the binomial
expansion of the TC formula (eq. 3) provides a numerically convergent solution, (2) the appropriate separation radius between the inner and
outer zones is selected so as to achieve an accurate and convergent result while profiting computationally from a smaller inner zone and (3)
the analytical mass-prism integration method (eq. 11) is very time consuming, even on supercomputers.

Our principal conclusions are:

(i) The D/FFT implementation of the binomial expansion of the TC integral is only convergent iff the terrain gradients are <45◦ for
each and every computation-roving point pair in the integration domain. This condition appears to have been overlooked in some previous
implementations of the D/FFT method, where it is only considered at or near the computation point.

(ii) The radius separating the inner zone, where mass-prism integration is conducted, and the outer zone, where D/FFT integration is
conducted, can be selected so as to achieve a balance among numerical convergence, accuracy and efficient computation time. Our so-called
optimal separation radius (OSR) is given by eq. (7) and depends on the range of height differences in the whole integration domain. When
using the binomial expansion of the TC (eq. 3) in areas of very rugged terrain and for high-resolution DEMs, higher order terms cannot be
neglected (cf. Tables 1 and 4).

(iii) The analytical solution to the gravitational attraction of a right-rectangular prism in the inner zone can be replaced by numerical
integration based on the trapezoidal and Simpson’s rules extended to double integrals. Numerical experiments over Mount Everest on a 1”x1”
grid show all the mass-prism TC solutions to be commensurate but can be achieved in roughly half the computation time when two integration
steps are used in the trapezoidal and Simpson’s methods.
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Pašteka, R. et al., 2017. High resolution Slovak Bouguer gravity anomaly
map and its enhanced derivative transformations: new possibilities for in-
terpretation of anomalous gravity fields, Contrib. Geophys. Geod., 47(2),
81–94.
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A P P E N D I X

Table A1. TC computation using FFT and strategies used to account for convergence and truncation.

Reference Order of TC Remarks / Critique
Area / DEM resolution /

max �H

FFT alone
Forsberg (1985) 1 Terrain slopes near the computation point are assumed to be

small. No discussion on the convergence of the series.
9 km × 9 km / 100 m ×

100 m / 608 m
1◦ × 1◦ / 0.5’ × 0.5’ / 700

m
Sideris (1985) 1 Slope considered are much smaller than 45◦. Discussed more

on the edge effect and windowing. No discussion on the
convergence of the series.

28 km × 36 km / 1 km × 1
km / 2079 m

Harrison &
Dickinson (1991)

4 Discussed importance of the generally neglected 4th order
term in the FFT solution of TC. The study area is perhaps not
rugged enough.

6’ × 6’ / 6” × 6” / 1200 m

Li & Sideris (1994) 3 FFT method for mass-line and mass-prism models is derived.
Introduced a regularization parameter ‘α’ for fast convergence
of the TC solution. However, convergence still cannot be
promised.

5◦ × 10◦ / 0.5’ × 1’ / 3573
m

Kirby & Featherstone
(1999)

1 On obtaining spikes in the computed TC using 9” DEM (due
to anomalous gradients (Kirby & Featherstone 2001)), the
averaged DEM with 27” resolution was used for
re-computation of the TC. Convergence is not discussed.

Australia / 9” × 9” /
2217.18 m

Australia / 27” × 27” /
2162.26 m

Kirby & Featherstone
(2002)

1 TC computed with a refined national DEM. No discussion on
convergence.

Australia / 9” × 9” / 2244 m

McCubbine et al.
(2017)

1 TC values were removed for the computation points where
gradient exceeds 45◦. Gradient computed in specific directions
only. Cannot guarantee convergence at all points.

Australia / 1” × 1” / 2291.3
m

Space-FFT combined
Tsoulis (1998) 3 To check the violation of convergence criterion, slopes were

computed only in N-S and E-W directions. Also, the
convergence of the FFT method was analysed by varying the
inner radius (brute-force method). Use of the brute-force
method may not guarantee convergence.

15 km × 20 km / 50 m ×
50 m / 1450 m

Tsoulis (2001) 3 Extended Tsoulis (1998) with different methods for the inner
zone TC computation. Brute-force method applied to check
the convergence criterion and to analyse the effect of inner
zone.

15 km × 20 km / 50 m ×
50 m / 1450 m
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Table A1. Continued

Reference Order of TC Remarks / Critique
Area / DEM resolution /

max �H

Huang (2012) 1 Defined the inner zone with a grid of 3 × 3 cells around the
computation point. The inner zone being 1.5 times greater
than maximum height difference, convergence is guaranteed.
But, the truncation limit for the FFT solution is not discussed.
The study area is very plain.

0.346◦ × 0.316◦ / 3” × 3” /
80 m

Gomez et al. (2013) 1 Inner zone computations are done with 3” DEM. For outer
zone, 3” DEM was averaged to 30”. Lower resolution DEM
was used to circumvent the converging criterion (cf. Kirby &
Featherstone 1999).

∼2.5◦ × 3.5◦ / 3” × 3” /
2500 m

2◦ × 2◦ / 3” × 3” / 6500 m
Capponi et al. (2018) 2 The study focused on the inner zone TC computation.

Suggested to define the inner zone with a distance of a few
kilometres from the computation point. May not guarantee
convergence.

0.83◦ × 0.83◦ / 3” × 3” /
2887 m

Others
Martinec et al. (1996) 5 The main conclusion was that the solution will diverge if the

height difference of the points is larger than the distance
between them and if the height difference is smaller than the
distance between the points, the solution will converge. The
truncation limit to be used in order to secure a convergent
solution is not generalized.

Considered two points with
hypothetical heights and
distances between them.
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