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Abstract 
 

The human face facilitates identification in security and policing scenarios. Automatic 

face recognition systems have increased in prevalence and accuracy in recent years. 

As a result, the identification task, which once fell entirely to humans, is now a 
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as well as the interaction of human and computer recognition are the topics of this 

chapter. 
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Introduction   
 

Automated face recognition systems play an important role in security and policing 

scenarios. They can process large data at rapid speeds, and, unlike humans, are not 

affected by limiting factors such as fatigue or boredom (Alenezi, Bindemann, Fysh, & 

Johnston, 2015; Beattie, Walsh, McLaren, Biello, & White, 2016). Their prevalence 

has increased in recent years, which is a direct reflection on advances in both 

algorithm technology and consequently in performance.  

 

At the present time, the role of face recognition algorithms is typically to assist 

humans in the identity verification process. Whilst an algorithm can unlock personal 

electronic devices with a high degree of autonomy, in security and policing scenarios, 

identification systems generally involve both humans and machines.  

 

The example that is likely most familiar to readers is the use of electronic e-gates at 

passport control. E-gates make identifications by comparing a traveller’s live image 

against their passport image (1:1 image matching) for similarity. If a potential 

mismatch in identity is detected, the traveller is referred to a human operator who will 

adjudicate the identification.  

 

Human and machine face recognition systems are also used to assist identifications in 

policing. Computer algorithms aid suspect identification by comparing a target image 

for similarity against a database of known offenders. The images of highest similarity 

are returned as a ‘candidate list’, which is subsequently reviewed by a human officer. 

Algorithms can compare the target image against far more images than possible by 

human eye alone. The number of face images present in a comparison database can 

range from just a few, to millions. Algorithms can process image similarity 

computations in fractions of a second.   

 

Where many images of multiple people are of interest, algorithms can facilitate 

grouping of identities (clustering). Again, a human review is required to verify 

algorithm accuracy.  

 

This chapter is divided into four sections. In Section 1 we provide a brief overview of 

how algorithms work. In Section 2 we discuss the role that algorithms play in Policing 

and Border Control scenarios. In Section 3 we review accuracy of automatic face 

recognition systems and provide comparisons with human performance. Finally, in 

Section 4 we consider the advantages and disadvantages of human and machine 

interaction.  

Section 1. A basic overview of the workings of algorithms 
 

The design and structure of automatic face recognition systems is fascinatingly 

complex. However, basic knowledge of algorithm design and the image comparison 

procedure allows the strengths, limitations, and potential of these systems to be 

evaluated. The following text provides a comprehensive overview of algorithm design 

and the face identification procedure.  
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How do algorithms determine identity from images? 

Algorithms perform a series of steps to compute image comparisons. First, they must 

find the face in the image (face detection). Next, the algorithm must process relevant 

features of the image (feature extraction), and configure a measure of similarity 

between images (distance metric learning). A similarity score can then be computed 

and compared against a decision rule (used to determine whether the images are 

similar enough to be considered the same identity). There are different ways of 

extracting features from an image. These will be looked at in more detail below, 

however first we will consider the comparison metric used by most algorithms, which 

is an image similarity score. A high similarity score for a pair of images indicates that 

they are likely to be images of the same identity, whereas a low similarity score 

suggests that the images are of different identities.  

 

This similarity score can be used to aid identification in 1:1 comparison, 1:N 

comparison, and clustering scenarios.  

• 1:1 image matching: the similarity score helps determine if two specific 

images are of the same identity or different identities. For example, the 

passport control e-gate scenario whereby a passenger’s live-capture image is 

compared against the passport photo.  

• 1:N image matching: similarity scores are obtained for a target image against a 

database of other images. Typically, a specified number of images of highest 

similarity to the target are returned as a ranked list. For example, the image of 

a suspect (captured by CCTV) can be compared against a database of police 

custody images of known offenders. 

• Clustering: a large set of images can be grouped according to similarity scores. 

A set of rules are used to determine which images in a set are likely to be of 

the same person based on their similarity to other images in the set.  

 

But how similar must the images be to be considered the same identity? An operator 

defined criterion score determines the level of similarity required to constitute an 

identity match. An algorithm can make two types of error— false acceptance or false 

rejection. The criterion score dictates the likelihood of each error type. Choosing a 

criterion for an imperfect system requires a trade-off between the two types of error 

(false alarm, false reject). 

 

• False acceptance rate: this is how often an algorithm mistakes two 

different people as being the same person. The algorithm falsely 

interprets the images as being the same identity. E.g. accepting a stolen 

passport as genuine.   

• False reject rate: this is how often the algorithm fails to match images 

of the same face. E.g. not accepting a genuine passport holder as a 

match to their passport image.    

 

This criterion score is based on operational false acceptance rates— the score at 

which x percentage of non-matched identity pairs will be labelled as a matched 

identity pair by the network. In practice, the criterion score for a system often depends 

on its operational usage. A shift in criterion changes the likelihood of a false match 

scenario (saying that two people are the same when they are actually different 

identities, e.g., accepting an imposter as a match to a stolen passport) versus that of a 

false reject (e.g., saying that a person is not a match to their passport when they 
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actually are) . The trade-off must be considered carefully for operational usage (see 

Figure 1). If there is a greater risk associated with accepting two different people as 

the same identity than there is of rejecting multiple images of a true same identity as a 

match, then a more conservative criterion should be chosen (lower false accept rate, 

higher false reject rate). On the other hand, if it is more risky to reject multiple images 

of the same person, then a more liberal criterion score should be used (higher false 

accept rate, lower false reject rate).  

 

 

 

Figure 1. Choosing a criterion for an imperfect system requires a trade-off between the two types of 

error (false alarm, false reject). In this example, setting the criterion to a 10% false accept rate (FAR) 

results in a false reject rate (FRR) of 13%. A more conservative FAR of 1% results in an FRR of 30%. 

The FAR of 0.1% that is required by passport systems results here in an FRR of 53%. This is 

significantly higher than the allowed 5% FRR of passport systems, meaning this example system 

would not be accurate enough for their standards. 

Algorithm Design 

Below we provide an overview of early algorithm designs and more modern designs.  

Early Algorithm Design 

Early algorithms were programmed to compute image similarity scores or identity 

classifications using hand-coded features (e.g., lines in the image) on a pixel-by-pixel 

basis. In other words, the code dictates the image qualities that are compared by the 

automatic system. To illustrate this process with an oversimplified example, an 

algorithm might be programmed to compare the location of black pixels in one image 

with black pixels in a second image. For the purpose of this example, a strong match 

in black pixel location is indicative of an identity match. In practice, the feature 

extraction procedures are far more sophisticated.  
 

Early face recognition algorithms generally consisted of two stages of processing: 

feature extraction, in which the algorithm processes information in the image deemed 

useful for the task; and distance metric learning, in which the algorithm tunes up a 

similarity measure to compare the extracted features of two images. The types of 
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features extracted from an image in the first stage were often carefully designed, and 

based on well-known principles of cognition or information theory. Many of these 

techniques employed a process known as convolution. Convolution uses a matrix of 

numbers called a ‘kernel’ that describes a pattern to be detected in an image (see 

Figure 2). This kernel is ‘convolved’ over the image, tiling in steps of n pixels, where 

n is a parameter chosen by the designer of the algorithm. The output is a matrix of 

either the same size as the original image, or smaller, depending on the step size n. 

The values of the output matrix can be treated as a measure of how well the pixels at a 

given location in the image match the pattern (i.e., feature) detailed by the kernel. 

This makes the output matrix itself equivalent to a map of the feature’s presence in 

the image. The fact that convolution outputs not only the presence of a feature, but 

also a measure of its location in the image, makes it a powerful method of feature 

extraction. However, this strength can also be a weakness. This method’s reliance on 

location means it requires carefully aligned stimuli in order to match patterns 

effectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. In the process of convolution, (A) an image is taken as input. (B) A matrix of numbers called 

a “kernel” defines the feature to be detected. Here, a common edge detection kernel is shown. (C) The 

final result is an image in which high values (white) represent a close match with the kernel’s feature at 

that location, and low values (black) represent the absence of the feature. (D) To find the feature over 

the whole image, the kernel is tiled in steps of one or more pixels. The blue box (1) and yellow box (2) 

show the area covered by the first and second steps, respectively. (E) Each cell in the kernel is multiplied 

by the value at its overlapping pixel in the image at each location. The multiplied numbers are then 

summed to give the final result at that location. The blue 1 and yellow 2 show the result of the convolution 

from steps one and two respectively. These pixels are black because the kernel was not a good match 

with the image at those locations. 

 

The second stage—distance metric learning—involves choosing or building a 

measure of similarity in which face images can be compared. An early distance metric 

used for computer face recognition was Principal Component Analysis (PCA) (Turk 

& Pentland, 1991), a technique also used for image compression. This method 

reduces the size of the face representation while preserving important information, 

which made it an attractive solution in a time when storage space and processing 

power were scarce. PCA is an ‘unsupervised’ learning method, meaning that it is 
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trained without any information about true identity labels. Some other methods use 

training data labelled with the true identity in order to improve performance (e.g., 

Linear Discriminant Analysis and Support Vector Machines). These methods are 

referred to as ‘supervised’. Once a distance metric is in place, the operator can obtain 

similarity scores between sets of images. 

 

Deep Convolutional Neural Networks 

The current state-of-the-art in face recognition algorithms is defined by Deep 

Convolutional Neural Networks (DCNNs). Consistent with some of their 

predecessors, these networks use convolution operations to extract features from an 

image. The main innovations of DCNNs are twofold: 1.) they leverage multiple layers 

of processing (the depth in a deep neural network); and 2.) the (multiple) kernels they 

use at each layer are not hand-coded, but rather learned from training data 

(Krizhevsky, Sutskever, & Hinton, 2012). The depth of these networks allows them to 

combine simple features from early layers into more complex features at deeper 

layers. This is similar to how the primate brain processes visual information, and 

gives DCNNs the ability to process images robustly across significant changes in 

viewpoint and illumination (Cadieu et al., 2014).  

 

 

 
 
Figure 3. (A) The architecture of a DCNN can take many forms, but the common structure is such that 

multiple layers of convolution and pooling are followed by one or more “fully connected” layers. Each 

convolutional layer utilizes multiple kernels (see Figure 2) to find features in the image. The image is 

processed from left to right, where “fc n” produces the final identity representation. (B) Pooling combines 

the values of neighboring pixels in order to reduce the size of the representation. This also increases the 

size of a kernel’s receptive window relative to the original image. Average pooling (left) takes a 

contiguous block of pixels and averages them together. More common in DCNNs is max pooling 

(middle), which simply chooses the highest value in the block as its output. This allows the strongest 

signal of a feature within that block to pass through the network. A simple example of max pooling 

(right) is shown for illustration. Each color shows a pooling block, with the highest value darkened for 

emphasis. 

 

 

Each layer in a deep network can be thought of as one of many consecutive steps in 

processing (see Figure 3). The first layer of an effective network will capture simple 

features in the image such as lines, dots, or opposing colours (cf., Zeiler & Fergus, 

2014). The second layer’s features are created by combining the first layer’s features 
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into more complex features. These second-order features might, for example, combine 

lines at different orientations into corners or curves. Each layer builds its features by 

combining the features of the previous layer. After one or more layers of convolution, 

a pooling layer will combine neighbouring pixels in groups of four (i.e., 2×2) or more, 

depending on the architecture of the network. Pooling reduces the size of a layer 

while also increasing the receptive window of a feature. This means that a feature in a 

deeper layer of a DCNN will represent information from a larger section of the 

original image than an earlier-layer feature. As a consequence of this, the deeper 

layers of a DCNN are less bound to specific locations in the original image than early 

layers. After multiple layers of convolution and pooling, a DCNN has one or more 

‘fully connected’ layers. As the name suggests, each unit of this type of layer is fully 

connected to each unit of the previous layer. Here, a unit refers to a simulated neuron, 

or a node connected to other nodes in the neural network. Unlike convolutional layers, 

the units of a fully connected layer have no relationship to a location in the original 

image. 

 

When a face image is input into a face identification DCNN, the output is generally a 

vector of numbers that acts as an identity descriptor. This is conceptually similar to 

the features derived by traditional approaches, but derived entirely from the training 

images and identity labels. The angle (or sometimes distance) between two such 

vectors can be used as a measure of similarity between images. In order for this 

similarity score to result in a match or non-match decision about the two images, the 

designer must choose a criterion cut-off score. As described earlier, the criterion is the 

similarity score above which the images are considered a match, and below which the 

images are considered a non-match. One method for finding a criterion score is to 

choose the percentage of false positives an operator is willing to accept, and to find 

the similarity score that yields the desired percentage using a dataset with ground-

truth identity labels. 

 

The complexity of DCNNs makes them incredibly powerful, but it also requires a 

staggering amount of training data to be effective. For instance, the MegaFace 

training dataset contains 4.7 million images of 672 thousand different identities (Nech 

& Kemelmacher-Shlizerman, 2017). It is important that a training dataset not only 

have a large number of images, but also have multiple images per identity. The 

images should also be highly variable in terms of lighting, viewpoint, etc., so the 

network can properly learn to recognize a person across these changes. As a 

consequence of the complexity of the networks and the size of the training data, 

DCNNs can sometimes take weeks to train even with powerful parallel processing. 

Though once the network is trained, a face can be processed in fractions of a second. 

Section 2. What role can algorithms play in security scenarios? 

Automated Border Control and Secure Authentication (1:1 matching) 

One of the most familiar uses of face recognition for people that travel internationally 

are Automated Border Control (ABC) e-gates. The traveller presents their passport to 

the e-gates, and faces the camera, allowing an image matching comparison to be 

computed. E-gates are featured at airports internationally. Best practice guidelines 

state that ‘all ABC systems must be monitored by a human operator’ (FRONTEX, 

2015). 
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E-gates generally compute identification quickly, despite several steps involved in the 

identification process. The ABC system must first check that the passport chip is 

genuine and that it is a match to demographic information on the passport. The live 

capture image of the holder (taken by the camera attached to the e-gate) is then 

compared against the image stored on the passport chip. It is recommended that the 

captured image should be compared against the scanned image on the passport (to 

catch instances of passport tampering). Additionally, in an attempt to identify wanted 

suspects or missing people, these images may be compared against a database (e.g., a 

watch list). If there are any consistencies in image matches, a flag against a watch list 

image, or if the system ‘times out’, the traveller is referred to a passport officer for 

adjudication. Otherwise, the e-gate opens to allow the passenger to pass.  

 

According to the FRONTEX guidelines, algorithms must operate at a false acceptance 

rate (FAR) of 0.1% or less (see Figure 4). This is equivalent to a scenario whereby 

someone gets away with using another person’s passport (the e-gate opens in error) 1 

in 1000 times. Additionally, the false rejection rate (FFR) should not exceed 5%. This 

means that only 1 in 20 people will be flagged in error to be processed by a border 

official. Interestingly, these recognition rates are quite liberal in comparison to those 

recommended for iris recognition rates (FAR = 0.001%). Independent tests of the 

ABC system are advised, and should preferably take place in the live environment as 

these may present new challenges which are not always included in algorithm testing 

procedures.  

 

 

 

 
Figure 4. Hypothetical match and non-match distributions of a recognition system that would barely pass 

the criteria of the FRONTEX guidelines for passport recognition systems (FAR <= 0.1%, FRR <= 5%). 

 

It is recommended that ABC e-gate systems should include ‘live-ness’ detection 

systems to check that a person has actually presented their face to the e-gate camera 

rather than a photograph or a mask (see Sanders & Jenkins, this volume) Camera 

quality is recommended to be at least 2 megapixels, with a minimum frame rate of 10 

frames per second. Suggested lighting conditions are also reported in the FRONTEX 

report. As the above are recommended, rather than required, it follows that image 

capture systems may differ substantially across location.  

 

Policing Scenarios (1:N matching) 

In policing scenarios, an officer may be tasked with trying to identify a person from 

an image, such as a CCTV image from a crime scene. This can be a difficult task, and 
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there may be a large database of known offenders to compare the image against. An 

algorithm can assist the investigation by narrowing down the number of possible 

identity matches in a database. The target image is compared against database images, 

and the most similar images returned in a candidate list—a list of the most similar x 

number (number determined by the human operator) of identities to the input image 

(see Davies, Innes, & Dawson, 2018). Whilst it is time consuming for an officer to 

search a large database of potential suspects, an algorithm can perform such a task 

very quickly. As algorithms are not 100% accurate, a human operator is required to 

view the output image(s) and decide if a match is present.  

 

Several police forces have trialed face recognition technology. However, there are 

few reports of the effectiveness of these systems in practice. Often, the ground truth 

for face identifications is unknown, making it difficult to assess the accuracy of these 

systems in practice. In the few reports that exist, the human operator’s verdict is often 

taken as ground truth. This is problematic, as we know that human face matching is 

error prone.  

 

Davies et al. (2018) provide a report of South Wales Police Usage of Automated Face 

Recognition Systems. Their report explains two uses of algorithms in police 

investigations. These are termed ‘Locate’ and ‘Identify’.  

 

The Locate mode is used in live face matching situations. A camera scans a live 

crowd and compares the faces against custody images from a police database. If a 

match is identified, the police officer is alerted. If the officer believes that the match is 

‘true’, then the person may be stopped by an officer and asked for their name and ID.  

 

The Identify mode is used in police investigations to compare a single input image 

(such as a CCTV image) against a database to generate a candidate list of the most 

similar images (N=200). The report emphasizes that the algorithm is used as a tool to 

assist the officers in their investigations. To help clarify the algorithm’s role in 

investigations, the authors refer to the system as ‘Assisted Face Recognition’ rather 

than ‘Automated Face Recognition’.  

 

Algorithms search databases far faster than the human eye, making it possible to 

compare an input image against a large number of potential matches. This increases 

the likelihood that a correct match will be returned. However, the latest algorithms 

may return multiple faces that are of high visual similarity to the target, and to each 

other. The increase in algorithm accuracy has resulted in a challenging image 

comparison task for the human operator when selecting the target from the returned 

candidate list (see White, Dunne et al., 2015).  

 

Section 3. Review of Face Recognition Accuracy  
 

Automatic face recognition systems are most useful if they increase not only the 

speed of face recognition, but also the accuracy of facial identifications above that of 

human performance. This section begins with a brief review of the strengths and 

limitations of human face recognition and is followed by a review of algorithm face 

recognition performance from the early 2000s to present day.  
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Human face recognition accuracy: the alternative to algorithms.  

Prior to the invention of automatic face recognition systems, human operators 

controlled all levels of the face identification procedure. Nowadays, verification can 

be performed by humans and by algorithms. In many countries, the prevalence of face 

recognition technology in policing and security scenarios has increased. However, the 

use of face recognition technology has been met by recent backlash of privacy 

concerns (e.g., the San Francisco Face Recognition Ban, 

https://www.bbc.co.uk/news/technology-48276660). The choice to remove machines 

from the identification process results in the use of the only alternative to algorithm-

human systems—an entirely human based system. Before the identification accuracy 

of algorithms is reviewed, human face recognition performance must be considered. 

Human performance provides a baseline against which algorithm accuracy can be 

compared. 

 

Humans are extremely accurate at recognising the faces of people who they know 

well (e.g., the faces of friends and family members). Identification and matching 

scenarios are much more challenging when the face is unknown (unfamiliar) to the 

viewer (Burton, White, & McNeill, 2010; Jenkins, White, Van Montfort, & Burton, 

2011). In unfamiliar face matching tasks, humans make errors on approximately 20% 

of trials under optimized conditions (Burton, Wilson, Cowan, & Bruce, 1999; Burton 

et al., 2010). Training does little to improve performance (Dowsett & Burton, 2014; 

Towler, A., White, D. & Kemp, 2017; Towler, White, & Kemp, 2014; Towler et al. 

2019, White, Kemp, Jenkins, & Burton, 2014; Woodhead, Baddeley, & Simmonds, 

1979), and passport officers perform with comparable accuracy to undergraduate 

students on these tasks (White, Kemp, Jenkins, Matheson, & Burton, 2014). There 

are, however, some professional groups, such as forensic facial examiners with access 

to the tools used for casework (Phillips et al., 2018) and specialist passport officers 

(White, Phillips, et al., 2015), who as a group, outperform student control groups.  

 

There are large individual differences in face recognition ability. The ability falls on a 

normal distribution spectrum. One method to increase face recognition performance 

in security contexts is to recruit people from the top end of this distribution (often 

referred to as ‘super-recognisers’) into jobs where this skill is important (Noyes, 

Phillips, & O’Toole, 2017). However, the consistency of performance of super-

recognisers across time, and across tasks, is yet to be established (see Bate, Mestry, & 

Portch, this volume; see also Bate, Portch, Mestry, & Bennetts, 2019; Ramon, Bobak, 

& White, 2019; Young & Noyes, 2019)  

 

Human face recognition performance is impaired by several factors (see Fysh, this 

volume). These include low image quality (Bindemann, Attard, Leach, & Johnston, 

2013; Burton et al., 1999) and differences in image properties between the target and 

comparison images (e.g., pose, illumination, camera-to-subject distance) (Hill & 

Bruce, 1996; Noyes & Jenkins, 2017; O’Toole, Edelman, & Bülthoff, 1998). Human 

face recognition performance deteriorates when conducting face recognition tasks for 

long periods of time (Fysh & Bindemann, 2017). Human face recognition is also 

subject to race bias, known as the ‘other-race effect’ (Feingold, 1914; Malpass & 

Kravitz, 1969). A predominant theory to explain the other-race effect is the 

experience or ‘contact’ hypothesis (Carroo, 2011; Chiroro & Valentine, 1995). 

According to the experience model, human face recognition ability is fine-tuned to the 

https://www.bbc.co.uk/news/technology-48276660
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faces with which we have most experience during childhood (cf., Kelly et al., 2005, 

2007).  

 

In sum, even people who are very skilled at unfamiliar face identification, make errors 

on these tasks. Human performance is impaired by factors such as image quality, 

fatigue, and the other race effect ( Burton et al., 1999; Fysh & Bindemann, 2017; 

Kelly et al., 2007). Moreover, given the large volumes of digital image evidence 

generated in criminal investigations via CCTV, social media, and smartphone 

cameras, there is an increasing demand by police agencies for tools that use this 

evidence effectively. Humans are simply unable to process these images in large 

volumes. Algorithms make it possible to make use of this data as they can rapidly 

compute identity decisions for large databases of faces.  

 

Assessing Algorithm Accuracy  

Algorithms address several human shortcomings in face recognition. They can 

process large databases quickly, and are immune to some factors that effect human 

error such as fatigue. But how accurate are these algorithms? And are they really 

better than humans? 

 

There are several challenges associated with evaluating the accuracy of face 

recognition algorithms in a general and objective way. Meaningful comparisons 

across algorithms require comparisons to be made on the same task, and on the same 

image database. In the 1990s, the US Government sponsored competitions to measure 

algorithm accuracy on the same tasks and images. Data from these competitions now 

spans decades and demonstrates large improvements in algorithm accuracy across 

time (Phillips et al., 2005, 2012; Phillips, Moon, Rizvi, & Rauss, 2000). Recent years 

have seen an increase in formalized objective comparisons across machines, and 

between humans and machines (Huang, Ramesh, Berg, & Learned-Miller, 2008; 

Kemelmacher-Shlizerman, Seitz, Miller, & Brossard, 2016; Phillips et al., 2018; 

Phillips, Hill, Swindle, & O’Toole, 2015; O'Toole, An, Dunlop, & Natu, 2012). The 

Government sponsored competitions have typically attracted commercial competitors. 

University-led competitions have also become popular among a largely academic 

audience (e.g., Huang et al., 2008; Kemelmacher-Shlizerman et al., 2016)  

 

In these competitions, tasks can include 1:1 image matching, 1:N image matching, or 

image classification. The databases used in these competitions have changed across 

time to reflect improvements in camera quality, and also to encompass greater image 

variability. Early databases consisted of frontal images (Phillips et al., 2000), whereas 

later datasets introduced factors such as varied illumination, pose, 3D images (Phillips 

et al., 2005), and uncontrolled images (e.g., ‘images in-the-wild’) (Huang et al., 

2008). Such competitions have led to the creation of highly challenging image 

databases (e.g., IJB-C, see Maze et al. 2018).  

 

Early Algorithms 

The algorithms that competed in the early government challenges (Phillips et al., 

2000; 2003; 2005) fall into the category of ‘early algorithms’ that we described in 

Section 1. In 2005, the state of the art for these algorithms performed was high 

accuracy on highly controlled frontal-to-frontal image matching tasks, but these 

algorithms did not fare well on unconstrained images. Algorithm performance 
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progressed over time, and later versions of these early algorithms rivalled humans on 

one-to-one image comparison tasks that involved highly controlled frontally-posed 

datasets (Jenkins & Burton, 2008; O’Toole et al., 2007; 2012).  Notably, the accuracy 

of these algorithms was greatly reduced for face images that varied in pose, 

illumination, or expression (Phillips et al., 2012, 2015; Sankaranarayanan, Alavi, 

Castillo, & Chellappa, 2016; Sengupta et al., 2016; O'Toole et al., 2012). By 2012, 

some early algorithms were comparable to, or better than humans at matching frontal 

images across changes in illumination (indoor versus outdoor lighting) (O'Toole et al., 

2012). However, this was the limit of their capability. Several more recent studies 

have tested algorithms of these early designs on more natural image types, known as 

‘in the wild’ images. Early algorithm accuracy is far lower for these uncontrolled 

images than for controlled images (Sankaranarayanan et al., 2016; Sengupta et al., 

2016).  

 

State of the Art Performance 

Whereas the effective operation of early algorithm performance is limited to good 

quality, front-facing images, newer algorithms based on DCNNs perform well across 

a range of image scenarios (Taigman, Yang, & Ranzato, 2014). This is reflective of 

the varied image sets that they are trained on (see Section 1). Ranjan et al. (2018) 

reports face identification results for highly challenging datasets (IJB-A, -B, and -C), 

and Challenge Set 5 (most recent). The galleries in Ranjan et al. (2018) each consisted 

of over 1 million ‘in the wild’ face images. Results are reported for various false 

accept cut off points. However, here we report results at the 0.1% false accept rate, as 

this is consistent with the false accept rate for ABC e-gates discussed in Section 2.  

 

The challenges spanned two types of task. These were 1:1 verification tasks in which 

the algorithm decided if two probe images were of the same identity, and a 1:N mixed 

search, sometimes referred to as a 1:many task. In 1:N tasks, the algorithm receives a 

probe (input) image, and creates a candidate list of N possible matches, ranked in 

order of similarity to the probe.  

 

The top performing algorithm performed with over 94% accuracy on all three 

versions (IJB-A, -B, and -C) of the 1:1 verification tasks at the 0.1% false accept rate. 

It also performed at over 98% accuracy for this task on the Challenge Set 5 dataset. 

On the 1:N task, this same algorithm returned the correct rank 1 candidate over 95% 

of the time in all but one of six tasks (accuracy was at 90.8% in the exception case). 

For the latest dataset (Challenge Set 5), accuracy rose to 96.99%. Across all datasets, 

the algorithm returned the correct match within the top 10 rank candidates over 98% 

of the time. These results demonstrate that the latest algorithms can achieve very high 

levels of performance accuracy on uncontrolled images.   

Fusion 

Accuracy was amplified by combining the results of different algorithms through 

fusion (Ranjan et al., 2018). This process mirrors that of a phenomenon known as  

‘wisdom of the crowds’, which is when the collective opinion is more accurate than 

the opinion of the individual. This effect has been observed for fusing identity 

judgments in humans (Jeckeln, Hahn, Noyes, Cavazos, & O’Toole, 2018; White et al., 

2014). 
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Link Between Size of Training Database and Performance  

Zhou, Cao, and Yin (2015) report a noteworthy pattern in the data on DCNN face 

recognition: the link between the size of the training database and the performance of 

the DCNN. As noted in Section 1, DCNNs are trained on a staggering amount of 

images (millions of images consisting of thousands of identities). Increasing the size 

of the training dataset appears to increase the performance of the algorithm. In other 

words, an algorithm performs better if it has been trained on more data.  

 

Three conclusions can be made for DCNN performance, 1) state-of-the-art algorithms 

perform with very high accuracy on tasks that involve ‘in the wild’ faces, 2) fusing 

similarity scores of multiple algorithms can increase identification accuracy, and 3) 

increasing the size of the training data increases DCNN performance.  

 

Algorithm Bias 

It is important to note that algorithms demonstrate several patterns of image bias. For 

example, identification accuracy of male faces is often higher than identification 

accuracy for female faces (e.g., Blanton, Allen, Miller, Kalka, & Jain, 2016). 

Additionally, Phillips et al. (2011) report that an ‘other-race effect’ for both humans 

and early algorithms. In their study, half of the human participants were Caucasian, 

and the other half was East Asian. A Caucasian algorithm (made by fusing similarity 

scores of 8 algorithms made in Western countries) and an East Asian algorithm (made 

by fusing 5 algorithms created in East Asian countries) were also tested. Performance 

was measured on recognition of highly controlled images of Caucasian and East 

Asian Faces. Humans performed more accurately on faces of their own race. 

Algorithms performed best on the predominant race where the algorithm was 

developed (Phillips et al., 2011).  

 

These published findings are based on older class algorithms. However bias has also 

been reported for DCNNs (Khiyari & Wechsler, 2016; Krishnapriya, Vangara, King, 

Albiero, & Bowyer, 2019). This may reflect bias in training data (Klare, Burge, 

Klontz, Vorder Bruegge, & Jain, 2012), and/or differences in image quality 

(Krishnapriya et al., 2019). A very recent assessment of algorithm performance from 

the Face Recognition Vendor Test reports that the four top performing algorithms 

made least errors for black male faces when compared against performance for male 

white, female white, and female black faces (Klare, 2019). Demographic differentials 

were observed in the majority of algorithms tested in the NIST Face Recognition 

Vendor Test (Grother, Ngan & Hanaoka, 2019). The extent of these differences 

depended upon both the algorithm, and the task at hand. It is therefore critical that 

users know the capabilities and limitations of their algorithm and set appropriate 

criterion thresholds to minimise bias.   

 

Comparison of human and algorithm accuracy  

Algorithm and human face recognition is a topic that spans both the psychology and 

the computer science literature. Several computer science papers include data on 

human face recognition accuracy. However, the methods used to assess human 

performance in the computer science literature are often inconsistent with those used 

in the psychology literature. The following points must be kept in mind when making 

conclusions on human and machine performance from the computer science literature. 

Psychologists tend to compute the average accuracy of each participant as derived 
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from their individual (i.e. non-aggregated) response. O’Toole and Phillips (2017) 

argue that computer science reports of human face recognition accuracy are often 

inflated through misuse of fusion. Instead of averaging performance of human 

participants over a task, the classification accuracy of humans is often derived by 

averaging human judgments to pairs of faces. This inflates accuracy due to a 

phenomenon known as ‘wisdom of the crowds’. Computer science papers often report 

this fused human score, when the average human score should be reported. Computer 

science studies also often fail to account for factors such as face familiarity, the other-

race effect, and access to information other than the face (e.g., body or clothing), all 

of which can influence human performance (O’Toole & Phillips, 2017).  

 

O'Toole et al. (2012) provide the first direct comparison of human and algorithm 1:1 

face-matching performance. In their study, humans (undergraduate students) and 

algorithms were tested on their ability to match a subset of images from the Face 

Recognition Grand Challenge image set. The images were carefully selected to 

contain ‘easy’ (constant illumination) and ‘difficult’ (varied illumination) image pairs. 

Algorithms consistently outperformed these untrained human lay observers on the 

easy image pairs. Moreover, three out of the four algorithms that were tested also 

outperformed humans on the difficult image pairs (O’Toole et al. 2012).  

 

At the beginning of Section 3 we noted that some individuals are better at recognising 

faces than others. Super-recognisers and forensic examiners with access to their tools 

perform particularly well on face recognition tasks (see White, Towler, & Kemp, this 

volume). Phillips et al. (2018) compare the performance of four DCNNs (state-of-the 

art in 2015, through to 2017) against undergraduate students, super-recognisers, and 

forensic examiners with access to their tools on a difficult face-matching task 

involving 20 frontal-facing face image pairs. The images varied in illumination and—

to a lesser degree—in expression. The most recent algorithm (2017b) performed with 

accuracy levels that were comparable to the top performing human participant groups 

(the forensic examiners and super-recognisers). Algorithms have made dramatic 

accuracy gains between 2015 and 2017. The 2015 algorithm performed with accuracy 

levels that are comparable to the score of the median undergraduate student, whereas 

the 2017b algorithm performed at a comparable level to the median forensic 

examiner.  This means that some examiners were better than the algorithm and some 

were worse, but the algorithm was equal to the ‘middle value’ of forensic examiners.  

 

Accuracy of Algorithms out in the Field  

Thus far, we have covered algorithm accuracy as tested in controlled experimental 

settings. If these algorithms are to be used in real-world applications, it is important to 

test accuracy of algorithms ‘in the field’. Davies, Innes, and Dawson (2018) provide a 

report of South Wales Police Usage of Automated Face Recognition Systems. Their 

report explains two modes of usage of algorithms in police investigations. These are 

termed ‘Locate’ and ‘Identify’ (explained in Section 2).  

 

A field test was designed to test accuracy of the ‘Locate’ system. In this test, images 

of police officers were added to a watch list, and the system was tested on how 

accurately it flagged these officers when their live face image was captured by the 

system. The ground truth (true identity) of the officers was known, making it possible 

to assess algorithm accuracy. The algorithm flagged a true match between the officer 
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and image on the watch list in between 76% and 81% of trials. In practice, a human 

officer would be required to review and verify the match.  

 

The report also includes accuracy of the Locate system in operational deployments. 

The database images were 1200 images, made up of traditional police custody ‘mug 

shot’ images and other ‘non-custody’ images, which had been taken outside. Despite 

the relatively high accuracy of the system in the field test reported above, in applied 

practice the system flagged many faces, deemed as false positives by the human 

operator. In initial usage of the algorithm, just 3% of flagged images were considered 

to be a true match. However, this number rose to 46% in later deployments (Davies, 

Innes, & Dawson, 2018). Arguably, the remaining 54% of identifications cannot be 

considered as false positives because the human reviewer will ultimately decide 

whether to follow up the flagged identity to make a positive identification. 

Notwithstanding, the algorithm deployment resulted in a small number of arrests.  

 

The report outlines several challenges experienced with the Locate system. Namely, 

image quality, lighting, occluded features, and operational issues. The algorithm 

required good quality database images in order to compute accurate similarity scores. 

Lighting affected matching accuracy, with the system performing poorly in dim 

lighting. Additionally, certain clothing and accessories, which obscured parts of the 

face when worn, reduced algorithm accuracy. And in live matching scenarios, the 

system often lagged, froze, or crashed, when dealing with images of crowds (Davies, 

Innes, & Dawson, 2018). 

 

The success of the Identify system was also evaluated. Here, database images 

consisted of around 45,000 police custody images (mug shot style images). The exact 

number increased over time. The quality of the probe image had a substantial effect 

on system accuracy.  Between the end of October 2017 and March 2018, the 

algorithm rejected 60% of all input images due to poor image quality. Many of these 

rejected images had were mobile phone images of CCTV footage. In this same time 

frame, 73% of the images that were accepted by the algorithm returned a possible true 

match within the candidate list, as confirmed by a police operator. Within these cases, 

the true match was listed as the rank 1 candidate 60% of the time, and listed within 

the top 10 ranked candidates 90% of the time.  Notably, the true match here cannot 

necessarily be considered a ground truth as humans also make face matching errors. 

Section 4. Interactions between algorithms and humans in face recognition 
 

In this section we consider the advantages and disadvantages of interactions between 

algorithms and humans. Specifically, we discuss the benefits of combining the 

response of algorithms and humans through fusion, and also consider the influence 

that an algorithm’s identification may have on the human decision making process.  
 

Fusion of Algorithm and Human Similarity Scores  

It is well documented that accuracy of human face recognition can be improved by 

wisdom of the crowds—fusing the decisions of multiple people on an item-by-item 

basis, or simply put, the combined judgment of many is better than the decision of an 

individual (Jeckeln, Hahn, Noyes, Cavazos, & O’Toole, 2018; White, Burton, Kemp, 

& Jenkins, 2013). There is a similar benefit for fusing the performance of multiple 

algorithms (Ranjan et al., 2018).  
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Fusing the response of humans with that of algorithms has led to large performance 

gains over the response of either humans or algorithms alone (O’Toole, Abdi, Jiang, 

& Phillips, 2007; Phillips et al., 2018). O’Toole, Abdi, et al. (2007) report that fusion 

of human and algorithm similarity scores resulted in near perfect accuracy on the task 

outlined in Section 3. Additionally, Phillips et al. (2018) report that highest 

identification accuracy was achieved by combining the decisions of the top 

performing humans (forensic examiners) with the identifications provided by the 

algorithm. Fusion of human and machine identification decisions works in boosting 

overall performance, because humans and algorithms most likely use different 

methods to compute their similarity calculations. For example, some images that are 

challenging to an algorithm are not similarly challenging to humans, and vice versa 

(O’Toole et al, 2012). Fusion utilises the individual strengths of both humans and 

algorithms.  

Interference of systems  

In applied face identification scenarios that involve both humans and machines, 

humans act as check and balance against algorithm identification. In an ideal 

operational scenario, the human and algorithm will agree on correct identification 

verdicts. When the algorithm is incorrect, the human must catch and correct the 

algorithm error. In practice, the human operator may receive the algorithm output 

(similarity score) prior to reaching their identification decision. This raises an 

important question of whether the human operator is influenced by the algorithm’s 

verdict.  

 

Fysh and Bindemann (2018) tested whether human face matching is influenced by the 

presence of a pre-assigned identification label, such as that provided by an algorithm. 

In their study, participants viewed pairs of face images and made same/different 

identity responses to each image pair. Each pair of faces had been assigned a label of 

‘same identity’, ‘different identity’, or ‘unresolved’ (representing no answer from the 

algorithm). Participants were told that the assigned label would often be accurate; this 

was true and reflects the high accuracy rates of current algorithms. The result was that 

the label influenced the identification; incorrect identifications were made most often 

for image pairs that had an incorrect label. Instruction to ignore the label made no 

difference to the label influence. Performance on the trials labelled ‘unresolved’  was 

in line with performance on standardised face matching tasks (e.g., Burton et al. 

2010). Additionally, Heyer, Semmler and Hendrickson (2019) report that candidate 

list length affects accuracy of a human reviewer Candidate lists of over 100 items 

produced more false alarms, fewer hits, and lower confidence in identifications than 

smaller candidate lists. Further testing is necessary to assess the effect of algorithm 

output on the accuracy of the human reviewer in practice.  

 

When humans are the weak link in the system.  

The accuracy of any human-algorithm system is limited by the accuracy of each of 

these components—the human and the algorithm. If the human operator holds 

authority over the final identification, then the algorithm’s performance is capped by 

the accuracy of the human operator.  

 

Algorithms regularly return a true match to an input image within a candidate list, 

however, it is up to a human to select and confirm a match from this list. White, 
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Dunn, Schmid, and Kemp (2015) argue that humans may be the weak link in this 

process. They tested accuracy of undergraduate students and passport officers for 

selecting a match, or identifying a target as absent from a candidate list generated by 

an algorithm. In White et al. (2015), participants made errors in selecting the correct 

match from a candidate list on 50% of trials. Furthermore, there was no difference in 

performance of undergraduate students and passport officers. However, a specialist 

group of face examiners made 20% less errors. The results from White et al. (2015) 

demonstrate that even if algorithms are highly accurate at returning a correct match 

within a candidate list, humans are not always accurate at selecting the match from 

the list.  

Section 5. Summary  
State-of-the-art face recognition algorithms modeled on DCNNs are far more accurate 

than their predecessors, and can operate accurately over greater image variation. This 

is because DCNNs leverage deep architectures and are often trained with millions of 

images of thousands of identities. Between the years of 2015 to 2017, algorithm face-

matching accuracy increased from that of the median undergraduate student, to that of 

the median forensic examiner (Phillips et al., 2018). It is likely that DCNN 

performance will continue to rise as training datasets become larger and algorithm 

developers begin to tackle more challenging image scenarios.  

 

Algorithm accuracy is increasing at such a rapid rate that the literature that reports 

state of the art performance quickly becomes outdated. The latest algorithms perform 

with very high accuracy on image-matching tasks involving front facing images 

(Phillips et al., 2018), and also on much more challenging, naturalistic images 

(Ranjan et al., 2018). Ranjan et al. (2018) report impressive return rates of true 

matches within top ten (and increasingly rank 1) images on candidate lists.  

 

How do algorithms compare with humans? Algorithms perform more accurately than 

the average human on many frontal, 1:1 and 1:N, image-matching tasks. Algorithms 

and humans performance on images in the wild has not yet been compared directly, 

however we know that this is often a difficult task for humans, and algorithms are 

scoring with increasingly high accuracy on these types of tasks. In terms of speed and 

breadth of search scope, algorithms far outweigh humans. Algorithms can search 

databases of millions of images and return a list of possible matches within seconds. 

Despite the impressive accuracy rates of algorithms, human verification remains an 

important part of the face identification process. In operational settings, humans are 

most often required to inspect and review the algorithm output. Face recognition 

algorithms have been described as a tool that can be used to assist investigations 

(Davies et al., 2018).   

 

Whilst algorithms have several strengths, it is also important to consider their 

limitations. Studies have revealed both gender and race biases in algorithm face 

identification (Blanton et al., 2016; Phillips et al., 2009). It is important to remember 

that humans also exhibit an other-race effect in their face recognition performance; 

typically, performance is higher for recognizing faces of own than other races 

(Carroo, 2011; Malpass & Kravitz, 1969). The experience hypothesis explains this in 

terms of fine-tuning face recognition expertise to races experienced most during 

childhood (Kelly et al., 2005, 2007). Analogously, algorithm race bias might be 
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linked to an imbalance in faces of certain races represented within training data (Klare 

et al., 2012).  

 

Algorithms also experience several challenges in live deployment scenarios. Many of 

the issues with live deployment have been liked to poor image quality. Additionally, 

large number of false positive responses result in a large workload for the human 

operator (Davies et al., 2018). Lighting and clothing can also affect algorithm 

accuracy (Davies et al., 2018). Despite these issues, the use of algorithms in live 

deployment scenarios has resulted in a small number of arrests. It is important to also 

investigate more deliberate attempts to deceive the system, including masks (Sanders 

et al., 2017), morphs (Robertson, Kramer, & Burton, 2017), and deliberate disguise 

(Noyes & Jenkins, 2019).  

 

Face recognition systems rely on the accuracy and efficiency of both humans and 

algorithms. At times, the accuracy of one may be capped by accuracy of the other 

(Fysh & Bindemann, 2018; White, Dunn, et al., 2015), however both humans and 

machines can contribute to the identification effort. Indeed, the best systems may 

result from fusing the judgments of the best-performing humans with the scores of 

algorithms. This resulted in the most accurate performance in a recent face matching 

test for frontal images (Phillips et al., 2018). It is not yet known whether the benefit 

extends to more challenging images.  

 

Accurate algorithm performance is dependent upon well-considered policy for the use 

of machines in face identification. The scientific evidence supports the use of face 

recognition algorithms for front-facing images, and also for naturalistic images that 

vary in pose, illumination, expression, etc. Each individual algorithm has its own 

strengths and limitations, as do humans. As these technologies continue to evolve and 

grow, it is important to understand their strengths and weaknesses to ensure the 

appropriate use of these algorithms. Each algorithm is different. Operators need to 

know their algorithm in order to understand its capabilities and to set appropriate 

thresholds to reduce bias. The science should drive the use of face recognition 

algorithms and their role in human-machine face identification systems.  

 

Conclusions 
Going forward, as machines become more accurate and more integrated into our daily 

lives, there will be important questions to consider. If algorithms consistently 

outperform humans, then what role should humans play in the face recognition 

process? Perhaps the role of the human will change from that of an equal partner to 

the algorithm, to that of ‘error catcher’, or a system manager who knows the 

capabilities of the algorithm and sets appropriate parameters. For example, does the 

image quality meet the requirements for accurate identification? Is the criterion 

threshold appropriate for the demographics? If humans and algorithms perform 

identifications in different ways, then there will always be a role for humans to catch 

the errors made by machines. We expect that the most accurate identification systems 

will include a role for top performing humans and top performing algorithms. 
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