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Abstract 

The lockdown response to COVID-19 has caused an unprecedented reduction in global 
economic and transport activity. We test the hypothesis that this has reduced tropospheric and 
ground-level air pollution concentrations using satellite data and a network of >10000 air quality 
stations. After accounting for the effects of meteorological variability, we find declines in the 
population-weighted concentration of ground-level nitrogen dioxide (NO2: 60% with 95% 
confidence interval 48% to 72%), and fine particulate matter (PM2.5: 31%; 17% to 45%), with 
marginal increases in ozone (O3: 4%; -2% to 10%) in 34 countries during lockdown dates up until 
15 May. Except for ozone, satellite measurements of the troposphere indicate much smaller 
reductions, highlighting the spatial variability of pollutant anomalies attributable to complex NOx 
chemistry and long-distance transport of PM2.5. By leveraging Google and Apple mobility data, we 
find some of the first empirical evidence for a link between global vehicle transportation declines 
and the reduction of ambient NO2 exposure. While the state of global lockdown is not sustainable, 
these findings allude to the potential for mitigating public health risk by reducing “business as 
usual” air pollutant emissions from economic activities. Explore trends here: 
https://nina.earthengine.app/view/lockdown-pollution 

Significance Statement 

 
The global response to the COVID-19 pandemic has resulted in unprecedented reductions in 
economic activity. We find that, after accounting for meteorological variations, lockdown events 
have reduced the population-weighted concentration of nitrogen dioxide and particulate matter 
levels by about 60% and 31% in 34 countries with mixed effects on ozone. Reductions in 
transportation sector emissions are largely responsible for the NO2 anomalies.  
 
 
Main Text 
 
Introduction 
 
In many developing nations economic growth has exacerbated air pollutant emissions with severe 
consequences for the environment and human health. Long-term exposure to air pollution 
including fine particulate matter with a diameter less than 2.5 µm (PM2.5) and ozone (O3) are 
estimated to cause ~8.8 million excess deaths annually (1, 2), while nitrogen dioxide (NO2) 
results in 4 million new pediatric asthma cases annually (3). Despite the apparent global air 
pollution “pandemic”, anthropogenic emissions continue to increase in most developing and some 
developed nations (4–6).  
 
The major ambient (outdoor) air pollution sources include power generation, industry, traffic, and 
residential energy use (4, 7). With the rapid emergence of the novel coronavirus (COVID-19), and 
in particular the government enforced lockdown measures aimed at containment, economic 
activity associated with transport and mobility has come to a near-complete standstill in many 
countries (8). Lockdown measures have included partial or complete closure of international 
borders, schools, non-essential businesses and in some cases restricted citizen mobility (SI 

https://nina.earthengine.app/view/lockdown-pollution
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Appendix, Fig. S1) (9). The associated reduction in traffic and industry has both socio-economic 
and environmental impacts which are yet to be quantified. In parallel to the societal 
consequences of the global response to COVID-19, there is an unprecedented opportunity to 
estimate the short-term effects of economic activity counterfactual to “business as usual” on 
global air pollution and its relation to human health. 
 
Here we test the hypothesis that COVID-19 lockdown events between January and the middle of 
May 2020 were associated with declines in ambient NO2, O3, and PM2.5 air pollutant 
concentrations. Country-specific lockdowns are defined by the average date of policy restrictions 
on mobility, workplace closure and stay-at-home advisories (10). We use satellite data to provide 
a global perspective of atmospheric pollutant dynamics, but to quantify air pollution anomalies 
relevant to public health, we utilize ground-level measurements from >10000 air quality stations in 
34 countries after accounting for meteorological variations.  
 
 
Results and Discussion 
 
General air pollution changes 
 
Before accounting for meteorological variability, we observed declines in ground-level NO2 (36% 
population-weighted mean with interquartile range; IQR: 26%) and PM2.5 (31%; IQR: 50%) 
concentrations recorded by air quality stations across 34 countries during 2020 (01-Jan to 15-May) 
relative to a 3-yr average for the same dates (Fig. 1). In contrast, O3 increased by 105% (77% IQR). 
Satellite measurements of tropospheric pollutant concentrations over the inhabited areas also 
reveal declines in NO2 (15%; IQR: 27%) and increases in O3 (4%; IQR: 6%; SI Appendix, Fig. S3 
& S4) relative to 2019 averages. Measures of aerosol optical depth (AOD, a proxy for PM2.5) 
declined by 4.7% (35% IQR). Therefore ground-level and total column tropospheric trends in 
pollutants show a correspondence in the direction of change but not necessarily the magnitude of 
change. This is likely because tropospheric pollutant concentrations may be significantly diluted 
relative to ground-level concentrations due to mixing and transport in meso-scale weather systems. 
This is particularly likely because the satellite data have not been adjusted for confounding 
meteorological effects. For instance, elevated AOD may be a product of long-distance aerosol 
transport and not ground-level sources of PM2.5 (11). The same is true for satellite-measured O3, 
which is strongly influenced by its generally increasing abundance above the boundary layer, 
especially during winter. 
 
The simple comparison of 2020 January-May averages to 3- or 1-yr baseline values (Fig. 1, SI 
Appendix, Fig. S3 & S4) does not isolate the COVID-19 lockdown effect for two reasons. Firstly, 
lockdowns were implemented over different dates across the globe and therefore averaging over 
January-May smooths over the country-specific lockdown effects. Secondly, local up to synoptic 
scale weather patterns (temperature, humidity, precipitation, vertical mixing and advection) can 
significantly affect ground-level pollutant concentrations (12, 13). Although measuring 2020 
changes relative to previous years partially controls for this, it does not fully account for anomalous 
weather during 2020 that may have confounded any observable effect of COVID-19 lockdowns. 
Therefore, we used historical relationships between weather and daily pollutant time series in a 
regression model to estimate what the pollutant levels would have been during lockdown dates. 
The COVID-19 lockdown effect was then defined as the difference between observed and weather 
benchmark pollutant levels (SI Appendix, Fig. S2). We used ground-level measurements because 
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they are more sensitive to emission source changes and are more relevant to human exposure and 
health risk. 
 
Weather-corrected air pollution changes during lockdown 
 
As of 15 May 2020, the 34 countries considered had been in lockdown for an average of 62 days, 
with China (113 days) and Italy (84 days) undergoing the longest lockdowns and Mexico 
undergoing the shortest (50 days; SI Appendix, Fig. S1). During lockdown dates, ground-level NO2 
concentrations were on average 60% (population-weighted mean with 95% confidence intervals: 
48% to 72%) lower than those we would have expected given the prevailing weather and time of 
year (weather-corrected benchmark; Fig. 2A & 3A). Similarly, PM2.5 declined by 31% (17% to 45%), 
whereas O3 increased by 4% (-2% to 10%; Fig 2 & 3). In absolute terms (Fig. 3A), this equates to 
a 11 µg m-3 (9 to 14 µg m-3) decline in NO2 and a 12 µg m-3 (7 to 18 µg m-3) decline in PM2.5. The 4 
µg m-3 increase in O3 (1 to 8 µg m-3) was lower in magnitude and less significant. These results 
mirror the direction of change found in the general trends for uncorrected ground-level (Fig. 1) and 
satellite-derived pollutant dynamics (SI Appendix, Fig. S3 & S4). They also corroborate preliminary 
(not peer-reviewed) findings from studies in China (14), Spain (15), and the USA (16) which have 
documented local declines in pollutant concentrations during lockdown. 
 
Globally, the timing of the deviation from benchmark levels for NO2 was remarkably coincident with 
the start of lockdown (Fig. 2; SI Appendix, Fig. S5). This timing was strongly evident for PM2.5 in 
China (decline of 16 µg m-3) and India (decline of 15 µg m-3), but less so for PM2.5 over European 
countries. This may be because PM2.5 is significantly influenced by long-distance atmospheric 
transport and therefore the local effects of economic activity over Europe may have been diluted 
or even counteracted (17). As an example, in March easterly winds carried desert dust across 
Europe from West Asia, which resulted in a temporal increase of AOD (18). Moreover, some PM2.5 
sources including agriculture and energy production were not disrupted by lockdown policy 
restrictions. This is also evidenced in the two notable outlier countries exhibiting increases in PM2.5, 
namely Thailand and Australia (Fig. 3). There the increases are largely attributable to the recent 
wildfires and associated smoke aerosol levels that have overwhelmed the effect of reduced 
economic and transport activity (19, 20). 
 
We find that the global NO2 and PM2.5 anomalies associated with lockdowns normalized after about 
two months (Fig. 2). This normalization occurred in early April over China (SI Appendix, Fig. S5) 
which is consistent with the release of lockdown on 8 April over Wuhan province, the epicenter of 
the COVID-19 pandemic. NO2 concentrations normalize during late April and early May over 
European countries including Italy, Spain and the United Kingdom (SI Appendix, Fig. S5). This is 
likely a signal of increasing economic activity coincident with the gradual easing of lockdown 
restrictions around the world after countries have successfully “flattened the curve” of COVID-19 
infections (21). 
 
Explaining the spatial variation in change 
 
Despite the overall average decline in air pollution during lockdown, there was substantial variation 
between countries both in terms of the direction and magnitude of change (Fig. 3). The declines in 
NO2 were relatively ubiquitous over space (28 out of 34 countries; Fig. 3), however O3 and PM2.5 
anomalies were more variable. We posit that this spatial variation is likely due to a combination of 
(1) unaccounted for meteorological and environmental factors that affect ambient air pollution 
chemistry, or (2) country-specific differences the way lockdown regulations influenced pollution 
emission sources across economic sectors.  
 
Our weather benchmark models were not able to explain all of the temporal variance in NO2 (R2 = 
0.52), O3 (R2 = 0.59), and PM2.5 (R2 = 0.34; SI Appendix, Table S1). This is not surprising given 
that pollutants like O3 are affected by non-linear chemical interactions with volatile organic 
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compounds (VOCs) and NOx, mediated by mesoscale and urban canopy circulation patterns (22). 
For instance, the emission decline of NOx (=NO+NO2), mostly as NO, could lead to reduced local 
titration of O3 (reaction of NO with O3). The O3 titration effect is relevant locally and within the 
planetary boundary layer, whereas further downwind photochemical O3 formation, with a catalytic 
role of NOx, is a more important factor. For example, in China, the population-weighted O3 is found 
to increase with decreasing NO2 across the lockdown, this indicates predominance of VOC-limited 
regime in China. Whereas, reduction in population-weighted O3 with decrease in NO2 in India 
suggests a NOx-limited regime prevailing there (Fig. S5). Note that lockdown impacts on NO2, which 
has an atmospheric lifetime of about a day, are clearly discernible locally, whereas those on O3 
with a lifetime of several weeks are affected by long-distance transport associated with specific 
weather patterns. Further, O3 photochemistry in temperate latitudes during the Feb/Mar period is 
still slow due to low solar irradiation, whereas at lower latitudes pollutant O3 buildup can be 
significant. 
 
The alternative explanation for the spatial variability in pollutant changes during lockdown is that 
confinement regulations had varying effects on emission sources between countries. Recent 
analysis of the 17% decline in CO2 emissions during lockdowns have indicated substantial 
variability between economic sectors (23), with the largest declines taking place in the surface 
transport sector. Sector allocations of CO2 emissions vary between countries. For example, the 
transport sector contributes 8% toward CO2 emissions in China, whereas in the United Kingdom 
allocation is four times higher (23). Therefore, one might expect large variations in emission 
declines (particularly for NO2) between countries given that the lockdowns brought about the 
greatest change in the transportation sector.  
 
We explored nationally aggregated citizen mobility datasets published by Google 
(https://www.google.com/covid19/mobility/) and Apple (https://www.apple.com/covid19/mobility/) 
and found a significant association between country-specific NO2 declines and reductions in work 
commutes (p < 0.05; Fig. 4A) and vehicle driving activity (p < 0.05; Fig. 4B). There were no 
significant relationships for O3 and PM2.5 anomalies. This suggests NO2 has a stronger coupling to 
land-transportation and small business activity declines during lockdown compared to O3 and PM2.5. 
In many countries PM2.5 is more strongly linked to residential energy use, power generation and 
agriculture (7). Given that walking and cycling are attributes of social distancing measures (24) that 
are expected to continue for some time (25), reduced NO2 emissions and therefore exposure levels 
may be sustained over the near future. 
 
 
Implications 
 
Reducing economic activity to levels equivalent to a lockdown state may be impractical, yet 
maintaining “business as usual” clearly exacerbates global pollutant emissions and ambient 
exposure levels. Our study documents the dramatic short-term effect of global reductions in 
transport and economic activity on reducing ground-level NO2 and PM2.5, with mixed effects on O3 
concentrations. Short-term epidemiological analyses suggest that pollutant reductions may have 
offset COVID-19 deaths (14, 26, 27), however the full extent to which this is true remains to be 
seen. In some settings where household (indoor) air pollution from solid fuel use is widespread, 
overall exposure may have increased as a result of lockdown policies (28). As the pandemic 
plays out, empirical data will emerge to fill in the knowledge gaps and uncertainties associated 
with the air pollution health burden attribution. Nevertheless, finding means to curb air pollutant 
emissions remains important and here we provide some of the first empirical evidence at a global 
scale for a coupling between vehicle transport reduction and declining ambient NO2 
concentrations. This provides justification for city-level initiatives to promote public transport 
systems as well as pedestrian and cycling activity. Finding economically and socially sustainable 
alternatives to fossil fuel use in industries, transportation and power plants, and cleaner fuels for 

https://www.google.com/covid19/mobility/
https://www.apple.com/covid19/mobility/
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use in households are additional means of reaching the pollutant declines we have observed 
during the global response to COVID-19 (29, 30).  
 
 
 
Materials and Methods 
 
In brief, the methodological workflow (SI Appendix, Fig. S2) described below involves collecting 
satellite and ground station air pollution time series data to estimate anomalies during the 2020 
COVD-19 period relative to different baseline levels. We collect satellite data to provide a global 
perspective of pollutant trends over regions where there is a scarcity of ground air quality 
stations. However, we focus on weather-corrected ground station data because ambient pollutant 
concentrations are more relevant to public health than satellite-derived tropospheric column 
concentrations. Regression models are used to correct for the potential effects of weather-related 
variations on ground-level pollutant levels during lockdown. The sample of countries used in each 
step varies dependent on the data availability. Results for ground-station data cover 34 countries 
while satellite data cover 48 countries. 
 
Satellite data 
 
All remote sensing data analyses were conducted in the Google Earth Engine platform for 
geospatial analysis and cloud computing (31). All data was extracted at a global scale and 
aggregated to the population-weighted mean for each country. Population data were obtained for 
2020 from the Gridded Population of the World v4 dataset (32). Data outside of inhabited areas 
(ocean, freshwater, desert etc.) were excluded from the analysis using the Global Human 
Settlement Layer produced by the European Joint Research Centre which defines inhabited rural 
and urban terrestrial areas (33). We did this because our main hypothesis was linked to human 
exposure and therefore we aimed at pollution measures that were relevant to inhabited land 
surfaces. 
 
We collected nitrogen dioxide (NO2) and ozone (O3) data from the TROPOspheric Monitoring 
Instrument (TROPOMI), on‐board the Sentinel‐5 Precursor satellite (34). TROPOMI has delivered 
calibrated data since July 2018 from its nadir‐viewing spectrometer measuring reflected sunlight 

in the visible, near‐infrared, ultraviolet, and shortwave infrared. Recent work has shown that 
TROPOMI measurements are well correlated to ground measures of NO2 (35, 36). We filtered out 
pixels that are fully or partially covered by clouds using 0.3 as a cutoff for the radiative cloud 
fraction. As a proxy for atmospheric fine particulate matter (PM2.5), we collected aerosol optical 
depth (AOD) data from the cloud-masked MCD19A2.006 Terra and Aqua MAIAC collection (37). 
This dataset has been successfully used to map ground-level PM2.5 concentrations (38, 39). 
Global median composite images for NO2, O3 and AOD were then calculated for the months of 
January to May in 2019 and 2020. 
 
Ground station data 
 
Although satellite data have the advantage of wall-to-wall global coverage, there are some 
drawbacks: (1) TROPOMI does not extend back far enough to obtain an adequate baseline 
measure with which to compare 2020 concentrations; (2) MODIS and TROPOMI collect 
information within either the total (O3 and AOD) or tropospheric (NO2) column which do not 
necessarily reflect pollutant levels experienced on the ground. Therefore, we also collected NO2, 
O3 and PM2.5 data from >10000 in-situ air quality monitoring stations to supplement the satellite 
data. These data were accessed from the OpenAQ Platform and originate from government- and 
research-grade sources. See www.openaq.org for a list of sources. Despite the reliability of the 
sources, we inspected pollutant time series for each country and removed spurious outliers in the 
data with z-scores (40) exceeding an absolute value of 3 (within three standard deviations from 

http://www.openaq.org/
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the mean). Following quality control, we were left with data representing 34 countries. When 
aggregating data to country level, we used population-weighted means based on the population 
density within 10 km of each ground station. 
 
Quantifying air pollution anomalies 
 
We used two approaches to quantify air pollution anomalies coincident with COVID-19 during 
January to May 15, 2020. We refer to these as (1) the Jan-May differential, and (2) the lockdown 
differential (SI Appendix, Fig. S2). For the Jan-May differential we calculated average pollutant 
levels for Jan-May each year between 2017 and 2020. The differential was defined as the 
difference between 2020 values and the average of those for a 3-year baseline (2017-2019). For 
satellite data the baseline was the 2019 Jan-May average due to limited temporal extent of 
TROPOMI data, however for ground-stations we considered a 3-year (2017-2019) average for 
the Jan-May period. 
 
Air pollution anomalies measured with the Jan-May differential approach may smooth over the 
effect of COVID-19 given that country-specific lockdowns or mitigation actions occurred at 
different times. For instance, China went into lockdown in January whereas the majority of 
lockdowns in other countries occurred in March (SI Appendix, Fig. S1). Therefore, we attempted 
to isolate the effect of COVID-19 mitigation measures by calculating lockdown pollutant levels for 
each country separately. We utilized a dataset that consolidates national policy regulations 
relating to COVID-19 confinement measures (10). The start of lockdown was calculated 
separately for each country as the average date on which policies for stay-at-home restrictions, 
mobility restrictions, and workplace closures were announced (SI Appendix, Fig. S1).  
 
Air pollution anomalies measured during lockdowns are not necessarily attributable to reduced 
economic activity, but may be an artifact of meteorological variability coincident with the onset of 
COVID-19. Therefore, we adopted a weather benchmark modelling approach to predict what the 
expected air pollution levels for 2020 lockdown dates should have been given the prevailing 
weather conditions and time of year. We used multiple linear regression as a modelling 
framework after testing both Random Forest and generalized linear models which had lower 
predictive accuracy based on assessing model performance by predicting against a withheld 
validation dataset. We built separate linear regression models for each country and pollutant type, 
where daily pollutant concentrations were regressed on a number of explanatory variables 
including: temperature, humidity, precipitation, wind speed, day of year, day of week, week of 
year and month of year. Weather data were downloaded from the Global Forecast System (GFS) 
of the National Centers for Environmental Prediction (NCEP) between Jan 2017 and May 15, 
2020. We calculated the sin and cos component of the day, week and month variables to account 
for their cyclical nature. Using models trained on historical data (before 1 January 2020), we 
predicted the expected pollutant levels for lockdown dates. The modelled differential is then the 
difference between this predicted benchmark value and the observed pollutant concentrations 
during lockdown (SI Appendix, Fig. S2). This differential can be attributed to COVID-19 mitigation 
measures with greater confidence than simple comparisons with 3-yr baseline values.  
 
 
Data availability 
 
Data and scripts used to produce this analysis are available at this GitHub repository: 
https://github.com/NINAnor/covid19-air-pollution 
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Figures and Tables 
 

 
Figure 1. Global distribution of 2020 ground-level air pollution anomalies. Ground station 
measures of NO2 (A), O3 (B), and PM2.5 (C) anomalies are mapped. Anomalies are defined as 
deviations in 2020 Jan-May averages from 3-yr baseline levels for the same dates and are not 
corrected for weather variability. Inset plots show data density distributions for baseline and 2020 
periods with median values as vertical lines. 
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Figure 2. Lockdown ground-level air pollution anomalies relative to weather benchmarks. 
The daily population-weighted average (n = 34 countries) ambient pollutant concentrations 
observed one month before and up to 15 May after lockdowns are plotted in red. Benchmark 
levels which represent expected concentrations considering time of year and prevailing weather 
are plotted in black with 95% confidence intervals. 
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Figure 3. Country-specific ground-level lockdown air pollution anomalies. The difference 
between observed (obs.) lockdown ambient pollutant concentrations and those predicted by the 
weather benchmark model (trained on 2017-2019 data) are plotted for 34 countries (points) with 
95% confidence intervals (error bars). Larger points represent regression models with greater R2 
values. Both absolute (A) and relative (B) changes are presented. 
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Figure 4. Lockdown mobility changes relative to ground-level air pollution anomalies. 
Country-specific ambient air pollution anomalies (observed relative to weather benchmark levels) 
are regressed on two measures of lockdown-induced citizen mobility declines. Significant (solid) 
and non-significant (dashed) linear regression lines are plotted for each pollutant. Each point 
represents a country’s aggregated value (n = 34). 
 


