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Introduction 

The use of logistic regression analysis to 

predict dichotomous outcomes in education is an 

alternative to linear regression that has gained 

popularity with the availability of statistical 

software packages (Baradwaj & Pal, 2011; Teh, 

Othman & Michael, 2010). Increased use of 

logistic regression requires that educational 

researchers become knowledgeable in how to 

accurately assess and interpret the results (Peng, 

Lee, & Ingersoll, 2002).  While user friendly 

software may have contributed to the popularity, 

it does not preclude the use of computational 

techniques to garner more meaningful 

information. In addition to understanding the 

underlying assumptions of logistic regression 

and principles of statistical interpretation, 

researchers must also evaluate the accuracy and 

utility of their models to determine how well 

they work (Menard, 2002).  

Statistical programs like STATA, R, 

SAS, and SPSS create contingency tables of the 

observed and predicted values of the dependent 

variables similar to chi square (Menard, 2002). 

By comparing the predicted with the observed 

values (George & Mallery, 2011) the probability 

of a particular case is classified into one of the 

outcomes based on the regression equation. 

Classification tables are created to indicate how 

well the model predicts the possible values of 

the dependent variable by indicating the percent 

of overall classifications, which is a key 

ingredient in determining the accuracy of the 

model (Long, 1997).  While this may be 

sufficient in some situations, other researchers 

may be more interested in determining the utility 

and predictive efficiency of the model rather than 

the overall fit. This can be accomplished via the 

proportional by chance accuracy criteria (PCC) 

and proportional reduction in error (PRE) 

statistic.         

This paper discusses the efficacy and 

utility the PCC and PRE bring to binary logistic 

regression models. Case illustrations are 

presented to demonstrate their application.  An 

overview of logistic regression is proffered 

along with a discussion of classifying cases and 

how the PCC and PRE are used to determine 

effectiveness and utility. It illuminates how 

classification tables can be used to evaluate the 

usefulness and efficiency of binary logistic 

regression models.  

Overview of Logistic Regression 

Test of Significance 

Binary logistic regression (LR) is a 

variation of linear regression in which 

continuous, discrete, dichotomous, or a 

combination of these variables are used to 

predict the occurrence or non-occurrence of an 

Abstract 
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event (Hair, Anderson, Tatham, & Black, 2009; 

Pezzullo, 2004).  It can be expanded to 

multinomial outcomes to determine the amount 

of explained variance and the relative 

importance of each of the predictors (Garson, 

2004).  It also permits the investigator to assess 

how well the model fits the data by comparing 

the predictions with the observed outcomes and 

the utility of the variables in the prediction 

(Pampel, 2000).  

Logistic regression applies maximum 

likelihood estimation after transforming the 

dependent variable into a logit variable.  A logit 

variable is the natural log of the odds of the 

outcome occurring or not.  In this way the 

logistic regression estimates the probability of 

the occurrence of the event (Garson, 2004).   

The hypothesis is that the coefficient for 

the logistic regression (Bk) is zero.  It can be 

interpreted as the change in the log odds 

associated with a one-unit change in the 

independent variable (Stevens, 2007).  If the 

coefficient is positive, its value will be greater 

than 1, indicating a one-unit increase in the 

independent variable.  This means the odds are 

increased that the event will occur.  If the 

coefficient is negative, the value of Bk will be 

less than 1, indicating a decrease in the odds that 

the event will take place.  If the value of Bk is 

zero, the odds remain unchanged for every one-

unit increase in the independent variable.   

The omnibus test of statistical 

significance in LR is the Wald statistic. It is 

calculated as the squared ratio of the logistic 

regression to its standard error, or Wald = 

(Bk/S.E.)².  It should be noted that the Wald 

statistic presents problems when the absolute 

value of the logistic regression coefficient is 

large (Stevens, 2007).  The estimated standard 

error is inflated in large coefficients and results 

in lowering the Wald statistic (Menard, 2002).  

This can result in a failure to reject the 

hypothesis that the coefficient is zero and lead to 

an erroneous conclusion, or Type II error, that 

the effect is not significant when it actually is 

(false negative).   

The contribution each independent 

variable makes to the model can be difficult to 

determine when they are highly correlated 

(Stevens, 2007).  This is due to the basic 

assumption that there is no linear relationship 

among the independent variables (Garson, 

2004).  For that reason, a correlation matrix of 

the independent variables should be inspected.  

If the variables are highly correlated (> .50) their 

impact can be assessed by the Likelihood Ratio 

Test. This can be done by using the Backward 

LR entry method in SPSS and examining the 

Model if Term Removed pivot table.  Each 

predictor is tested using the hypothesis that the 

full model is indistinguishable when the variable 

is removed.  The ones with the smallest p values 

contribute the most. 

Goodness of Fit 

In addition to testing significance, the 

logistic regression model assesses the goodness-

of-fit of the data.  The probability of the results 

meeting the parameter estimates is examined 

using the -2 times the log of the likelihood (-

2LL) as a measure of how well the model fits 

the data (Stevens, 2007).  A good model will 

result in a high likelihood of the observed results 

(small value for -2LL).  If the data fits the model 

perfectly the likelihood will be 1, and the -2LL 

will be 0.   

The null hypothesis for goodness of fit 

is that the observed likelihood does not differ 

from 1.  To test, the value of -2LL is used with 

the expectation that it has a chi square 

distribution with n – p degrees of freedom, 

where n = number of cases and p = number of 

parameters estimates – constant (Bo) + Bk for 

each predictor.  The chi square statistic tests the 

null hypothesis that the logistic regression 

coefficients for all the terms in the model except 

the constant (Bo) are 0, or stated otherwise, H0: 

B1 = B2 = Bk = 0.  The desired outcome is that 

the hypothesis is not rejected and the model fits 

the data (Stevens, 2007). 

The Step chi square statistic is also used 

to examine the goodness of fit of the model 

(Stevens, 2007).  It is comparable to the F 

statistic in multiple regression analysis testing 
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the null hypothesis that the coefficients for 

predictor variables added at each step = 0. 

Statistics Analogous to R²  

The software provides several statistics 

that attempt to quantify the proportion of 

variance explained by the LR model (Norusis, 

2003) or measure the strength of association 

(Garson, 2004).  In binary cases, SPSS 

automatically defaults to the Cox and Snell R² 

and McFadden’s in multinomial LR.  The Cox 

and Snell (1989) statistic presents problems for 

interpretation because its maximum value is 

usually less than 1.0.  Fortunately, there are 

other techniques similar to R² available to 

measure the strength of association, such as 

Menard and Nagelkerke’s Pseudo R² statistics 

(Freese & Long, 2006).  In the Menard (2000), 

values vary from 0 (indicating that the 

independent variables are useless in predicting 

the dependent variable) to 1.0 (the model 

accurately predicts the dependent variable).  

These indices are identical in the Nagelkerke 

(1991) statistic and Cohen’s (1983) guidelines 

are used to measure the effect size. 

Classification of Cases 

To assess how well the model fits the 

data, the predictions of whether the event is 

expected to occur or not are compared with the 

observed outcomes (Stevens, 2007).  Statistical 

software like SPSS and SAS include a 

classification table and/or histogram of 

Observed Groups and Predicted Probabilities to 

assess the goodness of fit.  Particular attention is 

paid to the percent of predicted classifications 

that are correct for the anticipated groups and 

the overall percent of correct predictions.  In a 

perfect model, 100% of the cases will be situated 

on the diagonal axis (Garson, 2004). 

Classification Tables 

In a binary logistic regression, the 

classification table is a 2 x 2 contingency table 

of the observed and predicted results. The model 

is used to classify each record using the 

computed probabilities ranging between 0 and 1 

with .50 as the minimum probability (or cut 

value). Data records with probabilities greater 

than .50 are classified as 1. Those less than .50 

are assigned a value of zero (0). Cases where the 

event is observed to occur should scale toward 

high probabilities. The cases where the event is 

not observed should scale toward low 

probabilities (Stevens, 2007).  

To better illustrate an example, two of 

the four data cells in Table 1 represent correct 

classifications. The other incorrect cells are 

referred to as false negatives (observed = 0, 

predicted = 1) or false positives (observed = 1, 

predicted = 0). In Table 1 there are 99 false 

positives and 37 false negatives indicating the 

model classification was 80.9% (157/194) 

correct for the predicted = 0 cases and 58.6% 

(140/239) correct for the 140 predicted = 1 

cases. The overall fit of the model yielded 

68.6% correct classifications (297/433).  

Table 1: Sample classification table (n = 433) 

a. The cut value is .500 

 

While on the surface 68.6% may seem 

impressive, the classification table warrants a 

closer inspection. What is missing is information 

about the probability of the case classifications. 

Before the model can be deemed useful, a 

comparison of the accuracy rates must be 

undertaken.     

Proportional by Chance Accuracy Criteria 

The information in the classification 

table can be used to evaluate the utility of binary 

LR models by comparing the overall percentage 

Classification Tablea 

 Observed Predicted 

Persistence Percent
age 

Correct 0 = not 

persisting 

1 = 

persisting 

 
Persistence 

0 = not 
persisting 

157 37 80.9 

1 = 

persisting 
99 140 58.6 

Overall Percentage   68.6 
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correct with the proportion by chance accuracy 

criteria (PCC). This is computed by squaring 

and summing the proportion of cases for each 

group (Bayaga, 2010; El-Haib, 2012). To 

illustrate, consider the information in Tables 2-3. 

Upon initial inspection of two different student 

persistence models, White, Altschuld, and Lee 

(2006) and Mitchell (2011) found overall 74.6% 

and 73.8% correct classifications respectively. 

However, when proportion by chance was 

computed, both models failed to satisfy the 

criteria -- overall case classifications 25% higher 

than the proportion by chance rate. Thus the 

variables in the models examined by White and 

colleagues (0.254² + 0.746² = 0.621 x 1.25 = 

77.6) and Mitchell (0.280² + 0.720² = 0.597 x 

1.25 = 74.6) were not useful in predicting 

student persistence. Stated otherwise, the 

performance of the variables in the model was 

no better than could be reasonably expected by 

chance.  

Table 2: Model classification table (n = 311)* 

Classification Tablea 

 Observed Predicted 

Persistence Percent

age 

Correct 0 = not 

persisting 

1 = 

persisting 

 

Persistence 

0 = not 

persisting 
11 68 13.9 

1 = 
persisting 

11 221 95.3 

Overall Percentage   74.6 

a. The cut value is .500 

* SPSS (Block 1: Method = Enter) 

 

 

 

 

 

Table 3: Model classification table (n = 1301)* 

Classification Tablea 

 Observed Predicted 

Persistence Percent
age 

Correct 0 = not 

persisting 

1 = 

persisting 

 

Persistence 

0 = not 
persisting 

65 299 17.9 

1 = 
persisting 

42 895 95.5 

Overall Percentage   73.8 

a. The cut value is .500 

* SPSS (Block 1: Method = Enter) 

What is missing from computation of 

proportion by chance accuracy is an examination 

of the case classifications before and after the 

predictor variables were entered into the 

regression equation. This calls for a comparison 

of the a priori and post priori classification 

tables to determine if the null model (constant) 

performed better.  In the Table 1 example, 

68.6% may seem impressive but most 

investigators are more interested in the accuracy 

of the predictions rather than goodness-of-fit.       

Proportional Reduction in Error 

There is no consensus on how to 

measure the association between the observed 

and predicted classification of cases in logistic 

regression. Menard (2002) recommends using 

the information from the classification tables to 

calculate the proportional change in error with a 

variant of the proportional reduction in error 

(PRE) statistic (Menard, 2004). The general 

principle is that knowing the value of the 

observed classification can be used to predict the 

value of the predicted using the formula E1 – 

E2/E1 where E1 = errors before the model and 

E2 = errors after the model. In contrast to the 

other aspects of logistic regression such as the 

Wald test of significance, chi square, and 

statistics analogous to R² where sample size is 

critical (Alam, Rao, & Cheng, 2010), it is not as 
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important when analyzing classification tables. 

That is because the n value is not an element of 

the PRE formula.   

In binary LR, all cases are predicted to 

belong to one of two possible outcomes: the 

event “occurring” or “not occurring”.  When 

applied to the information in the classification 

tables, the PRE indicates the percent of fewer 

classification errors that will occur by using the 

variables in the logistic regression equation. In 

other words, this is a measure of the predictive 

accuracy of the model (Menard, 2004).  Using 

information from the null and model 

classification tables, the proportional reduction 

in error is calculated as: E without the model – E 

with the model/E errors without the model. The 

PRE will vary between 0 and 1, indicating the 

efficiency of the model in predicting the 

occurrence or non-occurrence of the event. 

When the number of errors without the model 

equals the number with the model, the value will 

be 0. As an example, consider the without the 

model information in the classification table 

presented in Table 2 compared to the with the 

model data in Table 4. In examining student 

persistence White, Altschuld, and Lee (2006) 

found the same number of before (E1 = 79) and 

after errors (E2 = 79) even though they had an 

overall correct classification of 74.6%.  In other 

words, the variables in the regression equation 

offered no additional predictive capability.  In 

contrast, after reviewing the without the model 

classification data in Table 5, Mitchell (2011) 

found that his model of student persistence had 

more before (E1 = 364) than after errors (E2 = 

341). This translated into a predictive efficiency 

of approximately 6.3%. However if the 73.8% 

overall correct classifications in Tables 3 are not 

scrutinized more closely, a different impression 

emerges of the model’s predictive ability.  

 

 

 

 

 

Table 4: Null without the model classification 

table (n = 311)* 

Classification Tablea 

 Observed Predicted 

Persistence Percentage 

Correct 

0 = not 
persisting 

1 = 
persisting 

 

Persistence 

0 = not 

persisting 
0 79 0.0 

1 = 

persisting 
0 232 100.0 

Overall Percentage   74.6 

a. The cut value is .500 

* SPSS (Block 0: Beginning Block) 

Table 5: Null without the model classification 

table (n = 1301)* 

Classification Tablea 

 Observed Predicted 

Persistence Percenta

ge 
Correct 0 = not 

persisting 
1 = 

persisting 

 
Persistence 

0 = not 

persisting 
0 364 0.0 

1 = 

persisting 
0 937 100.0 

Overall Percentage   72.0 

a. The cut value is .500 

* SPSS (Block 0: Beginning Block) 

Closing Thoughts 

Both the PCC and PRE techniques 

highlight the importance of going beyond the 

percentage of correct classifications to include a 

more thorough analysis. This paper 

demonstrates how the proportional by chance 

accuracy rate and proportional reduction in error 

statistic can be used to evaluate the effectiveness 
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of binary logistic regression models (Long, 

1997).   

Finally, it illustrates the need for 

educational researchers not to become overly 

reliant on software. An explanation for this 

tendency may be the emphasis on methods that 

many cursory statistics courses have adopted in 

graduate education programs (Curran-Everett, 

Taylor, & Kafadar, 1998). None-the-less, what 

is critical is that educational researchers 

recognize that a fundamental knowledge of 

statistical concepts and principles, such as the 

ones discussed in this paper, is the cornerstone 

of scientific inquiry. 
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