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Abstract: In this study, the authors study binary decision fusion over a shared Rayleigh fading channel with multiple antennas at
the decision fusion centre (DFC) in wireless sensor networks. Three fusion rules are derived for the DFC in the case of
distributed M-ary hypothesis testing, where M is the number of hypothesis to be classified. Namely, the optimum maximum a
posteriori (MAP) rule, the augmented quadratic discriminant analysis (A-QDA) rule and MAP observation bound. A comparative
simulation study is carried out between the proposed fusion rules in-terms of detection performance and receiver operating
characteristic (ROC) curves, where several parameters are taken into account such as the number of antennas, number of local
detectors, number of hypothesis and signal-to-noise ratio. Simulation results show that the optimum (MAP) rule has better
detection performance than A-QDA rule. In addition, increasing the number of antennas will improve the detection performance
up to a saturation level, while increasing the number of the hypothesis will deteriorate the detection performance.

1 Introduction
Wireless sensor networks (WSNs) have generated intensive interest
from the research community in the last two decades [1–7]. WSNs
usually include a large number of nodes where each node is
equipped with a sensor to detect physical phenomena such as light,
heat, pressure, temperature etc. WSNs are widely being used for
sensing in smart environments by using emerging wireless
communication techniques. Typical applications include battlefield
surveillance, environment monitoring and structure monitoring,
among others.

Decision fusion enables sensors to improve classification
accuracy while reducing energy consumption and bandwidth
demand for data transmission. Each sensor collects and possibly
processes data about the phenomenon and transmits its observation
or local decisions to decision fusion centre (DFC) for a final
decision. The DFC makes a global decision about the state of the
phenomenon based on the received local decisions from the sensors
and possibly triggers an appropriate action [8–12].

Decentralised detection in a bandwidth-constrained sensor
network with binary decisions made by sensor nodes has been
investigated in [13]. Universal detectors for the decision fusion
problem have also been considered in [14]. In [15], the authors
have studied the formulation of fusion rule that minimise the error
probability at the fusion centre, which achieve the maximum
probability of the correct global classification. For parameter
detection or estimation problems in WSNs, an important question
is how to exploit a multi-antenna DFC to improve the probability
of detection or reduce estimation error. Several recent papers have
studied the benefit provided by multiple antennas in the WSN
context [15, 16]. The well-known architecture for WSN assumes
that each sensor node communicates over a parallel access channel,
where each sensor can exploit a channel to communicate with the
DFC. In [17, 18], the authors have recommended to exploit the
wireless air interface as a multiple-access channel (MAC) for DFC,
where several sensors communicate with a single DFC through a
common channel.

In [19–21] the authors studied channel-aware binary-decision
fusion with multiple antennas at the DFC. They presented several
sub-optimal fusion rules, where decode-and-fuse and decode-then-
fuse methods are compared by simulation. Among these sub-
optimal fusion rules are the maximum ratio combining (MRC),
log-likelihood ratio, equal gain combining and Chair–Varshney
(CV) maximum likelihood. In [19], to limit complexity, the authors

assume that the sensors make independent local decisions on the
hypotheses based on their respective observations and forward
these decisions over a multiple-input multiple-output (MIMO)
channel to a DFC which forms a final decision on the hypothesis.
The authors in [20] show that when the number of DFC antennas is
very large, low complexity algorithms can asymptotically achieve
an upper bound on detection performance even using a linear
receiver with imperfect channel state information (CSI). In [21],
the authors have presented a theoretical analysis of the MRC rule
for decision fusion through MIMO fading channels with dependent
and independent local sensor decisions. A stochastic geometry
approach is followed in [22] for deriving the optimal fusion rule at
the cluster level, which has been shown to approach the
performance of CV rule

The studies in [23, 24] investigate channel-aware M-ary
distributed detection, where the communication channels are
modelled as additive white Gaussian noise (AWGN) and Rayleigh
fading with perfect CSI available at the DFC. Most studies of
parallel distributed detection for M-ary hypothesis testing assume
that for each observation the local detector (LD) transmits at least
log2 M bits to the DFC, where M is the number of hypotheses to be
classified. The authors in [25] assumed that it is possible to
transmit using less than log2 M. In addition, they develop
conditions for asymptotic detection of the correct hypothesis by the
DFC, formulate the optimal decision rules for the DFC, and derive
expressions for the performance of the system.

In this paper, we propose to extend the analysis in [19] to
include distributed M-ary hypothesis testing [25]. Particularly, we
have considered channel-aware decision fusion in distributed
MIMO WSN with M-ary hypothesis testing and binary local
decisions as shown in Fig. 1. Three fusion rules are designed and
analysed for the classification task: the optimum maximum a
posteriori (MAP) rule, the augmented quadratic discriminant
analysis (A-QDA) rule and the MAP observation bound.

The rest of the paper is organised as follows. Section 2 presents
the proposed system model. In Section 3, we introduce and
compare three fusion rules for the classification task. In Section 4,
we compare the presented fusion rules through simulations. In
Section 5, some conclusions are drawn. Finally, the Appendix
contains proofs and derivations.

IET Commun.
© The Institution of Engineering and Technology 2020

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Al-Quds University Digital Repository

https://core.ac.uk/display/387176473?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 System model
We study a distributed M-hypotheses test, where K sensor nodes
are employed to discriminate among the hypotheses of the set
ℋ = {H1, …, ℋM}. The a priori probability of hypothesis ℋi ∈ ℋ
is denoted by P(ℋi). The kth sensor, k ∈ K ≜ {1, 2, …, K}, takes a
binary decision dk ∈ X, where X ≜ { − 1, 1}, about the perceived
phenomenon based on its own measurements. Our distributed
detection system employs K LDs to survey a common volume for
evidence of one of the M hypotheses within ℋ. These LDs are
restricted to make a single binary decision per observation, i.e. they
have to compress each observation into either ‘1’ or ‘−1’,
representing a BPSK modulation. The DFC uses the vector of local
decisions d ∈ { − 1, 1}K to form a (potentially more accurate)
global decision H^  in favour of one of the M hypotheses. The
generic decision dk is assumed to be independent of the other
decisions dℓ, ℓ ∈ K, ℓ ≠ k, conditioned on ℋm ∈ ℋ.

In this context, it is appropriate to model the marginal pmf of
kth sensor decisions through a set of transition probabilities ρk, m,
m = 1, …M, where ρk, m is the probability that the kth sensor
transmits dk = 1 to the DFC when the phenomenon ℋm is present,
namely

ρk, m ≜ Pr dk = 1 ℋm . (1)

The above probabilities are summarised for kth sensor in the vector
ρk ≜ ρk, 1 … ρk, m

T. The sensors transmit their decisions to the
DFC through flat-fading MAC, with i.i.d. Rayleigh fading
processes of unitary mean power. The DFC has N receiving
antennas that can be used for diversity reception to combat signal
fading of the wireless channel. This arrangement can be seen as a
distributed (or ‘virtual’ [9]) MIMO channel. In addition, it is
assumed that synchronisation and instantaneous CSI are
maintained at the DFC as in [9].

Let yn denotes the received signal from the nth receiving
antenna of the DFC; hn, k ∼ Nℂ 0, 1  is the fading process between
the kth sensor and the nth receiving antenna; wn is the AWGN
process at the nth receiving antenna. The vector model of the
received signal at the DFC can be expressed as

y = Hd + w (2)

where y ∈ ℂN, H ∈ ℂN × K, d ∈ XK, w ∼ Nℂ(0N, σw
2 IN) denote the

received signal vector, the fading channel matrix, the transmitted
signal vector and the AWGN vector, respectively. It is not difficult
to show that the received signal, under hypothesis ℋm, is
distributed as

y ℋm ∼ ∑
d ∈ XK

Nℂ(Hd, σw
2 IN) P(d ℋm) , (3)

Remarks: The received signal model in (2) is usually classified
as underloaded (K < N), fully-loaded (K = N) or overloaded

(K > N). All of these three cases are of interest for MIMO wireless
systems. In particular, the overloaded case is the only reasonable
scenario for WSNs, due to the fact that the number of sensor nodes
is usually much larger than the number of receiving antennas at the
DFC (i.e. K ≫ N). The signal-to-noise ratio (SNR) is referred to as
the ratio between the average received power from the WSN
ℰs = E ∥ Hx ∥2  and the AWGN process variance σw

2 , that is
SNR ≜ ℰs/σw

2 = KN /σw
2 . Note that the SNR for the individual kth

sensor node will be SNRk = N /σw
2 .

 
Proposition 1: The second order characterisation of the received

vector under hypothesis ℋm (i.e. y ℋm) is given by:

E{y ℋm} = H E{d ℋm} (4)

Σy ℋm = H Σd ℋm H† + σw
2 IN (5)

Σ̄y ℋm = H Σd ℋm HT (6)

which denote the mean vector, the covariance and the pseudo-
covariance, respectively.

 
Proof: The proof is provided in Appendix. □
The augmented covariance of y ℋm is given in closed form as

Σy ℋm = H Σd ℋm H† + σw
2 I2N . (7)

3 Fusion rules
3.1 Optimum MAP rule

The optimal criterion [26] for the suggested issue is that
minimising the fusion error-probability, that is the MAP test,
formulated as

ℋmap ≜ arg max
ℋm

P(ℋm y) (8)

= arg max
ℋm

p(y ℋm) P(ℋm)
p(y) (9)

= arg max
ℋm

p(y ℋm) P(ℋm)
p(y) (10)

= arg max
ℋm

p(y ℋm) P(ℋm) (11)

= arg max
ℋm

ln p(y ℋm) + ln πm . (12)

where ℋ and πm ≜ P(ℋm). An explicit expression of the log-
likelihood ln p(y ℋm) from (8) can be expressed as

Fig. 1  Proposed decision fusion model with distributed M-ary hypothesis testing and MIMO fading channel
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ln p(y ℋm) = ln ∑
d ∈ XK

p(y d) P(d ℋm)

= ln ∑
d ∈ XK

1
σw

2 exp − ∥ y − Hd ∥2

σw
2 P(d ℋm)

(13)

where we have exploited the conditional independence of y from
ℋm (given d). Nevertheless, the optimal rule in (13) have some
difficulties in its implementation. Namely, (i) availability of G^

,
P(x ℋi) and σw

2  and (ii) instability of the mathematical expression
containing exponential terms with large dynamics [19, 27]. In
addition, the computational complexity growth exponentially with
K which prevent practical implementation. To reduce complexity,
several sub-optimal DF rules with simpler implementation is
presented and compared in [19].

3.2 MAP observation bound

For comparison purposes, let us recall the observation bound
(upper bound) [18] which yields the optimum performances over
noiseless channel. It can be expressed by the following classifier:

ℋobs ≜ arg max
ℋm

P(ℋm d) (14)

= arg max
ℋm

ln p(d ℋm) + ln πm . (15)

Clearly, the MAP observation bound rule should be intended as an
optimistic upper bound on the classification performance which
can be achieved over a virtual MIMO channel.

3.3 A-QDA rule

In this subsection, the second order characterisation provided in
(4)–(6) are fully exploited. Indeed, after fitting y ℋm to an
improper complex Gaussian, a classifier based on a complex
version of quadratic discriminant analysis can be obtained as [28]

ℋqda ≜ arg minℋm
(y − E{y ℋm})† Σy ℋm

−1 (y − E{y ℋm})

+lndet Σy ℋm
−1 + ln πm

(16)

where E{y ℋm} = H E{d ℋm} and Σy ℋm is given in (7).

4 Simulation results
In this section, a comparative simulation study is carried-out
between the suggested fusion rules applied at the DFC in the
proposed WSN system model. The detection performance and
receiver operating characteristic (ROC) curves are obtained for the
derived fusion rules: the optimum MAP rule, the MAP observation
bound, and the A-QDA rule. In addition, we studied the effect of
various parameters on the detection performance of the fusion rules
such as the channel SNR, the number of the antenna at the DFC
(i.e. N), number of hypothesis (i.e. M) and the local sensors
performance indices (i.e. Pdk and P f k).

ROC curves: In Figs. 2 and 3 we show the ROC (i.e. PD versus
PF), for different fusion rules in a WSN with K = 8 sensors and
N = 2 antennas at the DFC, with channel (SNR)dB = 15 for
different number of hypothesis. From a detection performance
point of view, it can be noticed from Figs. 2 and 3 that the optimum
MAP fusion rule and its observation bound provide better
performance than A-QDA rule. In addition, increasing the number
of hypothesis will decrease the detection performance.

Probability of detection PD versus SNR dB: Figs. 4 and 5
illustrate the probability of detection PD versus the channel
SNR dB for the presented fusion rules with different number of

hypothesis ℋ ∈ {H2, H4, H6, H8}. We consider a WSN with a fixed
number of sensor nodes K = 8 and antennas N = 2. It can be

Fig. 2  ROC for the optimum MAP and observation bound rules. Channel
SNR = 15 dB, PD, k = (0.5), PF, k = (0.05), number of LDs K = 8 and
number of antenna N = 2

 

Fig. 3  ROC for the A-QDA rule. Channel SNR = 15 dB, PD, k = (0.5),
PF, k = (0.05), number of LDs K = 8 and number of antenna N = 2

 

Fig. 4  PD versus channel SNR  dB for the optimum MAP and observation
bound rules, PD, k = (0.5), PF, k = (0.05), number of LDs K = 8 and number
of antenna N = 2
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noticed from Figs. 4 and 5 that at higher channel SNR we can
achieve higher detection performance. In Addition, the MAP
observation bound yields an upper bound for the optimum MAP
rule. Furthermore, the optimum MAP rule and its observation
bound yields much better detection performance than the A-QDA
rule for a wide range of channel SNR and for different hypothesis

scenarios. Moreover, Fig. 5 shows that the proposed WSN system
model could significantly improve the detection performance of A-
QDA fusion rule at high channel SNR for different hypothesis
scenarios.

Probability of detection PD versus N: Figs. 6 and 7 illustrate the
probability of detection PD versus the number of antenna N for the
presented fusion rules with different hypothesis
ℋ ∈ {H2, H4, H6, H8} and the case PD, k, PF, k = 0.5, 0.05 , k ∈ K. 
We consider WSN with K = 8 sensor nodes and a channel
(SNR)dB ≃ 15. It is observed that increasing the number of
antennas at the DFC yields better performance for the presented
rules, however a saturation effect is noticed. The saturation level
not only depends on the number of antennas and SNR, but also on
the chosen fusion rule and number of hypothesis. In addition, the
optimum MAP rule and its observation bound result in much better
detection performance than the A-QDA rule. In particular, specific
arrangements achieve the upper bound (optimum MAP with N = 4
at (SNR)dB = 15) and (A-QDA with N = 7 at (SNR)dB = 15).

5 Conclusions
In this paper, distributed M-ary hypothesis testing for decision
fusion in MIMO WSNs over Rayleigh fading channel is addressed.
Three fusion rules are derived and analysed for the classification
task. Namely, the optimum MAP rule, the MAP observation bound
and the A-QDA rule. The simulation study we carried-out between
the suggested fusion rules showed that the optimum MAP rule and
its observation bound outperform the A-QDA rule in-terms of the
detection performance for the various scenarios considered. In
addition, better detection performance is obtained for the various
rules when increasing the number of antennas or decreasing
number of hypothesis. Furthermore, it was observed that the
detection performance reaches a saturation level when increasing
the number of antennas or SNR for the various fusion rules with
different hypothesis scenarios.
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7 Appendix
 
7.1 Second-order characterisation of y ℋm

In this appendix we provide a second-order characterisation for
y ℋm. First, We recall that the exact pdf is

y ℋm ∼ ∑
d ∈ XK

P(d ℋm) Nℂ( Hd, σw
2 IN), (17)

which is recognised as a mixture of 2K proper complex-valued
Gaussian vectors. Then, we evaluate the mean vector of y ℋm as
follows:

E{y ℋm} = ∑
d ∈ XK

E{y d} P(d ℋm) = (18)

H ∑
d ∈ XK

d P(d ℋm) = H E{d ℋm} (19)

It is worth noting that (19) was obtained by exploiting E{w} = 0N.
Differently, the covariance matrix is evaluated as

Σy ℋm = E H d − E{d ℋm} + w
H d − E{d ℋm} + w † ℋm =

(20)

H Σd ℋm H† + E{ww†} = (21)

H Σd ℋm H† + σw
2 IN (22)

since: (i) x and w are mutually independent and (ii) E{w} = 0N.
Similarly, we obtain the complementary covariance [28] as

Σ̄y ℋm = E H d − E{d ℋm} + w

H d − E{d ℋm} + w T ℋm =
(23)

H Σd ℋmHT + E{wwT} = (24)

H Σd ℋm HT (25)

where the last equality follows from E{wwT} = ON × N (indeed w is
a proper random vector). Therefore, we conclude that y ℋm is an
improper random vector, since its complementary covariance
matrix does not vanish, thus motivating the potential for WL
processing.
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