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Abstract: Nowadays, the IT service environment develops in a dynamic, rapid, and unpredictable way. Microservices and
application containers in this process have a significant impact on new generation I'T service models. The fact that they
have important capabilities such as modelability, presentability as service, and restructurability, are reasons for preferring
them in many areas. Moreover, microservices can meet various needs of IT personnel. As it is known, all server system
components, such as CPU, network, hard-drive I/O, affect energy consumption. At this point, microservices also play an
important mediator role in resource management. Energy consumption of microservice-based applications is lower than
that of the traditional approaches. However, there are still cases of recoverable and unnecessary consumption at some
points. Microservices can be monitored and controlled using many methods. Thus, this provides us with opportunities to
recover the wasted energy resources considerably. In this article, the effects of container-based microservice architectures
on the energy consumption of the system and how to reduce these effects are presented. For this purpose, a methodology,
which has 3 approaches (disconnect, pause, stop), and a tracing mechanism are proposed. The results show that this

methodology has a considerable effect on energy efficiency.
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1. Introduction
New approaches direct data centers from a monolithic structure to more scalable, adaptive, and flexible ones
that can respond to changes and new requests rapidly.

Monolithic structures, which have many limitations, are intended for operating on a single flow studies.
The limited movement of all IT staff from software developers to system administrators in this field has caused
a search for new alternatives in today’s studies.

Nowadays, it is much easier and more rational to meet these demands with architectures such as containers
and microservices. Due to the rooted and hard-to-change structure of classical architectures, microservices and
containers provide convenience in expanding, monitoring and manageability for developers and practitioners.

Nowadays, the most common examples of microservice architectures are seen in service providers such as
Netflix video streaming and Amazon [1].

In recent years, the tendency to use microservices has been increasing within the scope of both commerce
and education. Although this application requires more effort compared to others, these structures are preferred

due to their agility, resilience, and maintainability.
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Microservices can communicate via REST protocols. Application programming interfaces (APIs) are
commonly used in the TaaS (infrastructure as a service) layer in cloud computing. Their more lightweight struc-
tures not only decreases their cost in resource utilization but also accelerates migration operations. Microservices
are actually not a new issue. It is possible to encounter a study conducted in this field as an exokernel operating
system in 1995 [2]. The idea here is to provide each application with its own infrastructure on hardware in the
operating system. Isolating PID (Process ID)-based operations with the “Jail” mechanism in BSD operating
systems by using this idea has been used for a long time.

This structure has found itself an important area for research, development, and utilization in the cloud
computing due to its rapid development in recent years. Increasing the need for more efficient use of resources
to be provided to customers especially in the commercial field accelerates the development in this area.

There is no doubt that some new problems and difficulties appear together with each innovation and
convenience. For example, nowadays microservice and container structures widen the area of attack that can be
performed on the system [3]. Moreover, they increase difficulties in issues such as traceability and logging. While
studies on these issues continue, the resource utilization of these technologies and other innovative researches
also continue.

Although container-based microservices have better resource consumption data when compared to virtu-
alization, there are still areas to be recovered. In this study, it was aimed to identify the parts that are wasted
in the resource consumption of container-based microservices with the approach at this point and to reveal the
ways by which resources can be regained to the system among these. The results indicate that it is possible to
make significant recovery depending on the scale.

The rest of the paper is organized as follows:

The related work is presented in Section 2. Monitor and trigger are described in Section 3. The
environmental setup of the study and our approach are described in Section 4. Finally, the results and our

conclusions are presented in Sections 5 and 6.

2. Related works

Microservices can be named as new-type operating systems. Since common OS’s support various hardware and
service components, they are designed as large-scale. Thus, this makes them bulkier [4]. Furthermore, due to the
elastic structure, it provides a speed advantage in processing times starting from a container-based microservice
boot time consisting of only related components depending on the activity planned to be carried out. In a study
conducted in this area, the benchmarking study results related to microservice boot time, image formation and
resource overflow on OpenStack, which is an important cloud computing stack structure today [5].

The fact that microservices are reusable, auditable, and maintainable from the point-of-view of developers
provides an opportunity for action in a large area. Moreover, it is observed that adaptation to software test
processes and changes in the project life-cycle improves in projects conducted by using microservice architecture;
moreover, this provides assistance to a more efficient use of the behavior-driven development (BDD) concept
ensuring that the process is understood by the client better [6]. Another advantage emerges in code portability.
The structure of container-based microservices operating as image-based also provides an opportunity to use a
template code [7].

Recently, a more flexible microservice architecture has started to be used especially by major developers
instead of old monolithic structures, and these transformations are tested, and their results are compared in

many areas [8].
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Together with the fact that the “Internet of things” term has started to be mentioned with “cloud
computing”, microservices are tested in studies to meet the needs from the software aspect as an intermediate
layer [9]. It is observed in the literature that commodity architectures continue on the hardware side; moreover,
specialized hardware operating as image-based specifically to microservice is also used [10].

In the studies conducted in the fields of resource efficiency and costs of microservices, while bottlenecks in
the monolithic approach, in which the loads brought to the operating system are examined, generally appear in
the storage and network aspect, they may result from APIs providing communication with the operating system
in microservices. Among the studies conducted on the resource efficiency and costs of microservices; studies
examining the loads brought to the operating system [11], approaches revealing cost-effectiveness up to 70%
in systems in which migration from monolithic structure to microservice architecture takes place [12], studies
pointing out the management of balancing the load in the network caused by microservices and indicating that
it may bring excessive load to the system [13], publications stating that microservices will naturally increase the
CPU cycle due to API calls and thus increase resource consumption, and resource consumption may be even
higher when compared to the monolithic structure in cases in which orchestration and stabilization mechanisms
are not good [14], and academic studies examining whether the Docker container system has positive effects on
the microservice architecture are encountered [15].

When considered in terms of bottlenecks on the system, while this problem generally occurs from the
storage and network aspects in the monolithic approach, it may originate from APIs ensuring communication
with the operating system in microservices. Administrative operations (mount, create file system, etc.) can
bring load to the system. For example, as default, the Docker container uses the network topology of the system
as a bridge mode, and this increases resource consumption values. When the container system is set to use the
physical ethernet, the consumption decreases directly.

The approaches that we have developed to reduce the resource consumption in container-based microser-
vice architectures and their results are presented in this study. One of these approaches, situational behavior
in the network topology and resource limitation in passive states, which was examined in academic studies in
different ways, and how it was used at different points were examined [16]. In another study, it was observed
that virtual machines are examined according to their resource usages as an approach to reduce the resource
consumption of the system, the virtual systems in physical machines are gathered at a point by being migrated
at a certain time or state, and the resources remaining free are suspended or closed [17]. These studies have

found a new study area on container-based microservice architectures in our study.

3. Monitor and trigger

Monitor and trigger is a commonly used binary type technique. Almost each system service creates one or more
logs depending on its own state. In some cases, these logs are used to trigger another service. Depending on
the requirement, a service may remain on standby until special conditions occur. Similarly, time can take the
place of monitor and something else can be triggered at a certain bit 7 moment.

In this study, first, the condition of application containers and active connections will be monitored by
using monitor and trigger technique, then the approaches related to the resource management will be triggered
when special conditions occur. The questions are that “Can we detect the situation when containers are on
standby or there are no active connections and can we ensure resource saving with the approach from that?*
We will test the following three possible ways to find answers to these questions. Disconnecting container from

the underlay network, pausing the container-related PID by using the cgroup feature and stopping container
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to recover all resources used by it. These three situations are explained in Section 4.4. Furthermore, another
important problem is enlightened in Section 4.3. How will a container in the disconnected/paused/stopped

state respond to the demand of a client?

4. Environmental setup and approach

4.1. Physical environment

An HP Proliant DLL380 G7 server was used for the test environment. The server has 2 x Intel Xeon X5650 @
2.67 GHz (12 Cores) processors, 18 x 4096 MB, in total 72 GB DDR3-1333 MHz memory, 146 GB “RAID10*
HD, and Broadcom NetXtreme IT BCM5709 1 GB Network card. An Emerson power distribution unit (PDU)

with its software and server power monitoring was used together to measure the power consumption.

4.2. Software environment

Operating System - CentOS 7.2, Linux kernel - 3.10.0-514.2.2.el7.x86_ 64 , shell - bash version 4.2.46, network
listener — tcpdump 4.5.1, firewall — iptables 1.4.21, firewall manager(firewalld) — 0.4.3.2 and container platform
- docker version 1.10.3 were used. Moreover, a hundred containers are used in the system: fifty (50) httpd (web

server) and 50 mysqld (database server).

4.3. Process flows and methodology

Two shell scripts were encoded in this laboratory study. While one of them monitors the container’s condition
and changes the status when possible, the other one responds to the network traffic connected to the relative
container and awakens the container when required. During the operation, Process-I firstly takes active container
names from the system. Then, it solves the PID data of the active container names. All operations in a Linux
system have a specific folder in the form of /proc/$PID under /proc. Information about the relevant operation
is registered here. Process-I accesses the /proc folder of the related container and network state files under
it. For Docker, all containers have /proc/$PID /net/{tcp,tcp6,udp,udp6} files. These files produce real-time
information. Process-I checks out the script in TCP files and searches for active connections. If it finds an open
connection, it leaves the container as it is. Otherwise, it carries the state of the container to one of the three
preferred ways in the script (disconnect, pause, stop). After the change of the state, Process-II starts on its

own. Process-II reveals which container is out of service with the information received from Process-I. It starts
a dynamic tcpdump subprocess.

When a demand is received to get the container of the port to the service status, the port information
that is the output of Process-I in a loop responds to the port related to tcp flag ack/syn additional compacting
and triggers the container.

When the information of the related port is caught by tcpdump, the inverse of the command previously
used to activate the container is run. Exp. “$docker network connect bridge www01“ , “$docker unpause
mysql01“, “$docker start www02*.

This flow was pursued within the framework;

These processes and link between them visualized as a flowchart in Figure 1.

Before performing all these operations, it is required to change something in the system, for example, a
firewall. Most Linux distribution uses iptables as a firewall of the system. A firewall can be used to protect

the system against undesired accesses-requests, block, drop or redirect network packets. A firewall can also be
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Algorithm 1 Process-I: system analyzing

Ensure: Running Docker System > 0

while true do

Get active containers’ ids

Analyze containers’ established connections

if there is any then
Change containers’ status — DISCONNECT/PAUSE/STOP
GoTo Process-1I: passive containers’ list
return Get active containers’ ids

else
return Get active containers’ ids

end if

end while

Algorithm 2 Process II: port listening

Ensure: Running Docker System > 0
Require: Passive containers list > 0

while true do

Create list for passive containers’ ports

Listen ports for incomming requests

if container is online then
Delete port (Manually started container or faulty list)
return Create list for passive containers’ ports

else
Activate the container — CONNECT/UNPAUSE/START
Delete port
return Create list for passive containers’ ports

end if

end while

used to change the resource and target address information of network packets. Docker uses this logic to direct
the network packets coming to the system to the IP address of the related container. This is called destination
network address translation (DNAT), and it is used in the system by the docker-proxy. This proxy is separately
regenerated /rerun/respawn for each container. There is a Docker rule chain in iptables and if the target port
information in an incoming packet is numb, then it is directed to the related container IP address by masking
the target IP address. As it is previously mentioned, in this study, iptables is used to run the flow properly. Like
all other firewalls, firewalld—iptables manager—blocks all unauthorized or closed port requests in a predefined
way. This means that the incoming connection request is rejected and responded as icmp-host-prohibited and
icmp6-adm-prohibited to the client. In this case, the connection request is cut off by the client. We change
this predefined case as packet dropping instead of blocking. By this way, a response about the rejection of a
request is not sent by the client. When we change the firewall, we ensure that the client renews the request until
receiving a response or reaching the time-out point. In this study, the repetition number of the client’s requests
for connection is determined as one. It is observed that the container is awakened and started to respond to
requests during this process.
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Figure 1. Flowchart of the processes and link between them.

4.4. Used approaches

As mentioned in Section 3, 3 methods in the Docker container system were used as an approach to reduce the
resource consumption of the system. Every method was repeated 3 times and average of them was accepted as
result.

Disconnect: Docker uses the predefined bridge technique to control and direct inputs and outputs in the
network traffic of a container. Here, a private IP address is provided to the related container, a rule related
to this is then added to the local firewall of the system. It is carried out with the docker-proxy found in this
system. This structure is presented in Figure 2.

Each container with an IP address in the system causes 2 additional resource consumptions. One of them
operates at the core level, and it is the net filter that catches incoming/outgoing packets on the network and
can intervene, the other one is the docker-proxy that directs the incoming packets to the related container on
the firewall.

One hundred containers are used in the tests as explained in Section 4.2. When the network connections
are disconnected by using the related command of Docker, the PID of the related DNAT in Exp. “$ docker
network disconnect bridge www01“ firewall is terminated. The elimination of these rules and PIDs on which

they are dependent does not affect the main PID. There are http and mysqld container services in our test
environment.
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Figure 2. Docker-proxy network.

Pause: This is a suspending technique filling the process by means of cgroup. In this state, the operation
itself is not aware of its condition. When the container is suspended by using the relevant Docker command,
Exp. “$ docker pause mysql01*, the CPU usage of the container is reduced to 0%. This only affects the CPU
usage condition. The area separated for the container from memory remains as it is and continues to consume
energy. At this point, a remarkable amount of CPU resource is regained to the system.

Stop: The Docker stop command stops all the resources of the relevant container. The Exp. “$ docker
stop www02“ command is an example used to recover resources and reduce consumption. Although no process
remains on the system in relation to the container in this situation, the monitor and trigger technique we have
suggested can determine the incoming requests to the relevant container and retrieve it back to the service
status.

All these three techniques have different response times and resource consumption recovery values. The

results will be discussed in detail in the next section.

5. Results

In this section, the effects of the three approaches on the CPU, memory, network I/0, and power consumption
of containers are revealed.

Firstly, the normal energy consumption values of the containers are indicated. It was observed that two
commonly used applications (httpd, mysqld) have approximately the same energy consumption. The iptables
rule is used by an empty container for a docker-proxy organizing 0.04%-0.08% CPU, 0.02% memory, 0.01%
network connections, and at least one DNAT. The spectrum was extended to 100 containers to examine this
condition. At the beginning, when the system was running with zero containers, it consumed 122 W energy
per hour. After run with 100 containers and waited for some time until the system became stationary, 137
W consumption per hour was determined. This means that each container in the stationary state consumed

approximately 0.15 W energy per hour. The results are presented in Tables 1 and 2.
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Table 1. Example of resource consumption for five different containers

CONTAINER | CPU % | MEM % | NET I/O
b7bcb1844c8e | 0.08% 0.02% 5128 MB/3192 kB
b9e3ac0893% | 0.04% 0.02% 7482 MB/1488 kB
b9ea351e749d | 0.08% 0.02% 8679 MB/687 kB
€336225d7b71 | 0.07% 0.02% 14876 MB/4066 kB
c3bceb564£62 | 0.06% 0.02% 4798 MB/854 kB

Table 2. Zero/hundred containers system resource consumption.

Power Consumption | CPU Idle | Memory Usage
Zero 122 W 99% 64883 MB
Hundred | 137 W 94% 63850 MB

Power consumption (the more running container the more power consumption ), CPU Idle (the less run-

ning container the more idle cpu), Memory Usage (the more running container the more memory consumption).

At this point, it is required to indicate how much CPU, memory, and energy resources Process-11, the
monitor and trigger mechanism consume. The resource consumption of Process-II is almost equal to one
container in a stationary state. It consumes 0.05% CPU, 0.02% memory, and 0.14 W power per hour. Even if
the number of containers, which are being monitored by Process-II, increase or decrease, it is not considered
additional consumption.

The beginning of the gaining energy points by using Process-II, advantages and disadvantages of the

three approaches in resource consumption are discussed in detail in Sections 5.1, 5.2, 5.3.

5.1. Disconnect from network

It is the first and quickest method. Disconnecting a container from the network makes it possible to recover the
resources that it is using on iptables and docker-proxy. Iptables runs at the core level. Thus, it has rapid and
low resource consumption. All containers in the test environment provide 1.52 W energy recovery when the
network connections of all containers are disconnected. When this result is reduced to a container, ~0.015 W
recovery is observed. 10 containers must be simultaneously disconnected from the network connections on the
system for Process-1I to be equal to the resource it consumes and more efficient. After this point, the approach
starts providing a gain to the system. As additional information, with this approach, the restoration time of a

container by Process-II is only 200us (1/5 s).

5.2. Pause: freeze CPU Usage

As indicated in Figure 2, to pause a container by using the cgroup feature is a more effective method. Since
the container itself does not know that CPU resources are available, when the resource is released, its return
becomes faster. All containers in the system in the stationary state consume approximately 0.06% of the CPU
power. As explained in Section 5, CPU constitutes the largest part of the general consumption. In this test, it
is also measured that energy decreases approximately at the rate of 0.1 W (0.09). According to these results,

pausing 2 containers recovers more resources to the system than Process-II consumes.
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Considering the condition in terms of time, the recovery time of a container from a pause state is 400 us
(2/5sec). Since this is within the limits of packet loss time, it is fast enough to provide service before the client

realizes.

5.3. Stop: cut all resources

The most effective and final approach is stopping the container. In general, a container is stopped for mainte-
nance. However, this will not be a problem if there is another service to meet the access requests incoming to
the system in maintenance and to remove the main service.

When a container is stopped, no related information remains on the system. The relevant PID disappears,
and information about CPU, memory, network I/O, etc. is removed from the system. Therefore, when a
container is stopped, significant resource recovery is provided. In the presented test, this value is 0.15 W per
hour that is equal to the value of Process-II. Furthermore, the system provides a considerable recovery for each
container.

At the same time, it is determined that the relevant container has become able to provide service again

in less than a second.

Power Consumption Results for Three Approaches

138.00 * X axis shows number of running containers *

13600000
13400—HH—b - BE_ B | |
13200- NN NEN BEN HE. EE B | |
130o00o—MNE NEE HEN BEN REe B8 B8 N, N 8§ B
psoo—NNR NEN BN BER NRN REN BN BR BE By | |
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122.00

100 90 80 70 60 50 40 30 D 10 0

Disconnect ® Pause @ Stop

Figure 3. Power consumption results for three approaches.

6. Conclusion

In this study, how the efficiency of container-based microservices in resource utilization can be increased is
demonstrated. CPU, memory, and network I/O have a direct effect on energy consumption and a container
consumes 0.15 W power, ~0.06% CPU and 0.02% memory, 0.01%CPU for the docker-proxy carrying out the
process of network traffic follow-up and address modification even if it does not provide service. At this point,
3 approaches with regard to how resource recovery can be provided from containers when they are in an idle
state are suggested. These are dropping all related operations by disconnecting from the network, freezing the
CPU usage by using cgroup, and cutting off all resources by stopping them. It is accepted that one or more
containers are in an idle state on the system for all these techniques to work. As indicated in Sections 5.1, 5.2,
and 5.3 and the related figures, the considerable amount of resources is recovered. As the number of containers
in the idle state increases, resource recovery increases more with the approaches we suggest.

Moreover, it is believed that this study provides new opportunities for researchers and developers. For
example, an analysis system can be developed to make these approaches more effective. This mechanism can
determine the idle intervals by examining the life cycle of containers and which containers will be appropriate for
this technique depending on this and direct this to the system. This distinction can make the idea tested here

more effective. In another study, there may be changes to be made on the technique in listening to the network
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in Process-II we have tested, keeping the relevant port open and returning the container that the demand is

connected to when it is received. One of these is packet listening and changing, and OS shell management in

the user space with the net filter hooking technique at the core level, the other one is performing the listening

and recovering process at this point by manipulating the docker-proxy.

Reducing resource utilization is a general, common, and widespread purpose. Each idea, laboratory

and field applications, and developments bring us closer to the ideal point. It is indicated that the idea we

have suggested can be useful in field applications. We have supported this with the laboratory tests we have

conducted.
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