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Dirac-Weyl semimetals are unique three-dimensional (3D) phases of matter with gapless electrons and novel

electrodynamic properties believed to be robust against weak perturbations. Here, we unveil the crucial influence

of the disorder statistics and impurity diversity in the stability of incompressible electrons in 3D semimetals.

Focusing on the critical role played by rare impurity configurations, we show that the abundance of low-energy

resonances in the presence of diluted random potential wells endows rare localized zero-energy modes with

statistical significance, thus lifting the nodal density of states. The strong nonperturbative effect here reported

converts the 3D Dirac-Weyl semimetal into a compressible metal even at the lowest impurity densities. Our

analytical results are validated by high-resolution real-space simulations in record-large 3D lattices with up to

536 000 000 orbitals.

DOI: 10.1103/PhysRevResearch.3.013183

I. INTRODUCTION

The discovery of Dirac and Weyl semimetals (DWSMs)

has provided a rich arena for probing novel gapless phases of

matter with unique transport properties and topological fea-

tures [1]. Several types of gapless systems featuring Dirac or

Weyl points in three-dimensional (3D) momentum space have

been realized [2–4]. The simplest DWSMs exhibit twofold

or fourfold degenerate linear-band touching points at the

Fermi level with isotropic velocities and a possible replica-

tion into disjoint momentum-space valleys. Their pointlike

Fermi surface is protected against band gap opening due to

either topological constraints—in Weyl systems with broken

time-reversal (T ) or inversion symmetries (P) [1]—or crys-

tal symmetries in T P-symmetric Dirac systems [5,6]. Thus

any clean DWSM is an incompressible electron gas with a

quadratically vanishing density of states (DoS). Despite the

inefficient charge screening at the node, this paradigm is

believed to survive electron-electron Coulomb interactions,

giving way to a marginal Fermi liquid behavior [7,8]. In

addition, weakly interacting DWSMs can display strongly

renormalized Fermi velocities, but the nodes’ integrity and

topology are expected to remain robust [9–16].
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An outstanding question is whether random on-site poten-

tials ubiquitous in realistic systems (e.g., due to impurities in

the crystal lattice) can give way to a compressible diffusive

metallic phase with a finite nodal DoS [6,17–32]. An early

result by Fradkin predicted that Dirac nodes are stable in d =
2 + ǫ dimensions, below some critical disorder strength [17].

The robustness of DWSMs against weak random perturba-

tions is best visualized by considering a massless particle

moving through a short-ranged random potential of strength

W . Since, near a node, the de Broglie wavelength, λ = h̄v/E ,

largely exceeds the disorder correlation length, the central

limit theorem applies, and the fluctuations around the average

potential inside a volume λd must scale as δV ∝ W λ−d/2. In

d = 3, the fluctuations vanish as E 3/2, i.e., faster than the band

energy near a node, rendering the semimetal phase stable.

The early field-theoretical point of view has been recently

questioned by nonperturbative calculations [20,24], hinting

that 3D gapless phases can become unstable due to the emer-

gence of zero-energy states bound to statistically rare regions

of the disorder potential landscape. According to this picture,

the nodal DoS remains nonzero for arbitrarily weak disor-

der without any signature of singular behavior. Evidence for

avoided quantum criticality (AQC) facilitated by localized

nodal eigenstates has been provided by lattice simulations of

a 3D Dirac model with uncorrelated on-site disorder [24].

Challenging these findings, Buchhold et al. noted that rare

events are preceded by scattering resonances which always

carry zero spectral weight at a node. Furthermore, as they are

only possible for fine-tuned (“magical”) impurity configura-

tions, this would imply that the nodal DoS cannot be lifted

at variance with the AQC scenario [27,28]. Their claim is

backed by the exact solution of a Weyl node with a spherical
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impurity. These paradoxical findings have attracted signifi-

cant attention recently [24,29,31,33] because they question

the phase stability of incompressible 3D gapless phases in

realistic conditions. Moreover, the driving mechanism for

semimetal-to-metal transitions in the phase diagram of dirty

3D DWSMs remains elusive.

In this paper, we resolve this conundrum by tackling the

spherical impurity problem using two complementary theo-

retical approaches. First, within a continuum model, we argue

that an unforeseen nonanalytic behavior of scattering phase

shifts at the node obstructs a direct use of Friedel’s sum rule

(FSR) [27,28]. This difficulty can be overcome by keeping

track of the level statistics in systems of increasingly large vol-

ume at fixed impurity concentration. The puzzling behavior

of the phase shifts is explained by the emergence and sudden

disappearance of bound states upon tuning the impurity poten-

tial across a fine-tuned “magical value.” Crucially, our level

statistics analysis reveals that rare bound states are accompa-

nied by a continuum of low-energy resonances surrounding the

node in realistic material systems with a diversity of random

short-range impurities. Such near-critical impurity configura-

tions give effective statistical weight to magical impurities and

ultimately endow the node with a finite average DoS. Second,

we carry out high-precision numerical calculations in a lat-

tice version of the problem, hosting one or more impurities.

Remarkably, our real-space simulations not only unambigu-

ously demonstrate the destabilization of a 3D DWSM by a

diversity of random near-critical impurities but also quanti-

tatively agree with the continuum theory predictions in the

dilute impurity regime. These findings provide the missing

link between continuum and lattice approaches to the DWSM

theoretical puzzle and unambiguously pinpoint the newly un-

veiled statistical significance of near-critical impurities as

the driving mechanism for AQC. Hence dilute impurities can

only destabilize a DWSM provided their random parameters

are drawn with a probability density which is nonzero on (at

least) one magical value. Lastly, we note that subtleties in

disordered Dirac systems have a long history [34–38]. For

instance, in 2D d-wave superconductors, there are four low-

energy quasiparticle Dirac valleys, and scalar impurities are

pair breaking. The latter induce resonances that, in the strong

scattering limit, turn into sharp DoS peaks at E = 0 (Majorana

zero modes) [39,40].

The remainder of the paper is organized as follows: In

Sec. II, we present the theoretical tools for calculating the DoS

correction induced by dilute spherical scalar impurities hosted

within a single-node continuum model of a Dirac semimetal.

We further argue our conclusions to remain valid in 3D Weyl

semimetals. In Sec. III, we highlight the main caveats implied

by a direct use of FSR and show how to obtain consistently

the thermodynamic limit DoS change due to a finite (albeit

small) concentration of impurities. In Sec. IV this theory is

used to predict the conditions on which AQC holds in a Dirac

semimetal. Our predictions are validated by high-resolution

real-space calculations in Sec. V. Finally, in Sec. VI we sum-

marize our main findings and highlight future directions for

further study.

II. CONTINUUM THEORY

We start by reviewing the low-energy description of a

noninteracting single-valley 3D DWSM. The Hamiltonian can

be written as H0 = vα · p, with h̄ ≡ 1, αi = σ x ⊗ σ i, v being

the Fermi velocity, and p = −ı∇ being the momentum op-

erator. Here, σi (i = x, y, z) denote Pauli matrices acting on

internal spin space. Introducing a scalar impurity potential in

the Hamiltonian breaks translation invariance, but if U (r) =
U (|r|), rotational symmetry around the impurity center is

preserved. For concreteness, we consider a spherical well or

plateau potential, U (r) = λ�(b − |r|) [20]. We note that this

model is suitable to describe realistic multiple-valley Dirac

or Weyl semimetals insofar as the impurity radius b is much

larger than the lattice spacing (thus effectively suppressing

intervalley scattering). The coupling of distinct Weyl sectors

at each valley is also absent due to the scalar structure of the

impurity potential. The eigenstates of H = H0 + U (|r|) can

be written as

�κ
j, jz

(r) =
[

f κ
j (r)

r
�−κ

j, jz
(r̂),

ιgκ
j (r)

r
�κ

j, jz
(r̂)

]T

, (1)

where j ∈ {1/2, 3/2, . . .} and jz ∈ {− j,− j + 1, . . . , j} are the

total angular momentum quantum numbers, while κ = ±1 la-

bels the eigenvalues of K = γ 0 · (2L · S − 1), i.e., κ ( j + 1/2).

Furthermore, �±
j, jz

(r̂) are orthonormal spin-1/2 spherical har-

monics, and f κ
j (r)/gκ

j (r) are radial functions. For nonzero

energies, the latter are radial spherical waves with phase shifts

introduced by the central potential (see Appendix A for ad-

ditional details). In each j sector, the scattering phase shifts

δ j induced by a spherical well or plateau are obtained by

constraining the spinor to be continuous at r = b. One obtains,

after a somewhat lengthy calculation,

tan δ j (ε, u) =
sgn(ε − u)J j+1(|ε|)J j (|ε − u|) − sgn(ε)J j (|ε|)J j+1(|ε − u|)
sgn(ε)sgn(ε − u)Yj+1(|ε|)J j (|ε − u|) − Yj (|ε|)J j+1(|ε − u|)

, (2)

where u ≡ λb/vF, ε ≡ Eb/vF �= (0, u), and Jn(x) [Yn(x)] are

Bessel functions of the first (second) kind. We underline that

Eq. (2) is equivalent to that obtained in Refs. [20,28] for

the Weyl equation. This is unsurprising because our 4 × 4

Dirac model is gapless and the impurity potential has a scalar

structure (i.e., distinct Weyl sectors at each valley remain

decoupled). However, Eq. (2) only defines δ j (ε, u) mod π .

The ambiguity corresponds, at most, to a global change in

the sign of the wave function. In order to obtain a unique

definition of δ j (ε, u), one needs to choose a reference point:

i.e., as the potential is switched off (u → 0), we require

that the phase shifts vanish across the entire spectrum. A

way to guarantee this is to enforce that δ j (ε → ±∞, u) =
−u [41–43], which is achieved by a trick explained in Ap-

pendix C. Since the analysis is qualitatively similar in all j

sectors, in what follows we focus on the δ1/2(ε) phase shift

013183-2
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FIG. 1. Plot of the energy-dependent phase shift δ1/2(ε, u) in

accordance with the prescription δ j (ε → ±∞, u) = −u. Several val-

ues of u are plotted around uc = π . The inset depicts a close-up of

the curves near ε = 0.

(see Fig. 1) using the previous convention (for completeness,

plots for other j’s and around different magical u’s are pro-

vided in Appendix C). For u = u
j
c , the phase shift is shown

to have a physical π discontinuity at ε = 0, which marks

the occurrence of zero-energy bound states [42]. For the 3D

massless Dirac equation, bound states at ε = 0 can appear,

for particular wells or plateaus, whenever a decoupling of

the radial equations for f ±
j (r > b)/g±(r > b) occurs [20]. In

this case, the admissible (asymptotically decreasing) solutions

are simple power laws, g+
j,k

(r > b)/ f −
j,k

(r > b) = B±r− j−1/2

and f +
j,k

(r > b)/g−
j,k

(r > b) = 0. As shown in Appendix A,

such spinors are only continuous at r = b, if the potential

satisfies J j (|u|) = 0. Hence zero-energy states are allowed in

a single-impurity Dirac problem provided the parameters are

fine-tuned, i.e., |λb/v| = u
j
c is a root of J j (x). The critical

parameters {u j
c} are dubbed magical values, as they would

correspond to rare regions in a disordered landscape where

nonperturbative zero-energy modes are possible [20,24]. Note

that these are true (squared-normalizable) impurity bound

states within the Dirac continuum and they have a degen-

eracy of 2(2 j + 1). These bound states manifest themselves

as a π discontinuity at ε = 0 in the phase shifts when the

parameter u crosses a critical value of that angular momentum

channel (inset of Fig. 1). This is in accord with Levinson’s

theorem for Dirac particles [41,42], which states that given an

appropriate convention, the number of bound states is encap-

sulated in discontinuous π jumps of the phase shifts at zero

momentum.

III. IMPURITY-INDUCED CHANGE IN THE DoS

The change in the DoS induced by an isolated impurity is

conventionally calculated using FSR,

�ν(ε, u) =
2

π

∞∑

j=1/2

(2 j + 1)
∂δ j (ε, u)

∂ε
, (3)

which measures the variation in the number of states per unit

energy (an extensive quantity, not to be confused with �ν

per unit volume, hereafter denoted by �ρ). Strikingly, the

phase-shift discontinuity caused by the impurity bound state

in the 3D DWSM problem precludes the direct use of FSR,

a peculiar effect that has gone unnoticed in earlier studies.

Therefore, to determine �ν, we adopt a strategy based on

counting states within a finite energy window adapted from

Friedel’s original reasoning [44]. First, we restrict the Dirac

fermions to lie inside a finite sphere of radius R, SR. The

Hermiticity of H is guaranteed if the Hilbert space is re-

stricted to states with vanishing current across the spherical

surface, ∂SR, that is, to a subspace where any two spinors

� and � satisfy
˜

O∂SR
dS · [�†

μ(r)αμν�ν (r)] = 0. In Eq. (1),

this is true if cos δ j (ε, u)J j (|ε|R) − sin δ j (ε, u)Yj (|ε|R) = 0.

For each angular momentum sector, this condition quan-

tizes the allowed energy levels, which we denote by ε
j
n. The

number of ( j-sector) levels inside the energy window [ε0 −
�ε/2, ε0 + �ε/2] is changed by the impurity due to an in-

wards or outwards migration of levels from regions of width ≃
δ j (ε ± �ε/2, u)/R [up to O(R−2)] near the respective bound-

aries. This mechanism is illustrated in Fig. 2(a). The variation

in the number of j states inside the probing window is

�N j (ε0,�ε, u)

=
2(2 j + 1)

π

[
δ j

(
ε0 +

�ε

2
, u

)
− δ j

(
ε0 −

�ε

2
, u

)]
. (4)

For a finite �ε, Eq. (4) is accurate in the asymptotic limit

R ≫ 1 and for ε0 ± �ε/2 �= 0 as explained and illustrated in

Appendix B.

Next, we consider the intensive DoS (�ρ) induced by

a finite density (c) of impurities in a volume V focus-

ing on single scattering events. The neglect of quantum-

coherent scattering by multiple impurities is justified in

the dilute regime, where quantum interference corrections

are suppressed by a factor of 1/(kF l ) [45], where l ∝
c−1 is the mean free path and kF = E/(vh̄) is the Fermi

wavevector. This is an important assumption confirmed

precisely by our numerical simulations below. Formally,

the DoS is obtained by the limiting procedure, �ρ(ε0) =
lim�ε→0+ limV →∞ [�N (ε0,�ε, {ui},V )/V �ε], where i in-

dexes the impurity and �N (ε0,�ε, {ui},V ) is the variation

in the total number of states. Assuming that {ui} are drawn

from a probability density function p(u), the thermodynamic

limit then reads

∑

i

�N j (ε0,�ε, ui )

V
−→
V →∞

c

ˆ

du p(u)�N j (ε0,�ε, u), (5)

where �N j (ε0,�ε, u) is given by Eq. (4). The final expression

for the DoS variation due to a dilute set of random impurities,

�ρ(ε0) =
∑

j �ρ j (ε0), is obtained from

�ρ j (ε0) = c lim
�ε→0+

ˆ

du p(u)
�N j (ε0,�ε, u)

�ε
. (6)

The order of limits in Eqs. (5) and (6) is essential. The

integration over u must be done prior to taking the �ε →
0+ limit. This is reminiscent of lattice simulations, where

the resolution parameter must be sent to zero only af-

ter the thermodynamic limit has been taken (see below).

If δ j (ε, u) is differentiable at ε = ε0, the �ε → 0+ limit

can be safely brought inside the integral, and one obtains

�ρ j (ε0) = c(4 j + 2)〈∂δ j (ε, u)/∂ε|ε=ε0
〉

u
/π, where 〈 f 〉u =

´

du p(u) f (u), i.e., the familiar FSR. A direct application of

FSR [Eq. (3)] was employed in Refs. [27,28] to determine the

DoS in Weyl systems with statistical fluctuations of u around

a critical value uc, leading to the conclusion that �ρ j (0) = 0.

This was inferred from the fact that ∂δ j (ε, u)/∂ε|ε=0 = 0
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(a)

(b)

(c)

(d)

FIG. 2. (a) Motion of energy levels triggered by the central impu-

rity. (b) Plots of �ρ1/2(ε, u) for selected values of u around uc = π .

The curves were obtained using Eq. (3) with the phase shifts repre-

sented in Fig. 1. As one approaches uc, �ρ1/2(ε) takes the form of

a low-lying peak, which gets narrower and closer to ε = 0 (roughly

conserving the area between zeros). The inset shows that �ρ1/2(ε, u)

is always equal to zero at ε = 0 for any noncritical u. (c) Depiction

of �N1/2(ε = 0, π )/�ε converging towards a distribution 4δ(u − π )

as �ε → 0+. (d) Theoretical prediction for �ρ1/2(ε) due to dilute

spherical impurities with a Gaussian diversity of width σ around

u1/2

c = π . The inset depicts the total DoS for 10−6b−1 impurities per

volume.

for any u �= u
j
c; see Fig. 2(b). Since critical configurations

(u = u
j
c ) have zero statistical measure, FSR would seemingly

imply a vanishing average DoS at ε = 0. In the remainder

of this paper, we show that the difficulty arising from the

discontinuous δ j (ε, u = uc) can be overcome by carefully ac-

counting for the level statistics in the infinite volume limit of

a DWSM with random impurities. Such a procedure does not

alter the fate of ρ(ε = 0) in the presence of a finite concen-

tration impurities fixed u [20,28]. However, the conclusions

on the stability of a DWSM are changed dramatically if a

continuous statistical diversity of “near-critical” impurities

exists.

IV. NEAR-CRITICAL IMPURITIES LIFT THE NODAL

DENSITY OF STATES

A finite concentration of exactly critical wells or plateaus

would introduce a macroscopic number of nodal bound states.

However, for a diversity of random impurities with poten-

tial strengths drawn from a probability distribution function

p(u), such fine-tuned configurations appear with zero prob-

ability and cannot yield statistically significant contributions

to the bulk nodal DoS [27,28]. Nevertheless, we find that

the abundance of low-energy resonances due to near-critical

configurations (u ≈ u
j
c) provide such a contribution. The

phase shifts of such impurities signal the emergence of the

zero-energy bound states by a sharp resonance, namely, a

quick π variation of δ j (ε) as u → u
j
c originated in the va-

lence band, which moves towards ε = 0 and becomes sharper

while always keeping δ j (0, u) = 0. At u = uc, the situation

is delicate because δ j (ε) is no longer differentiable at ε = 0.

In that case, one must work with Eq. (6) directly, and since

there is a zero-energy π discontinuity in the phase shifts, a

Dirac-δ distribution around the u
j
c,n emerges as the limit of

plateau functions with a conserved integral equal to 4 (the

degeneracy of the j = 1/2 single-impurity bound states). This

limit is depicted in Fig. 2(a). An immediate implication is

that a DWSM is unstable to dilute random impurities provided

p(u
j
c ) �= 0 for at least one critical u

j
c . Such a condition implies

that the stability of a 3D semimetallic phase ultimately de-

pends on the type of impurity model and the disorder statistics,

i.e., whether it supports the resonant mechanism driven by a

continuous distribution of near-critical impurities. These find-

ings, supported below by accurate lattice simulations, show

that dirty 3D DWSMs with near-critical impurities are inher-

ently unstable, which sheds light on the previously reported

AQC [24–26,29–31].

In Fig. 2(d), we plot the change in the j = 1/2 DoS

due to a dilute diversity of “near-critical impurities.” The

diversity is characterized by a Gaussian distribution p(u) =
exp [−(u − π )/2σ 2]/

√
2πσ around uc = π . The DoS is

clearly lifted around ε = 0, forming a sharp symmetrical

bump. For this diversity model, the peak is Gaussian shaped

near its center, and the corresponding area is conserved as

σ → 0. In this limit, a 4δ(ε) distribution forms, i.e., all

impurities are critical, each having a fourfold degenerate zero-

energy bound state.

V. LATTICE SIMULATIONS

Our prediction for the lifting of the DoS due to near-critical

impurities has been based on a continuum model for a single-

node Dirac semimetal. However, real Dirac materials and

numerical simulations live in the realm of lattice models, fea-

turing several nodes and warped band structures. To validate

our previous conclusions, we perform real-space simulations

on a simple cubic lattice (LC of parameter a and linear size L)

with a four-orbital Hamiltonian derived from the continuum

Hamiltonian H [23–25], namely,

H =
∑

R∈LC

[
ıv

2a
�†

R
· α j · �R+aê j

+
U (R)

2
�†

R
· �R + H.c.

]
. (7)
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(a)

(b)

FIG. 3. (a) DoS change due to an impurity of critical strength

u = π v/a and radius 16 a inside a supercell of 2563 sites. Verti-

cal widths are 95% statistical error bars, and dashed lines are the

continuum theory predictions. (b) Plot of 〈ρ(E = 0)〉u with several

impurities of radius 16 a inside the simulated supercell of 5123 sites

for different resolutions η. The gray line is the dilute regime pre-

diction. The inset shows converged 〈ρ(E )〉u for three concentrations

against the predictions of Fig. 2(d) (black lines).

The DoS is calculated by means of accurate Chebyshev poly-

nomial expansions of the resolvent operator δ(E − H ) [46]

in very large systems as implemented in the open-source

quantum transport code QUANTUM KITE [47]. The energy

resolution reads as η = π�E/2M, where �E is the band-

width of the Hamiltonian matrix and M is the truncation

order of the polynomial expansion [48,49]. The DoS is

obtained from ρ(E ) = limη→0 limD→∞ D−1Tr[〈δη(E − H )〉],
where 〈· · · 〉 denotes disorder averaging and D = 4L3 is the

Hilbert space dimension. In order to simulate systems with

a vanishing mean-level spacing, thereby performing calcula-

tions bounded only by η, we randomly sample over twisted

boundaries [30,31]. This approach allowed the DoS to be

calculated with unprecedented working spectral resolutions

as low as η ≃ 4 × 10−4
v/a, whose full convergence requires

M ≈ 30 000 polynomials. More technical details are provided

in Appendix D.

Figure 3(a) shows the average DoS induced by critical

impurities, �ρ(E ) = ρimp(E , u = π ) − 2E2/π2, in the dilute

regime. The numerical data are compared with our analyti-

cal results [Eq. (6) and discussion thereafter], including the

eightfold valley degeneracy, and properly convoluted with

Gaussian functions of width η to mimic the finite numerical

spectral resolution. The lifting of the DoS at the node and

the underlying near-critical impurity mechanism are borne out

by the spectral calculations, which show excellent quantitative

agreement with the continuum theory, provided the impurity

radius is large enough [see Fig. 3(a) and additional numerical

evidence in Appendix D]. In Fig. 3(b), we present an analo-

gous calculation for a system having several impurities inside

the supercell. The impurities are placed randomly without

superpositions, and their strengths drawn from a Gaussian dis-

tribution N (μ = π v/a, σ = 0.3 v/b). The continuum theory

prediction for the low-energy bump in the DoS is reproduced

in the diluted limit [see inset of Fig. 3(b)], and the law

ρ(E = 0) ∝ c remains accurate up to 10−6 impurities per

unit cell. The overshooting for higher concentrations is due

to multi-impurity effects, which become more effective as

impurities are pushed closer together.

VI. CONCLUSIONS AND OUTLOOK

Here, we have shown that AQC must occur in 3D Dirac

semimetals having dilute short-range scalar impurities, if their

random parameters have a nonzero probability density at

so-called magical values, where nodal bound states appear.

These results were based on a continuum formulation of the

problem treated at the single-impurity level and quantitatively

confirmed by high-resolution lattice simulations in a gapless

multivalley Dirac model hosting ≈10−9–10−6 random scalar

impurities impurities per unit cell. The perfect agreement

between theory and numerical simulations gives confidence

that the newly unveiled resonant mechanism stemming from

diverse near-critical impurities is a crucial piece in the DWSM

quantum criticality puzzle. Moreover, disparities with previ-

ous work [27,28] are explained by the presence of physical

π jumps in the scattering phase shifts that prevent a direct

use of FSR for diverse impurities around the aforementioned

magical parameters. Similar conclusions are expected to hold

for Weyl semimetals, as scalar impurities do not couple the

different Weyl sectors in the infinite volume limit of our Dirac

model. Meanwhile, our lattice nodal DoS calculations show a

crossover from a dilute regime at very low impurity concen-

tration (with DoS scaling linearly with c) to an intermediate

impurity density regime (c � 10−6 impurities per unit cell),

where the DoS diverges from the analytical prediction. This

behavior can be traced to quantum-coherent multiple-impurity

scattering events, which are neglected in our continuum the-

ory.

A related, but nontrivial, question concerns the validity of

these conclusions when dealing with lattice models having

uncorrelated on-site disorder. In light of our theory, as well as

earlier work [24,29], one reasonably expects the semimetallic

phase to be unstable for unbounded distributions. However,

such systems with highly concentrated and atomic-sized (on-

site) impurities are exactly in the regime where the lattice

results deviate from continuum predictions, hinting at yet

further subtleties when relating the fate of disordered DWSM

phases with rare-event bound states.
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APPENDIX A: SPHERICAL DIRAC STATES

Here, we provide technical details on the calculations

leading from the Dirac eigenvalue problem in the presence

of a single central scalar potential: H = H0 + U (|r|). These

results form the theoretical foundation for the main results

presented in this paper. Since the methods employed are scat-

tered around the existing literature [20,41,42], we provide a

detailed description of procedures to make the presentation

self-contained.

Derivation of the radial Dirac equations and radial eigenstates

The eigenvalue problem for an independent Dirac particle

in the presence of a central potential corresponds to finding

the solutions of

Hμν�ν (r) = [−ιvFαμν · ∇+ U (|r|)δμν]�ν (r) = δμνE�ν (r),

(A1)

where the repeated Greek indices are summed over the four-

spinor components of the single-particle Dirac wave function.

In particular, we are interested in the special case of a potential

well or plateau, such that U (|r| < b) = λ and U (|r| � b) = λ.

The first technical step towards solving Eq. (A1) is to

use a spherical coordinate system, (r, θ, ϕ), and achieve a

separation of variables. The way to do this is well known in

the relativistic quantum mechanics literature and is based on

identifying the orbital and spin angular momentum operators

for this system, which read

L = ιI4×4ε
i jkx j

∂

∂xk

and S =
1

2

(
σ i

O2×2

O2×2 σ i

)
, (A2)

where the matrices act in the Dirac spinor indices. These

quantities are not conserved by the Hamiltonian H; however,

we can build three mutually commuting observables out of L

and S, which are conserved and uniquely define the spinor and

angular structure of the eigenfunctions of H. These are

Jz =
(

Lz + 1
2
σ z

O2×2

O2×2 Lz + 1
2
σ z

)
, (A3a)

|J|2 = |L + S|2 =
(

|L|2 + 3
4

+ σ iLi O2×2

O2×2 |L|2 + 3
4

+ σ iLi

)
,

(A3b)

and also K = γ 0 · (2LiSi − 1), which explicitly reads

K =
(

σ iLi + I2×2 O2×2

O2×2 −σ iLi − I2×2

)
. (A3c)

It is easy to verify that all three operators in Eqs. (A3a)–

(A3c) commute among themselves and with H. Crucial for the

latter is the fact that U (r) = U (r), which guarantees that the

impurity does not break rotational symmetry around its center.

Therefore a common eigenbasis of |J|2, Jz, and K can be built

and labeled by the set of quantum numbers j ∈ {1/2, 3/2, . . .},
jz ∈ {− j,− j + 1, . . . , j}, and κ = ±1. The quantum number

κ appears by solving K’s eigenvalue problem,

K� j, jz (r) = h̄2κ

(
j +

1

2

)
� j, jz (r). (A4)

Using the previous operators, a general form for the eigen-

spinors indexed by the set ( j, jz, κ ) is

�κ
j, jz

(r, θ, ϕ) =
1

r

(
f κ

j (r)�−κ
j, jz

(θ, ϕ)

ιgκ
j (r)�κ

j, jz
(θ, ϕ)

)
, (A5)

where f κ
j (r)/gκ

j (r) are radial functions and �κ (θ, ϕ) are spin-
1/2 spherical harmonics

�+
j, jz

(θ, ϕ) =

⎛
⎝

√
j− jz+1

2 j+2
Y

j+1/2

jz−1/2(θ, ϕ)

−
√

j+ jz+1

2 j+2
Y

j+1/2

jz+1/2(θ, ϕ)

⎞
⎠ (A6a)

and

�−
j, jz

(θ, ϕ) =

⎛
⎝

√
j+ jz
2 j

Y
j−1/2

jz−1/2(θ, ϕ)
√

j− jz
2 j

Y
j−1/2

jz+1/2(θ, ϕ)

⎞
⎠, (A6b)

which in this form are orthonormalized in the unit sphere, i.e.,

ˆ π

0

sin θdθ

ˆ 2π

0

dϕ
[
�κ

j, jz
(θ, ϕ)

]† · �κ ′

j′, j′z
(θ, ϕ)

= δ j, j′δ jz, j′zδκ,κ ′ . (A7)

Besides the orthonormality condition of Eq. (A7), �κ
j, jz

(�)

have some further useful properties, namely,

σ · r̂�κ (θ, ϕ) = (σ · r̂)2�κ (θ, ϕ) = �−κ (θ, ϕ), (A8a)

σ · L�+(θ, ϕ) = −h̄
(

j + 3
2

)
�+(θ, ϕ), (A8b)

σ · L�−(θ, ϕ) = h̄
(

j − 1
2

)
�−(θ, ϕ), (A8c)

where σ = (σ x, σ y, σ z ) is a vector of Pauli matrices and

the scalar products are to be understood as a summation

over spacial indices. Finally, we can proceed and write the

Hamiltonian H explicitly as a differential operator in spherical

coordinates. That way, it reads

H =
(

U (r)I2×2 −ιvσ · r̂
[
∂r − σ·L

r

]

−ιvσ · r̂
[
∂r − σ·L

r

]
U (r)I2×2

)
. (A9)

Using this form for H, one can plug spinors as in Eq. (A5) into

the eigenvalue problem of Eq. (A1) and arrive at the following

coupled systems of ordinary differential equations:

d

dr
gκ

j,E (r) ±
1

r

(
j +

1

2

)
gκ

j,E (r) =
1

v

[E − U (r)] f κ
j,E (r)

d

dr
f κ

j,E (r) ∓
1

r

(
j +

1

2

)
f κ

j,E (r) =
1

v

[U (r) − E ]gκ
j,E (r).

(A10)
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In the case of the spherical well or plateau that concerns us,

Eq. (A10) reduces to either

d

dx
gκ

j,ε(x) ±
1

x

(
j +

1

2

)
gκ

j,ε(x) = (ε − u) f κ
j,ε(x)

d

dx
f κ

j,ε(x) ∓
1

x

(
j +

1

2

)
f κ

j,ε(x) = (u − ε)gκ
j,ε(x), (A11)

inside the impurity, or

d

dx
gκ

j,ε(x) ±
1

x

(
j +

1

2

)
gκ

j,ε(x) = ε f κ
j,ε(x)

d

dx
f κ

j,ε(x) ∓
1

x

(
j +

1

2

)
f κ

j,ε(x) = −εgκ
j,ε(x), (A12)

outside of it. In Eqs. (A11) and (A12), we use dimensionless

scales, namely, x = r/b, ε = Eb/v, and u = λb/v. The solu-

tions inside the impurity (as long as ε �= u) always have the

general form

g+
j,ε(x < 1) = A+√

xJ j+1(|ε − u|x), (A13a)

f +
j,ε(x < 1) = A+sgn(ε − u)

√
xJ j (|ε − u|x), (A13b)

g−
j,ε(x < 1) = A−sgn(ε − u)

√
xJ j (|ε − u|x), (A13c)

f −
j,ε(x < 1) = A−√

xJ j+1(|ε − u|x), (A13d)

where A± are complex adjustable constants. Outside the im-

purity and for nonzero energy, one has instead

g+
j,ε(x > 1) = B+√

x[cos δ+
j (ε)J j+1(|ε|x)

− sgn(ε) sin δ+
j (ε)Yj+1(|ε|x)], (A14a)

f +
j,ε(x > 1) = B+√

x[cos δ+
j (ε)J j+1(|ε|x)

− sin δ+
j (ε)Yj (|ε|x)], (A14b)

f −
j,ε(x > 1) = B−√

x[cos δ−
j (ε)J j+1(|ε|x)

− sgn(ε) sin δ−
j (ε)Yj+1(|ε|x)], (A14c)

g−
j,ε(x > 1) = B−√

x[sgn(ε) cos δ−
j (ε)J j (|ε|x)

− sin δ−
j (ε)Yj (|ε|x)], (A14d)

where the choice of parametrization in the linear combination

was made for convenience. Note that the exterior solutions

feature both Jn and Yn components, being always regular and

physically admissible in their support (x � 1). Now, all we

must do is constrain the functions δ±
j (ε) such that the spinor

�(r) is continuous at the impurity’s surface (x = 1). Using

Eqs. (A14a)–(A14d), this implies that

tan δ±
j (ε, u) = [sgn(ε − u)J j+1(|ε|)J j (|ε − u|)

− sgn(ε)J j (|ε|)J j+1(|ε − u|)]/[sgn(ε)

× sgn(ε − u)Yj+1(|ε|)J j (|ε − u|)
− Yj (|ε|)J j+1(|ε − u|)]. (A15)

This equation is independent of κ , which allows us to define

a unique function, δ j (ε, u), for both the κ = ± sectors, which

appears a single twofold degeneracy of the states in the prob-

lem. The previous facts justify Eq. (2) of Sec. II.

The previous analysis is valid for the entire spectrum, ex-

cept at the important ε = 0 point. Here, the interior solutions

are the same, but the radial system outside the impurity de-

couples, i.e.,

d

dx
gκ

j,ε(x) ±
1

x

(
j +

1

2

)
gκ

j,ε(x) = 0

d

dx
f κ

j,ε(x) ∓
1

x

(
j +

1

2

)
f κ

j,ε(x) = 0. (A16)

The latter allows for power-law solutions, of which the phys-

ically admissible ones (i.e., the ones decaying with x) are of

the form

g+
j,ε=0(x � 1) =

B+

x j+1/2
and f +

j,ε=0(x � 1) = 0, (A17a)

g−
j,ε=0(x � 1) = 0 and f −

j,ε=0(x � 1) =
B−

x j+1/2
. (A17b)

Both these solutions, being joined continuously to the inte-

rior solutions of Eqs. (A13a)–(A13d) require that J j (|u|) = 0.

This condition gives rise to a discrete set of parameters u, for

which these bound-state solutions are allowed.

Finally, we remark that all the eigenstates determined here

(the unbound and bound ones) have an intrinsic 2 j + 1 de-

generacy due to the rotational invariance of the Hamiltonian.

This degeneracy factor is explicitly taken into account in all

calculations done in the main text.

APPENDIX B: SELF-ADJOINT RESTRICTION OF THE

DIRAC HAMILTONIAN TO A FINITE SPHERE

To derive the relation between the scattering phase shifts

and the change in the DoS due to a dilute diversity of im-

purities, we make explicit use of the restriction of H to a

finite sphere of radius R ≫ b, i.e., SR. Restricting a contin-

uum Hamiltonian to a finite volume of space generally makes

its action on the original Hilbert space non-Hermitian. The

way around this is to impose appropriate boundary conditions

which restrict the original basis to a subset, generating a

subspace inside of which the Hamiltonian preserves its Her-

miticity. This is called taking a self-adjoint extension of H to

a finite domain.

In the case of the Dirac Hamiltonian with a scalar potential,

H = −ιvα · ∇ + U (r), the Hermiticity condition is imposed

by guaranteeing that for any two Dirac spinor states �1(r) and

�2(r), the following condition holds:
ˆ

SR

d3r
[
�2

μ(r)
]†

[−ιvαμν · ∇ + U (r)δμν]�1
ν (r)

=
[
ˆ

SR

d3r
[
�1

μ(r)
]†

[−ιvαμν · ∇ + U (r)δμν]�2
ν (r)

]∗
.

(B1)

After some straightforward manipulation, this condition

can be cast into the equivalent form
‹

∂SR

d2S
[
�1

μ(r)
]†

[αμν · n̂]�2
ν (r) = 0, (B2)

where n̂ = (nx, ny, nz ) is an outwards unit vector normal to

the spherical surface ∂SR. This is precisely the condition

013183-7
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FIG. 4. Plot of �ε1/2 = ε
1/2

n+1 − ε1/2

n
, the nearest-level spacings for

a spherical impurity with u = 3.1867 calculated from the numeri-

cally found solutions of the boundary condition [Eq. (B3)]. The data

points are represented as R2 × (�ε1/2 − πR−1), such that a collapse

of different values of R is achieved. This collapse indicates that

�ε1/2(R, ε, u) ≈ πR−1 − f (ε, u)R−2 in the presence of an impurity.

R is measured in units of b.

presented in Sec. III. Unsurprisingly, Eq. (B2) is easily inter-

preted as guaranteeing that no net particle current crosses the

boundary of SR, which expresses particle conservation implied

by Hermiticity.

Meanwhile, since all α matrices are composed of off-

diagonal 2 × 2 blocks, one can easily see that Eq. (B2) is

satisfied whenever we impose either the first or the last

two components of the Dirac spinors to be zero at ∂SR.

Considering spinors of the form given in Eq. (A5), such a con-

dition translates into either f +
j (R) = g−

j (R) = 0 or f −
j (R) =

g+
j (R) = 0. The other two combinations cannot be satisfied, as

the zeros of Bessel functions of different j’s never coincide.

For the purposes of this work, we chose the first of these

conditions (although the specific self-adjoint extension should

not be relevant for any thermodynamic limit results). Finally,

by using the general form of the exterior scattering solutions

found earlier [Eqs. (A14a)–(A14d)], we arrive at our final

form for the boundary condition,

cos δ j (ε, u)J j (|ε|R) − sgn(ε) sin δ j (ε)Yj (|ε|R) = 0, (B3)

where R is measured in units of b.

Level spacing of central impurity Dirac Hamiltonian

First, we remark on an important consequence of the

boundary condition in Eq. (B3). This condition imposes a

quantization of energy levels, turning the continuous spectrum

into a discrete one with a density of levels that scales with R.

Provided that we are looking at finite energies (ε �= 0) and

with |ε|R ≫ 1, Eq. (B3) can be taken in its asymptotic form,

namely,

cos

[
|ε|R +

π

2

(
j +

1

2

)
+ sgn(ε)δ j (ε, u)

]
= 0. (B4)

In the absence of an impurity, we have δ j (ε, 0) = 0, and the

mesh of energy levels allowed by the boundary conditions

(in a given j sector) is simply ε
j
n ≈ nπ

R
+ sgn(n) π

2R
( j + 1/2),

with n ∈ Z. This yields a mean-level spacing which is uniform

across the spectrum and equal to πR−1. In the presence of

the impurity (which induces energy-dependent phase shifts),

Eq. (B4) does not seem to have a simple solution. However,

if R is large enough such that δ j (ε, u) is a slowly varying

function across an energy interval of width πR−1, then one

can say that the allowed energy levels are roughly

ε j
n ≈

nπ

R
+ sgn(n)

π

2R
( j + 1/2) −

δ j

(
ε

j
n, u

)

R
, (B5)

which gives a correction to the mean-level spacing relative to

the case u = 0, which is simply

ε
j

n+1 − ε j
n ≈

π

R
−

1

R

[
δ j

(
ε j

n +
π

R
, u

)
− δ j

(
ε j

n, u
)]

≈
π

R

[
1 −

π

R

∂

∂ε
δ j (ε, u)

∣∣∣∣
ε=ε

j
n

]
, (B6)

with an analogous expression for n < 0. Hence we conclude

that the correction to the mean-level spacing due to a single

impurity is always ∝O(R−2), which is subleading relative

to the original π/R spacing. This result is exemplified by

a numerical solution of Eq. (B3) in Fig. 4 and justifies our

arguments on the number of states migrating in or out of an

energy interval given in Sec. III.

APPENDIX C: A CONSISTENT DEFINITION OF THE

SCATTERING PHASE SHIFTS

In this Appendix, we use the spherical Dirac eigenstates

found earlier to define the scattering phase shifts in a way

that allows a direct relation to the impurity-induced change

in the density of states. We recover early results which ex-

plain the crucial zero-energy π discontinuity observed in our

calculations as due to the appearance of critical bound states

in the transition between the valence and conduction band.

This connects our results to Levinson’s theorem applied to

noninteracting Dirac particles.

The exterior scattering wave functions of the gapless Dirac

equation with a spherical well or plateau (of strength λ and

radius b) were found to be of the form

�+
E , j, jz

(r,�) = N+
(

[cos δ j (E , λb)J j (|E |r) − sgn(E ) sin δ j (E , λb)Yj (|E |r)]�−
j, jz

(�)

ι[cos δ j (E , λb)J j+1(|E |r) − sgn(E ) sin δ j (E , λb)Yj+1(|E |r)]�+
j, jz

(�)

)
(C1)

and

�−
E , j, jz

(r,�) = N−
(

[cos δ j (E , λb)J j+1(|E |r) − sgn(E ) sin δ j (E , λb)Yj+1(|E |r)]�+
j, jz

(�)

−ι[cos δ j (E , λb)J j (|E |r) − sgn(E ) sin δ j (E , λb)Yj (|E |r)]�−
j, jz

(�)

)
, (C2)

where N± are complex normalization constants and δ j (E , λb) are the energy-dependent scattering phase shifts. From the forms

of Eqs. (C1) and (C2), it is clear that adding n × π (with integer n) to the phase shifts yields exactly the same spinor states,
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apart from irrelevant global sign changes. Meanwhile, the

scattering phase shifts must always obey Eq. (A15), which

guarantees continuity of the wave functions at r = b. How-

ever, as explained in the main text, this condition does not

uniquely define the functions δ j (ε, u), and a choice must be

made concerning the reference situation relative to which the

wave functions get dephased.

A natural choice is to define δ j as the phase shift of

the wave function relative to the case when u = 0. More

precisely, we can think of a situation in which the central

potential is adiabatically turned on and the instantaneous

scattering eigenstates get progressively more dephased at

all energies. This convention is known to be a useful one

for Dirac fermions [41,42], and it can be achieved by en-

forcing δ j (ε → ±∞, u) → −u. It is important to remark

that this choice is needed for us to relate the change in

the number of states inside a fixed spectral window with

the phase shifts of scattering states in that window. In

Fig. 5, we depict the lowest- j phase shifts, δ1/2(ε, u) and

δ3/2(ε, u), as a function of energy when u is close to a

critical value. These curves were obtained using the pre-

vious convention for the phase shifts [δ j (ε → ±∞, u) →
−u], which can be guaranteed by the following numerical

integration:

δ j (ε, u) =

⎧
⎨
⎩

−u +
´ ε

−∞ dx d
dx

arctan
[ sgn(x)J j (|x|)J j+1(|x−u|)−sgn(x−u)J j+1(|x|)J j (|x−u|)

Yj (|x|)J j+1(|x−u|)−sgn(x)sgn(x−u)Yj+1(|x|)J j (|x−u|)
]

if ε < 0

−u +
´ ε

∞ dx d
dx

arctan
[ sgn(x)J j (|x|)J j+1(|x−u|)−sgn(x−u)J j+1(|x|)J j (|x−u|)

Yj (|x|)J j+1(|x−u|)−sgn(x)sgn(x−u)Yj+1(|x|)J j (|x−u|)
]

if ε � 0.
(C3)

Defining δ j by branches guarantees not only that the ap-

propriate asymptotic convention is obeyed but also that the

discontinuity due to zero-energy bound states is always

avoided in the integrals.

Finally, from Fig. 5 it is clear that a π discontinuity devel-

ops at ε = 0 when the impurity parameter is critical. This is

the trademark of a zero-energy bound state since, according

to Levinson’s theorem for gapless Dirac particles, the number

of bound states with well-defined j, jz, and κ is given as (see

Ma and Ni [41])

n j, jz,κ=±(u) =
1

π
[δ±

j (0+, u) + δ±
j (0−, u)]

∓
(−1) j+1/2

2
[sin2 δ±

j (0+, u) − sin2 δ±
j (0−, u)],

(C4)

which yields n j, jz,κ=±(u �= n
j
c ) = 0 and n j, jz,κ=±(u = n

j
c ) =

1. This agrees with our earlier derivation of the zero-energy

eigenstates in this system.

APPENDIX D: ADDITIONAL NUMERICAL RESULTS AND

TECHNICAL DETAILS

1. Technical description of the numerical method

Here, we provide some technical details on the numerical

method used for calculating the density of states in the lattice

model defined in Eq. (7) of Sec. V. As explained there, the

calculations used a kernel polynomial method (KPM) [48],

implemented in an efficient CPU parallelized framework de-

veloped by some of us (QUANTUM KITE [47]). We begin by

outlining the basic elements of our numerical method.

Our aim is to calculate the intensive density of states

(DoS) of a finite quantum lattice system with N degrees of

freedom (in our case, N = 4L3, as we have a simple cubic

lattice with side L and four orbitals per site). This quantity

is given generically as ρ(ε)dε = 1
N

∑
α gαδ(ε − εα )dε, where

the summation is over eigenvalues of H and gα is the degen-

eracy of each level. For our numerical purposes, ρ(ε)dε is

expanded in Chebyshev polynomials of the first kind, Tn(x),

yielding

ρ
KPM

(ε, M )dε =

{
1

π
√

λ2 − ε2
+ 2

M∑

n=1

gJ
n(M )Tn(ε/λ)

π
√

λ2 − ε2

× Tr[Tn(H̃)]

}
dε, (D1)

where M is a truncation order, H̃ = H/λ is a rescaled Hamil-

tonian with spectrum contained inside the canonical interval

[−1, 1], and ε̃ = ε/λ is a rescaled energy. Also, gJ
n(M ) =

[(M − n + 1) cos ( πn
M+1

) + cot ( π
M+1

) sin ( πn
M+1

)]/[M + 1]

is the so-called Jackson kernel, which effectively damps

FIG. 5. Plots of the phase shifts for j = 1/2 (left and middle panels) around the two first critical values u = π, 2π h̄ vF a−1, and the first

critical value u ≈ 4.4934 . . . for j = 3/2 (right panel). The main panels show the assigned asymptotic behavior, δ j (ε → ±∞, u) → −u, in

each case, while the insets depict the formation of a true π discontinuity at ε = 0 when u = u j
c .
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(a) (b)

FIG. 6. (a) Schematic depiction of the nearest-neighbor hoppings in the kinetic part of the Hamiltonian HD. Going in the direction inverse

to that indicated by the arrows means that the hopping will have the complex conjugate value. (b) Representation of the simple cubic first

Brillouin zone of the model together with the places where the eight Dirac nodes are present in the limit U (R) = 0.

the Gibbs oscillations in the truncated approximation.

This method introduces a finite spectral resolution in the

calculation which, near the band center, is η(M ) ≈ πλ/M.

The resolution becomes narrower by increasing M.

Finally, we remark that given a function f (x) which

is approximated with a finite resolution in x, the KPM-

approximated function is described as the following convo-

lution integral:

f
KPM

(x, η) =
ˆ 1

−1

dτ f (x)
e
− (x−τ )2

2η2

√
2πη

. (D2)

This result is used for most of the analysis done on our real-

space numerical results.

2. Lattice model and boundary conditions

In this brief section, we provide details and illustrate the

lattice model used in all our numerical simulations. As re-

ferred to in the main text, our basic lattice Hamiltonian HD

was obtained by discretizing the continuum Dirac Hamilto-

nian [with a scalar potential U (R)], H, in a simple cubic

lattice with four orbitals per site. This tight-binding model

Hamiltonian reads

HD =
ιv

2a

∑

R∈LC

3∑

j=1

{
�

†
R · α j · �R+aê j

− H.c.
}

+
∑

R∈LC

U (R)�†
R · �R, (D3)

where a is the lattice parameter and �
†
R = (c†

R,A,↑, c
†
R,A,↓,

c
†
R,B,↑, c

†
R,B,↓) is a vector with on-site fermionic creation oper-

ators. Here, A and B stand for two different sublattices, while

↓ and ↑ are the two spin states in each orbital. Note that

this convention for naming the local single-particle states is

consistent with the previously defined intrinsic angular mo-

mentum operator S. In Fig. 6(a), we depict this real-space

model in terms of its hoppings.

In the clean limit, U (R) = 0, this lattice model can be

diagonalized by going to k space. After doing that, we obtain

the particle-hole symmetric dispersion relation

E c/v(k) = ±
v

a

√
sin2 kxa + sin2 kya + sin2 kza, (D4)

where both the conduction and valence bands are twofold

degenerate. At half filling, this clearly reproduces a 3D Dirac

semimetal, with eight valleys placed at the time-reversal in-

variant momenta (TRIM) of the first Brillouin zone. These are

shown in Fig. 6(b). Near a TRIM, KD, the dispersion relation

takes the form

E c/v(k) ≈ ±v|k − KD|, (D5)

which is exactly the same as we had in our original con-

tinuum Hamiltonian. Nevertheless, the discretization of H0

introduces a replication of the original fourfold degenerate

Dirac cone into eight disconnected ones.

Before ending this section, it is useful to calculate the nor-

malized DoS of the clean lattice model, as it is used explicitly

in the analysis of our numerical results. Using our previous

definition, the intensive DoS for this system (assuming a sim-

ulated lattice with L3 sites) reads

ρ0(ε) =
2

4L3

∑

k∈FBZ

δ

(
ε ∓

v

a

√
sin2 kxa + sin2 kya + sin2 kza

)
.

(D6)

Due to particle-hole symmetry (ε → −ε), it suffices to

evaluate the DoS at positive energies. Numerically, we can

choose a regular mesh in the first Brillouin zone (FBZ) of

the cubic lattice (equivalent to choosing a finite real-space

cell) and determine the normalized DoS. This is shown in

Fig. 7, together with the corresponding low-energy quadratic

approximation. The latter is simply ρ0(E ) = 2E2/π2, which

is the expression used in the main text.

3. Additional results for the resonances of a single sphere

In this section, we present additional details on the numeri-

cal results presented in the main text, together with additional

results supporting our conclusions. We begin by presenting

the numerical results for the change in the density of states

due to a single extended sphere in the center of a simulated
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FIG. 7. Plot of the normalized density of states calculated for

the lattice model of Eq. (D3) (green curve). The dashed black curve

corresponds to the quadratic low-energy approximation to the DoS:

ρ0(E ) ≃ 2E 2/π 2.

supercell of size L3. Despite simulating a single sphere, we are

actually sampling over random realizations of boundary phase

twists: This well-known technique helps the convergence of

the KPM calculations, by eliminating the mean-level spacing

from the problem. This method considers the computational

domain as a supercell that gets repeated in a periodic cubic su-

perlattice. In the large-L limit, periodicity artifacts eventually

die out, and fluctuations around boundary-averaged values

scale as ∝L−3/2.

Figure 8 shows numerical results for the �ρimp(E , u)L3 =
[ρimp(E , u) − E2/2π2]L3 for values of u around π , the first

positive critical value for a bound state with j = 1/2. These

results are compared with theoretical curves (dashed black

lines), obtained from the result of FSR,

�ρ
j

imp
(E , u) = 8

2(2 j + 1)

4πL3a3

dδ j (ε, u)

dε
with ε = Eb, (D7)

convoluted with a Gaussian,

�ρ̃
j

imp
(E , u) = −

2E2

π2
+

1
√

2πη

ˆ ∞

−∞
dxe

− (E−x)2

2η2

×
[
�ρ

j

imp
(x, u) +

2x2

π2

]
, (D8)

to account for the finite spectral resolution (η) implied by the

numerical method. Note that Eq. (D7) includes a factor of

8, which accounts for the eight Dirac valleys existing in our

lattice model, as well as a 1/4 due to the four orbitals per site

in our lattice model. The numerically calculated DoS is then

normalized by the number of states, 4L3, and the clean system

has ρ(E ) ≈ 2E2/π2 for E ≈ 0.

As can be seen from Fig. 8, the agreement with the curves

obtained from the continuum theory is perfect for spheres of

radius b > 16 a with a concentration smaller than 256−3a−3

down to energy resolutions of meV. For spheres of radius

b = 8 a, one already observes deviations from the continuum

theory curves in the form of energy shifts (see bottom panels

in Fig. 8).

In Fig. 9, we represent analogous high-energy-resolution

numerical results for u ≈ 4.493 . . . corresponding to the first

resonance associated with j = 3/2. In the plots, one can also

observe the next resonance (with j = 5/2) approaching the

Dirac node. One can see that a radius of 16 a is not sufficiently

large to have a complete agreement between the numerical

peaks and the continuum theoretical curves. In the lower

panels, the calculation is repeated for a larger radius of the

spherical impurity (b = 22 a), and a perfect agreement is then

obtained for j = 3/2.

Finally, it is important to analyze directly the case when

the single impurity inside the supercell is at a critical value.

In this case, we argue that uncoupled zero-energy eigenstates

FIG. 8. Top: Plots of the change in the density of states due to a single spherical impurity of strength u = 2.8, 3.0, 3.4 v/a and radius

b = 16 a, inside a simulated supercell of volume 2563 a3. The vertical widths of the numerical curves are 95% statistical error bars, with respect

to the simultaneous sampling over random KPM vectors and boundary phase twists. The agreement with the resolution-corrected theoretical

curves is perfect over the entire range of resolutions used. Bottom: Results for a single spherical impurity of strength u = 2.8, 3.0 v/a and

radius b = 8 a, inside a simulated supercell of volume 2563 a3. Finite-size effects due to the discretization of the spherical impurity in the

lattice are now visible as a shift of the peak away from the node.

013183-11



J. P. SANTOS PIRES et al. PHYSICAL REVIEW RESEARCH 3, 013183 (2021)

FIG. 9. Top: Plots of the change in the density of states due to a single spherical impurity of strength u = 4.3, 4.6 v/a and radius b = 16 a

inside a simulated supercell of volume 2563 a3. The vertical widths of the numerical curves are 95% statistical error bars. The two visible peaks

correspond to the first resonances associated with j = 5/2 and j = 3/2, from left to right. Bottom: Same calculations done for an impurity of

radius b = 22 a. The agreement with the continuum theory is much better in this case.

exist for the configuration, contributing as 8δ(E )/L3 to the

DoS (contributions coming from different valleys, as well as

the factor of 4 due to the normalization to the total number of

orbitals, are included). One can never see such a contribution

numerically using the previous procedure, but we can analyze

its emergence as a function of the spectral resolution. More

precisely, we must have

�ρ̃
j

imp
(E , uc) = −

2E2

π2
+

1
√

2πη

ˆ ∞

−∞
dxe

− (E−x)2

2η2

×
[

8

L3
δ(x) +

2x2

π2

]

=
2η2

π2
+

8
√

2πL3η
e
− E2

2η2 , (D9)

which is compared with numerical results (for u = π ) in

Fig. 3. The agreement is perfect.

To close this section, we remark that the main conclu-

sions to be drawn from the previous single-impurity results

are threefold: (1) The continuum theory describes the DoS

peaks corresponding to resonances associated with dilute

near-critical spherical impurities, provided that this peak is

located near the Dirac node (where the continuum theory

holds), the radius of the spheres is large enough, and the

distance between spheres is sufficiently large. (2) Larger- j

resonances require the discretized spheres to be larger in order

to reproduce the continuum theory results for the same energy

resolutions. (3) Numerically, one can observe the emergence

of a Dirac δ at zero energy when the dilute impurities are all

at critical values.

4. Details on the simulation of the average DoS

for a system of random impurities

Here, we provide details on the generation of the random

distribution of nonoverlapping spheres in the lattice used to

produce the numerical results of Fig. 3(b). In order to do

this, we started by considering a simulated supercell (with

twisted boundaries) with 5123 unit cells (≈536 000 000 or-

bitals), which from the results of the previous single-impurity

simulations is sufficient to reproduce accurately the single

sphere �ρ(E ) at low energies if spheres of radius 16 a

are considered. Then, we generate the potential associated

with a regular cubic lattice composed by the centers of

such (discretized) spheres inside the simulated cell. This

procedure is equivalent to subdividing the original super-

cell side by an integer number, generating a set of identical

subcells.

FIG. 10. Scheme of the procedure used to generate a configuration of multiple random spheres inside the simulated supercell.
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Finally, each of the generated central points is randomly

displaced in three-dimensional space, and a potential strength

is randomly chosen for each impurity inside the supercell.

This procedure guarantees that there are no superpositions

in any sample, as one restricts the random displacement

of the centers to keep it inside the corresponding subcell.

A schematic is depicted in Fig. 10. Once the full poten-

tial landscape inside the supercell is created, the remaining

numerical procedure is identical to what was previously

described.
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Dirty Weyl Liquid and Emergent Superuniversality, Phys. Rev.

X 8, 031076 (2018).

[16] J. Maciejko and R. Nandkishore, Weyl semimetals with short-

range interactions, Phys. Rev. B 90, 035126 (2014).

[17] E. Fradkin, Critical behavior of disordered degenerate semi-

conductors. II. Spectrum and transport properties in mean-field

theory, Phys. Rev. B 33, 3263 (1986).

[18] R. Shindou and S. Murakami, Effects of disorder in three-

dimensional Z2 quantum spin Hall systems, Phys. Rev. B 79,

045321 (2009).

[19] P. Goswami and S. Chakravarty, Quantum Criticality between

Topological and Band Insulators in 3 + 1 Dimensions, Phys.

Rev. Lett. 107, 196803 (2011).

[20] R. Nandkishore, D. A. Huse, and S. L. Sondhi, Rare region

effects dominate weakly disordered three-dimensional Dirac

points, Phys. Rev. B 89, 245110 (2014).

[21] S. V. Syzranov, L. Radzihovsky, and V. Gurarie, Critical Trans-

port in Weakly Disordered Semiconductors and Semimetals,

Phys. Rev. Lett. 114, 166601 (2015).

[22] B. Sbierski, K. S. C. Decker, and P. W. Brouwer, Weyl node

with random vector potential, Phys. Rev. B 94, 220202(R)

(2016).

[23] J. H. Pixley, P. Goswami, and S. Das Sarma, Disorder-driven

itinerant quantum criticality of three-dimensional massless

Dirac fermions, Phys. Rev. B 93, 085103 (2016).

[24] J. H. Pixley, D. A. Huse, and S. Das Sarma, Rare-Region-

Induced Avoided Quantum Criticality in Disordered Three-

Dimensional Dirac and Weyl Semimetals, Phys. Rev. X 6,

021042 (2016).

[25] J. H. Pixley, D. A. Huse, and S. Das Sarma, Uncovering the

hidden quantum critical point in disordered massless Dirac and

Weyl semimetals, Phys. Rev. B 94, 121107(R) (2016).

[26] S. V. Syzranov, V. Gurarie, and L. Radzihovsky, Multifractality

at non-Anderson disorder-driven transitions in Weyl semimetals

and other systems, Ann. Phys. (Amsterdam) 373, 694 (2016).

[27] M. Buchhold, S. Diehl, and A. Altland, Vanishing Density of

States in Weakly Disordered Weyl Semimetals, Phys. Rev. Lett.

121, 215301 (2018).

[28] M. Buchhold, S. Diehl, and A. Altland, Nodal points of Weyl

semimetals survive the presence of moderate disorder, Phys.

Rev. B 98, 205134 (2018).

[29] K. Ziegler and A. Sinner, Short Note on the Density of States in

3D Weyl Semimetals, Phys. Rev. Lett. 121, 166401 (2018).

[30] M. Gonçalves, P. Ribeiro, E. V. Castro, and M. A. N.

Araújo, Disorder-Driven Multifractality Transition in Weyl

Nodal Loops, Phys. Rev. Lett. 124, 136405 (2020).

[31] J. H. Wilson, D. A. Huse, S. Das Sarma, and J. H. Pixley,

Avoided quantum criticality in exact numerical simulations of

a single disordered Weyl cone, Phys. Rev. B 102, 100201(R)

(2020).

[32] K. Kobayashi, M. Wada, and T. Ohtsuki, Ballistic transport

in disordered Dirac and Weyl semimetals, Phys. Rev. Res. 2,

022061(R) (2020).
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