
This is a repository copy of Deep Learning Architectures for Navigation using Forward 
Looking Sonar Images.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/171439/

Version: Accepted Version

Article:

Almanza Medina, José, Henson, Benjamin and Zakharov, Yury orcid.org/0000-0002-2193-
4334 (Accepted: 2021) Deep Learning Architectures for Navigation using Forward Looking 
Sonar Images. IEEE Access. ISSN 2169-3536 (In Press) 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

Deep Learning Architectures for
Navigation using Forward Looking
Sonar Images
JOSÉ E. ALMANZA-MEDINA, (Graduate Student Member, IEEE), BENJAMIN HENSON,
(Member, IEEE), AND YURIY V. ZAKHAROV, (Senior Member, IEEE)
Department of Electronic Engineering, University of York, York YO10 5DD, U.K.

Corresponding author: José E. Almanza-Medina (e-mail: jeam502@york.ac.uk)

J. E. Almanza-Medina acknowledges financial support from CONACyT. The work of Y. Zakharov and B. Henson was supported in part by

the U.K. EPSRC through Grants EP/P017975/1 and EP/R003297/1.

ABSTRACT This paper investigates the use of supervised Deep Learning (DL) networks to process sonar

images for underwater navigation. State-of-the-art DL techniques for micro-navigation using sequences of

optical images have been adapted to work with sonar images. Specifically, the DL networks estimate the

Forward-Looking Sonar (FLS) motion in three degrees of freedom corresponding to x- and y-translation

and rotation around z-axis. The state-of-the-art DL architectures and a proposed new architecture are

investigated for motion estimation. They are trained using images generated by a FLS simulator. The data

sets are made using pairs of consecutive images associated with labels that represent the motion of the

sonar platform between images. The results show the effectiveness of using the DL architectures, which

can provide millimeter accuracy for translation motion and below 0.1◦ for rotation motion between two

consecutive sonar images. Examples of trajectory estimation and mosaic building using simulated and real

sonar images are also presented.

INDEX TERMS deep learning, trajectory estimation, underwater micronavigation

I. INTRODUCTION

T
HE use of non-piloted underwater vehicles has become

an essential tool in exploration and surveying of un-

derwater environments [1]. Autonomous underwater vehicles

(AUVs) and remotely operated underwater vehicles (ROVs)

alleviate the dangers that humans are exposed during explo-

rations. Accurate navigation of these vehicles is required to

succeed in their tasks [2]. However, navigation underwater

is still a challenge and is an active area of research [3].

The navigation problem can be addressed on a large scale

(macronavigation) and on a small scale (micronavigation).

Technologies for macronavigation such as global positioning

system do not work underwater as they do in land-based

applications since radiowaves are highly attenuated when

passing through water bodies [4]. The use of undersea acous-

tic beacons can be used for underwater navigation [5], but it

also makes the system complexity and cost high [6] and they

have a limited operation area [7].

Micronavigation approaches have been implemented for

applications underwater. Inertial navigation systems (INS)

can be employed underwater but their accuracy is affected

by the gyroscope drift and accelerometer bias [8], [9]. Then,

INS are used as an aid to other techniques such as Dis-

placed Phase Center Antenna (DPCA) for Synthetic Aperture

Sonar (SAS) micronavigation [10], [11]. Alternatives are

visual odometry [12], [13] and visual simultaneous local-

ization and mapping (SLAM) [14], [15]. However, visual

based navigation methods are unreliable under conditions

of poor visibility caused by water turbidity or scarce il-

lumination [16]–[18]. Under these circumstances, acoustic

imaging techniques present advantages over optical imaging.

Acoustic waves can travel through the water regardless the

water transparency and work effectively at larger ranges.

The use of Deep Learning (DL) techniques applied in

image, video and audio processing [19], [20] has lead to

the solution of complex problems where deterministic and

other artificial intelligence techniques have been insufficient.

DL techniques for image registration have been developed

for such applications as optical flow and ego-motion esti-

mation [21]–[25], displacement in magnetic resonance im-

VOLUME xx, 2021 1



J. E. Almanza-Medina et al.: Deep Learning Architectures for Navigation using Forward Looking Sonar Images

ages [26], [27] and synthetic aperture radar images [28]–[30].

For underwater scenarios, some effort has been dedicated

to apply DL to sonar imaging. However, most of the studies

have been focused on object classification [31]–[35]. DL in

a non-classification problem applied to sonar images is pre-

sented in [36], where an overlap between two sonar images

is estimated. However, DL techniques for navigation using

acoustic imagery is still an area to be explored.

The work [37] presents a deterministic algorithm for at-

titude and trajectory estimation of an underwater platform

from a data set of sonar images. However, this algorithm is

not suitable for a real-time implementation due to the high

computation time. Therefore, the aim of this paper is to im-

plement a framework that uses advanced DL architectures for

real-time motion estimation from consecutive sonar images.

The DL architectures are trained using images generated by

a sonar simulator. Then, the estimates are used to reconstruct

the navigation trajectory of the platform. Additionally, a

mosaic that combines the sonar images is built following

the reconstructed trajectory. The DL architectures considered

in this paper are based on DL architectures developed for

motion estimation using optical images. Analysis of the state-

of-the-art techniques from the literature shows that the fol-

lowing architectures are sufficiently advanced to achieve high

precision motion estimation: SfMNet [22], PoseNet [23],

[24], CNN1b and CNN4b networks [21]. Different from op-

tical images, sonar images are monochrome and have lower

resolution [34], making them less informative for the motion

estimation. In this paper, we modify these architectures for

working with sonar images and investigate the performance

of the motion estimation.

From the machine learning point of view, this is a regres-

sion problem. When training a neural network for complex

regression tasks, a large amount of labeled training data is

required [38], e.g., tens of thousands images for optical flow

estimation [39], [40]. Manual labeling of training data can

be a time consuming task [41]. Furthermore, in some real

scenarios, it can be hard to obtain adequate data to train

a network [42]. Data augmentation can partly resolve this

problem by artificially enlarging the size of the training set

whilst keeping the labels [43]. The use of synthetic data

generated by computer can be an alternative to alleviate this

issue and can be used as a source of large sets of labeled

training data [38].

Synthetic data sets made entirely by computers have been

used in DL for training and testing purposes, specifically in

computer vision applications such as face recognition [44],

[45], object detection/classification [41], [42], [46], [47],

text detection and recognition [48], [49], captcha recogni-

tion [38], etc.

The present work uses a Forward-Looking Sonar (FLS)

simulator to generate large volumes of synthetic sonar im-

ages. The images are used for training and validation of the

DL networks. The process followed in this paper for training

the networks is illustrated in Fig. 1 and it consists of the

following steps:

1) The sonar simulator generates images while moving in

simulated environments and stores the sonar position

where each image is generated.

2) Data sets for training and validation are generated

using the images and positions. Each training sample is

obtained by concatenating a pair of consecutive images

into one single image. The label corresponds to three

motion parameters required to move from the position

where the first image is acquired to the position where

the second image is acquired as detailed in Section III.

The labels are quantized and normalized as described

in subsections IV-A and IV-B, respectively. A data

sample consists of a concatenated image and a label.

3) The DL network architecture is defined. Five different

architectures are considered as described in Section III.

4) The data set is split into a training set and a validation

set (95% and 5% of the whole data set, respectively).

For a fair comparison, each network is trained using

the same data.

5) The network is trained by using as input the training

samples.

6) Once the network is trained, the root mean squared

error (RMSE) for each of the three parameters is cal-

culated.

The trained networks are used to estimate the motion of

the sonar platform from a simulated or real data set obtained

along a trajectory. This process is illustrated in Fig. 2 and

described as follows:

1) An already trained network is chosen to estimate the

motion parameters from sonar images in the data set.

2) Pairs of consecutive images in the data set are concate-

nated into a single image. There are no training labels

since the network is used for estimation.

3) The concatenated images are applied to the network,

which produces estimates of three motion parameters

for every concatenated image.

4) The trajectory of the sonar is computed as described in

subsection V-A.

5) Optionally, a mosaic can be built by merging the sonar

images according to the estimated trajectory.

The remainder of this paper is organized as follows. Sec-

tion II describes the data sets and sonar parameters employed

for training and validating the networks. Section III describes

the DL architectures used for ego-motion and trajectory

estimation and modifications made to work with the sonar

images. Section IV presents a performance comparison of

the DL architectures. Section V describes the procedures and

presents results of trajectory estimation and mosaic building

using synthetic and real sonar images. Conclusions are given

in Section VI.

II. SONAR APPLICATION SCENARIOS AND DATA SETS
In this section, four sonar image data sets are described. Two

of these data sets are used for training and validating the

network. They are described in detail in subsections II-A

2 VOLUME xx, 2021



J. E. Almanza-Medina et al.: Deep Learning Architectures for Navigation using Forward Looking Sonar Images

FIGURE 1: Data flow diagram of the process for training the
DL networks with data generated by the simulator.

and II-B. Both data sets are made of synthetic images gener-

ated using the Unity engine sonar simulator [50]. The sonar

simulator is based on a ray-tracing technique. Examples of

simulation scenarios used for each data set are shown in

Fig. 3. The first one represents an underwater bottom field

covered with rocks, whilst the second one represents the

surface of a ship’s hull (Fig. 3a and 3b, respectively).

When generating data from a simulator, there always is

a modeling error, resulting in a reduced accuracy of the

estimator. The simulator parameters should be chosen to

guarantee a minimum of this error. With the sonar simulator,

such parameters as the level of noise, size and reflectivity of

objects in the simulated environments should be adjusted to

match the real scenarios where the estimator is going to be

used. The accuracy of the estimator can be improved using

training and validation with a combination of simulated and

real data. However, labeling the real data is a complicated

problem. The accuracy in real scenarios can also be improved

with sufficiently high variability of the simulated data. The

ultimate test of an estimator should be preferably done using

real data. In this paper, we use the sonar simulator to generate

a highly variable data set for training the networks and further

test the motion estimator using real data.

The simulated sensor is the DIDSON 300 sonar [51]. It has

a Field of View (FoV) of 29◦ × 14◦ (azimuth and elevation

angles, respectively), 96 beams in the azimuth dimension,

FIGURE 2: Data flow diagram of the process for motion and
trajectory estimation using a trained network.

image size of 512 × 96 pixels and intensity range between

0 and 255. The frame rate is 21 frames (images) per sec-

ond (fps). The images are generated without image noise,

which is added later for validation and network performance

enhancement purposes.

Two more data sets are described in subsections II-C

and II-D. They consist of images acquired from real sonar

sensors in the inspection of a ship’s hull and a dam wall,

respectively.

A. SIMULATED ROCKY FIELD DATA SET

For the rocky field data set, thirty different scenarios were

created and 200000 images generated. Each scenario has a

flat seabed, where three different types of geometrical objects

are placed to simulate rocks: cubes, capsules and cylinders.

Ten scenarios have an area of 30×30m and twenty scenarios

have an area of 50×50m. From each of the first ten scenarios,

5000 images were generated and from each of the other

twenty scenarios 7500 images were generated.

The difference between scenarios is in the position and

the number of elements of each type of rock. The number

of elements is defined by a square grid of size p by side,

where p is an integer number in the range from 30 to 130.

A rock is placed on each vertex of the grid. The value of p

is different for the cubes, cylinders and capsules. Therefore,

there are 3 different values of p for each scenario. Also, p

values change from scenario to scenario. Each rock is slightly

shifted from its corresponding vertex by valuesψ and ξ on the

VOLUME xx, 2021 3



J. E. Almanza-Medina et al.: Deep Learning Architectures for Navigation using Forward Looking Sonar Images

(a) (b)

FIGURE 3: (a) Simulated rocky bottom field underwater scenario. (b) Simulated ship’s hull surface scenario.

xy-plane of the grid, respectively. Both values are randomly

generated for each single rock using a uniform distribution

within the grid step. The height from the seafloor is a random

value between 0 and 0.45m. The size of a rock in each of the

three dimensions is a random value uniformly distributed in

the range from 0 to 0.45m. The rocks are rotated around each

axis by a random number in the range of -165◦ and 100◦. The

rotation value is independent for each axis.

In this sonar simulator, the acoustic reflectivity of the

objects is coded by a number between 0 and 1, as described

in [50]. The reflectivity is generated randomly by dividing the

whole seabed into a grid of 2048 by 2048 cells, where each

of the grid cells has a random value chosen from a uniform

distribution. For the rocks, the reflectivity on their surface is

assigned according to an image generated using the Perlin

algorithm for creating realistic random images [52].

The simulated sonar is looking down with a rotation angle

around x-axis of 35◦ (see Fig. 4a). The height from the

seafloor is fixed at 2.5 m. The simulator generates a large

number of sequences of 5 images. For each sequence the

sonar moves at a constant rate in each DoF; the rate is defined

randomly with a uniform distribution within limits of the

maximum motion and rotation speed of the sonar platform.

The limits for x and y-translations are ± 420mm/s and the

limit for rotation around the z-axis is ± 9.45◦/s (the maximal

displacement of ± 20mm and rotation of ± 0.45◦ between

consecutive images, respectively). For deciding on the trans-

lation limits, the specification of the Bluefin Robotics Hover-

ing Autonomous Underwater Vehicle [53] is referenced along

with the real data set described in subsection II-C. For the

rotation, the maximum speed was chosen focusing on low

rotation navigation, such as ship’s hull inspection.

After generating a sequence of 5 images, the sonar is

randomly moved to a different place into the simulated scene.

It is displaced within 3 to 4m in each of the x and y-axis,

while the rotation around the z-axis is a uniform random

value in the range between − 180 and 180◦. This large

displacement is to avoid over-generating images of the same

view and area. After moving to a new place of the scenario,

the next sequence of 5 images is generated using new motion

rates. In total 40000 sequences of five images were created.

The data set is made by concatenating pairs of consecutive

images from each sequence. Therefore 4 pairs are made from

each sequence. The total number of pairs of images in the

data set is 160000.

The data set labels correspond to the displacement of

the sonar platform from the position where an image is

obtained to the position of the next image. Each label has

three parameters that correspond to x- and y-translation and

rotation around z-axis. The data set was shuffled and divided

into training and validation sets with 95% and 5% of the data,

respectively.

B. SIMULATED SHIP’S HULL DATA SET

Fifteen scenarios were created to simulate the bottom of a

ship’s hull. In each scenario, a flat surface with two different

types of objects is simulated: (i) groups of flat tubes aligned

one beside the other and (ii) small flat cylinders that represent

sacrificial anodes. The objects are attached to the ship’s hull

surface. They can be seen in Fig. 3b. The tubes are generated

as elliptical cylinders. All the sizes are independent uni-

formly distributed random variables in the ranges as follows.

The cross-section of a tube is an ellipse with the major axis

in the range from 0 to 0.4m and the minor axis in the range

from 0 to 0.05m. The length of a tube is between 1 and 3m.

The anodes are also elliptical cylinders. Their cross-section

is facing up. The height is in the range from 0 to 0.03m.

The major and minor axis are in the range from 0.15m to

0.3m and from 0.05m to 0.1m, respectively. The position of

an object is generated as in the rocky field scenarios. The

hull surface reflectivity is generated by dividing the whole

surface into a grid of 1024 × 1024 cells. A random value is

assigned to each cell using a uniform distribution between

0.25 and 1. The reflectivity on the surface of the tubes and

4 VOLUME xx, 2021



J. E. Almanza-Medina et al.: Deep Learning Architectures for Navigation using Forward Looking Sonar Images

(a) (b)

FIGURE 4: Coordinate system of the sonar platform used for generating the data sets. Forward/backward motion of the platform
corresponds to the y-axis, whilst sideway motion corresponds to x-axis. The height from the seafloor is constant. Rotation
around the z-axis corresponds to the parameter θ. (a) Sonar height and pitch of 2.5 m and 35◦, respectively, used in the rocky
field scenarios. (b) Sonar height and pitch of 0.32 m and 0.4◦, respectively, used in ship’s hull scenarios.

anodes is defined with the Perlin algorithm. The simulated

sonar height from the hull and pitch angle are fixed at 0.32m

and 4◦, respectively (see Fig. 4b). The height and pitch were

chosen based on estimates from [37] for a real ship’s hull

data set. The sonar translation and rotation speed limits are

the same as that in the rocky field scenarios. From the fifteen

scenarios, a total of 100000 images were generated. Then

from each sequence of 5 images, 4 pairs of images are made

to make a total of 80000 pairs of images in this data set.

C. REAL SHIP’S HULL DATA SET

This data set was obtained using a Bluefin Robotics Hovering

Autonomous Underwater Vehicle [53] equipped with a DID-

SON 300 sonar as described in [54]. The data set consists

of a sequence of 4464 images that show the inspection of a

ship’s hull. A subsequence of 520 images is extracted. The

subsequence represents one single pass from end to end of

the ship, for a total length of around 10 meters.

D. REAL DAM INSPECTION DATA SET

This data set is from the inspection of a dam wall [55], [56].

It consists of 1596 images obtained using the ARIS 3000

sonar [57] while doing a single pass along the dam wall,

moving principally in the sideways direction.

III. DL NETWORKS FOR ATTITUDE-TRAJECTORY
ESTIMATION
In this section, five DL networks for trajectory estimation

are described. The first four networks are state-of-the-art

networks for trajectory estimation using optical images and

the fifth one is a new architecture.
Six degrees of freedom (DoF) are needed to represent the

motion of a sonar sensor. They correspond to the translations

in x−, y− and z− axes and the rotation around each axis. We

assume that the height from the seafloor is constant for the

duration of the sonar exploration and that rotations around

x− and y− axes are negligible. Therefore, for this work

the DL networks were adapted to work with sonar images

for motion estimation between a pair of images in 3 DoF:

∆ = [∆x,∆y,∆θ], translation on the xy-plane parallel to

the seabed and rotation around the z-axis (denoted by θ),

respectively (see Fig. 4).
The network architectures are shown in Fig. 5. The input

of all the networks is a data set of images obtained by

concatenation of a pair of images. Since each image size is

512×96 pixels, the size of the concatenated input image is

512×192 pixels.

A. SFMNET

SfMNet [22] is a self-supervised DL network designed to

estimate the camera motion from a sequence of images

(rotation and translations). The architecture of the SfMNet is

divided into two sections: the first section uses convolutional

layers to estimate the camera motion and the second section

uses deconvolutional layers to obtain a motion mask that

is used to generate a pixel motion estimate. For this paper,

we are only interested in the first section. The network

architecture is shown in Fig. 5a. The architecture from [22]

is repeated as much as possible but some modifications are

required to deal with the sonar images. In this work, ten

convolutional layers are used to build the network; only one

of the 64 channels layer from the network in [22] is used and

the other is removed. The network has shown better results

and lower training time without this layer.
The kernel size of the convolutional layers is 3× 3, except

for the first two layers, where the kernel size is 7 × 7 and

5 × 5, respectively. The stride of the first three layers is 4,

3 and 3, respectively. The rest of convolutional layers have

a stride that alternates between 2 and 1 in each layer and

the number of channels increases by two every two layers. A

batch normalization layer and a ReLU activation function are

placed after each convolutional layer, except for the last one

VOLUME xx, 2021 5



J. E. Almanza-Medina et al.: Deep Learning Architectures for Navigation using Forward Looking Sonar Images

32

12
8x
48

64
43
x1
6

128

15
x6

128

8x
3

256
8x
3

256
4x
2

512
4x
2

512
2x
1

1024
2x
1

2x
1

1024 AVG
3

Motion
3DoF

(a) SfMNet - Motion estimation section

32

25
6x
96

64
12
8x
48

128

64
x2
4

256

32
x1
2

512
16
x6

512
8x
3

512
4x
2

1024
2x
1

1x
1

1024 AVG
3

Motion
3DoF

(b) GeoNet - PoseNet

Avg
Pool

64
x2
4

64
Conv-1

Max
Pool-1

13
x5

20
Conv-2

Max
Pool-2

42
0

FC2
20
80

FC1

24
00

Concat FCNetwork

3
Motion
3DoF

(c) CNN-1b

32

Input

from
Split
Layer

64
x2
4

64
32
x1
2
128

16
x6

256

8x
3

512
4x
2

512
2x
1

512
1x
1

1x
1

1024 Avg
Pool-2

Avg
Pool-1

10
24

FC2

10
24

FC1

2x
10
24

Output

(d) QuadPoseNet (e) Split layer

Split Layer

Q
1

C
N
N
1b

Q
2

C
N
N
1b

Q
3

C
N
N
1b

Q
4

C
N
N
1b

24
00

24
00

24
00

24
00

96
00

FCNetwork

3
Motion
3DoF

(f) CNN-4b

Split
Layer

QuadPoseNet1

QuadPoseNet2

QuadPoseNet3

QuadPoseNet4

2x
10
24

2x
10
24

2x
10
24

2x
10
24

8x
10
24 3

Motion
3DoF

(g) CNN-4QuadPoseNet

FIGURE 5: DL architectures for estimation of 3 DoF of position and orientation of an underwater platform using acoustic images.

6 VOLUME xx, 2021



J. E. Almanza-Medina et al.: Deep Learning Architectures for Navigation using Forward Looking Sonar Images

that is connected to an average pooling layer. The average

pooling layer improves the performance when images are

noisy. The final layer is a regression layer that outputs the

3 estimated DoF. Dropout regularization with a rate of 50%

is applied when training the network to prevent overfitting.

B. GEONET: POSENET

GeoNet [24] is also a self-supervised DL architecture that

can perform ego-motion estimation from videos. The full

network architecture consists of three subnetworks called

DepthNet, PoseNet and ResFlowNet. For our work, we are

only interested in the PoseNet architecture (position and ori-

entation estimation). The PoseNet is based on the architecture

from [23]. This network receives a sequence of N images

as input, then 7 convolution layers with stride 2 are applied,

followed by a 1 × 1 convolution layer with 6 × (N − 1)
channels, six DoF are estimated by comparing one of the

N images with the others. All the convolutional layers,

except the last one, are followed by an ReLU activation

function and batch normalization. An average pooling layer

is applied before the output regression layer to generate the

motion estimates. This architecture was implemented and

trained. However it did not show any learning progress when

applied to the sonar images. Therefore it was modified by

adding extra convolutional layers to make a total of 9 such

layers as shown in Fig. 5b, where the number of channels

in each convolutional layer can be seen below each block.

Dropout regularization with a rate of 50% is applied during

the training. In this work, the output regression layer size is

3 × (N − 1), since it estimates three DoF. The number of

input images is N = 2.

C. CNN-1B AND CNN-4B

In [21], a DL framework with three types of CNNs to

determine the trajectory of a camera from multiple images

is presented. For our work, two of the three CNNs are

implemented and compared: CNN-1b and CNN-4b. The

network parameters of the CNN-1b are adjusted to work

with sonar images. The images are smaller than the optical

images used in this reference. Therefore, the internal layers

of the network are adjusted accordingly. The adjusted CNN1-

b can be seen in Fig. 5c. It takes an image and downsamples

it with an average pooling layer with kernel of 8 × 8. It

reduces the number of parameters to train, and, as a result,

the computational cost. After downsampling, the layers are

as follows: a convolutional kernel of size 9× 9, a 4× 4 max

pooling layer, another convolutional kernel of size 2× 2 and

a 2 × 2 max pooling layer. The outputs of each max pooling

layer are concatenated into one single fully connected layer

that is then connected to a fully connected network, made of

4 fully connected layers to obtain the motion estimate.
The parameters of the network CNN-4b are adjusted to

to match the size of the sonar images. The adjusted net-

work is shown in Fig. 5f. It uses a Split layer (Fig. 5e) to

segment each of the concatenated images into 4 quadrants,

then the corresponding quadrants are concatenated to make

a sub-image. Each sub-image is downsampled 4 times by an

average pooling layer. CNN-1b is then applied on each sub-

image. The final layer combines the outputs of the four CNN-

1b networks. The fully connected network takes the outputs

of the concatenated layers as the input. The sizes of the fully

connected layers are 2400, 1200, 600 and 300, respectively.

The final layer of the network is the regression layer.

D. CNN-4POSENET

A new architecture is proposed to exploit the segmentation

into quadrants implemented in the CNN-4b network and the

high number of layers of GeoNet-PoseNet. The complete

network is displayed in Fig. 5g. The input of the network

is the pair of concatenated images. Similarly to the CNN-

4b network, the images are split into 4 sub-images and the

quadrant of one image is concatenated with the correspond-

ing quadrant of the other image. Then each of the 4 con-

catenations is passed to a subnetwork called QuadPoseNet.

This subnetwork consists of 8 convolutional layers with a

ReLU activation function and a batch normalization layer.

The convolutional layers use the same kernel size of the

convolutional layers as the PoseNet described above. After

the last convolutional layer, an 4× 4 average pooling layer is

used, whose output applies to a fully connected layer of size

1024. Additionally, the output of the first ReLU function after

the first convolutional layer is connected to a 5 × 5 average

pooling layer. Then this layer is connected to another fully

connected layer of size 1024. The two fully connected layers

of size 1024 are combined into one single fully connected

layer of size 2×1024 to make the output of each Quad-

PoseNet. Combining layers from the beginning and end of

the series of convolutional layers follow the approach of the

original CNN-4b to combine coarse and fine features from

the images to perform the estimates. The QuadPoseNet layers

can be seen in Fig. 5d. The outputs of the four QuadPoseNets

are concatenated into another fully connected layer of size

8×1024 and then the final regression layer to compute the

motion estimates.

IV. PERFORMANCE ANALYSIS OF THE NETWORKS
A. MOTION ESTIMATION USING SIMULATED DATA

The pairs of images in polar coordinates are the input to the

networks. The labels are given by the simulator in meters

for the displacements and degrees for the rotation. The three

parameter labels are transformed into parameters measured in

the same units by a quantization process using the minimum

and maximum values of each type of label. Five bits of

resolution are used to define the quantization levels, i.e., the

labels are assigned to one of 32 values (0 to 31).
A regression output layer with the Mean Squared Error

(MSE) loss function is used to measure the estimation error

during the training. The loss function L is given by

L =
1

2SR

S
∑

k=1

‖∆k − Γk‖
2,

VOLUME xx, 2021 7



J. E. Almanza-Medina et al.: Deep Learning Architectures for Navigation using Forward Looking Sonar Images

where ∆k = [∆xk
,∆yk

,∆θk ] are the estimates for each

DoF, Γk = [Γxk
,Γyk

,Γθk ] are the quantized labels for each

DoF, k is the index that refers to the training examples in the

mini-batch, S is the mini-batch size and R is the number of

parameters to estimate, which is R = 3.

To speed up the training, the data set is split into mini-

batches (S = 4). The learning rate at the start of the training

is set to 0.0001 and it is reduced after 12 epochs. The

networks are trained until the validation loss converges. This

takes less than 32 epochs depending on the network. The

Adam optimization algorithm is used for training.

The five networks are trained using noiseless images. The

validation is performed using the validation set with noise

and without noise. Noise with parameters measured from real

images in [58] are applied to the pixel intensity levels. The

pixels that correspond to the acoustic shadows in the images

are distorted by additive Gaussian noise, with the mean 35

and a standard deviation of 8. Pixels of objects are modified

using an additive noise with the Rayleigh distribution that

represents the scattering noise from the surface of the objects.

The Rayleigh distribution has a scale parameter of 35.

The validation results for all the architectures are shown

in Table 1. It can be seen that the architectures with the

best performance, when applied to noiseless images, are

the PoseNet and the proposed CNN-4PoseNet, achieving a

similar navigation RMSE in translation in x-direction and ro-

tation around z-axis. The RMSE in translation in x-direction

is slightly smaller for PoseNet whilst in translation in y-

direction, it is smaller for CNN-4PoseNet. Validation using

noisy images shows that the proposed CNN-4PoseNet is less

sensitive to the noise than the other networks. CNN-1b and

CNN-4b architectures are the most sensitive to the noise.

Also, it can be seen that all the architectures achieve

better estimates in the y-axis, corresponding to the for-

ward/backward motion of the platform. When working with

images produced by sonars with a small azimuth FoV, it is

more difficult to estimate the sideway motion of the platform

since rotation around z-axis and x-translation result in very

similar distortions in images. The forward/backward move-

ment of the sonar means that the pixel motion is mostly in

the range axis, thus making it largely independent of the pixel

motion caused by sideway movement and rotation around the

z-axis.

To measure the similarity of the estimated parame-

ters, the cross-correlation of the estimation errors is cal-

culated. The PoseNet estimates were used to compute

the cross-correlation. The cross-correlation values obtained

are ρyx=0.025, ρyθ=0.220 and ρxθ=0.822, for the cross-

correlation between translation motions, the motion in y-

direction and the rotation and the motion in x-direction and

the rotation, respectively. From these values, it can be seen a

high correlation between errors obtained for estimates of the

sideway movement of the sonar and its z-rotation.

The SfMNet, PoseNet and CNN-4PoseNet architectures

were selected for further modifications to try to further reduce

the RMSE of motion estimation. They were chosen since

TABLE 1: Validation errors of the networks.

RMSE of motion estimation

Approach ∆x ∆y ∆θ

(mm) (mm) (deg)

Images without noise

SfMNet 4.86 2.36 0.084
PoseNet 2.81 1.44 0.049
CNN-1b 7.63 4.63 0.172
CNN-4b 4.22 2.27 0.089

CNN-4PoseNet 3.18 1.15 0.050
Images with noise

SfMNet 5.43 3.05 0.098
PoseNet 11.32 6.42 0.199
CNN-1b 13.67 10.60 0.266
CNN-4b 12.41 13.26 0.291

CNN-4PoseNet 4.87 2.63 0.083

they achieved the lowest RMSE among the architectures. The

following subsections present results of these attempts.

B. NORMALIZATION OF THE LABELS

Normalization is applied to the labels of the training and

validation data, rather than using the quantization. The labels

are normalized to their maximum values, defined by the

limits to the displacement and rotation. It was observed that

when normalizing the motion parameters to the range from

-1 to 1, the networks are not capable of learning during the

training. However, when normalizing the motion parameters

to lie in the range from -10 to 10, the networks can learn and

obtain better estimates than the quantized-labels approach for

some parameters. The benefit of using the range from -10 to

10 can be related to the magnitude of the weight values when

the internal layers of the networks are randomly initialized.

A comparison between the quantization, and normaliza-

tion ×10 is presented in Table 2. For PoseNet, the valida-

tion using noiseless images shows better estimates for y-

translation when using the normalization and almost the same

estimation errors for x-translation and z-rotation. For noisy

images, a large improvement can be seen in the estimates

when using the normalization approach. This makes the nor-

malization of labels more preferable than the quantization.

The SfMNet with the normalization achieves better es-

timates than with the quantization for all the parameters

when images are without noise. For noisy images, the nor-

malization results in slightly higher estimation errors when

compared with the quantization.

For CNN-4PoseNet, the normalization results in increas-

ing all the estimation errors.

From the results obtained, the PoseNet with normal-

ization ×10 (PoseNet-Normx10) and CNN-4PoseNet with

quantization (CNN-4PoseNet-Qua) are selected to apply fur-

ther modifications in their training strategy to reduce the

estimation error.

8 VOLUME xx, 2021



J. E. Almanza-Medina et al.: Deep Learning Architectures for Navigation using Forward Looking Sonar Images

TABLE 2: Validation errors for SfMNet, PoseNet and CNN-
4PoseNet with quantization and normalization.

RMSE of motion estimation

Approach ∆x ∆y ∆θ

(mm) (mm) (deg)

Images without noise

SfMNet-Qua 4.86 2.36 0.084
SfMNet-Normx10 4.16 2.14 0.073

PoseNet-Qua 2.81 1.44 0.049
PoseNet-Normx10 2.84 1.00 0.052

CNN-4PoseNet-Qua 3.18 1.15 0.050
CNN-4PoseNet-Normx10 5.35 1.72 0.079

Images with noise

SfMNet-Qua 5.43 3.05 0.098
SfMNet-Normx10 5.55 3.47 0.106

PoseNet-Qua 11.32 6.42 0.199
PoseNet-Normx10 6.54 3.39 0.170

CNN-4PoseNet-Qua 4.87 2.63 0.083
CNN-4PoseNet-Normx10 10.21 4.23 0.239

C. TRAINING WITH NOISY IMAGES

The rocky data set images were modified by adding a low

level of noise and they were then used for training the

PoseNet-Normx10. The noise added to the images is Gaus-

sian with a mean of 10.2 and standard deviation of 5.1, which

correspond to 4% and 2% of the maximum value of intensity

of a pixel (255), respectively. The percentages are chosen to

alter the images with a low level of noise only. This Gaussian

noise is applied to pixels in acoustic shadows. As described

in [50], the noise applied to pixels of the objects in the

images has a Rayleigh distribution. The scale parameter of

the distribution is 10.2 (4% of the maximum value of a pixel

intensity). This approach is validated using noiseless images

and images with the higher level of noise as described in

subsection IV-A.

The results presented in Table 3 show that for both, CNN-

4PoseNet-Qua and PoseNet-Normx10, training without noise

is slightly better for noiseless images. When validating

with noisy images, the PoseNet-Normx10 shows better es-

timates by the network trained with noisy images. The CNN-

4PoseNet-Qua trained with noisy images obtains similar

results to training with noiseless images. The results from

PoseNet-Normx10 suggest that the level of noise in training

images should be considered when the networks are applied

to real data.

Based on the results obtained when training with quanti-

zation, normalization and using noisy images, the PoseNet-

Normx10 is selected to continue with further modifications to

reduce the estimation error. The CNN-4PoseNet is discarded

given that it shows smaller improvement. Also, the CNN-

4PoseNet is less suitable for a real-time implementation since

its training and testing times are between 2 and 3 times higher

compared to the PoseNet.

TABLE 3: Validation errors when training the PoseNet-
Normx10 using images with noise and without noise.

RMSE of motion estimation

Approach ∆x ∆y ∆θ

(mm) (mm) (deg)

Images without noise

PoseNet-Normx10 2.84 1.00 0.052
PoseNet-Normx10wNoise 2.94 1.26 0.056

CNN-4PoseNet-Qua 3.18 1.15 0.050
CNN-4PoseNet-QuaNoise 5.00 2.66 0.081

Images with noise

PoseNet-Normx10 6.54 3.39 0.170
PoseNet-Normx10wNoise 3.63 1.50 0.070

CNN-4PoseNet-Qua 4.87 2.63 0.083
CNN-4PoseNet-QuaNoise 5.71 1.61 0.065

D. CONCATENATION OF 3 IMAGES

Rather than using two concatenated images as input, 3 im-

ages are concatenated and used for training the PoseNet-

Normx10. The basis of this is to give more information to

the network and thus reduce the estimation error. From each

sequence of 5 images from the rocky data set, 3 training

samples are generated by concatenating 3 consecutive im-

ages, resulting in a total of 90000 samples. The label is the

3 DoF of motion of the platform that corresponds to the

constant motion rate for each sequence. The results are shown

in Table 4. The 3-image approach has an improvement in

the estimation accuracy and higher robustness to noise in

images in both axes for translation motion compared to the

2-image approach. However the error in rotation estimation

when using noisy images is increased.

TABLE 4: Validation errors for concatenation of 2 and 3
images in PoseNet-Normx10.

RMSE of motion estimation

Approach ∆x ∆y ∆θ

(mm) (mm) (deg)

Images without noise

Using 2 images 2.84 1.00 0.052
Using 3 images 2.70 0.87 0.046

Images with noise

Using 2 images 6.54 3.39 0.170
Using 3 images 4.96 1.38 0.227

E. USING WIDER IMAGES

The sonar parameters were modified to have 512 beams and

a FoV of 60◦ × 12◦ (azimuth and elevation angles, respec-

tively). Having more beams and therefore more information

in the sideway motion is expected to reduce the estimation

error for motion along x-axis and z-rotation. A small data set

of 40000 pairs of images was generated. The images were

VOLUME xx, 2021 9



J. E. Almanza-Medina et al.: Deep Learning Architectures for Navigation using Forward Looking Sonar Images

(a) (b) (c)

FIGURE 6: Concatenated pairs of sonar images with different azimuth FoV, number of beams and type of concatenation.
(a) 29◦/96 beams - horizontal concatenation. (b) 60◦/512 beams - horizontal concatenation. (c) 60◦/512 beams - vertical
concatenation.

TABLE 5: Validation errors for 29◦ and 60◦ azimuth FoV images with different ways of concatenation for PoseNet-Normx10.

RMSE of motion estimation

Input to the Images without noise Images with noise

network ∆x ∆y ∆θ ∆x ∆y ∆θ

(mm) (mm) (deg) (mm) (mm) (deg)

Original Images - 29◦/96 beams 2.75 1.71 0.053 5.92 4.16 0.120
Wide Images - 60◦/512 beams - Horizontal concat 2.38 2.55 0.054 9.17 9.21 0.210

Wide Images - 60◦/512 beams - Vertical concat 2.39 2.53 0.057 8.93 8.92 0.206

obtained using the first 10 rocky field scenarios of 5000 im-

ages each. To generate the images, the sonar follows the same

positions as for generation of the original rocky field data set.

We have considered two types of concatenation of images,

vertical and horizontal, i.e., one image beside the other and

one image above the other, respectively. The purpose of this

is to investigate if the network can achieve a better result

depending on the way that two images are concatenated. The

labels are set according to the movement of the sonar between

images as before. For visualization, examples of pairs of

concatenated images for the original data set (29◦/96 beams)

and the horizontal/vertical concatenated wider images data

set (60◦/512 beams) are presented in Fig. 6.

The network used for training is the PoseNet-Normx10.

The results obtained can be seen in Table 5. For a fair

comparison when using the original images, the network

was re-trained using only the first 40000 pairs of the data

set. The results show that wider images provide slightly

better sideway estimation with noiseless images than the

original ones but there is an increase in the error for the

forward/backward motion estimation. The error is higher

compared to the original network when validating with noisy

images. The higher errors for the wider images with noise

can be due to the fact that wider images have a larger area

with black pixels (with no information). Since the network

is trained using noiseless images, when noise is added to

images for validation, it produces a larger area with random

pixel values in the images with FoV of 60◦, compared to the

images with FoV of 29◦, which may lead to poorer estimates.

Also, it is observed that the type of concatenation does not

influence the estimation result.

F. REGRESSION LAYER WITH PENALIZATION

The regression layer was modified to penalize estimates in

the cases where they fall outside the predefined range of

the motion parameters. Each DoF can be penalized indepen-

dently. The equation that describes the penalty for each DoF

is

Pjk =







γ(∆jk −B1)
2 ∆jk < B1

0 B1 ≤ ∆jk ≤ B2

γ(∆jk −B2)
2 ∆jk > B2

,

where j = x, y or θ. γ is a penalization parameter set to 100.

B1 and B2 are the boundaries defining the non-penalization

interval and they are set to -10 and 10, respectively, since the

PoseNet-Normx10 architecture is used. Then, the equation

for the loss with penalization LP is

LP =
1

2SR

S
∑

k=1

(

‖∆k − Γk‖
2 + Pxk

+ Pyk
+ Pθk

)

.

10 VOLUME xx, 2021



J. E. Almanza-Medina et al.: Deep Learning Architectures for Navigation using Forward Looking Sonar Images

The network is trained using the rocky fields data set

and the resulting RMSE for each DoF is shown in Table 6.

There is a small difference between using and not using

penalization for noiseless images but it is still better not to use

the penalization. For noisy images, there is an improvement

in translation estimation accuracy but the rotation estimation

accuracy is worse. In general, introducing such a penalty does

not provide significant improvement.

TABLE 6: Validation errors for the PoseNet-Normx10 when
trained with and without penalization.

RMSE of motion estimation

Approach ∆x ∆y ∆θ

(mm) (mm) (deg)

Images without noise

Without penalization 2.84 1.00 0.052
With penalization 3.02 1.09 0.051

Images with noise

Without penalization 6.54 3.39 0.170
With penalization 5.80 2.67 0.266

G. TRANSFORMATION OF POLAR TO CARTESIAN

COORDINATES

The images from the rocky field data set are transformed

from polar to cartesian coordinates. The purpose of this

transformation is to reduce the sideway RMSE assuming that

the higher error is due to the correlation with the rotation. The

images in cartesian coordinates are used to train the PoseNet-

Normx10.

Additionally, a network that combines images in cartesian

and polar coordinates is designed. The combined network

takes pairs of images in each coordinate system at the same

time and trains a PoseNet-Normx10 network for each type

of coordinates. The outputs of both subnetworks are con-

catenated to a fully connected layer before obtaining the

final estimate. The validation results can be seen in Table 7.

The RMSEs obtained using cartesian coordinates are slightly

higher than the ones obtained with polar coordinates. This

could be due to the interpolation error when transforming

from polar to cartesian coordinates. However, the results for

the combined network show some improvement in estimation

of each parameter, especially for noisy images.

H. COMPARISON WITH A DETERMINISTIC METHOD

FOR ATTITUDE-TRAJECTORY ESTIMATION

The DL approach used in this paper is compared with the

non-DL method presented in [37]. The method in [37] is a

deterministic algorithm for attitude and trajectory estimation.

It works with sequences of sonar images and it is capable

of estimating pixel displacements between two sonar images

with a subpixel accuracy. The pixel displacements are used

to estimate the attitude and trajectory of the imaging sonar

sensor. In this method, the same three parameters of the sen-

TABLE 7: Validation errors for the PoseNet-Normx10 when
trained with images in polar and cartesian coordinates and
PoseNet-Normx10 with a combination of polar and cartesian
coordinates.

RMSE of motion estimation

Approach ∆x ∆y ∆θ

(mm) (mm) (deg)

Images without noise

Polar 2.84 1.00 0.052
Cartesian 3.36 1.08 0.051
Combined 2.60 1.07 0.047

Images with noise

Polar 6.54 3.39 0.170
Cartesian 9.75 3.33 0.111
Combined 4.99 2.27 0.086

sor motion are estimated (∆x,∆y and ∆θ), so it is possible

to make a direct comparison with the DL approach.

For this comparison, only 100 out of the 8000 pairs of

images from the validation data set were randomly chosen

from the rocky field test set. The full test set is not used

due to the high computational time required by the non-

DL approach to compute the estimates. The comparison is

performed using images with and without noise. PoseNet-

Normx10 and its version trained with noisy images are used

for the comparison. Both methods are implemented in Matlab

and run on the same PC with Intel Core i5-6500 processor

and 8GB of RAM.

The results are presented in Table 8. They show a better

performance of the DL techniques in almost all the parame-

ters, except in the forward/backward motion estimation using

images with noise.

TABLE 8: Validation errors for the DL and non-DL techniques
using 100 pairs of images.

RMSE of motion estimation

Approach ∆x ∆y ∆θ

(mm) (mm) (deg)

Images without noise

Non-DL 8.39 1.29 0.175
PoseNet-Normx10 3.33 1.08 0.054

PoseNet-Normx10wNoise 2.95 1.40 0.052
Images with noise

Non-DL 8.16 1.31 0.178
PoseNet-Normx10 7.03 3.25 0.165

PoseNet-Normx10wNoise 3.43 1.56 0.059

The non-DL approach presents a robust performance re-

gardless the images are with or without noise. Overall,

the best performance is achieved by the PoseNet-Normx10

trained with noisy images.

Furthermore, Table 9 shows the running time that each

method requires to estimate from 100 pairs of images. It can

VOLUME xx, 2021 11



J. E. Almanza-Medina et al.: Deep Learning Architectures for Navigation using Forward Looking Sonar Images

be seen that the running time is significantly higher for the

non-DL technique compared to the DL network. The DL

running time is 5.69s which can be split in two steps: the

image concatenation (1.27s) and the estimation of the sonar

motion (4.42s).

TABLE 9: Running times of the non-DL and DL methods
using a data set of 100 pairs of images.

Method Running time (s)

Non-DL 2568.74
DL 5.69

Therefore, the DL method can obtain estimates for each

pair of images every 56.9ms. This suggests that this method

could be implemented in real-time considering frame rates

of an order of 20 fps (50 ms). However, a set of pretrained

networks for different sonar parameters (such as the pitch

angle and height) should be generated in advance.

I. DISCUSSION ABOUT MODIFICATIONS OF THE

NETWORKS

In this section, we considered several approaches to training

a network to estimate the motion of an underwater platform

from acoustic images generated by a sonar. Five networks

were implemented and validated, then the best networks were

modified to improve their performance. The following points

summarize the results obtained:

• The five networks were trained using quantized labels

with images with and without noise. The best perfor-

mance with noiseless images was provided by PoseNet

and CNN-4PoseNet, whilst for images with noise, the

best performance was provided by SfMNet.

• CNN-4PoseNet takes between 2 to 3 times longer to

train, compared to the PoseNet and SfMNet.

• The CNN-1b and CNN-4b show a poorer performance

compared to the other networks.

• The analysis of the estimation errors shows a high

correlation between the errors of the sideways motion

and the rotation.

• The SfMNet, PoseNet and CNN-4PoseNet show bet-

ter results when trained using normalization of the la-

bels rather than quantization. The best normalization is

found to be within the range [-10, 10] with respect to the

maximum motion values.

• The normalization results in a high improvement in the

PoseNet performance when trained with noisy images

and a similar performance to the quantization approach

for noiseless images. The SfMNet shows similar results

when trained with quantization and normalization of

labels. The CNN-4PoseNet performance is observed to

be worse with the normalization compared with the

quantization. Therefore the PoseNet with normalization

(PoseNet-Normx10) and the CNN-4PoseNet with quan-

tization (CNN-4PoseNet-Qua) are selected for further

modifications.

• A low level noise added to the images used for training

the PoseNet-Normx10 and CNN-4PoseNet-Qua slightly

increases the estimation errors when tested with noise-

less images for both the networks. However, it consider-

ably reduces the estimation error provided by PoseNet

whereas the CNN-4PoseNet shows a similar perfor-

mance when trained with noiseless and noisy images.

Therefore PoseNet-Normx10 is selected for further op-

timization.

• Training the PoseNet-Normx10 with 3 concatenated

images rather than 2 images, shows only slight improve-

ment in the performance.

• A small dataset of wider images (higher aperture of the

sonar in the azimuth dimension) was generated and used

for training the PoseNet-Normx10. It shows estimation

errors similar to the case of the original size images

for noiseless images but an increase of the errors for

noisy images. This can be due to larger image areas

affected by noise but not carrying objects useful for

motion estimation.

• Concatenating the images one besides the other (hori-

zontally) or one above the other (vertically) is irrelevant

for the networks performance. Both approaches show

similar results.

• The loss function of the PoseNet-Normx10 was mod-

ified to penalize the cases when a parameter estimate

falls outside the range [-10, 10]. The results show a sim-

ilar performance when testing with noiseless images.

With noisy images, it can be seen a small improvement

for sideways and forward motion estimation but worse

estimates for the rotation.

• The PoseNet-Normx10 trained with images in cartesian

coordinates shows a slight increase in the estimation

errors compared to the network trained with images in

the original polar coordinates.

• The network that combines the images in polar and

cartesian coordinates results in a smaller estimation er-

ror compared to the cases of using the polar or cartesian

coordinates only.

• The PoseNet-Normx10 and PoseNet-Normx10wNoise

have been compared with a non-DL method. Both DL

networks achieve better estimation performance than the

non-DL method.

• The computing time of the motion estimation is sig-

nificantly reduced (by hundreds of times) when using

the DL estimator instead of the non-DL method. The

computing time for the DL approach is 56.9 ms for each

pair of images, suggesting that this technique can be

used in real-time applications.

V. TRAJECTORY ESTIMATION
A. TRAJECTORY ESTIMATION USING SYNTHETIC DATA

The already trained PoseNet-Normx10 network is used for

estimating the trajectory of a sonar platform. Using the sonar

simulator, a new data set was generated for validating the tra-

jectory estimator. The scenario shown in Fig. 7 was used and

12 VOLUME xx, 2021



J. E. Almanza-Medina et al.: Deep Learning Architectures for Navigation using Forward Looking Sonar Images

FIGURE 7: Scenario for testing and generating images for
mosaics. The red line represents the trajectory of the platform.
The black arrows show for every 50 images the sonar orien-
tation. The sonar keeps looking forward when moving along
the trajectory.

a trajectory with 904 noiseless images was created, keeping

the same pitch angle and height from the seafloor. The motion

of the sonar is in the sideway direction with a constant accel-

eration from 0.105 to 0.378 m/s along the trajectory. Every

point of the trajectory is represented using global cartesian

coordinates (xi, yi) and the platform orientation relative to

the global scenario orientation (θi), which corresponds to 0◦

when facing in the y-axis direction; i = 1, 2, 3, ...,M − 1, is

the index for the image pairs and M is the number of images

obtained on the trajectory. The first point of the trajectory is

placed at the origin (x1 = 0, y1 = 0, θ1 = 0).

The coordinates are assumed to be on a plane parallel to the

seabed. The trajectory points are calculated as follows [59]:

θi+1 = θi +∆θi ,

xi+1 = xi +∆yi
sin(θi +∆θi) + ∆xi

cos(θi +∆θi),

yi+1 = yi +∆yi
cos(θi +∆θi)−∆xi

sin(θi +∆θi),

where ∆xi
,∆yi

and ∆θi are the x and y-translation and z-

rotation estimates for each pair of images, respectively.

An example mosaic built from the images using the motion

estimates can be seen in Fig. 8c. The images are mapped to

the global coordinates according to the reconstructed trajec-

tory. To produce the mosaic, the pixel intensities at each point

are interpolated from the image pixels. The intensity of a

pixel in an image is averaged over images when they overlap.

For clarity, only the pixels that correspond to 24 center beams

of each image are used for interpolation, except for the first

and last images. In Fig. 8b, it can be seen that the shape of

the trajectory and orientation are similar to the ground truth

provided by the simulator. However, the estimates tend to be

smaller than the ground truth.

Fig. 9a shows estimated and ground truth trajectories from

a data set of 904 images where the motion is performed in the

forward direction with a constant acceleration corresponding

to the speed from 0.105 to 0.378 m/s. From the shape of

the estimated trajectory, it can be seen that in the forward

direction the estimates are more accurate. The size of the

estimated trajectory in the forward direction is almost the

same as the ground truth.
In Fig. 9b, a forward moving trajectory is displayed for the

case of acceleration and deceleration. During the generation

of this data set, the sonar platform moves always forward

and accelerates and decelerates with a minimum speed of

0.063 m/s and a maximum speed of 0.357 m/s. The recovered

trajectory is close to the ground truth.

B. TRAJECTORY ESTIMATION USING THE SHIP’S HULL

REAL DATA

The data set acquired by a real sonar (see subsection II-C)

is used to validate the performance of the DL approach

for attitude and trajectory estimation. The PoseNet-Normx10

network is trained using the simulated ship’s hull described in

subsection II-B. The network is trained three times applying

different levels of noise on the images: noiseless, low level

noise, which is the one used in subsection IV-C and high

level noise, which is the same as that used for validation of

the networks, since this is the level measured in the same

real data set in [58]. A comparison of training with the

three different levels of noise is presented in Table 10. The

network trained with the high level of noise is selected for

the trajectory estimation since it shows a better RMSE in the

validation with noise, which is assumed to be similar to the

real data set.

TABLE 10: Performance of the PoseNet-Normx10 network for
the simulated ship’s hull data set with different levels of noise

RMSE of motion estimation

Approach ∆x ∆y ∆θ

(mm) (mm) (deg)

Images without noise

Noiseless images 2.99 1.63 0.045
Low level noise images 2.93 1.83 0.045
High level noise images 3.20 1.75 0.052

Images with noise

Noiseless images 4.41 2.72 0.067
Low level noise images 3.98 2.66 0.059
High level noise images 3.22 1.77 0.052

The already trained network is fed with the real data set to

estimate the displacements between each pair of consecutive

images. From the estimates the sonar trajectory is recovered

as described in subsection V-A. Based on the shape and

length of the obtained trajectory, the estimated trajectory

seems to be shorter than expected in the sonar sideway

direction. This assumption is based in the works [17], [37],

which use the same real data set to estimate the trajectory

of the sonar. The length of the ship’s hull is estimated to

be approximately 10 m. Therefore, all the estimates in the

sideway direction are multiplied by a constant coefficient

VOLUME xx, 2021 13



J. E. Almanza-Medina et al.: Deep Learning Architectures for Navigation using Forward Looking Sonar Images

Azimuth

R
an

g
e

(a)

-10 -8 -6 -4 -2 0

Sideway position [m]

-1

0

1

2

3

4

5

6

F
o
rw

ar
d
/B

ac
k
w

ar
d
 p

o
si

ti
o
n
 [

m
]

Estimated trajectory

Ground truth trajectory

(b)

-10 -8 -6 -4 -2 0

Sideway position [m]

-1

0

1

2

3

4

5

6

F
o
rw

ar
d
/B

ac
k
w

ar
d
 p

o
si

ti
o
n
 [

m
]

(c)

FIGURE 8: (a) Single sonar image in polar coordinates used for constructing the mosaic. (b) Mosaic of a data set of 904
simulated images. (c) Green lines with cyan arrows represent ground truth trajectory and pose of the sonar, respectively, whilst
red line and dark blue arrows represent estimated trajectory and pose, respectively.

-1 -0.5 0 0.5 1

Sideway position [m]

0

2

4

6

8

10

F
o
rw

ar
d
/B

ac
k
w

ar
d
 p

o
si

ti
o
n
 [

m
]

Estimated trajectory

Ground truth trajectory

0 200 400 600 800

Image

0

0.2

0.4

Speed [m/s]

(a)

-1 -0.5 0 0.5 1

Sideway position [m]

0

2

4

6

8

10

F
o
rw

ar
d
/B

ac
k
w

ar
d
 p

o
si

ti
o
n
 [

m
]

Estimated trajectory

Ground truth trajectory

0 200 400 600 800

Image

0

0.2

0.4

Speed [m/s]

(b)

FIGURE 9: (a) Trajectory of a sonar that moves in forward
direction with constant acceleration. (b) Trajectory of a sonar
that moves in forward direction with acceleration and deceler-
ation.

2.3 to provide a better match to the hull size. The need of

such coefficient could be related to inaccuracies of setting

the sonar parameters that are used by the simulator to create

the training data set, like the height and sonar pitch angle.

By using the compensated trajectory, the images are

merged into the mosaic shown in Fig. 10b. One single sonar

image that is used to build the mosaic is presented in polar

coordinates in Fig. 10a, corresponding to a fragment of

the ship’s keel, at the center-right of the mosaic. From the

mosaic, it can be seen that motion estimates are reasonably

accurate, with a few distortions in the image. Some sacrificial

anodes and the keel are clearly recognizable.

C. TRAJECTORY ESTIMATION USING THE DAM

INSPECTION REAL DATA

The data set described in subsection II-D was acquired by

a real sonar during a dam inspection. The already trained

PoseNet-Normx10wNoise is fed with the images from the

data set to estimate the trajectory followed by the sonar. This

network is selected due to similarity of objects in the images

of the real data set with the rocky fields training set. However,

the real data set presents significant differences that affect the

estimate, such as the pitch angle of the sonar and its distance

from the seabed. Therefore, the estimates obtained by the

network are scale compensated to generate a more accurate

trajectory. The compensation multiplies the estimates in the

forward/backward motion and the sideways motion by a

constant coefficient (4.0 and 9.0, respectively). The size of

the sonar images is 1344 × 128 pixels and the FoV of the

sonar is 30◦ along 128 beams in the azimuth dimension. To

match the input size of the network, only pixels in a window

of the size 512 × 96 in the center of each image are used for

estimation. The estimates are used to generate the full sonar

trajectory. Then the sonar images are merged into a mosaic

(Fig. 11) by following the estimated trajectory. The dam wall

can be seen as a continuous white line at the bottom of the

mosaic. The data set contains sharp discontinuities, also the

presence of fish in some images can cause low quality of the

estimates and affect the full trajectory estimation. However,

it can be seen that using a trained network, it is possible to

produce a decent mosaic even if the sonar features of the

training set are different. The mosaic is highly similar to the

mosaic built in [60], which uses the deterministic method for

the motion estimation followed by regularized P-splines for

smoothing the trajectory.

14 VOLUME xx, 2021



J. E. Almanza-Medina et al.: Deep Learning Architectures for Navigation using Forward Looking Sonar Images

Azimuth

R
an

g
e

(a)

-12 -10 -8 -6 -4 -2 0

Sideway position [m]

0

1

2

3

4

5

6

7

F
o
rw

ar
d
/B

ac
k
w

ar
d
 p

o
si

ti
o
n
 [

m
]

(b)

FIGURE 10: (a) Single real sonar image in polar coordinates used for constructing the mosaic. (b) Trajectory and mosaic
obtained using 520 images of the ship’s hull real data. The network used for estimation is the PoseNet-Normx10 trained with the
simulated ship’s hull data set with noise.

-30 -20 -10 0 10 20 30

Sideway position [m]

-5

0

5

10

15

20

F
o
rw

ar
d
/B

ac
k
w

ar
d
 p

o
si

ti
o
n
 [

m
]

FIGURE 11: Trajectory and mosaic obtained using 1596 images of the dam inspection data set [55], [56]. The network used for
estimation is PoseNet-Normx10wNoise trained with the simulated rocky field data set. The sonar sensor trajectory is shown in
red and the attitude as a blue arrow every 30 images.

VI. CONCLUSIONS

The work presented in this paper is an attempt to use DL

approaches for trajectory estimation using sonar images. The

basis of this work is to use large volumes of synthetic images

generated by a sonar simulator to train the DL networks,

and then apply the already trained network to real data. The

use of synthetic data provides the ground truth data needed

to perform supervised learning and quantitatively validate

the motion estimates. Several DL architectures and their

modified versions are implemented, compared and presented

VOLUME xx, 2021 15



J. E. Almanza-Medina et al.: Deep Learning Architectures for Navigation using Forward Looking Sonar Images

in this paper. The results obtained using different network

architectures show that a millimeter accuracy for translation

motion and below 0.1◦ for rotation motion can be achieved.

Networks trained with simulated data and then used for

estimation with real data sets can obtain reasonably good

estimates even when the sonar features between the training

set and the real data sets are different, by taking into account

scale compensation parameters. The PoseNet architecture

and its variations present the best results compared to the

other networks. The PoseNet with normalized labels is ap-

plied to real sonar data sets, obtaining a good trajectory

estimation that is used to construct mosaics by merging the

images. The quality and realism of the simulated images used

for training are important in the motion estimation applied to

real data. For example, the use of the appropriate level of

noise in the synthetic training images improved the accuracy

of the trajectory estimation. The DL network obtained more

accurate motion estimates using significantly lower computa-

tion time compared to the deterministic algorithm. However,

the DL network requires retraining with a new data set if the

sonar parameters change. One solution for this can be the

use of multiple pretrained networks whose training data set

is adjusted to different sonar parameters.

ACKNOWLEDGMENT

The authors would like to thank Prof. Y. Petillot, School of

EPS, Heriot-Watt University and Dr. N. Hurtós for providing

the ship’s hull data set; Dr. Luis A. Conti, University of São

Paulo and Acquest Subaquatic Geology and Geophysics for

providing the dam wall inspection data.

REFERENCES

[1] H. Yu, W. Lu, D. Liu, Y. Han, and Q. Wu, “Speeding up gaussian belief
space planning for underwater robots through a covariance upper bound,”
IEEE Access, vol. 7, pp. 121 961–121 974, 2019.

[2] H. Huang, J. Tang, B. Zhang, J. Chen, J. Zhang, and X. Song, “A novel
nonlinear algorithm for non-gaussian noises and measurement information
loss in underwater navigation,” IEEE Access, vol. 8, pp. 118 472–118 484,
2020.

[3] J. González-García, A. Gómez-Espinosa, E. Cuan-Urquizo, L. G. García-
Valdovinos, T. Salgado-Jiménez, and J. A. E. Cabello, “Autonomous
underwater vehicles: Localization, navigation, and communication for
collaborative missions,” Applied Sciences, vol. 10, no. 4, p. 1256, 2020.

[4] Ø. Sture, P. Norgren, and M. Ludvigsen, “Trajectory planning for naviga-
tion aiding of autonomous underwater vehicles,” IEEE Access, vol. 8, pp.
116 586–116 604, 2020.

[5] J. Zhang, Y. Han, C. Zheng, and D. Sun, “Underwater target localization
using long baseline positioning system,” Applied Acoustics, vol. 111, pp.
129–134, 2016.

[6] A. Mallios, P. Ridao, D. Ribas, M. Carreras, and R. Camilli, “Toward
autonomous exploration in confined underwater environments,” Journal of
Field Robotics, vol. 33, no. 7, pp. 994–1012, 2016.

[7] D. Pick, E. Wolbrecht, M. Anderson, D. Edwards, and J. Canning, “Uncer-
tainty analysis of ultra-short-and long-baseline localization systems for au-
tonomous underwater vehicles,” in OCEANS 2018 MTS/IEEE Charleston,
2018, pp. 1–6.

[8] W. Gao, Y. Zhang, and J. Wang, “Research on initial alignment and
self-calibration of rotary strapdown inertial navigation systems,” Sensors,
vol. 15, no. 2, pp. 3154–3171, 2015.

[9] Q. Wu, K. Li, and J. Liu, “The asynchronous gimbal-rotation-based
calibration method for lever-arm errors of two rotational inertial navigation
systems,” IEEE Access, vol. 7, pp. 4653–4663, 2018.

[10] F. Sun, W. Xu, and J. Li, “Enhancement of the aided inertial navigation
system for an auv via micronavigation,” in MTS/IEEE OCEANS 2010,
Seattle.

[11] S. Caporale and Y. Petillot, “A new framework for synthetic aperture sonar
micronavigation,” arXiv preprint arXiv:1707.08488, 2017.

[12] S. Wirth, P. L. N. Carrasco, and G. O. Codina, “Visual odometry for
autonomous underwater vehicles,” in MTS/IEEE OCEANS 2013, Bergen,
2013, pp. 1–6.

[13] S. S. da Costa Botelho, P. Drews, G. L. Oliveira, and
M. da Silva Figueiredo, “Visual odometry and mapping for underwater
autonomous vehicles,” in 6th IEEE Latin American Robotics Symposium
(LARS), 2009, 2009, pp. 1–6.

[14] A. Kim and R. M. Eustice, “Real-time visual SLAM for autonomous
underwater hull inspection using visual saliency,” IEEE Transactions on
Robotics, vol. 29, no. 3, pp. 719–733, 2013.

[15] M. Meireles, R. Lourenço, A. Dias, J. M. Almeida, H. Silva, and A. Mar-
tins, “Real time visual SLAM for underwater robotic inspection,” in
MTS/IEEE OCEANS 2014, St. John’s, Newfoundland, 2014, pp. 1–5.

[16] R. Garcia and N. Gracias, “Detection of interest points in turbid underwa-
ter images,” in IEEE OCEANS 2011, Santander, Spain, 2011, pp. 1–9.

[17] N. Hurtós, D. Ribas, X. Cufí, Y. Petillot, and J. Salvi, “Fourier-based
registration for robust forward-looking sonar mosaicing in low-visibility
underwater environments,” Journal of Field Robotics, vol. 32, no. 1, pp.
123–151, 2015.

[18] F. Ferreira, D. Machado, G. Ferri, S. Dugelay, and J. Potter, “Underwater
optical and acoustic imaging: A time for fusion? a brief overview of the
state-of-the-art,” in OCEANS 2016 MTS/IEEE Monterey, 2016, pp. 1–6.

[19] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural
Networks, vol. 61, pp. 85–117, 2015.

[20] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, p. 436, 2015.

[21] G. Costante, M. Mancini, P. Valigi, and T. A. Ciarfuglia, “Exploring repre-
sentation learning with CNNs for frame-to-frame ego-motion estimation,”
IEEE Robotics and Automation Letters, vol. 1, no. 1, pp. 18–25, 2015.

[22] S. Vijayanarasimhan, S. Ricco, C. Schmid, R. Sukthankar, and
K. Fragkiadaki, “SfM-Net: Learning of structure and motion from video,”
arXiv preprint arXiv:1704.07804, 2017, accessed: 2020-09-14. [Online].
Available: https://arxiv.org/pdf/1704.07804.pdf

[23] T. Zhou, M. Brown, N. Snavely, and D. G. Lowe, “Unsupervised learning
of depth and ego-motion from video,” in Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, 2017, pp. 1851–1858.

[24] Z. Yin and J. Shi, “GeoNet: Unsupervised learning of dense depth,
optical flow and camera pose,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2018, pp. 1983–1992.

[25] B. Teixeira, H. Silva, A. Matos, and E. Silva, “Deep learning for underwa-
ter visual odometry estimation,” IEEE Access, vol. 8, pp. 44 687–44 701,
2020.

[26] H. Li and Y. Fan, “Non-rigid image registration using self-supervised fully
convolutional networks without training data,” in 15th IEEE International
Symposium on Biomedical Imaging (ISBI 2018), 2018, pp. 1075–1078.

[27] B. D. de Vos, F. F. Berendsen, M. A. Viergever, M. Staring, and I. Išgum,
“End-to-end unsupervised deformable image registration with a convolu-
tional neural network,” in Deep Learning in Medical Image Analysis and
Multimodal Learning for Clinical Decision Support. Springer, 2017, pp.
204–212.

[28] D. Quan, S. Wang, M. Ning, T. Xiong, and L. Jiao, “Using deep neural
networks for synthetic aperture radar image registration,” in IEEE Interna-
tional Geoscience and Remote Sensing Symposium (IGARSS), 2016, pp.
2799–2802.

[29] S. Wang, D. Quan, X. Liang, M. Ning, Y. Guo, and L. Jiao, “A deep
learning framework for remote sensing image registration,” ISPRS Journal
of Photogrammetry and Remote Sensing, vol. 145, pp. 148–164, 2018.

[30] H. M. Keshk and X.-C. Yin, “Change detection in SAR images based on
deep learning,” International Journal of Aeronautical and Space Sciences,
pp. 1–11, 2019.

[31] D. P. Williams and S. Dugelay, “Multi-view SAS image classification
using deep learning,” in MTS/IEEE OCEANS, Monterey, 2016, pp. 1–9.

[32] J. Ding, B. Chen, H. Liu, and M. Huang, “Convolutional neural network
with data augmentation for SAR target recognition,” IEEE Geoscience and
Remote Sensing Letters, vol. 13, no. 3, pp. 364–368, 2016.

[33] P. Zhu, J. Isaacs, B. Fu, and S. Ferrari, “Deep learning feature extraction
for target recognition and classification in underwater sonar images,” in
56th IEEE Annual Conference on Decision and Control (CDC), 2017, pp.
2724–2731.

16 VOLUME xx, 2021



J. E. Almanza-Medina et al.: Deep Learning Architectures for Navigation using Forward Looking Sonar Images

[34] S. Lee, “Deep learning of submerged body images from 2D sonar sensor
based on convolutional neural network,” in Proceedings of the IEEE
Underwater Technology (UT) Conference, Busan, South Korea, 2017, pp.
1–3.

[35] X. Wang, J. Jiao, J. Yin, W. Zhao, X. Han, and B. Sun, “Underwater sonar
image classification using adaptive weights convolutional neural network,”
Applied Acoustics, vol. 146, pp. 145–154, 2019.

[36] P. O. C. de Souza Ribeiro, M. M. dos Santos, P. L. J. Drews, and S. S.
da Costa Botelho, “Forward looking sonar scene matching using deep
learning,” in 16th IEEE International Conference on Machine Learning
and Applications (ICMLA), 2017, pp. 574–579.

[37] B. T. Henson and Y. V. Zakharov, “Attitude-trajectory estimation for
forward-looking multibeam sonar based on acoustic image registration,”
IEEE Journal of Oceanic Engineering, vol. 44, no. 3, pp. 753–766, 2018.

[38] T. A. Le, A. G. Baydin, R. Zinkov, and F. Wood, “Using synthetic data
to train neural networks is model-based reasoning,” in IEEE International
Joint Conference on Neural Networks (IJCNN), 2017, pp. 3514–3521.

[39] A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas, V. Golkov,
P. Van Der Smagt, D. Cremers, and T. Brox, “FlowNet: Learning optical
flow with convolutional networks,” in Proceedings of the IEEE Interna-
tional Conference on Computer Vision, 2015, pp. 2758–2766.

[40] N. Mayer, E. Ilg, P. Hausser, P. Fischer, D. Cremers, A. Dosovitskiy, and
T. Brox, “A large dataset to train convolutional networks for disparity,
optical flow, and scene flow estimation,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2016, pp. 4040–
4048.

[41] J. Tremblay, A. Prakash, D. Acuna, M. Brophy, V. Jampani, C. Anil, T. To,
E. Cameracci, S. Boochoon, and S. Birchfield, “Training deep networks
with synthetic data: Bridging the reality gap by domain randomization,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 969–977.

[42] A. Rozantsev, V. Lepetit, and P. Fua, “On rendering synthetic images for
training an object detector,” Computer Vision and Image Understanding,
vol. 137, pp. 24–37, 2015.

[43] L. Taylor and G. Nitschke, “Improving deep learning using generic
data augmentation,” arXiv preprint arXiv:1708.06020, 2017, accessed:
2020-09-14. [Online]. Available: https://arxiv.org/pdf/1708.06020.pdf

[44] E. Richardson, M. Sela, and R. Kimmel, “3d face reconstruction by
learning from synthetic data,” in 2016 Fourth International Conference on
3D Vision (3DV). IEEE, 2016, pp. 460–469.

[45] A. Kortylewski, A. Schneider, T. Gerig, B. Egger, A. Morel-Forster, and
T. Vetter, “Training deep face recognition systems with synthetic data,”
arXiv preprint arXiv:1802.05891, 2018, accessed: 2020-03-05. [Online].
Available: https://arxiv.org/pdf/1802.05891.pdf

[46] X. Zhang, Y. Fu, A. Zang, L. Sigal, and G. Agam, “Learning classifiers
from synthetic data using a multichannel autoencoder,” arXiv preprint
arXiv:1503.03163, 2015, accessed: 2020-09-14. [Online]. Available:
https://arxiv.org/pdf/1503.03163.pdf

[47] G. Georgakis, A. Mousavian, A. C. Berg, and J. Kosecka, “Synthesizing
training data for object detection in indoor scenes,” arXiv preprint
arXiv:1702.07836, 2017, accessed: 2020-09-14. [Online]. Available:
https://arxiv.org/pdf/1702.07836.pdf

[48] A. Gupta, A. Vedaldi, and A. Zisserman, “Synthetic data for text local-
isation in natural images,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2016, pp. 2315–2324.

[49] F. Zhan, H. Zhu, and S. Lu, “Scene text synthesis for efficient and effective
deep network training,” arXiv preprint arXiv:1901.09193, 2019, accessed:
2020-09-14. [Online]. Available: https://arxiv.org/pdf/1901.09193.pdf

[50] J. E. Almanza-Medina, B. T. Henson, and Y. V. Zakharov, “Imaging sonar
simulator for assessment of image registration techniques,” in MTS/IEEE
OCEANS 2019, Seattle, 2019.

[51] DIDSON 300 Standard Version Specifications, Sound Metrics Corp.

[52] K. Perlin, “Improving noise,” in ACM Transactions on Graphics (TOG),
vol. 21, no. 3. ACM, 2002, pp. 681–682.

[53] Hovering Autonomous Underwater Vehicle Specifications, Bluefin
Robotics Corporation, 2015, accessed: 2020-09-14. [Online]. Available:
https://gdmissionsystems.com/-/media/General-Dynamics/Maritime-and-
Strategic-Systems/Bluefin/PDF/Bluefin-HAUV-Datasheet.ashx.

[54] J. Vaganay, M. Elkins, S. Willcox, F. Hover, R. Damus, S. Desset,
J. Morash, and V. Polidoro, “Ship hull inspection by hull-relative navi-
gation and control,” in Proceedings of OCEANS 2005 MTS/IEEE, 2005,
pp. 761–766.

[55] L. Conti, M. Rodriques, and B. Hanot, “Hydroelectric power plant inspec-
tions,” Hydro International Magazine, vol. 20, no. 4, pp. 16–19, 2016.

[56] “Acquest websiste,” https://www.acquest.com.br, accessed: 2021-01-28.
[57] ARIS Explorer 3000 Standard Version Specifications, Sound

Metrics Corp., accessed: 2021-01-28. [Online]. Available:
http://www.soundmetrics.com/Products/ARIS-Sonars/ARIS-Explorer-
3000/016621-A-ARIS-Explorer-3000-Specifications.

[58] B. T. Henson, “Image registration for sonar applications,” Ph.D.
dissertation, University of York, 2017, accessed: 2020-09-14. [Online].
Available: http://etheses.whiterose.ac.uk/19536/1/thesis.pdf

[59] S. Marschner and P. Shirley, Fundamentals of Computer Graphics. CRC
Press, 2015.

[60] B. Henson and Y. Zakharov, “Estimating attitude and trajectory of forward
looking imaging sonar using inter-frame registration,” in International
Conference and Exhibition on Underwater Acoustics (UACE), Skiathos,
Greece, 2017.

JOSÉ E. ALMANZA-MEDINA (M’19) received

his M.Sc degree in electronics and telecommu-

nications in 2015 from the Ensenada Center for

Scientific Research and Higher Education (CI-

CESE). From 2009 to 2013, he worked in Softtek

IT company, Mexico, as a software engineer and

project manager. He is currently working toward

a Ph.D degree in electronic engineering in the

Communication Research Group, Department of

Electronic Engineering at the University of York,

UK. His research interests include signal and image processing and under-

water acoustics.

BENJAMIN HENSON (M’17) received his

M.Eng. degree in electronic engineering in 2001

from University of York, U.K.. From 2002 to

2008, he worked as an engineer for Snell & Wilcox

Ltd. designing broadcast equipment. From 2008 to

2009, he worked for SRD Ltd. on imaging sonar

designs. He received an M.Sc degree in Natural

Computation in 2011 from University of York,

U.K.. Then, from 2011 to 2013, he worked on

laser measurement equipment for Renishaw plc.

He received his PhD. degree in electronic engineering in 2018 from the

Communication Technologies Research Group, University of York U.K.,

where he is currently working as a Research Associate in the Department of

Electronic Engineering. His interests include signal and image processing,

acoustics.

YURIY ZAKHAROV (M’01 - SM’08) received

the M.Sc. and Ph.D. degrees in electrical en-

gineering from the Power Engineering Institute,

Moscow, Russia, in 1977 and 1983, respectively.

From 1977 to 1983, he was with the Special De-

sign Agency in the Moscow Power Engineering

Institute. From 1983 to 1999, he was with the

N. N. Andreev Acoustics Institute, Moscow. From

1994 to 1999, he was with Nortel as a DSP Group

Leader. Since 1999, he has been with the Commu-

nications Research Group, University of York, UK, where he is currently a

Reader in the Department of Electronic Engineering. His research interests

include signal processing, communications, and underwater acoustics.

VOLUME xx, 2021 17


