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A B S T R A C T   

Climate-Smart Agriculture (CSA) has had an increasing role in the agricultural policy arena, as it aims to address 
climate change mitigation, adaptation and food security goals in an integrated way. In regions where agriculture 
has been constrained because of soil degradation and climate change, CSA aims to implement soil-based stra
tegies that restore soil function and increase carbon storage. The extent to which such strategies succeed in 
achieving mitigation, adaptation and productivity goals is referred to as climate-smartness. The co-evolution of 
yield and Soil Organic Carbon (SOC) over the years presents a proxy for the trade-off between productivity, soil 
fertility and carbon sequestration. Yield and SOC are widely monitored, analysed and used to inform CSA 
planning. Yet their analysis is often conducted separately and for a small number of years, which neglects long- 
term soil fertility dynamics and their impact on crops. Given the absence of integrated climate-smartness metrics 
to capture the trade-offs and synergies between SOC and yield, we present a soil-based Climate-Smartness Index 
(SCSI). The SCSI is computed using normalized indicators of trend and variability of annual changes on yield and 
SOC data. The SCSI was calculated for a set of published experiments that compared Conservation Agriculture 
(CA) practices with conventional management. The CA treatments scored higher SCSI during the first 5 years of 
evaluation as compared to conventional management. Analysis of the temporal dynamics of climate-smartness 
indicated that minimum SCSI values typically occurred before 5 years after the start of the experiment, indi
cating potential trade-offs between SOC and yield. Conversely, SCSI values peaked between 5 and 10 years. After 
20 years, the SCSI tended towards zero, as substantial changes in either SOC or yield are no longer evidenced. 
The SCSI can be calculated for annual crops under any soil management and at different time periods, providing 
a consistent metric for climate-smartness across both practices and time.   

1. Introduction 

Climate-Smart Agriculture (CSA) is a concept that responds to the 
multifaceted objectives for agriculture within the context of climate 
change and food insecurity (Lipper and Zilberman, 2018). The principles 
of CSA aim for the achievement of three general objectives: 1) sustain
able increase in agricultural productivity, 2) build climate resilience, 
and 3) reduction the Greenhouse Gas (GHG) emissions from agricultural 
activities (FAO, 2013). Each CSA objective represents the general vision 
of productivity, adaptation, and mitigation in agriculture; however, 

such objectives are interpreted according to the context, and their trade- 
offs and synergies are a core component of the CSA approach. 

In the case of cropping systems, the soils play a transversal role in the 
achievement of CSA objectives. Soil conditions largely determine crop 
productivity; loss of fertility or the accumulation of pollutants in the soil 
can reduce the yields even under favourable climate conditions. Besides, 
the degradation of soil affects the adaptative capacity of farmers due to 
the reduction of soil functioning relevant for climate resilience, such as 
like physical stability, water dynamics, or nutrient recycling (Chappell 
et al., 2019; Lankoski et al., 2018; Webb et al., 2017). Finally, the 
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agricultural soils are the principal source of nitrous oxide (N2O), while 
alternatively have important CO2 sequestration potential (Smith et al., 
2008; Paustian et al., 2016). 

Given the role of agricultural soils in climate change, CSA widely 
promotes soil-oriented strategies. Practices such as minimal soil distur
bance and permanent soil organic cover, which characterise conserva
tion agriculture (CA), increase soil water retention during droughts and 
heatwaves (Delgado et al., 2011; Kang et al., 2009) and reduce erosion 
and nutrients leaching during heavy rainfall events (Kaye and Quemada, 
2017). Moreover, practices like the use of organic fertilizers or crop 
residue retention enhance the SOC content. A SOC increase may, in turn, 
increase water retention and Cation Exchange Capacity (Zingore et al., 
2011) and contribute to mitigation goals in the long-term as more stable 
fractions of SOC are sequestered. Such changes in SOC may indicate the 
potential availability of C and N sources for plants and microorganisms, 
as well as an increased capacity for water retention, among others SOC- 
associated soil quality parameters. (Manns et al., 2016). 

The impact of sustainable soil practices can be expected to translate 
into improved productivity and resilience, especially during climate- 
related events (Kaczan et al., 2013; Thierfelder et al., 2017). SOC and 
yields are both affected by a broad range of agro-environmental factors, 
including climate, land-use history, or initial soil conditions. These 
factors confound the relationship between yields and soil organic car
bon, even conditioning their temporal response in cropping systems 
under good soil management conditions (Hijbeek et al., 2017; Oldfield 
et al., 2019). For instance, practices focused on increasing soil organic 
matter may carry yield penalties in the short term (Corbeels et al., 2020). 
However, the expected benefits in terms of productivity and adaptation 
would be evidenced in the middle to long-term after a cumulative effect 
of continuous organic matter incorporation (Prestele and Verburg, 2019; 
Thornton et al., 2018). Accordingly, the synergies between the SOC 
increasing, the soil improvement, and the enhancement of yield, could 
be used as an indicator of the climate-smartness in cropping systems. 

Climate-smartness, defined as the extent to which the productivity, 
resilience, and mitigation objectives of climate-smart agriculture (CSA) 
are synergistic, can be strongly context-dependent for soil-oriented 
strategies. Thus, climate-smartness is a joint property of both land 
management and the response of the cropping system to that manage
ment. Measuring climate-smartness, therefore, implies the combination 
of multiple measurements into CSA indicators for specific management- 
by-environment situations in particular cropping systems. These in
dicators offer a useful way of understanding the trade-offs and synergies 
between different objectives within a given agricultural system over 
time (e.g. Arenas-Calle et al., 2019; Hammond et al., 2017; Manda et al., 
2019). 

The last five years have seen considerable progress in the develop
ment of climate-smartness assessment methods. Many of these methods 
rely on the use of participatory approaches (e.g. Birnholz et al., 2017; 
Manda et al., 2019; Mwongera et al., 2017; Wassmann et al., 2019), or 
the use of climate model results and expert opinion (De Nijs et al., 2014), 
while others use household-level data (e.g. Hammond et al., 2017) to 
measure climate-smartness of specific households. These approaches, 
however, while broadly applicable, lack the replicability and compara
bility required to measure climate smartness across sites and years. 
There is a lack of integrated measures that can provide an overall 
quantification of climate-smartness (Lankoski et al., 2018; Rosenstock 
et al., 2016; Thornton et al., 2018), particularly for comparative as
sessments over space and time. Indeed, questions about how the climate 
smartness of an agricultural system changes over time have been subject 
to little empirical analysis. 

One area of progress is the climate-smartness index, and associated 
methodological framework, of Arenas-Calle et al. (2019). The index is 
used to represent the extent of synergy between productivity, emissions, 
and adaptation around water use. The index, however, is applied to 
single seasons at a time and takes no account of longer-term issues such 
as evolving soil carbon stocks. Here, the approach of Arenas-Calle et al. 

(2019) was extended to develop a new index of climate-smartness for 
cropping systems under soil-oriented climate-smart practices. The Soil- 
based Climate-Smartness Index (SCSI) was built using normalized in
dicators of trend and variability of temporal changes on yield and SOC 
data. The SCSI is evaluated using data from published studies of 
controlled trials of soil management practices, for which SCSI is calcu
lated at different periods. The SCSI results and the considerations in the 
use of SCSI to measure climate-smartness are discussed. 

2. Materials and methods 

2.1. Design of the Soil-based Climate-Smartness Index (SCSI) 

Soil-based strategies can improve the productivity within the 
attainable thresholds and sustain this productivity over time. A soil- 
based index of climate smartness therefore needs to account for the 
way in which SOC and yield evolve over time, both in terms of long-term 
trends and short-term variability. High (low) climate-smartness is 
associated with steadily increasing (decreasing) yields and SOC. The 
index also needs to describe the trade-off whereby increasing yields may 
be associated with decreasing SOC and vice-versa. 

To provide a quantitative measure of climate-smartness in cropping 
systems, a Soil-based Climate-Smartness Index (SCSI) is proposed 
(Fig. 1). The SCSI is based on the trend and variability of the changes in 
Yield and Soil Organic Carbon (SOC) data in temporal series (See 
Table 1). For the SCSI design, 3 steps were followed. First, the trend and 
variability of annual yield and SOC changes were calculated and 
normalized. Second, the normalized indicators of variability and trend 
were aggregated to create normalized indices of SOC and Yield. Finally, 
yield and SOC normalized indices were aggregated to build the SCSI. 

2.1.1. Step. 1 Variability and trend of yield and SOC indicators 
Yield and SOC were selected as indicators to represent the climate- 

smartness in crops under soil-oriented practices. The selection is 
grounded by literature related with CSA indicators (FAO, 2013; 
Mwongera et al., 2015; World Bank, 2016), climate-smartness assess
ments of soil-related practices on cropping systems (Bai et al., 2019; 
Birnholz et al., 2017; Notenbaert et al., 2017) and studies of soil-based 
indices (Cardoso et al., 2013; Pulido Moncada et al., 2014; Raiesi and 
Kabiri, 2016; Six et al., 2000, among others). 

Soil Organic Carbon is considered a “keystone” of soil condition and 
is commonly included in soil quality indices and carbon sequestration 
assessments (Bünemann et al., 2018; Calero et al., 2018; Hatfield et al., 
2018; Muñoz-Rojas, 2018; Raiesi, 2017; Vasu et al., 2016). The wide
spread use of SOC as a soil health indicator is due to its strong correla
tion with Cation Exchange Capacity (CEC), water holding capacity 
(WHC), pH, biological activity and soil structure (Cardoso et al., 2013; 
Rabot et al., 2018). Such properties determine the soil aptitude for 
agriculture and an eventual increasing of SOC improves soil processes 
related to these properties. For instance, the CEC is low in sandy soils but 
may increase with the increment of organic negatively charged com
pounds present in Organic Matter (Ramos et al., 2018; Kaiser et al., 
2008). Similarly, water availability can increase linearly with the 
increment on organic matter in soil (Lal et al., 2007; Rawls et al., 2003). 

Likewise, crop yields are extensively used as an indicator of the 
climate impacts on agriculture (Hatfield et al., 2018) and climate- 
smartness assessments (Lee et al., 2014; Mwongera et al., 2017; Note
nbaert et al., 2017; Shikuku et al., 2015; Shirsath et al., 2017), where the 
farmers and stakeholders identify the yields as a heavyweight indicator 
in the prioritization of CSA practices and food security. Moreover, its 
correlation with soil quality indices (Mukherjee and Lal, 2014; Obade 
and Lal, 2016., Vasu et al., 2016) shows its suitability to indicate the 
extent to which soil health are related with productivity benefits. 

2.1.2. Sustainable Yield (SYI) and SOC (SSOCI) Indices 
The variability of Yield and SOC were represented by the Sustainable 
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Yield Index (SYI) proposed by Singh et al. (1990). SYI was originally 
designed to apply to yield data but in this study, it was applied to 
detrended data of yield and SOC. For the case of SOC, we called the 
index the Sustainable SOC Index (SSOCI). The data were detrended by 
linear regression and then re-scaled by adding the average of raw data in 
order to avoid negative values. The use of detrended time series allowed 
us to focus on the fluctuations and identify the systematic trends in the 
variability of the data. 

The index provides a measure of how sustainable the changes 
observed in the data are based on the relationship between standard 
deviation, average and maximum values (Eqs. 1 and 2). The indices take 
values between 0 and 1; when values tend to 0 indicate high fluctuations 
in the data, and the indices values that tend to 1 indicate low variability 
in the changes observed, indicating that such changes are constant 
across time. 

SYI =
(

yield − σyield

)/
yieldmax (1)  

SSOCI =
(

SOC − σSOC

)/
SOCmax (2) 

where SYI is the Sustainable Yield index and SSOCI is the Sustainable 
SOC index; yield and SOC is the mean of the detrended yield and SOC 
data; σyield and σSOC are the standard deviations of yield and SOC 
detrended data, and yieldmax and SOCmax are the maximum yields and 
SOC detrended values. Thus, time series with constant annual rates on 

for soil and yield or time series with no changes will result in high SYI 
and SSOCI, while time series with high dispersion in annual changes will 
result in low SYI and SSOCI. 

Normalized Trend (∆(%)Norm). 
The normalized trend was calculated first as the perceptual rate 

change of yield and SOC (Eqs. 3 and 4). 

∆yield(%) =
{[(

Yieldf − yieldi
)/(

tf − ti
)]/

Yieldi
}
*100 (3)  

∆SOC(%) =
{[(

SOCf − SOCi
)/(

tf − ti
)]/

SOCi
}
*100 (4) 

Where ∆yield(%) and ∆SOC(%) are the annual rate of change of yield 
and SOC; Yieldf and SOCf are the yield and SOC in the last year of the 
time series; Yieldi and SOCi are the yield and SOC in the initial year of the 
experiment; and ti and tf are the initial and final year of the time series. 

The percentage change rate was normalized by the min-max 
normalization method (Krajnc and Glavič, 2005; Pollesch and Dale, 
2016). The normalization of yield and SOC trends was required to 
combine the trend with the sustainability indices (step 2) and then into 
one single yield-SOC index (step 3). For the normalization, 60% year− 1 

was the maximum reference value for annual yield changes. In the case 
of SOC, the maximum reference value used was 15% year− 1. The 
normalized values for yield and SOC were calculated as is shown in Eqs. 
5 and 6. 

∆yield(%)Norm = (∆yield(%) − 0% )
/
(60% − 0%) (5) 

Fig. 1. Flowchart of steps to build the Soil based Climate-Smartness Index (SCSI).  

Table 1 
Characteristics of the studies used in this study.  

Reference Country Period (years) Sampling depth (cm) Soil Texture Crop CA practices 

Agbede and Adekiya, 2013 Nigeria 3 60 Sandy Loam Yam MSD 
Campbell et al., 2007 Canada 17 15 Loam Wheat MSD, CD 
Chen et al., 2015 China 10 20 Silt loam texture Winter-wheat + summer maize OG 
Datta et al., 2010 India 6 15 Loam Wheat and Soybean CD, OG 
Dimassi et al., 2014 France 41 80 Silty loam to silty clay loam Wheat and Maize MSD, PSOC 
Dou et al., 2014 United States 4 90 Silty loam Sorghum PSOC 
Mohammad et al., 2012 Pakistan 6 60 loam to clay loam Wheat MSD, CD, PSOC 
Rasmussen and Parton, 1994 The United States 56 60 Silt loam Wheat OG 
Rothamsted Research, 2017 UK 145 23 Clay loam to silty clay loam winter wheat OG 
Rothamsted Research, 2012 UK 145 23 Silty clay loam Spring barley OG 
Sainju et al., 2002 The United States 5 20 Sandy loam Tomato PSOC 
Wang et al., 2019 China 4 20 Clay loam Wheat CD, PSOC 
Yadvinder-Singh et al., 2004 India 12 15 loamy sand Rice PSOC, OG 

CA: Conservation Agriculture; MSD: Minimum Soil Disturbance; CD: Crop diversification; OG: Organic Fertilization; PSOC: Permanent Soil Organic Cover. 
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∆SOC(%)Norm = (∆yield(%) − 0% )
/
(15% − 0%) (6) 

Finding suitable references values for annual changes in yield and 
SOC is a challenge due to the large range of climatic zones, agro- 
environmental contexts and type of disturbances present in agricul
tural lands. The maximum reference values for yield and SOC normali
zation were obtained from the review of a set of published experiments 
in peer-reviewed journals (Supplementary material 1). The yield and 
SOC data collected from those studies not only were used to select the 
reference values but also to assess the applicability of SCSI. 0% was 
assumed as the minimum reference value in both yield and SOC to 
conserve the negative sign in the cases of normalization of annual losses 
of yield or SOC. 

Yield reference values are consistent with those reported by Soussana 
et al. (2019) in their meta-analysis from 32 papers, where annual crop 
productivity ranged between 0 and 50% (approx.) after changes on soil 
management for several crops in Asia, Africa and Latin America. 
Regarding SOC, similar SOC annual rates were reviewed by West and 
Six, 2007, who reported a range between 0 and 8% SOC year− 1 (approx.) 
at 0-30 cm in 67 global long-term agricultural experiments with a 
duration greater than 5 years located in Europe, Latin America and 
North America. Similarly, Soussana et al. (2019) reported a relative 
annual change in SOC (0–20 cm) between 0 and 14% year− 1 in soils 
under changes in soil management. Finally, Poulton et al. (2018) re
ported an annual SOC change between − 1 to 18% in 16 long-term ex
periments in the south-east United Kingdom. 

The changes observed in SOC and yield differ in magnitude because 
of the spatial and temporal scale that both indicators respond to the 
variations in the cropping systems. By re-scaling these quantities sepa
rately, the min-max normalization method brings them onto the same 
scale (− 1 to 1) and makes them comparable. Consequently, similar 
annual percentage changes on both indicators will result on different 
normalized values (e.g. +5% of SOC increasing will result in a 
normalized value 4 times bigger than the normalized value resulted 
from the same annual percentage change in yield). 

2.1.3. Step 2. YieldNorm and SOCNorm 
With the indicators of variability and trend calculated for yield and 

SOC (from step 1), combined sub-indices were calculated by the ag
gregation of normalized variability and trend indicators (Eqs. 7 and 8). 
These indices contain information about the behaviour of yield and SOC 
in a single and non-dimensional metric. 

YieldNorm = SYI*∆yield(%)Norm (7)  

SOCNorm = SSOCI*∆SOC(%)Norm (8) 

The higher and more stable the annual changes, the higher YieldNorm 
and SOCNorm will be. Where those annual changes are more irregular, 
YieldNorm and SOCNorm will be lower. The same relationship applies for 
negative YieldNorm and SOCNorm, where values close to − 1 come from 
regular negative growth annual rates that become less negative if the 
negative rates become unsteady. 

2.1.4. Step 3. Soil-based Climate-Smartness Index (SCSI) 
The SCSI was built from the aggregation of YieldNorm and SOCNorm 

(Eq. 9). In the process, no weighting was assigned to YieldNorm and 
SOCNorm. The decision to use this weighting method implies that the 
index will be an arithmetic average or counting of indicators (Greco 
et al., 2019). However, in the SCSI the use of min-max normalization 
method implicitly weighted the SOC and yield trends because of 
different reference values were used for each one (Mazziotta and Pareto, 
2013). 

SCSI = (YieldNorm + SOCNorm)*0.5 (9) 

A linear approach was selected to aggregate YieldNorm and SOCNorm. 
This aggregation method is simpler than geometrical methods and is 

used when is seeking to represent a compensatory effect between in
dicators (Notenbaert et al., 2017). With this aggregation, the synergies 
and trade-offs between yield and SOC are clear: a good or bad perfor
mance of both indicators will lead to a clear climate-smartness or lack of 
climate-smartness respectively. On the other hand, the trade-off will be 
more or less climate-smart according to the predominant trend (e.g. 
slight positive trend on SOC and a loss on yield the first years might 
result in negative SCSI). Those situations occur since positive changes 
can not compensate an increasing negative trend. 

The SCSI has a scale between − 1 to 1. Values close to 1 indicate that 
yield and carbon increase at a constant rate, and values close to − 1 refer 
to cases where both SOC and yield decrease constantly. The possible 
values of SCSI in function of the trend and the variability of indicators 
are described in Fig. 2. Both SOC and yield indices are calculated from 
annual rates, therefore SCSI will tend to zero when annual SOC and yield 
responses to the CSA treatment begin to plateau. 

2.2. Evaluation of Soil-based Climate-Smartness Index (SCSI) 

Data from 11 experiments published in peer-reviewed journals and 
data from 2 long-term experiments at Rothamsted Research unit were 
used to assess the application of the SCSI. All the experiments assessed 
CA practices that are compared with conventional management or 
control treatments without N fertilization, often used as a “blank” 
treatment. The experiments assess the CA practices in different crops 
(wheat, maize, rice, sorghum, soybean, yam, spring barley and tomato) 
and different evaluation periods that ranged from 2 to 147 years. Details 
about the location of the study, crop, agronomic management, treat
ments and period of evaluation are shown in Table 1. 

For each treatment in the studies a set of SCSI scores were obtained. 
The SCSI were calculated for the minimum data points required (3 data 
points). Data points were then added one-by-one, with SCSI recalculated 
each time. The resulting SCSI values were analysed by comparing the 
CSCI across the time and between treatments. Results from the analysis 
were used to draw conclusions on the climate-smartness of CA, and on 
the broad applicability of SCSI to quantify trade-offs and synergies be
tween CSA pillars across timescales. 

3. Results 

A total of 240 SCSI scores resulted from the 11 peer-reviewed pub
lications and 2 long-term experiments from Rothamsted Research unit. 
From the total data, 55.4% of scores correspond to Conservation Agri
culture (CA) practices like Minimum Soil Disturbance (MSD), Crop 
Diversification (CD), Permanent Organic Soil Cover (PSOC) and Organic 
Fertilization (OG). For its part, 19.6% of scores correspond to conven
tional practices (treatments with conventional management like me
chanical tillage or synthetic fertilizer) and 25% from control treatments 
(treatments used as a “blank” treatment without N fertilization). From 
the total of SCSI scores, 33% correspond to treatments with duration <5 
years. The SCSI scores calculated for treatments with a duration between 
5 and 10 years were 13% of total data, whereas 12% correspond to 
treatments with a duration between 11 and 20 years. Most of the SCSI 
scores (41%) correspond to treatments with duration >20 years. 

3.1. YieldNorm: Sustainable Yield Index (SYI) and normalized yield trends 
(yield∆(%)Norm) 

The YieldNorm resulted from multiplying the SYI by the yield 
normalized trends (yield∆(%)Norm). The results are summarized in Fig. 3 
(lower panels), and the heatmap scale represents the possible values that 
YieldNorm could take. The observed temporal changes in YieldNorm as 
well as the differences among the practices (CA, Conventional and 
Control), varied in function of temporal dynamic in SYI and the ∆ 
(%)Norm. 

Based on SYI results, annual changes in yield have high variability in 
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Fig. 2. Values of Soil-based Climate-Smartness Index (SCSI) in relation with the trends (Negative, No trend, Positive) and the Sustainable indices (SYI and SSOCI) of 
SOC and yield Normalized indices. (High ≥ 0.5; Low ≤ 0.5). 

Fig. 3. SOCNorm and YieldNorm heatmaps calculated from the multiplication between Sustainable Indices (SSOCI and SYI) and Normalized change rate (SOC ∆(%)Norm 
and Yield∆(%)Norm). Vertical panels correspond to evaluation periods and horizontal panels correspond to SOCNorm and YieldNorm values. CA: Conservation 
Agriculture. 
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the first 5 years of soil strategies implementation where the SYI fluctu
ated between 0.41 and 0.99 during this period without marked differ
ences among practices (CA, Control and Conventional). The variability 
in yield changes tends to decrease, as can be seen in the SYI values that 
range between 0.6 and 0.9 after 5 years and closer to 1 in treatments 
assessed between 11 and 20 years. Although the SYI tends to decline 
with time, some treatments with >20 years of assessment, presented 
lower SYI values towards the end of this timespan, than observed in 
previous years, indicating that even if the annual changes tend to 
decrease, long-term yield fluctuations may continue to be observed. 

The greatest annual changes in yield occurred in treatments with a 
duration between 2 and 5 years (− 25 to 60%). During this period, 78% 
of the annual changes were negative and 21% were positive. This pro
portion between negative and positive annual changes was similar in all 
the practices (77%:22%). However, the proportion changed to 60%:40% 
in periods between 5 and 10 years and then 32%:68% in treatments with 
periods between 11 and 20 years. When the data were disaggregated by 
practices, we found that CA, Control and Conventional still have a very 
similar proportion of negative and positive changes even after 5 years. 
However, the positive and negative annual changes observed in CA 
practices were higher than Control and Conventional, with an exception 
of a data point from a Control practice. 

The relation between negative and positive changes across the time 
indicated that regardless of the practice, the yield losses are higher than 
yield gains at the beginning of the implementation of soil-oriented 
strategies. Although the trends tend to be positive with time, the 
magnitude of such changes is lower than initial years. The yield∆(%)Norm 
range was − 0.41 to 1 in the first 5 years and − 0.1 to 0.09 in periods 
between 5 and 10 years. After 20 years, annual changes were unno
ticeable that was reflected in the yield∆(%)Norm range − 0.01 to 0.04. 
These results are reflected in the values of YieldNorm that conserved the 
same proportion between negative: positive annual changes and were 
higher during the first 5 years (− 0.33 to 0.56) and then tended towards 
zero after 10 years (− 0.06 to 0.06). 

3.2. SOCNorm: Sustainable SOC Index (SSOCI) and normalized SOC 
trends (SOC∆(%)Norm) 

SOCNorm results from the multiplication between SSOCI and SOC∆ 
(%)Norm, which are summarized in the upper panels of Fig. 3. The SSOCI 
range was higher than the SYI range, suggesting that SOC annual 
changes are more constant than yield changes. In contrast to SYI, SSOCI 
presented differences between practices. Conventional and Control 
practices presented higher SSOCI (0.8 to 0.99) than CA practices (0.64 to 
0.9), evidencing that some CA treatments are prone to present higher 
fluctuations in annual SOC changes. It is important to point out that such 
variations occurred in the treatments with >20 years, which brings 
evidence of the long-term effect of CA practices on the soil. 

The SOC∆(%)Norm also showed differences among practices across 
time. In treatments with assessed periods between 2 and 5 years, SOC∆ 
(%)Norm ranged between − 0.46 and 0.77 (53% of these cases displayed 
negatives annual change and 46% were positive). However, this pro
portion of negative and positive annual changes differed among prac
tices. While 44% of annual changes in CA were negative, in Control and 
Conventional practices 66% of annual changes were negative. Likewise, 
SOC gain in Control and Conventional treatments were observed in 22% 
of the cases; less than half as frequent as the SOC gains cases found in CA 
treatments (54%). 

As with yield, SOC annual changes (positive and negatives) became 
smaller over time. After 5 years, all SOC(%)Norm values were positive but 
with a higher trend in CA. After 10 years, the SOC(%)Norm was nearly 
zero in almost all cases with some exceptions in CA practices that 
showed a larger positive trend (0.04 to 0.38) compared with Control 
(− 0.05 to 0.05) and Conventional (0.03 to 0.17) practices. Although to a 
lesser extent, SOC changes in periods >20 years, were still relatively 
larger in CA compared with Conventional and Control, supporting the 

evidence that under CA, the SOC gain is still likely to happen at long- 
term. 

The SOCNorm resulted from the multiplication of SSOCI and SOC 
(%)Norm. The SOCNorm in Control and Conventional practices showed 
similarities that contrasted with CA practices over time. In the first 5 
years, the SOCNorm ranged between − 0.45 to 0.63 in CA practices, which 
was higher than Control (− 0.36 to 0.56) and Conventional (− 0.31 to 
0.55) ranges, in both, gains and losses of SOC. Although SOCNorm tended 
to decrease over time in all practices, the annual rates in CA practices did 
not decrease as much as in Control/-Conventional practices, generating 
a bigger difference between CA and Control/Conventional practices 
over time. 

Between 5 and 20 years, the SOCNorm in Control and Conventional 
practices ranged between 0.04 and 0.1. After 20 years, the SOCNorm in 
such practices were mostly negative (96% of the cases), with values near 
to zero (− 0.04 to − 0.02), evidencing that Control and Conventional 
conditions lead to SOC losses at long-term. These results contrasted with 
the SOCNorm range found for the periods between 5 and 20 years in CA, 
that was relatively higher (0.04 to 0.38) than in Conventional-Control 
practices. This difference is higher after 20 years, where CA practices 
showed a range between (− 0.05 to 0.16). In this case, the negative 
SOCNorm values in CA represented 45% of the data; however, the range 
of these negative values was between − 0.05 to − 0.001, while positive 
SOCNorm values represented 55% of the data and ranged between 0.003 
and 0.16) which is even higher than the range of positive SOCNorm in 
Control and Conventional practices in periods <20 years. 

3.3. Soil-based Climate-Smartness Index (SCSI) 

The visualization of the synergies and trade-offs between YieldNorm 
and SOCNorm are summarized in Fig. 4, where the heatmaps represent 
the possible scores that SCSI can take. The results show that indepen
dently of the practices implemented, it is more likely to have a negative 
synergy than a positive synergy between yield and SOC during the first 
years of implementation. In the first 5 years, 46% of the data presented 
negative synergies (Yield Loss-SOC Loss). During the same period, 
13.6% of the experiments had positive synergies (Yield Win-SOC Win) 
and 32% had the ‘Yield Loss- SOC Win’ trade-off that was more frequent 
than the ‘Yield Win - SOC Loss’ trade-off (7.5%). 

The relationship between Yield and SOC appears to become more 
synergistic over time. Between 5 and 20 years, the cases of positive 
synergies (Yield Win-SOC Win) passed from 13% to 38%, while no 
negative synergies (Yield Loss-SOC Loss) were present. During this 
period, 36% of the experiments were ‘Yield Loss- SOC Win’ trade-offs, 
which did not differ too much from past years. Although the practices 
were not equally represented in all periods, the disaggregated data 
indicated that most of the positive synergies during the period 5 to 20 
years corresponded to CA practices (18 out of 24 cases). 

After 20 years, 19% of data represented positive synergies, all of 
which correspond to CA practices; this means that after 20 years just CA 
maintained positives synergies between SOC and Yield. On the contrary, 
overall negative synergies represented 29% of the cases. From this 
percentage, just the equivalent to 7% of data came from CA treatments 
(2 out of 29 cases). The temporal dynamic of such synergies and trade- 
offs determined the values observed in the SCSI. 

In relation to the YieldNorm and SOCNorm results, the most negative 
and positive SCSI scores occurred in the 5 first years (− 0.28 to 0.34). 
Although the positive synergies increased and the negatives were absent 
after 5 years, the SCSI range was lower (− 0.09 to 0.15) than the 
calculated in the first years. After 20 years, all the SCSI scores ranged 
between − 0.02 to 0.06 indistinctively of the practices. This suggests that 
after this point, the SCSI provided little information about the impact of 
soil management on the Yield and SOC trend and variability. 

The mean SCSI during this period was not only higher in CA (mean 
SCSI = 0.28) than Control (mean SCSI = − 0.03) and Conventional 
(mean SCSI = − 0.0185) practices, but also showed a higher number of 
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positive SCSI scores (Fig. 5). The positive SCSI scores in CA represent 
both, positive synergies and trade-offs that favoured an increase in yield 
or SOC over a potential decrease of such indicators. According to the 
SCSI scores, the climate-smartness are also mediated by the response 
time of the system to soil management; however, CA always presented a 
higher climate-smartness than Conventional and Control independently 
of the period. 

The SCSI scores were fitted to a local polynomial curve regression, 
that showed a similar pattern in the data distribution across 50-year 
time span. The fitted curves pointed out a “SCSI peak” in CA and Con
ventional practices in approximately the tenth year, which started to fall 
until flattening around 20 years. In the Control practices, there was no 
peak since there are not any soil management activities involved. The 
differences between CA and Conventional curves are that the peak in CA 

Fig. 4. Soil-based Climate-Smartness Index (SCSI) heatmaps calculated for Conservation Agriculture (CA), Control and Conventional practices. Vertical panels 
correspond to evaluation periods. 

Fig. 5. Boxplots of SOCNorm, YieldNorm and SCSI for Conservation Agriculture (CA), Control and Conventional practices at different periods. Numbers in the bottom of 
SCSI panel correspond to the number of data per practices and period. 
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is higher than Conventional indicating that CA data tend to reach higher 
SCSI scores. There is a further difference in the timescale over which the 
line flattens. In the case of CA, the curve flattens approximately after 30 
years, while in Conventional it is approximately at 20 years. This con
firms that CA has an impact on the system’s properties for a longer span 
of time as compared to Conventional practices. 

The high variability in the CA treatments reflects the broad responses 
of the different CA practices grouped in this category. In Fig. 6b, The CA 
category was disaggregated into 3 CA practices mentioned in the first 
section of results. The CA practices with the greater data representation 
were OG (Organic Fertilization) and PSOC (Permanent Soil Organic 
Cover). Of these practices, PSOC practices reached the highest peak. It is 
important to point out that some of the PSOC treatments also included 
chemical fertilization, while most of the OG case use just organic sour
ces. The curves also showed that CA practices differ in their temporal 
response and in the implementation span in which the major impacts are 
achieved. For instance, even when OG achieved a similar peak to PSOC, 
its curve started to flat almost 10 years later than all the other practices, 
suggesting that positive changes under such practices might take a 
longer period to achieved potential thresholds. 

4. Discussion 

The Soil-based Climate-Smartness Index (SCSI) can provide a mea
sure of the climate-smartness and capture its temporal behaviour in 
cropping systems under different soil practices. The analysis of SCSI 
showed that scores range between highly positive to highly negative 
during the initial years of implementation and then, tend to stabilise 
towards zero in the long term. Consequently, all possible trade-offs and 
synergies (illustrated in Fig. 7) between yield and SOC occurred during 
the first years of implantation. Overall, the synergy (with negative 
trends) and the trade-off ‘yield loss and SOC gain’ are the most common 
among the practices, also evidencing a transitory lack of climate- 
smartness in some treatments under climate-smart practices. These re
sults underscore the importance of considering the temporal response of 
the crop systems to the soil-oriented strategies within climate-smartness 
assessments. 

The negative SCSI values in CA resulted from the synergy between 
SOC and Yield (most of negative SCSI) or from the trade-offs between 
negative trends on yield with the SOC. In both cases, the lack of climate- 
smartness resulted from the yield penalties in early stages of CA 
implementation. This yield penalty is reported by several studies as a 
constraint on CA adoption and scaling-up (Brouder and Gomez- 
Macpherson, 2014; Cooper et al., 2016; Giller et al., 2009; Van den 
Putte et al., 2010). Pittelkow et al. (2015), found some negative yield 
response in several crops during the first 1–2 years of No-till adoption. 
Nyamangara et al. (2013) reported similar results from 48 CA experi
ments conducted in semi-arid regions of Zimbabwe, where 26 to 50% of 
the experiments presented negative changes on yield. Likewise, Corbeels 
et al. (2020) indicate that the limited yield benefits (<4% compared to 
conventional tillage systems) from CA constrains its adoption for small- 
scale farmers. 

Along with yield penalties, some treatments also showed negative 
SOC. The SOC depletion in Conventional and Control practices are ex
pected due to the limited OM recycling in such practices (Ogle et al., 
2005). However, the negative SOC changes (19% of SOCNorm in <5 
years) also occurred in CA practices. Negative SOCNorm in CA were 
evidenced in negative synergies with yield and in positive trade-offs of 
yield, where negative SOC outcomes were compensated by large posi
tive yield benefits. Although SOC depletion under CA is unexpected and 
most of the studies highlight the potential of CA to increase the soil 
carbon, some studies reported this effect for some CA practices (Liang 
et al., 2016; Mrabet, 2002). A meta-analysis carried by Luo et al. (2010) 
found that the benefits of no-tillage on SOC are inconclusive since sig
nificant SOC depletion was also observed along with SOC increment. For 
their part, Poeplau and Don (2015) reported that 9% of the experiments 

reviewed in their meta-analysis indicated SOC stock depletion after 
implementation of cover crops. 

Although less common during the first years of implementation the 
SCSI also resulted from positive synergies between indicators, showing a 
positive outcome in yield as has also been reported by previous studies. 
For instance, some CA experiments in Southern Africa reported an in
crease in maize yield during the first and second cropping seasons after 
starting the implementation (Thierfelder et al., 2014). Similarly, in their 
meta-analysis, Zhao et al. (2017) reported an increase on rice yield to 
2.6% during <5 years of implementation of No-tillage, and Huang et al. 
(2013) found that crop residue retention has an impact of 4.7% on rice 
yield in experiments with <3 years of evaluation in China. 

The SCSI results come from different experimental and agro-climatic 
conditions, that led to a different response of SOC and yield in the CA 
experiments. It is important to remember that potential yields will 
depend on a combination of non-limiting agronomic and climate con
ditions, reducing the gap between actual to potential yield, which also 
might vary according to crop genotype. 

The period needed to reach the soil carbon saturation under certain 
agronomic practices may depend on the interaction between geographic 
location, climate, and land transition scenarios. Qin et al. (2016) re
ported in their meta-analysis that the magnitude of SOC depletion after 
cropland conversion and the former land use influence the C seques
tration rates, which generally results in a negative correlation between 
initial SOC stock and SOC accumulation rates (Georgiadis et al., 2017). 
Moreover, soils in the tropics might reach a SOC equilibrium faster than 
soil in temperate regions where it could take around 100 years after the 
land-use change (Smith et al., 2008). 

At a smaller scale, the soil texture partially determines SOC accu
mulation; clay and silt content generate an advantage to SOC storage by 
the stabilization of SOC in Sil + Clay particles and reducing its microbial 
decomposition (Chenu et al., 2019; Stewart et al., 2008). At a regional 
scale, the OM turnover rates may differ among climate zones; the wet- 
tropical and warmer areas prone to have faster decomposition rates 
(Chenu et al., 2019; Stewart et al., 2008; Sommer et al., 2018). For its 
part, yield also depends highly on climate and soil conditions (Nya
gumbo et al., 2020). Pittelkow et al. (2015) reported yield response to 
CA practices varies among dry and humid climates. Likewise, the soil 
proprieties that control the water infiltration have a strong influence in 
the yield on CA practices, several authors reported reduction on yields 
when CA practices are implemented in poorly drained soils (Corbeels 
et al., 2014; Thierfelder and Wall, 2012). 

In contrast with the high variability inthe SCSI scores observed in the 
early periods of implementation, the positive synergies and trade-offs of 
SOC were the most common relationships between both indicators, 
resulting in positive SCSI scores during the period between 5 and 10 
years. These results evidence that changes in SOC may have a greater 
contribution to climate smartness in the mid and long term. Although 
the trade-offs and synergies become more climate-smart over the time, 
the magnitude of such climate-smartness tends to decrease according to 
the attainable yield and SOC in a given the context and the CA practices 
performance. Thus, the SCSI can help to identify the point where the soil 
management (or any agricultural management that could be attributed) 
can generate the greater changes (negative or positive) and from what 
point such changes, are redirected or became inconstant. 

After 10 years, the SCSI tends towards zero because of a deceleration 
of the SOC and yield rates. The peaks observed in the SCSI data coin
cided with the behaviour of SOC sequestration rates observed in several 
CA experiments. Tadesse et al. (2018) and Yang et al. (2015) observed 
the highest soil carbon stock after 10 years of CSA implementation. 
Similarly, Zanatta et al. (2007) identified for a subtropical location that, 
the higher SOC changes in the first years but the peak of SOC accumu
lation occurred in the 9th year. 

Although the SCSI in the first years of CA implementation seems to 
contain most of the information, the response period (For how long SCSI 
are changing) also inform about the climate-smartness and the “lifetime” 
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Fig. 6. Scatterplots of Soil-based Climate-Smartness Index (SCSI) across 50 years period for A) Conservation Agriculture (CA), Control and Conventional practices, 
and B) Control, Conventional, Minimun Soil Disturbance + Crop diversiofication (MSD + CD), Organic Fertilization (OG) and Permanent Soil Organic Cover 
(PSOC) practices. 

L.N. Arenas-Calle et al.                                                                                                                                                                                                                        



Agricultural Systems 190 (2021) 103086

10

of CA practices. These results remark reflect the importance of long-term 
monitoring of CA treatments, especially for the temporal dynamic of 
SOC sequestration. In this study, most of the data come from periods 
<10 years which is the period when most of the changes happened, 
however, the representation of all periods was unequal, and data gaps 
were observed, particularly in the periods comprised between 20 and 50 
years. 

Overall, CA practices showed higher climate-smartness than Control 
and Conventional, however, the SCSI scores presented high variability in 
CA practice, suggesting that some practices under certain context might 
present higher climate-smartness than others. The regression curves 
calculated for each practice within CA were based on some experiments 
located in temperate regions and correspond to specific conditions. 
Thus, the curves can bring new insight about the temporal dynamic of 
the climate-smartness but cannot be seen as definitive conclusions. 

These differences in CA practices can be explained by the suitability 
of the practices and the context. For instance, no-till and crop diversi
fication do not involve direct incorporation of organic matter and may 
have a little effect on SOC, (especially in tropical moist or dry condi
tions) but could improve if is complemented with crop residue retention, 
(Das et al., 2013; Ogle et al., 2005; Thierfelder et al., 2014; Thierfelder 
et al., 2017). On the contrary, practices like PSOC and OG that involve 
the incorporation of organic matter can contribute more with the soil 
carbon storage. 

However, OM incorporation also has important implications on crop 
yield and in the decision to replace partially or completely the chemical 
fertilization by organic amendments. In this study, the PSOC practices 
achieved the highest SCSI scores but were also characterized by the use 
of chemical fertilization, which probably helped to support the yield 
during the early stages of the OM turnover in the soil (Yan and Gong, 
2010). 

Along with the decision to replace the chemical fertilization, the 
quality of the crop residues contributes to the climate-smartness of the 
practices. The source of the residues determines its composition and its 
decomposition rates that might vary according to soil moisture and 
temperature conditions. For instance, crop residues with high lignin 
content have slower decomposition rates, and could result in low SOM 
(Stewart et al., 2015); likewise, crop residues with high C:N ratio 
decompose slowly and contribute poorly to N inputs (Kong et al., 2005; 
Palm et al., 2010; Wang et al., 2017). Thus, the replacement of chemical 
fertilization in CA practices is a key technical decision that needs un
derstanding about the relationship between soil conditions, organic 

inputs quality and crop requirements, not only to estimate SOC 
sequestration potential but also to protect yield stability. 

The crop nutrient management and its influence on the SCSI score 
also will depend on other initial experiment conditions. For instance, the 
timing and N fertilizer rates, or the use of Rhizobium inoculants used in 
the experiments reported by Datta et al. (2010) and Campbell et al. 
(2007), might influence the N use efficiency (Davies et al., 2020). 
Moreover, the use of high-yielding varieties like the high yielding wheat 
used by Campbell et al. (2007) and the high-yielding with low lodging 
potential of sorghum variety used by Dou et al. (2014) might also 
represent an advantage independently of CA implementation and will 
influence the SCSI overall score. 

4.1. Soil-based Climate-Smartness Index (SCSI): Strengths, limitations 
and future work 

The design of the SCSI was motivated by an evidence gap around CSA 
practices and the lack of available metrics that allow standardized 
comparisons and facilitate a simultaneous interpretation of three CSA 
pillars at different temporal and spatial scale (Lankoski et al., 2018; 
Rosenstock et al., 2018). For the metric presented in this study, we 
defined climate-smartness under the context to cropping systems under 
soil-based management practices. Under such systems we identified 
climate-smartness as representing a synergy between climate resilience 
and productivity with added benefits of mitigation via soil as a carbon 
sink. 

The SCSI presented here can provide a measure of the temporal 
response of cropping systems and its impact on soil and productivity. 
However, the SCSI is insufficient to provide a climate-smartness measure 
from a social or economic view that might be partially represented by 
the yield indicator. In any case, the SCSI could be analysed along with 
social-economic indicators to find associations between the climate- 
smartness and the improvement of farmers livelihoods, or the yield in
dicator could be combined with a food availability index or an income 
indicator. Within the concept boundaries, metrics like SCSI can provide 
simple and quantitative assessments for policymakers which are needed 
for tracking the effectiveness of plans and projects framed within the 
Climate-smart Agriculture approach (Bell et al., 2018). 

The interpretation of the SCSI, just as any index, should be subject to 
the data context. Although the positive scores are associated with 
climate-smartness and negative scores with unsustainable conditions, is 
the researcher criterion that discerns the contribution (negative or 

Fig. 7. Synergies exist where both trends are of the same size, and these can be positive (panel A) or negative (panel G). Trade-offs exist when the slops are of 
opposite sign (Panels B,C,E and F). 
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positive) of agronomic and experimental conditions to the SCSI score. 
This statement takes greater relevance if we intend to compare the SCSI 
scores from different sites that differ in their experimental layout, 
climate conditions and land-use history. 

Along with the different perspectives (social, economic, environ
mental), the meaning of climate-smartness varies in function temporal 
and spatial scales. However, Prestele and Verburg (2019) pointed out 
that climate-smartness assessments still ignore the spatially variable 
impacts of CSA practices, especially at large scales. The temporality of 
the climate-smartness needs further consideration and discussion by the 
those supporting, leading and funding CSA implementation. The SCSI 
could contribute with a measure of climate-smartness at different spatial 
and temporal scales. Where applied in a spatially-explicit manner, the 
SCSI provides a means to objectively compare the climate-smartness of 
specific practices between sites or landscapes. However, as the idea of 
climate-smartness is closely attached to the context, their interpretation 
in each case should be relative to technically feasible thresholds. 

The importance of context implies that a specific SCSI score can be 
only considered “too high” or “too low” relative to other practices 
implemented under similar conditions. For example, a positive but low 
SOC-index can result from highly contrasting situations, such as a site 
where soils are near to SOC saturation, and a site with a high SOC deficit 
and low return of biomass to the soil. In both cases, the CA practices can 
barely help to increase the soil carbon (reflected in the SCSI score). 
However, only in the second case is the low SCSI the result of poor 
application of CA practices. 

The SCSI can be calculated using yield and SOC data from experi
ments across spatial scales (farm to regional scale) for a minimum 
duration of 2 years. As the SCSI uses the annual rates and their vari
ability, the periods for which the SCSI are calculated depends on the 
data availability (annual, bi-annual, every 5 years), or according to 
project timelines and plans. As field measuring could be expensive and 
time demanding, simulated SOC and yield data represent a means of 
projecting SCSI across space and time. The SCSI also can be calculated 
for studies that simulated both yield and SOC. The modelling approach 
allow the assessment of a wide combination of agricultural practices, 
adaptation scenarios and time frames like the study published by Soler 
et al. (2011) where simulated SOC and crop yield from different crop 
rotations treatments in a semi-arid region, or the study published by 
Zhang et al. (2017) who simulated the long-term effect of the continuous 
and discontinuous fertilization and straw incorporation on yield and 
SOC. 

The additive aggregation method used in the SCSI is the most used 
aggregation method for the design of composite indices because of its 
low computation complexity and because allow a compensatory rela
tionship between indicators (Gan et al., 2017). In the SCSI, this type of 
aggregation allowed the association of negative SCSI scores with the 
negative synergies/trade-off and the positive SCSI scores with positive 
relationships. However, as any composite index, the aggregation of the 
indicators involves loss of information that could lead to a simplistic 
conclusion about a complex concept (Saisana and Tarantola, 2002). This 
limitation becomes more evident for the SCSI values resulting from 
trade-offs, where it is unclear which indicator is reducing and which is 
increasing. Regarding to this limitation, the normalized method selected 
for SCSI become crucial to the reliability of the SCSI. 

Given that indicators were not assigned any weights, the changes in 
SOC and yield have the same importance. However, the weighting of the 
indicators can be set by the normalization method (Mazziotta and Par
eto, 2013). This internal weighting depends on the reference values, 
which generate equivalences between the annual changes on both in
dicators (e.g. 5% of annual change in SOC, would obtain a higher 
normalized score than the same percentage in yield). This normalization 
method could represent an advantage for the type of metrics needed in 
CSA. Since the min-max normalization method can be calculated using 
reference values according to the context, these can be adjusted and set 
based on a specific annual crop, management, climatic regions or even 

based on policy targets and regional stats. However, a challenge of this 
normalization method is that it limits the comparison between studies 
that use contrasting reference values. 

5. Conclusions 

A Soil-based Climate-smartness Index (SCSI) was designed using the 
variability and the annual changes of soil organic carbon and yield. The 
SCSI provides a measure of climate-smartness based on the trade-offs 
and synergies observed between both indicators. The SCSI results 
confirmed that Conservation Agriculture (CA) practices are climate- 
smart compared with conventional management, mainly due to its ef
fect on increasing SOC in the long term. The SOC and yield changes that 
result from the implementation of climate-smart practices are tempo
rally dynamic, thus, the climate-smartness varied across the time in all 
CA practices. The temporal dynamic of the climate-smartness reflects 
the practices performance under a given context, hence, the overall 
impact of CA practices can be better understood when the temporal 
dimension is considered. 
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Muñoz-Rojas, M., 2018. Soil quality indicators: critical tools in ecosystem restoration. 
Curr.Opin. Environ. Sci. Health. 5, 47–52. https://doi.org/10.1016/j. 
coesh.2018.04.007. 

Mwongera, C., Shikuku, K.M., Winowiecki, L., Twyman, J., Läderach, P., Ampaire, E., 
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