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Abstract 

 

Photoluminescence of colloidal nanocrystals or quantum dots has great potential in bioanalysis and diagnostic 

applications, as well as in optoelectronics. In this work C, SiC, Si, and SiGe colloidal quantum dots are formed 

based on the diamond structure or zinc blende structure with various diameters. Then, an energy-optimized 

structure was developed, and the electronic structure was investigated using density functional theory (DFT). 

The absorption coefficient of the energy spectrum of these dots is studied by employing a time-dependent 

density functional theory (TD-DFT) method. The calculated geometries indicated that these dots are nearly 

spherical. The electronic structure reveals that the highest occupied molecular orbital (HOMO) and the lowest 

unoccupied molecular orbital (LUMO) of energy level can be tuned by changing the quantum dot size, i.e., the 

energy gaps are reduced when the diameter of these dots is increased. The studied absorption energy reveals that 

the absorption peak is in the UV-vis range. Moreover, the absorption peak can be engineered, i.e., the absorption 

wavelength position is blueshifted when the size of the quantum dot is increased, both in the same materials, but 

in different forms and in the same form of different materials.  

 

Keywords: C colloidal quantum dots, Si colloidal quantum dots, SiC colloidal quantum dots, SiGe colloidal     

                    quantum dots 

 

1. Introduction 

 

Nanotechnology is important in daily life. There are extensive research studies with industrial applications. 

The structure of these materials is nanoscale or about 1-100 nanometers in size. Their optical, electrical, 

magnetic, and mechanic properties are different although they are made of the same materials [1-3]. Quantum 

dots, called “artificial atoms”, are one type of nanomaterials. Researchers have developed these materials with 

suitable properties for applications such as drug delivery, bio-sensing, bio-imaging, medical biology, lasers, 

optoelectronics and photoluminescence. In recent years, several methods have been developed for synthesis of 

quantum dots including arc discharge, laser ablation, electrochemical oxidation, microwave irradiation, and 

hydrothermal methods [1-8]. When applied for medical applications in the human body, toxicity is a primary 

consideration. CdTe, CdAs, PbS are highly fluorescent but damage cells. So, researchers seek to develop new 

quantum dots that are strongly luminescent with low toxicity. Carbon and silicon quantum dots are currently 

very attractive. They have been widely researched for solar cell applications. Generally, the optical properties of 

these quantum dots depend on the size of their component particles and their terminal surface functional groups 

[9-14]. The aim of this work was too fabricate spherical C-dots, Si-dots, SiC-dots, and SiGe-dots and arrange 

their atoms based on a diamond structure. We calculated the absorption energy of the optimized structure and 

compared the effects of nanoparticle size and the type of dots. 
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2. Materials and methods 

 

This paper reports a study of the optical properties of quantum dots. We define the structure of C, SiC, Si, 

and SiGe nanodots modeled on diamond or zinc blende structures.  The shape of the dots is spherical with 

diameters in the range of 0.5-10 nm. We can reference the materials as dot2, dot3, and dot4.  Each dot-type is a 

structured form with an integer representing the number of atoms comprising the structure. All these atoms are 

located within an initial radius before calculation. Bonding is absent at the surface atom of the dots, so we 

terminated the surface sites with hydrogen atoms to fill the bonding sites. Figure 1 shows the structures used in 

this calculation. All calculations in this work are based on density functional theory (DFT) employing a hybrid 

functional (B3LYP)  with a 6-31g basis set. All energies were obtained using geometries optimized with SCC-

DFTB. The electronic absorption energy was also investigated with time-dependent density functional theory 

employing a hybrid functional (B3LYP) and 6-31g basis set using the obtained energy optimization structures. 

All calculations were performed with the Gaussain09 package [15]. 

 

3. Results and discussion 

 

3.1 The energy-optimized structure 

 

The optimized C, SiC, Si, and SiGe nanostructures are shown in Figure 2 with various diameters and 

materials.  C, Si, SiC, and SiGe are used in the current this work. The position of atoms changes when the 

structures were calculated at the ground state.  The quantum dots are nearly spherical and they remain as 

diamond structures, especially for the large dots, i.e., dot3 and dot4. However, for the smaller dot (dot2), the 

optimized quantum dot forms are likely plane cluster structures because of the fewer number of the atoms in the 

quantum dots. The bond lengths are calculated and shown in Table 1. The bond length values are close to those 

of other calculations [16], with experiment results of 1.54 A˚ for C–C, 1.12 A˚ for C–H [17-18], and about 2.36 

A˚ for Si–Si bond lengths in sila-adamantane [19]. The Ge–H and Ge–Ge bond lengths are also in good 

agreement with previously published results [20-21].  The bond angles of the structures detected are presented in 

Table 2. It was found that the bond angle of the pure C-dots and Si-dots is around 109˚, which is close to that of 

the diamond structure. This occurs since the SiC-dots and SiGe-dot are comprised of two atoms. Therefore, 

there is a different value from that of the standard tetrahedral structure. The diameters, HOMO and LUMO 

energy levels, as well as the HOMO-LUMO gaps of all quantum dots are presented in Table 3. The diameters 

were sorted in ascending order for the same structural form as C-dots < SiC-dot < Si-dot < SiGe-dots. This 

occurs because the radius of a C atom is less than Si, Ge atoms. However, the diameters of the Si-dots are 

slightly larger than those of SiGe-dots in the cases of dot3 and dot4. This is because the total number of atoms in 

the SiGe dots is slightly greater than that in the Si dots. The energy gaps are determined by the energy level 

difference between the HOMO and LUMO levels. The trend of the HOMO-LUMO energy level is reducing 

when the size of the nanodot is expanded for all C, SiC, Si, and SiGe-dots. This is a direct impact of the 

quantum size effect. Although it is the same material, it has a different size. A smaller structure has a wider gap 

than a larger one.  

 

 

 

Figure 1 The structure of C, Si, SiC, SiGe -dots before optimization.  
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Figure 2 The structure of C, Si, SiC, SiGe-dots after optimization by DFT with B3LYP/6-31g. 

 

Table 1 The bond angles of the quantum dots. 

Silicon carbide Quantum dots Bond Angle  

C C-C-C 

 dot2 109.54 

dot3 110.78 

dot4 109.81 

Si  Si-Si-Si 

 dot2 109.20 

dot3 109.68 

dot4 109.29 

SiC  C-Si-C C-C-C Si-Si-Si Si-C-Si 

 dot2 108.00 114.84 92.85 113.35 

dot3 115.88 113.36 100.05 105.98 

dot4 110.64 109.74 100.81 105.43 

SiGe   Si-Ge-Si Ge-Si-Ge 

 dot2 109.49 109.45 

dot3 108.82 109.31 

dot4 108.88 108.54 
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Table 2 The bond lengths of quantum dots. 

Silicon 

carbide 

Quantum 

dots 

Diameter

(Å) 

C-C (Å) C-H (Å)   

 C dot2 4.781 1.544 1.099 

   dot3 7.535 1.588 1.090 

   dot4 9.457 1.566 1.093 

    

Other calculations 

experimental 

1.543 1.100 

   1.54  

ref. [17-18] 

1.12  

ref. [17-18]    

Si   Si-Si (Å) Si-H (Å)    

 

dot2 7.354 2.364 1.494 

   dot3 11.199 2.372 1.489 

   dot4 14.5 2.383 1.491 

    

Other calculations 

experimental 

2.373 1.498 

   2.36  

ref. [19] 

1.480 

(for SiH4 ref. [22])  

SiC   Si-C (Å) C-C (Å) Si-Si (Å) Si-H (Å) C-H (Å) 

 

dot2 6.184 1.914 1.558 2.345 1.494 1.100 

dot3 9.552 1.927 1.586 2.367 1.491 1.095 

dot4 12.174 1.936 1.589 2.303 1.492 1.097 

 

Other calculations 

experimental 

1.86 1.543 2.373 1.480 1.100 

 1.54  

ref. [17-18] 

2.36  

ref. [19] 

1.480 

(for SiH4 ref. [22]) 

1.12  

ref. [17-18] 

SiGe   Si-H (Å) Ge-H (Å) Si-Ge (Å)  

 

 dot2 7.445 1.503 1.544 2.396 

  

dot3 10.94 1.513 1.535 2.365 

  

dot4 14.376 1.527 1.542 2.438 

  

 1.48 1.587 2.388 

  Other calculations 

experimental 

1.480  

(for SiH4 ref. [22]) 

2.364  

(ref. [23])   
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Table 3. The diameter of optimized dots as well as HOMO and LUMO energy levels and the HOMO-LUMO    

 gap. 

Silicon 

carbide 

Quantum  

dots 

Diameter (Å) HOMO  

(eV) 

LUMO  

(eV) 

HOMO – LUMO  

(eV) 

Other calculations  

(eV) 

C dot2 4.781 -7.442  1.886 9.328 9.32 (ref. [16]) 

 dot3 7.535 -7.166  1.977 9.143  

 dot4 9.457 -5.878  1.713 7.592  

Si dot2 7.354 -7.503 -0.627 6.876 6.87 (ref. [16]) 

 dot3 11.199 -6.230 -1.523 4.707  

 dot4 14.500 -6.329 -2.024 4.305  

SiC dot2 6.184 -6.766  0.160 6.926 6.4 (ref. [24]) 

 dot3 9.552 -6.463 -0.999 5.464  

 dot4 12.174 -5.314 -0.749 4.565  

SiGe dot2 7.445 -7.398 -0.492 6.905  

 dot3 10.940 -6.147 -1.276 4.871 4.39 (ref. [25]) 

 dot4 14.376 -6.213 -1.727 4.487  

 

 

3.2 Electron affinity (EA) 

 

The adiabatic electron affinity (AEA) is defined as AEA = Eneutral - Eanion, where Eneutral is the total energy of 

the neutral molecule at its optimized geometry, whereas Eanion is the total energy of the corresponding anion 

calculated at its optimized geometry. In Table 2 and Figure 3, the HOMO and LUMO states are calculated using 

DFT with the B3LYP/6-31g basis set and Koopmans’ theorem [26], i.e., the first ionization energy of a 

molecular system is equal to the negative value of the orbital energy of the highest occupied molecular orbital 

(HOMO). Electron affinity is equal to the negative value of lowest unoccupied molecular orbital (LUMO). The 

electron affinity energy (EA) of the colloidal quantum dot is tunable, i.e., it is diminished when the radius of the 

nanodot is increased. The carbon and SiC (dot2) nanodots show especially high negative electron affinity (NEA) 

because the LUMO state energy is in the positive energy region. Therefore, these structures could have the 

potential for innovative applications, such as advanced photoemission devices, advanced secondary electron 

emission devices, field electron emission devices, thermionic emission devices, and cold cathode applications. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 The energy gap (eV) between the HOMO – LUMO level. 

 

 



6 

 

3.3 The molecular orbital distribution  

 

Corresponding to the energy-optimized wave function, the highest occupied molecular orbital (HOMO) and 

the lowest unoccupied molecular orbital (LUMO) tend to be localized around the quantum dot surface. The 

energy gap between the HOMO and LUMO states is size-dependent. The value of the energy gap decreases as 

the dot size increases, as shown in our results (Table 3). It also indicates that confinement states are weaker for 

larger dot sizes. However, this work focused on only the difference between the location of the distribution of 

HOMO and LUMO. According to Figure 4, there is a slight difference in the location of the distribution of 

HOMO and LUMO states in all dot sizes. Therefore, electrons in the colloidal quantum dots are easily 

transferred from the HOMO to the LUMO state.   

 

Figure 4 Molecular orbital spatial distribution of hydrogen-capped colloidal carbon, silicon, SiC, and SiGe 

quantum dots with sizes of dot2, dot3, dot4, respectively. 

 

3.4 The electronic absorption spectra  

 

Simulation of the absorption spectra of the dots is a preliminary evaluation of light-harvesting ability, which 

has medical and bio-sensing applications based their energy absorption. The calculated wavelengths and 

oscillator strengths of the quantum dots in a vacuum are obtained through TD-DFT calculations with a hybrid 

functional (B3LYP) and a 6-31g basis using the Gaussain09 software package [15]. 

The simulated absorption spectra of these dots are shown in Figure 5 for the C-dot (a), Si-dot (b), SiC (c) and 

SiGe (d). The absorption peaks of the C-dot are at wavelengths of 146.8 nm, 147.9 nm, and 177.4 nm for dot2 

(0.47 nm), dot3 (0.75 nm), and dot4 (0.95 nm), respectively. This confirms that the absorption spectrum is 

tunable by changing the cluster size. It reasonably agrees with the experiment results of Miao et al. [27]. 

Carbon-dots with average particle sizes of 3.96 nm, 4.12 nm, and 4.34 nm have absorption wavelengths of 440 

nm, 540 nm, and 620 nm, respectively, for the blue, green, and red spectra. In the case of Si-dots, the absorption 

HOMO         LUMO                  HOMO              LUMO

C-dot2

C-dot3

C-dot4

SiGe-dot2

SiGe-dot3

SiGe-dot4

Si-dot2

Si-dot3

Si-dot4

SiGe- dot2

SiGe- dot3

SiGe- dot4
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energies are 212.0 nm (dot2), 317.4 nm (dot3), and 334.2 nm (dot4). These results are comparable to colloidal 

silicon nanocrystals as the mean size decreases from 4.23 to 1.42 nm, which have blue emissions peaks at 405 

and 430 nm, prepared using a laser ablation method [28]. There are three SiC absorption peaks at wavelengths 

of 205.9 nm (dot2), 258.1 nm (dot3), and 306.5 nm (dot4). In the case of SiGe, we also found three absorption 

peaks at 212 nm (dot3), 297 nm (dot3), and 312.2 nm (dot4). These electronic absorption peaks, in all cases, 

were in the UV-vis range. Summarizing these results, the size of quantum dots is considered the most influential 

parameter since the structures are the same among the materials. The position of peak absorption energy will 

increase with the diameter of the quantum dots. From Figure 6, comparing various materials in the dot4 form, 

the lowest to highest peak absorption energies are for the C-dot, SiC-dot, SiGe-dot, respectively. The important 

effect for this point is due to the quantum sized nanoparticles. The Si-dot has the largest diameter and it has a 

peak absorption in the highest position in nm units. When pure Si-dots are substituted with C atoms in their 

structure, the energy gap of the pure Si-dots is larger than that of the pure C dots. The peak absorption of SiC 

will be located at a position intermediate between the pure Si-dots and C-dots. 

 

 

Figure 5 Energy absorption peaks of C-dots (A), Si-dots (B), SiC-dots (C) and SiGe-dots (D). 
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Figure 6 Comparison of the energy peak absorption values of dot4 comprised of C, Si, SiC, and SiGe – dots. 

 

4. Conclusion 

 

In this work, we propose C, SiC, Si, and SiGe quantum dots as potential materials for use in biomarker- and 

bioimaging-related applications. The geometries and electronic properties of the C, SiC, Si, and SiGe quantum 

dots were studied using a DFT method. UV-vis absorption was investigated using a TD-DFT method. The dots 

were spherical and based on the diamond structure. The HOMO-LUMO gap decreases when the radius of the 

nanodots increases. Considering the size of the quantum dot at the ground state using various materials with the 

same number of atoms, the increased diameter of the dots is caused by the presence of larger atoms. The 

calculated electronic absorption energy of these quantum dots was found to be in the UV-vis range. The position 

of absorption tended to increase with the diameter of the dots in the same material, as well as in the different 

forms as well as in the same form (dot4) in different materials. Properties of the dots are tunable by changing the 

dot size, doping, or substitution of other atoms into a pure structure, so that they can be made suitable for many 

applications.   
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