
This is a repository copy of Utilizing the Untapped Potential of Indirect Encoding for Neural
Networks with MetaLearning.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/171063/

Version: Accepted Version

Conference or Workshop Item:
Katona, Adam, Lourenco, Nuno, Machado, Penousal et al. (2 more authors) (Accepted: 
2021) Utilizing the Untapped Potential of Indirect Encoding for Neural Networks with 
MetaLearning. In: Evostar 2021, 07-09 Apr 2021. (In Press) 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Utilizing the Untapped Potential of Indirect

Encoding for Neural Networks with Meta

Learning

Adam Katona1, Nuno Lourenço2, Penousal Machado2,
Daniel W. Franks1, and James Alfred Walker1

1 Department of Computer Science, University of York, UK
{ak1774,daniel.franks,james.walker}@york.ac.uk

2 CISUC, Department of Informatics Engineering, University of Coimbra, Portugal
{naml,machado}@dei.uc.pt

Abstract. Indirect encoding is a promising area of research in machine
learning/evolutionary computation, however, it is rarely able to achieve
performance on par with state of the art directly encoded methods. One
of the most important properties of indirect encoding is the ability to con-
trol exploration during learning by transforming random genotypic vari-
ation into an arbitrary distribution of phenotypic variation. This gives
indirect encoding a capacity to learn to be adaptable in a way which
is not possible for direct encoding. However, during normal objective
based learning, there is no direct selection for adaptability, which results
in not only a missed opportunity to improve the ability to learn, but of-
ten degrading it too. The recent meta learning algorithm MAML makes
it possible to directly and efficiently optimize for the ability to adapt.
This paper demonstrates that even when indirect encoding can be detri-
mental to performance in the case of normal learning, when selecting for
the ability to adapt, indirect encoding can outperform direct encoding
in a fair comparison. The indirect encoding technique Hypernetwork was
used on the task of few shot image classification on the Omniglot dataset.
The results show the importance of directly optimizing for adaptability
in realizing the powerful potential of indirect encoding.

Keywords: Indirect encoding · Evolvability · Meta learning · Neuroevo-
lution · Hypernetwork · HyperNEAT

1 Introduction

Most deep learning research is done with the natural representation of neural
networks, where each weight in the network directly maps on to a separate pa-
rameter in the representation. We call this a direct encoding. On the other hand,
in an indirect encoding the weights do not directly map on to the representa-
tion, and instead, we apply a transformation to the representation to produce the
weights. In Evolutionary Computation (EC), this transformation is commonly
referred to as the genotype-phenotype mapping.



2 A. Katona et al.

Direct encoding seems to work well and we can successfully train models
with as many as 175 billion parameters [4]. As such, direct encoding dominates
practically all benchmark problems. Natural evolution on the other hand uses
indirect encoding. It is debatable whether evolution is as successful a problem
solver because it uses indirect encoding or despite it. There could be many
reasons why nature ended up with indirect encoding, be it biological limitations
or because indirect encoding provides benefits. However, when designing our
learning algorithms, we are faced with the decision of using either. This raises
the question: Is there any advantage in using an indirect encoding?

1.1 The Potential of Indirect Encoding

In this work we argue that indirect encoding is worthy of our attention because
it has two interesting properties, which direct encoding lacks:

1. Indirect encoding can control the exploration during learning by making
changes in promising directions more sensitive and changes in less promising
directions insensitive.

2. Indirect encoding can reuse parameters multiple times, making it possible
to learn regular structures.

Controlling Exploration Indirect encoding is capable of controlling explo-
ration during learning by modifying the type of variation mutations can cause.
This is possible since the genotype-phenotype map has the ability to transform
random genotypic variation to an advantageous distribution of phenotypic vari-
ation [31].

A simple example which is often used to demonstrate this property is how
nature encodes development plans for symmetric bodies [17,19]. Because of the
way the developmental program for the body is encoded, it is easier for evolution
to change the length of both limbs together, then to change them separately,
which is probably a useful way to explore possible space of body configurations.

A similar concept that describes the same phenomena is developmental canal-
ization. Indirect encoding has the ability to entrench certain phenotypic features,
making them difficult to change, the same way water can dig a canal, making
the path of future flow more stable. A great example of how canalization can
emerge in artificial evolution is given in [17]. In their experiments, developmental
canalization made certain good quality variation more common, increasing the
ability to innovate.

One of the most successful algorithms that controls its own exploration is
Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [14]. CMA-ES
uses an exploration strategy of adapting the covariance matrix of a multivariate
Gaussian distribution in a way that more promising directions are explored more.
By using indirect encoding we can allow the algorithm to automatically discover
exploration strategies instead of manually inventing and incorporating them into
our algorithms.



Utilizing indirect encoding 3

Reusing Parameters Another important property of indirect encoding is the
ability to reuse parameters multiple times. We argue that this is actually a similar
property to controlling exploration, since having many separate parameters that
always change together, or having one parameter which is reused many times
achieves similar results.

Indirect encoding allows the reuse of information to build regular and mod-
ular structures [16,25]. We already know how beneficial some structures are, for
example the convolution is reusing the convolutional kernel weights many times
at different locations in the image, which makes learning vision tasks efficient. By
using indirect encoding we open the possibility to discover such useful structures
automatically, even when using a fully connected architecture [8].

The Vision of Indirect Encoding By using an indirect encoding, we can
allow our algorithms to automatically discover different modular architectures,
and exploration strategies, instead of manually inventing and coding them. The
vision of automatically discovering these kinds of representations with the ability
to learn effectively for many kinds of problems is extremely alluring [25].

Richard Sutton’s bitter lesson argument [30] postulates that general meth-
ods which scale well with computation eventually always outperform methods
for which the AI researchers build in extra handcrafted knowledge. For this rea-
son, researchers should concentrate their main efforts on studying general and
scalable methods. We hypothesise that utilising indirect encoding will allow us
to discover efficient learning systems automatically in a data-driven way in the
spirit of Sutton’s argument.

1.2 The Difficulties with Indirect Encoding

As we discussed in the previous section, indirect encodings have a powerful
capability to control their own exploration during training. Since the ability
to improve further has no effect on current fitness, greedy algorithms are not
expected to select for representations which result in good exploration strategies.
Because there are many more bad exploration strategies than good ones, if there
is no selection for the ability to adapt, the exploration strategy will just drift,
causing indirect encoding to most likely hurt learning performance. This leads
to the main hypothesis of this paper.

Hypothesis Greedy learning algorithms are unlikely to make full use of the
capabilities of indirect encoding.

We do not suggest however that it is impossible to make use of indirect
encoding capabilities without selecting for the ability to adapt, only that it is
much more difficult. Several researchers in the field of evolution of evolvability
[1,31,20] argue that evolvability can emerge without selection in an unsupervised
way. Huizinga et al. [17] showed that developmental canalization can emerge in
a divergent search like environment.



4 A. Katona et al.

Much effort was given to algorithms which instead of selecting for individuals
with the ability to improve their fitness, select for the ability to generate diverse
behaviour in their offspring [19,10]. These algorithms capture a different aspect
of evolvability which might be able to utilize the capabilities of indirect encoding
just as well.

In the rest of the section, we evaluate our hypothesis in the context of past
results with indirect encoding.

HyperNEAT HyperNEAT [26] is one of the most well known indirect encoding
techniques for neuroevolution. There are several demonstrations of how Hyper-
NEAT outperforms direct encoding in different domains [7,3,11], especially if the
task is more regular [6]. These results seemingly contradict our hypothesis, since
HyperNEAT does not directly select for the ability to adapt. We argue however,
that this is not the case for three reasons.

First, HyperNEAT uses innovation protection. Innovation protection was
originally introduced in NEAT [27], and it keeps innovative genes in the gene
pool even if they have a poor performance. The justification for it is that when
we change the topology, fitness likely decreases first until the weights of the new
structural elements can be fine-tuned. However, innovation protection also helps
to protect individuals that are better at evolving, since it provides them with a
few generations to prove their ability to improve. This means that HyperNEAT
is actually indirectly selecting for the ability to adapt. More experiments are nec-
essary to evaluate whether HyperNEAT would perform well without innovation
protection, but this is beyond the scope of this paper.

Second, the baselines for these results were using some version of NEAT
such as plain NEAT, Fixed Topology NEAT (FT-NEAT) or Perceptron NEAT
(P-NEAT). While NEAT might be a good algorithm to evolve the small query
networks for HyperNEAT, it might not be an ideal baseline for the larger directly
encoded networks. NEAT changes parameters one by one, recent results suggest
that techniques which modify many weights at the same time perform much
better for large networks, like CMA-ES [15], GA [29] and ES [22]. When we
compare the performance of HyperNEAT to these more efficient baselines, on
the task of learning to play Atari games, direct encoding seems to have the
advantage in most games [22].

Finally, HyperNEAT experiments are typically using relatively small net-
works. Choromanska et al. [5] showed that as the network size increases, the
number of bad quality local optima are diminishing exponentially. The problem
of local optima, which is a very important factor in the case of small networks, is
less important for large networks. For this reason, the results obtained in many
HyperNEAT experiments are not necessarily expected to generalize to large scale
networks.

Differentiable Pattern Producing Network One of the most impressive
achievements of indirect encoding is the demonstrated ability to invent convo-
lution from scratch using a fully connected architecture [8]. The DPPN (Dif-



Utilizing indirect encoding 5

ferentiable Pattern Producing Network) is a differentiable version of the CPPN
(Compositional Pattern Producing Network) [24] used in HyperNEAT. In this
work, the authors run experiments with three different settings. In the Darwinian
setting, individuals were evaluated on their ability to solve the task without fur-
ther adaptation. In the case of the Baldwinian setting, individuals were allowed
to learn further by using gradient descent, resulting in selection for the ability
to adapt. In the case of the Lamarckian setting, the situation is the same as
with Baldwinian evolution with the additional feature of inheriting the learned
weights as well. In the case of the Darwinian setting, without selection for the
ability to adapt, the task was not solved successfully, not a single digit was
recognisable in the image reconstruction task. When they used Baldwinian or
Lamarckian evolution however performance was much better, and convolution-
like fully connected weights were generated. This experiment supports our hy-
pothesis that selection for the ability to learn is crucial in realizing the full
capabilities of indirect encoding.

Hypernetworks A recent indirect encoding technique called Hypernetworks
[13] can achieve near state of the art performance on sequence modelling tasks.
This result was achieved with dynamic Hypernetworks, where a recurrent net-
work is enhanced with the new ability to modify its own weights during infer-
ence, based on the current input and state of the network. The simpler static
Hypernetwork does not change the capabilities of the network, only the way the
parameters are represented, making the comparison between direct and indirect
encoding easy. When using static Hypernetworks to generate the weights of a
convolutional network, the results on an image classification task are worse than
direct encoding. This result however was obtained by using around an order of
magnitude less parameter for the indirect encoding. We show in section 3.4. that
we achieve similar results when using Hypernetworks with the same number of
parameters, indirect encoding cannot outperform direct encoding on an image
classification task with greedy learning.

2 Background

In this paper we combine ideas from the fields of Deep Learning and Evolutionary
Computation, so we use the terminology from both fields to describe similar
concepts. For example, we use the terms evolvability and the ability to adapt
which are similar concepts, both are concerned with potential yet unrealized
improvements, but imply a different underlying algorithm. The situation is the
same with the phrases “selecting for” or “optimizing for”.

2.1 Indirect Encoding for Neuroevolution

There is a vast literature covering indirect network encoding. The field of arti-
ficial embriogeny is concerned with these techniques, a great review is available
by [28]. Relatively few of these techniques were constructed with modern deep



6 A. Katona et al.

learning scale in mind (millions or billions of connections). In this section, we
discuss two families of techniques, which were shown to be viable for these large
networks.

One family of methods to indirectly encode the weights of a neural network is
to use query function and a substrate [26]. The query function is a parameterized
function; typically a small neural network [24], which maps the coordinates of
a source and a target neuron to a single weight between the source and target
neuron. These coordinates for the neurons come from the substrate, which is
often manually crafted by placing each neuron in 2D or 3D space, or it can also
be learned [21]. A conceptual diagram of how this kind of encoding can represent
weights can be seen in Fig. 1.

Connectivity
List

[(from,to),...]

Substrate
Coordinates

[(x,y),...]

The query vector
[(xfrom,yfrom ,xto,yto),...] 

Query Network

(5,52)

coord of
node 5

coord of
node 52

5

52

Generated
Network
Weights

Fig. 1. Query networks: In the case of query networks, each node in the neural network
is assigned a coordinate in space, which is called the substrate (this example shows a
2D space with coordinates x and y). For each connection, a query vector is assembled
from the coordinates of the source and target neurons. The weight for each connection
is determined by evaluating the query vector with the query network, which is a small
neural network. To generate the whole network as many forward passes are necessary as
there are connections in the network. Yellow blocks represent the learned parameters,
blue blocks represent fixed or generated values, and the red blocks show an example of
how a single weight is generated

To calculate the weights of the whole network, we need to query this network
as many times as many weights there is. For a large network, this could mean
millions of queries, which could become prohibitively expensive. This is especially
problematic in cases when we only use the network a few times before updating,
like supervised learning, and less problematic in control or reinforcement learning
problems, where we use the network hundreds or thousands of times before
updating it. This is only an issue during training since during inference time
the network does not change anymore. Luckily the size of the query network is
typically very small, and due to the large number of queries, they can effectively
utilize the GPU.



Utilizing indirect encoding 7

Hypernetwork

Embeddings

Generated
Network
Weights

Fig. 2. Hypernetworks: Each embedding is transformed into a chunk of weights by
the Hypernetwork [13]. Yellow blocks represent the learned parameters, the blue block
represents the generated weights, and the red blocks show an example of how a single
embedding is transformed into a chunk of generated weights. See Fig. 4 on how a
Hypernetwork can be used as part of a larger model

Another family of methods is to simply transform an embedding space to the
weight space. The first method to use this technique for large neural networks
is Hypernetworks [13] which uses a simple linear projection as transformation.
A conceptual diagram of how this kind of encoding can represent weights can
be seen in Fig. 2. The learned parameters are a set of embeddings and the
parameters of the projection network. Each embedding is then used to generate
a separate part of the network. This separation into smaller chunks is required
to keep the size of the transformation manageable. Another side effect of this
separation, which motivated the invention of the technique is that there is a kind
of information sharing between these chunks, since they are projected from the
same subspace.

2.2 MAML

In this work, we use the meta learning algorithm MAML [9] as an algorithm
which can optimize for the ability to adapt. The goal of MAML is to find initial
parameters that allow for fast adaptation for many different tasks. It consists
of 2 different kinds of updates. There is a so-called fine-tuning step, which is a
normal gradient step that changes the parameters θ so the training task Dtr

i loss
is lower, as seen in equation 1. Then there is the meta update, which updates
the initial or meta parameters, so fine-tuning can achieve good generalization
performance on the test tasks Dts

i . Calculating the meta gradient requires us to
differentiate through a gradient step (see equation 2), which means we also need
to calculate second order gradients.

θ′ = θ − α∇θL(θ,D
tr
i ) (1)

Lmeta =
∑

task i

L(θ′,Dts
i ) =

∑

task i

L(θ − α∇θL(θ,D
tr
i ),Dts

i ) (2)

In this work, we used the gradient based version of MAML because both our
models and the task are differentiable. The evolutionary version of the algorithm



8 A. Katona et al.

ES MAML [23] can be used in cases when either the model or the task or
both are not differentiable. This property of ES MAML might be interesting
for research into indirect encoding since there are many exotic and interesting
nondifferentiable ways to represent networks [28].

3 Experiment

The goal of our experiments is to evaluate our original hypothesis, that indirect
encoding is unlikely to be beneficial in case of greedy learning, but can lead to
better performance when the ability to adapt is selected.

We used two kinds of vision tasks, simple image classification on the Fash-
ionMNIST [32] dataset for greedy learning and few shot classification on the
Omniglot [18] dataset for meta learning. The problem setting of few shot image
classification is shown in Fig. 3

Training
Task

Test
Task

Support Set Query Set

Fig. 3. Few shot learning problem. The goal of MAML is to find model parameters
that can be fine-tuned given the few examples in the support set (in this example 5 way
1 shot, there are 5 different classes with 1 example from each), so they can accurately
classify the images in the query set. The training tasks created by randomly sampling 5
out of the 1200 training classes. The performance is evaluated on the test tasks, which
are created by sampling 5 out of the 400 test classes.

We used fully connected networks because convolutional networks are already
very good at vision tasks and we wanted to leave room for improvement. Because
the two dataset uses the same resolution 28 by 28 we could use the same networks
without any modification for both tasks.

3.1 Fair Comparison

To determine whether indirect encoding is beneficial for learning, we need to
establish a baseline with direct encoding. To make the comparison fair, we used



Utilizing indirect encoding 9

approximately the same number of parameters to encode the exact same net-
works with both direct and indirect encoding. We used 4 different sized networks,
which are summed up in Table 1.

Table 1. Dimensions of the networks, and the number of parameters used in both direct
and indirect encoding. The table also shows the hyperparameters used for indirect
encoding.

Hidden dims
Direct

parameters
Indirect

parameters
[zdim1,

Nin1, Nout1]
[zdim2,

Nin2, Nout2]

Tiny [32,16] 25,829 25,977 [14,2,2] [16,2,2]
Small [64,32] 52,677 51,237 [14,4,4] [16,2,2]
Medium [128,64] 109,445 107,229 [30,4,4] [16,2,2]
Large [256,128,64,64] 247,621 244,837 [56,4,4] [32,4,4]

For indirect encoding, we generated the weights of the first two hidden layers
(the vast majority of parameters), the biases and the rest of the weights were
encoded directly, as shown in Fig. 4. The authors of the original Hypernetwork
paper used a single Hypernetwork to generate the weights of all layers. They
argue that this constrained the system to share some commonality between the
layers, which resulted in decreased performance [13]. This would especially be
the case for fully connected networks since the intermediate fully connected
representations lack the common structure that the intermediate representations
of convolutional networks have. For this reason, we used separate Hypernetworks
for the two generated layers.

3.2 Implementation Details

We used the same formulation of the Hypernetwork as in [13], instead of a
simple projection, 2 matrix multiplications are used to project the embeddings
into weights. First, the embeddings with size zdim are projected into the shape
Nin by zdim. The second projection then projects the result of the previous
projection into the shape [Nout,Nin,unitdim]. Where unitdim is the size of the
smallest chunk of weights generated. Nout,Nin are hyperparameters controlling
how much weights should be generated from a simple embedding. Doing the
projection this way is equivalent to a simple large projection but uses way fewer
parameters because the weights of the second matrix are reused many times.
We choose unitdim to be the number of connections a single neuron has in the
generated layer.

Initializing weights is an important aspect of training neural networks to
avoid the vanishing or exploding gradient problem. Normally we would want to
initialize our weight in a way that the magnitude of the activations throughout
the network stays constant. This can be achieved by initializing each layer so
their gain is one [12]. Normally in a fully connected layer, the variance of the



10 A. Katona et al.

Hypernetwork
Layer 1

Embeddings
Layer1

W1 Generated Dense Layer
W1x + b1

Batch Norm

Relu

Batch Norm

Relu

Dense layer

Hypernetwork
Layer 2

Embeddings
Layer 2

W2

b1

b2

Generated Dense Layer
W2 x + b2

Softmax

Flatten

Fig. 4. The indirect architecture used in the experiments. The yellow boxes are learned
parameters, the blue boxes are generated parameters and the gray boxes are functions.
The direct encoding uses the same architecture, but the two dense layers are represented
normally.



Utilizing indirect encoding 11

activations in a layer depends on the variance of the inputs, the variance of the
weights, and the number of neurons in the previous layer as shown in equation
3.

V ar(al) = nl−1 ∗ V ar(Wl) ∗ V ar(al−1) (3)

In the case of Hypernetworks however we use one network to generate the weights
of another network. We initialized the Hypernetwork in a way that will result in
the generated layer to have a gain of one. In the case of Hypernetworks, because
the matrix weights in the second projection are reused multiple times, we need to
use the number of neurons contributing to a single weight, which is the number
of embeddings, zdim (equation 5). In the following equations, W1 is the first
matrix and W2 is the second matrix in the Hypernetwork.

V ar(a1) = zdim ∗ V ar(W1) ∗ V ar(a0) (4)

V ar(a2) = zdim ∗ V ar(W2) ∗ V ar(a1) (5)

V ar(a2) = zdim ∗ V ar(W2) ∗ zdim ∗ V ar(W1) ∗ V ar(a0) (6)

Let the gain of the Hypernetwork be equal to the required variance of the gen-
erated layer for it to have a gain of one, and provide the additional constraint
of V ar(W1) = V ar(W2)

V ar(a2)/V ar(a0) := 1/ngenerated fan in (7)

V ar(W ) =

√

1

ngenerated fan in ∗ zdim ∗ zdim
(8)

The source code for all of our experiments are available at https://github.com/
adam-katona/indirect encoding maml

3.3 Greedy Learning Experiment

To evaluate the effect of indirect encoding on performance in the case of a greedy
learning algorithm, we used the FashionMNIST dataset for image classification.
The networks were trained with gradient descent. The batch size was 64, we
used the Adam optimizer with a learning rate of 0.001. Each run was repeated
20 times, test results are show in Fig. 5 and in Table 2.

Indirect encoding achieves slightly but consistently worse test accuracies for
all network sizes. For all but the tiny network the difference is significant (p<0.01,
Mann-Whitney U test). These are similar result reported in [13], showing the
inability of greedy learning to benefit from the capabilities of indirect encoding,
supporting our original hypothesis.



12 A. Katona et al.

Table 2. Median test accuracies (out of 20 runs) achieved on the FashionMNIST
dataset.

Direct Indirect

Tiny 0.8723 0.8718
Small 0.8840 0.8817
Medium 0.8903 0.8862
Large 0.8937 0.8904

Fig. 5. Greedy learning results: Final test accuracy on the FashionMNIST dataset.
Without selecting for adaptability, the direct encoding slightly but consistently out-
performs indirect encoding in a fair comparison. The difference is significant for the
small,medium and large networks (p<0.01, Mann-Whitney U test)



Utilizing indirect encoding 13

3.4 Meta Learning Experiment

To evaluate the performance of indirect encoding when we are optimizing for
the ability to adapt, we run experiments with few shot learning on the Omniglot
dataset. We use 5 way 1 shot learning. We followed the procedure described in
[9]. We used 1200 characters for training and 400 for testing. We augmented the
characters by applying multiples of 90◦ rotations. We used batch normalization
in the same way as in the original MAML implementation, only using batch
statistics and not accumulating running statistics. We used a learnable per step,
per parameter learning rate for the fine-tuning update, as proposed in [2]. We
used cosine annealing meta learning rate schedule, as proposed in [2]. We used a
meta batch size of 32. We used the Adam optimizer and the initial meta learning
rate of 0.005 using cosine annealing learning rate scheduler with a restart period
of 3000 meta batches. We trained each model for 50000 iterations (meta batches).
We used a single adaptation step while training, and used three while evaluating
performance on the test tasks, the same way as done in the original MAML
paper [9].

Each run was repeated 8 times, test results are show in Fig. 6 and in Table
3. For the tiny, small, and medium networks, indirect encoding achieved higher
accuracies. For the small and medium sizes the difference is significant (p<0.01,
Mann-Whitney U test). For the large network, indirect encoding has slightly
lower accuracy than direct encoding.

The result with the large network is surprising since for all other network
configurations indirect encoding had the advantage. For the large network we
added 2 additional directly encoded layers. We suspect that there is some kind
of interesting interactions between the direct and indirect layers which hinders
performance.

Table 3. Median test accuracies (out of 8 runs) achieved on 5-way, 1-shot learning on
the Omniglot dataset.

Direct Indirect

Tiny 0.739 0.754

Small 0.775 0.806

Medium 0.818 0.839

Large 0.875 0.872

4 Conclusion

We proposed the hypothesis that greedy learning is unlikely to benefit from the
capabilities of indirect encoding, and selecting for the ability to adapt is nec-
essary. We verified the previously demonstrated [13] results that the indirect
encoding technique Hypernetworks achieves lower accuracy when trained on an



14 A. Katona et al.

Fig. 6. Meta learning results: Final test accuracies after the third gradient step on
the test tasks of 5-shot, 1-way image classification. When adaptability is selected, the
indirect encoding outperforms the direct encoding in a fair comparison for most network
sizes, except when networks are large.

image classification task compared to direct encoding. We then showed that
when the ability to adapt is selected with MAML, Hypernetworks can outper-
form direct encoding on an image classification task. Our results suggest that
optimizing for the ability to adapt is indeed of key importance when learning
with indirect encoding. More experiments are needed in different domains to
verify whether the hypothesis holds in a more general setting. We hope that
our results will motivate other researchers to explore the exciting possibilities of
utilizing meta learning to realize the powerful potential of indirect encoding.

Acknowledgement

This work was supported by the EPSRC Centre for Doctoral Training in In-
telligent Games & Game Intelligence (IGGI) [EP/L015846/1] and the Digital
Creativity Labs funded by EPSRC/AHRC/Innovate UK [EP/M023265/1]. This
work was partially supported by Society for the Promotion of Evolutionary Com-
putation in Europe and its Surroundings (SPECIES).

References

1. Altenberg, L., et al.: The evolution of evolvability in genetic programming. Ad-
vances in genetic programming 3, 47–74 (1994)



Utilizing indirect encoding 15

2. Antoniou, A., Edwards, H., Storkey, A.: How to train your maml. arXiv preprint
arXiv:1810.09502 (2018)

3. Assunção, F., Lourenço, N., Machado, P., Ribeiro, B.: Using gp is neat: Evolving
compositional pattern production functions. In: European Conference on Genetic
Programming. pp. 3–18. Springer (2018)

4. Brown, T.B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Nee-
lakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot
learners. arXiv preprint arXiv:2005.14165 (2020)

5. Choromanska, A., Henaff, M., Mathieu, M., Arous, G.B., LeCun, Y.: The loss
surfaces of multilayer networks. In: Artificial intelligence and statistics. pp. 192–
204 (2015)

6. Clune, J., Ofria, C., Pennock, R.T.: How a generative encoding fares as problem-
regularity decreases. In: International Conference on Parallel Problem Solving from
Nature. pp. 358–367. Springer (2008)

7. Clune, J., Ofria, C., Pennock, R.T.: The sensitivity of hyperneat to different geo-
metric representations of a problem. In: Proceedings of the 11th Annual conference
on Genetic and evolutionary computation. pp. 675–682 (2009)

8. Fernando, C., Banarse, D., Reynolds, M., Besse, F., Pfau, D., Jaderberg, M., Lanc-
tot, M., Wierstra, D.: Convolution by evolution: Differentiable pattern producing
networks. In: Proceedings of the Genetic and Evolutionary Computation Confer-
ence 2016. pp. 109–116 (2016)

9. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation
of deep networks. arXiv preprint arXiv:1703.03400 (2017)

10. Gajewski, A., Clune, J., Stanley, K.O., Lehman, J.: Evolvability es: scalable and
direct optimization of evolvability. In: Proceedings of the Genetic and Evolutionary
Computation Conference. pp. 107–115 (2019)

11. Gauci, J., Stanley, K.O.: A case study on the critical role of geometric regularity
in machine learning. In: AAAI. pp. 628–633 (2008)

12. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward
neural networks. In: Proceedings of the thirteenth international conference on ar-
tificial intelligence and statistics. pp. 249–256 (2010)

13. Ha, D., Dai, A., Le, Q.V.: Hypernetworks. arXiv preprint arXiv:1609.09106 (2016)
14. Hansen, N., Ostermeier, A.: Adapting arbitrary normal mutation distributions in

evolution strategies: The covariance matrix adaptation. In: Proceedings of IEEE
international conference on evolutionary computation. pp. 312–317. IEEE (1996)

15. Hausknecht, M., Lehman, J., Miikkulainen, R., Stone, P.: A neuroevolution ap-
proach to general atari game playing. IEEE Transactions on Computational Intel-
ligence and AI in Games 6(4), 355–366 (2014)

16. Huizinga, J., Clune, J., Mouret, J.B.: Evolving neural networks that are both mod-
ular and regular: Hyperneat plus the connection cost technique. In: Proceedings
of the 2014 Annual Conference on Genetic and Evolutionary Computation. pp.
697–704 (2014)

17. Huizinga, J., Stanley, K.O., Clune, J.: The emergence of canalization and evolvabil-
ity in an open-ended, interactive evolutionary system. Artificial life 24(3), 157–181
(2018)

18. Lake, B., Salakhutdinov, R., Gross, J., Tenenbaum, J.: One shot learning of simple
visual concepts. In: Proceedings of the annual meeting of the cognitive science
society. vol. 33 (2011)

19. Mengistu, H., Lehman, J., Clune, J.: Evolvability search: directly selecting for
evolvability in order to study and produce it. In: Proceedings of the Genetic and
Evolutionary Computation Conference 2016. pp. 141–148 (2016)



16 A. Katona et al.

20. Pigliucci, M.: Is evolvability evolvable? Nature Reviews Genetics 9(1), 75–82 (2008)
21. Risi, S., Stanley, K.O.: Enhancing es-hyperneat to evolve more complex regular

neural networks. In: Proceedings of the 13th annual conference on Genetic and
evolutionary computation. pp. 1539–1546 (2011)

22. Salimans, T., Ho, J., Chen, X., Sidor, S., Sutskever, I.: Evolution strategies as
a scalable alternative to reinforcement learning. arXiv preprint arXiv:1703.03864
(2017)

23. Song, X., Gao, W., Yang, Y., Choromanski, K., Pacchiano, A., Tang, Y.: Es-maml:
Simple hessian-free meta learning. arXiv preprint arXiv:1910.01215 (2019)

24. Stanley, K.O.: Compositional pattern producing networks: A novel abstraction of
development. Genetic programming and evolvable machines 8(2), 131–162 (2007)

25. Stanley, K.O., Clune, J., Lehman, J., Miikkulainen, R.: Designing neural networks
through neuroevolution. Nature Machine Intelligence 1(1), 24–35 (2019)

26. Stanley, K.O., D’Ambrosio, D.B., Gauci, J.: A hypercube-based encoding for evolv-
ing large-scale neural networks. Artificial life 15(2), 185–212 (2009)

27. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting
topologies. Evolutionary computation 10(2), 99–127 (2002)

28. Stanley, K.O., Miikkulainen, R.: A taxonomy for artificial embryogeny. Artificial
Life 9(2), 93–130 (2003)

29. Such, F.P., Madhavan, V., Conti, E., Lehman, J., Stanley, K.O., Clune, J.: Deep
neuroevolution: Genetic algorithms are a competitive alternative for training deep
neural networks for reinforcement learning. arXiv preprint arXiv:1712.06567 (2017)

30. Sutton, R.: The bitter lesson. Incomplete Ideas (blog), March 13, 12 (2019)
31. Watson, R.A., Szathmáry, E.: How can evolution learn? Trends in ecology & evo-

lution 31(2), 147–157 (2016)
32. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-mnist: a novel image dataset for bench-

marking machine learning algorithms. arXiv preprint arXiv:1708.07747 (2017)


	Utilizing the Untapped Potential of Indirect Encoding for Neural Networks with Meta Learning

