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Abstract9

Neural circuits use homeostatic compensation to achieve consistent behaviour despite variability in underlying10

intrinsic and network parameters. However, it remains unclear how compensation regulates variability across a11

population of the same type of neurons within an individual, and what computational benefits might result from12

such compensation. We address these questions in the Drosophila mushroom body, the fly’s olfactory memory13

center. In a computational model, we show that memory performance is degraded when the mushroom body’s14

principal neurons, Kenyon cells (KCs), vary realistically in key parameters governing their excitability, because15

the resulting inter-KC variability in average activity levels makes odor representations less separable. However,16

memory performance is rescued while maintaining realistic variability if parameters compensate for each other to17

equalize KC average activity. Such compensation can be achieved through both activity-dependent and activity-18

independent mechanisms. Finally, we show that correlations predicted by our model’s compensatory mechanisms19

appear in the Drosophila hemibrain connectome. These findings reveal compensatory variability in the mushroom20

body and describe its computational benefits for associative memory.21

Significance statement22

How does variability between neurons affect neural circuit function? How might neurons behave similarly despite23

having different underlying features? We addressed these questions in neurons called Kenyon cells, which store24

olfactory memories in flies. Kenyon cells differ among themselves in key features that affect how active they are,25
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and in a model of the fly’s memory circuit, adding this inter-neuronal variability made the model fly worse at26

learning the values of multiple odors. However, memory performance was rescued if compensation between the27

variable underlying features allowed Kenyon cells to be equally active on average, and we found the hypothesized28

compensatory variability in real Kenyon cells’ anatomy. This work reveals the existence and computational benefits29

of compensatory variability in neural networks.30

Introduction31

Noise and variability are inevitable features of biological systems. Neural circuits achieve consistent activity pat-32

terns despite this variability using homeostatic plasticity: because neural activity is governed by multiple intrinsic33

and network parameters, variability in one parameter can compensate for variability in another to achieve the34

same circuit behaviour [1–5]. This phenomenon of compensatory variability has typically been addressed from the35

perspective of consistency of neural activity across individual animals [6, 7] or over an animal’s lifetime, in the face36

of circuit perturbations [8–11]. However, less attention has been paid to potential benefits of maintaining consistent37

neuronal properties across a population of neurons within an individual circuit.38

Indeed, previous work has emphasized the benefits of neuronal heterogeneity rather than neuronal homogeneity39

[12–14]. Of course, different neuronal classes encode different information (e.g., visual vs. auditory neurons, or ON40

vs. OFF cells). Yet even in populations that ostensibly encode the same kind of stimulus, like olfactory mitral cells,41

heterogeneity of neuronal excitability can increase the information content of their population activity [15–17]. In42

addition, heterogeneity in neuronal time scales can improve learning in neural networks [18, 19]. In what contexts43

and in what senses might the opposite be true, i.e., when does neuronal similarity provide computational benefits44

over neuronal diversity? And what mechanisms could enforce neuronal similarity in the face of inter-neuronal45

variability?46

Here we address these questions using olfactory associative memory in the mushroom body of the fruit fly47

Drosophila. Flies learn to associate specific odors with salient events (e.g., food or danger). These olfactory48

associative memories are stored in the principal neurons of the mushroom body, called Kenyon cells (KCs), as49

modifications in KCs’ output synapses [20–22] (reviewed in [23]). Because learning occurs at the single output50

layer, the nature of the odor representation in the KC population is crucial to the fly’s ability to learn to form51

distinct associative memories for different odors. In particular, the fact that KCs respond sparsely to incoming52

odors (≈ 10% per odor) [24] allows different odors to activate unique, non-overlapping subsets of KCs and thereby53

enhances flies’ learned discrimination of similar odors [25].54

A potential problem for this sparse coding arises from variability between KCs. KCs receive inputs from55

second-order olfactory neurons called projection neurons (PNs), with an average of ≈ 6 PN inputs per KC, and56

typically require simultaneous activation of multiple input channels in order to spike [26], thanks to high spiking57

thresholds and feedback inhibition [25, 27]. However, there is substantial variation across KCs in the key parameters58

controlling their activity, such as the number of PN inputs per KC [28], the strength of PN-KC synapses, and KC59
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spiking thresholds [27]. Intuitively, such variation could lead to a situation where some KCs with low spiking60

thresholds and many or strong excitatory inputs fire indiscriminately to many different odors, while other KCs61

with high spiking thresholds and few or weak excitatory inputs never fire; KCs at both extremes are effectively62

useless for learning to classify odors, even if overall only 10% of KCs respond to each odor. However, it remains63

unclear whether biologically realistic inter-KC variability would affect the mushroom body’s memory performance,64

and what potential strategies might counter the effects of inter-KC variability.65

Here we show in a rate-coding model of the mushroom body that introducing experimentally-derived inter-KC66

variability into the model substantially impairs its memory performance. This impairment arises from decreased67

dimensionality of the KC population activity and increased similarity between KC responses to different odors,68

ultimately arising from the variability in average activity among KCs. However, memory performance can be69

rescued by compensating away variability in KC activity while preserving the experimentally observed variation in70

the underlying parameters. This can occur through activity-dependent homeostatic plasticity or direct correlations71

between key parameters like number vs. strength of inputs. Finally, we analyze the hemibrain connectome to show72

that indeed, the number of PN inputs per KC is inversely correlated with the strength of each input, while the73

strength of inhibitory inputs is correlated with the total strength of excitatory inputs. Thus, we show both the74

existence and computational benefit of compensatory variability in mushroom body network parameters.75

Results76

Realistic inter-KC variability impairs memory performance77

To study how variability between KCs might affect the fly’s olfactory memory performance, we modelled the78

mushroom body as a rate-coding neural network (Fig. 1). To simulate the input activity from PNs, we modeled

Projection

neurons

Kenyon cells

Mushroom body

output neurons

Punishment

Reward

Approach

Avoid
ΣAPL

Learning by

synaptic

depression

Figure 1: Schematic for the mushroom body network model. Projection neurons in the input layer relay the odor responses,
xi, downstream to the Kenyon cells (yj). Kenyon cells connect randomly to the projection neurons with synaptic weights
wji and receive global inhibition from the APL neuron with weight αj . Learning occurs when dopaminergic neurons (DANs)
carrying punishment (reward) signals from the environment depress the synapses (vj) between the active Kenyon cells and
the mushroom body output neurons (MBONs) that lead to approach (avoidance) behavior.

79

their activity as a saturating non-linear function of activity of the first-order olfactory receptor neurons (ORNs)80
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(see Methods; [29]). We applied this function to the recorded odor responses of 24 different olfactory receptors [30]81

to yield simulated PN activity, as has been done in many computational studies of fly olfaction [31–34]. To simulate82

variability in PN activity across different encounters with the same odor, we created several ‘trials’ of each odor83

and added Gaussian noise to PN activity, following the coefficients of variation reported in [35]. To increase the84

number of stimuli beyond the 110 recorded odors in [30], we generated odor responses in which the activity of each85

PN was randomly sampled from that PN’s activity across the 110 odors used in [30] (results were similar with the86

‘real’ 110 odors; see Methods and below).87

Each KC in our model received excitatory input from a randomly selected set of N PNs, each with strength w.88

A KC’s response to each odor was the sum of excitatory inputs minus inhibition, minus a spiking threshold θ; if89

net excitation was below the threshold, the activity was set to zero. Inhibition came from the feedback interneuron90

APL (‘Anterior Paired Lateral’), which is excited by and inhibits all KCs [25]. To avoid simulating the network91

in time, we simplified the feedback inhibition into pseudo-feedforward inhibition, in which APL’s activity was the92

sum of all post-synaptic excitation of all KCs (without the KCs’ threshold applied); we based this simplification on93

the fact that KCs and APL form reciprocal synapses with each other on KC dendrites (i.e., before the KCs’ spike94

initiation zone), and APL activity is somewhat spatially restricted between KC axons and dendrites [36].95

Learning in flies occurs when KCs (responding to odor) are active at the same time as dopaminergic neurons96

(DANs, responding to ‘reward’ or ‘punishment’); the coincident activity modifies the output synapse from KCs onto97

mushroom body output neurons (MBONs) that lead to behavior (e.g., approaching or avoiding an odor). Typically,98

the output to the ‘wrong’ behavior is depressed: for example, pairing an odor with electric shock weakens the output99

synapses from KCs activated by that odor onto MBONs that lead to ‘approach’ behavior [21, 22, 37, 38] (reviewed100

in [23]). We simulated this plasticity using a simplified architecture with only two MBONs, one for ‘approach’ and101

one for ‘avoid’. The input odors were randomly divided: half were paired with punishment and half with reward.102

During training, KCs activated by rewarded odors weakened their synapses onto the ‘avoid’ MBON, while KCs103

activated by punished odors weakened their synapses onto the ‘approach’ MBON (depression by exponential decay;104

see Methods). The fly’s behavior then depended probabilistically (via a softmax function; see Eq. 21, Methods)105

on whether the ‘avoid’ or ‘approach’ MBON’s was greater, and the model’s accuracy in learning was scored as106

the fraction of correct decisions for unseen noisy variants of the trained odors (i.e., avoiding punished odors and107

approaching rewarded odors).108

To test the effect of realistic inter-KC variability on this model, we introduced variability step-by-step. We first109

tested the performance of the model holding constant across all KCs the 3 parameters N (number of PN inputs per110

KC), w (strength of each PN-KC connection) and θ (KC spiking threshold). Then we added inter-KC variability111

step-by-step: first varying only one out of 3 parameters, then 2 out of 3, then all 3 parameters (thus 8 possible112

models). Inter-KC variability in N , w and θ followed experimentally measured distributions (Fig. 2A1-3) [27, 28].113

Increasing inter-KC variability systematically degraded the model’s performance when tested on 100 input odors:114

the more variable parameters there were, the worse the performance (Fig. 2B). In the two extreme cases, the model115
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with all 3 parameters fixed performed at 72.5% accuracy while the model with all 3 parameters variable performed116

at 64% accuracy. This performance trend was the same when these 8 models were trained and tested on the real117

input odors responses from [30] (78.1% v. 63.9% Fig. S1).118

To test whether this effect is robust to different learning and testing conditions, we tested the two extreme119

cases while varying the numbers of input odors to be classified, the amount of noise in PN activity, the learn-120

ing rate at the KC-MBON synapse (the two models might have different optimal learning rates: η in Eq. 20),121

or the indeterminacy of the fly’s decision making (c in the softmax equation, Eq. 21). In every case, the model122

with all parameters fixed (which we call the ‘homogeneous’ model) consistently outperformed the model with all123

parameters variable (which we call the ‘random’ model) (Fig. 2C1-4). These results indicate that biologically re-124

alistic variability in KC network parameters impairs the network’s ability to classify odors as rewarded vs. punished.125
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Figure 2: Inter-KC variability in w, N and θ degrades the model fly’s memory performance.
(A) Histograms of the experimentally measured distributions for: (A1) w (amplitude of spontaneous excitatory postsynaptic
potentials in KCs, mV; data from [27]), (A2) N (number of PN inputs per KC, measured as the number of dendritic ‘claws’;
data from [28]), (A3) θ (spiking threshold minus resting potential, mV; data from [27]). The overlaid black curves show
log-normal (w) and Gaussian (N , θ) fits to the data.
(B) The model fly’s memory performance (given 100 input odors), varying the parameters step by step. Fixed and variable
parameters are shown by empty and filled circles, respectively. The homogeneous model (all parameters fixed; black) performs
the best and the random model (all parameters variable; red) performs the worst. All bars are significantly different from each
other unless the share the same letter annotations (a, b, etc.), p < 0.05 by Wilcoxon signed-rank test (for matched models
with the same PN-KC connectivity) or Mann-Whitney test (for unmatched models with different PN-KC connectivity, i.e.,
fixed vs. variable N), with Holm-Bonferroni correction for multiple comparisons (full statistics in Table S1). n = 25 model
instances with different random PN-KC connectivity, error bars show twice the standard error of the mean (95.4% confidence
interval).
(C) The performance trend is consistent over a range of different conditions: (C1) number of input odors, (C2) the learning
rate used to learn the optimum weights between KCs and MBONs, (C3) amount of noise in PN activity (measured by
signal-to-noise ratio, SNR), (C4) the indeterminacy in the decision making, quantified by log(c), where c is the constant in
the soft-max function (Eq. 21). The vertical dotted lines indicate the conditions used in panel B.
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Realistic inter-KC variability reduces separation between KC odors representations127

We next asked what features of the KC population odor representation might account for the worse performance128

of the random model compared to the homogeneous model. Learning the optimal KC-MBON weights to correctly129

classify the rewarded versus punished odors is equivalent to finding a hyper-plane (in 2000-dimensional space) to130

separate KC responses to rewarded odors from those to punished odors. Therefore, a model with better separability131

between KC odor representations would find a better separating hyper-plane, and have better performance in132

classifying unseen noisy variants of the trained odors. We measured separability using a variety of metrics.133

We first asked whether odors are more widely separated in KC coding space in the homogeneous model, using134

angular distance, a scale-insensitive distance metric (see Methods). For each odor, we took the centroid of KC135

responses to the noisy variants of that odor, and for each pair of odors, we measured the angular distance between136

their respective centroids (Fig. 3A1). Indeed, the angular distance between odors (averaged across all odor pairs)137

was larger in the homogeneous model (Fig. 3A2), which matched the higher accuracy (Fig. 3A3, where each dot138

represents one instantiation of the network). This difference also extended to the angular distance between the139

centroids of the groups of odors randomly assigned to be rewarded and punished (Fig. 3B2), suggesting that the140

greater inter-odor distances in the homogeneous model make it easier to draw a hyper-plane separating the rewarded141

and punished odors.142

However, the separability of clusters of noisy variants of odors might depend not only on the distance between143

their centroids, but also on their variability. For instance, two clusters of noisy variants with well separated centroids144

might overlap if the data points in the clusters are not tightly packed. Therefore, we next measured the quality of145

clustering in each model using the Davies-Bouldin Index (DBI). DBI measures the variance within clusters divided146

by the distance between the centroids of each cluster [39], so high DBI means more overlapping, less separable147

clusters. When we calculated DBI using different pairs of odors (Fig. 3C1), treating each odor (with its noisy148

variants) as its own cluster, DBI values were similar in the random and homogeneous models (Fig. 3C2), suggesting149

that poor performance in the random model was not explained by poor clustering of noisy variants (Fig. 3C3). (The150

DBI was slightly higher in the random model using the original odors from [30]: Fig. S1). However, DBI was higher151

in the random model when considering the two clusters of all rewarded odors vs. all punished odors (Fig. 3D1-2),152

and showed a weak inverse correlation with memory performance (Fig. 3D3) (note that each instantiation of the153

network received the same odors but different random reward/punishment assignments). These results suggest that154

in the homogeneous model (compared to the random model), odor representations are arranged in KC coding space155

in a way to allow punished and rewarded odors to be more easily separated.156

We hypothesized that odor responses in the homogeneous model are more separable because they are arranged157

across more dimensions in KC coding space, allowing them more degrees of freedom. We quantified dimensionality158

according to [40]. Dimensionality of a dynamic system is the number of independent dimensions that define the159

system’s response to a given input. For example, if a system nominally has 3 dimensions but all its responses lie on160

a straight line, its dimensionality is only 1, in contrast to a system whose responses are distributed throughout the161
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3-dimensional space (Fig. 3E1). We found that KC responses in the homogeneous model had a significantly higher162

dimensionality than those in the random model (Fig. 3E2), matching the higher performance in the homogeneous163

model (Fig. 3E3). Together, these metrics indicate that introducing the realistic inter-KC variability in w, N ,164

and θ worsens the performance of the network by reducing the dimensionality (and thus separability) of KC odor165

representations.166
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Figure 3: Inter-KC variability in w, N and θ reduces separability of KC odor representations.
Left column: (A1-D1) show schematic illustrations of separability metrics: angular distance between individual odors (A1)
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Realistic inter-KC variability weakens specialization of KC responsiveness167

We hypothesized that the lower dimensionality of the random model might arise because fewer KCs provide useful168

odor identity information when some are indiscriminately active while others are completely silent. Sparse coding169

requires sparseness in two dimensions: population sparseness (each stimulus activates few neurons) and lifetime170

sparseness (each neuron responds to few stimuli) [41]. While our models enforced population sparseness by scaling171

inhibition and spiking thresholds to achieve a coding level (fraction of cells active per odor) of 0.1 (averaged across172

all odors), they did not enforce any particular lifetime sparseness. In an extreme case, a model could have very173

consistent population sparseness with a coding level of 0.1 for all odors, simply by having the same 10% of cells174

responding to every odor and the other 90% being completely silent. In this case, none of the cells would provide175

any useful information about odor identity and dimensionality would be 0. We asked whether a less extreme version176

of this problem could explain the lower dimensionality and memory performance of the random model.177

We measured the lifetime sparseness of KCs in the homogeneous and random models. Lifetime sparseness178

quantifies how specialized a cell is to particular input stimuli: 1 means a cell fires to one stimulus and no other179

stimuli, while 0 means it fires equally to all stimuli. A cell that fires to no stimuli has an undefined sparseness (see180

Methods). The homogeneous model had fairly consistent lifetime sparseness values, with almost 90% of KCs having181

a lifetime sparseness between ∼0.85 and 1. In contrast, the random model had KCs with much more variable lifetime182

sparseness, with a long tail of KCs with low sparseness (below 0.7) and more than 40% of KCs having undefined183

sparseness (i.e., completely silent). The contrasting distributions of lifetime sparseness can seen in the cumulative184

distribution functions (cdfs) of lifetime sparseness in Fig. 4A, in how the steep curve of the homogeneous model185

and the shallow curve of the random model cross each other. This result can also be seen in the larger standard186

deviation of lifetime sparseness across KCs in the random model (Fig. 4B). The silent KCs can be seen as the187

fraction of missing KCs needed for the cdf curves to reach 1; the random model has many more silent KCs than188

the homogeneous model (Fig. 4A). Because silent KCs are useless for odor identity coding, a high number of silent189

KCs corresponds to low dimensionality of KC odor representations (Fig. 4C).190
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Figure 4: Inter-KC variability increases variability of lifetime sparseness and fraction of silent KCs
(A) Cumulative distribution function (cdf) of the lifetime sparseness of KCs in the homogeneous (black) and random (red)
models, across 20 instantiations of the network. The gap between 1.0 and the top of the cdf represents silent KCs (lifetime
sparseness undefined). (B) The random model has larger standard deviation in lifetime sparseness among KCs. Error bars
show twice the SEM, n = 20 random instantiations of the network. Bars are different, p < 0.05, Mann-Whitney test (see
Table S1). (C) Number of silent KCs plotted versus the dimensionality of KCs; each dot is one random model instance.
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Compensatory tuning of KC parameters rescues memory performance191

Because the central problem for memory performance in the random model was inter-KC variability in average192

levels of activity, we hypothesized that performance could be rescued in models where KCs could achieve roughly193

equal activity across the population, while still preserving experimentally realistic variability in spiking thresholds194

and number/strength of excitatory inputs.195

Parametric tuning of excitatory input weights196

First, we tested a model that equalizes KC activity indirectly, by making parameters compensate for each other in197

an activity-independent way. In particular, we modeled KCs as adjusting input synaptic weights (w) to compensate198

for variability in spiking threshold (θ) and number of PN inputs (N). Thus, an individual KC with low θ or high199

N would have low w, while a KC with high θ or low N would have high w. We simulated these correlations200

(w ∝
√
θ; w ∝ 1/

√
N) constrained by experimental data. To do this, we sampled N and θ from the distributions201

in Fig. 2A, and sampled w from a posterior compensatory distribution, P (w | n, θ), whose overall shape across all202

KCs was constrained to be the same as the experimental P (w) in Fig. 2A1 but which was composed of multiple203

distributions of P (w) for different values of N and θ. For example, a KC with a relatively high n = 7 would sample204

its weights from a P (w) shifted to the left (lower w) (Fig. 5A1, dashed lines), while a KC with a relatively high205

n = 2 would sample its weights from a P (w) shifted to the right (higher w) (Fig. 5A1, solid lines). The same would206

be true for different values of θ (Fig. 5A1, different shadings). We fitted these component P (w) curves so that with207

experimentally observed distributions of N and θ, the sum of the components would produce the experimentally208

observed distribution of w across all KCs (see Methods). (Note that this algorithm is not meant to describe an209

actual biological mechanism, merely to create correlations between w vs. N and θ while constraining the parameters210

to experimentally realistic distributions. Biologically, such correlations could arise through several mechanisms; see211

Discussion.) This compensatory mechanism rescued the fly’s performance, producing significantly higher accuracy212

at classifying odors than the random model (Fig. 5B, cyan bars), likely resulting from the higher dimensionality of213

KC representations (Fig. 5C) and reduced variability in KC lifetime sparseness (Fig. 5D).214

Activity-dependent tuning of KC parameters215

We next tested compensatory mechanisms based on activity rather than explicit correlations between network216

parameters. Here, each KC has the same desired average activity level across all odors, A0 (with a tolerance of217

±6%). We tested three models, each of which equalized average KC activity A0 by tuning a different parameter:218

input excitatory weights (w), inhibitory weights (α), or spiking thresholds (θ). The non-tuned parameters followed219

the distributions in Fig. 2A (inhibitory weights were constant when non-tuned), while individual KCs adjusted the220

tuned parameter according to whether their activity was too high or too low. For example, a relatively highly active221

KC (whether because it has high w or N , low θ, or simply receives input from highly active PNs) would scale down222

its excitatory weights (Fig. 5A2), scale up its inhibitory weights (Fig. 5A3), or scale up its spiking threshold (Fig.223
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5A4). Likewise, a relatively inactive (or indeed totally silent) KC would do the reverse (see Methods for details of224

the update rules underlying the homeostatic tuning and discussion of variant update rules shown in Figs. S3,S4).225

All three homeostatic models performed as well as the homogeneous model (Fig. 5B1, blue, green, magenta bars),226

and indeed even out-performed the homogeneous model when decision-making was more stochastic (lower value of227

c in the softmax function; Fig. 5B2). The more stochastic decision-making makes the task more difficult and thus228

brings out the enhanced coding by the homeostatic models. Indeed, the dimensionality of KC odor representations229

in the homeostatic models was even higher than that in the homogeneous model (Fig. 5C), and the variability in230

KC lifetime sparseness was even lower (Fig. 5D).231

What distributions of excitatory weights, inhibitory weights, or spiking thresholds emerge after activity-dependent232

tuning to equalize KC activity? Do they match experimentally observed distributions? Tuning excitatory weights233

led to a distribution fairly similar to the approximately log-normal experimentally observed distribution of EPSP234

amplitudes (Fig. 5E). Tuning spiking thresholds led to a distribution with greater variance than the experimental235

distribution, although with a qualitatively similar Gaussian shape (Fig. 5F). This larger variance of thresholds236

suggests that natural variation of θ is too small, on its own, to equalize KC activity given the variation in the237

number/strength of excitatory inputs.238

The tuned distribution of inhibitory weights differed even more strongly from experimental results. While there239

are no experimental measurements of inhibitory weights, equalizing KC activity by tuning inhibitory weights re-240

quired many of them to be negative (Fig. 5G), which is unrealistic, because negative inhibition is actually excitation,241

and there are no reports of GABAergic excitation of KCs [42].242

Why did our model require negative inhibition? This result can be understood by considering one of the model’s243

constraints: that inhibition is only strong enough to reduce the fraction of active KCs by half, i.e., 10% of KCs are244

active on average in normal flies, while 20% of KCs are active if inhibition is blocked (based on results from [25]).245

Because the average threshold must be high enough that 80% of KCs are silent on average even without inhibition,246

the wide variation in thresholds and excitation means that many KCs will have excitation so weak, and thresholds247

so high, that no stimulus could ever drive them above threshold, even in the absence of inhibition. For inhibition248

to compensate for inactivity even in the absence of inhibition, it must become negative (i.e., excitatory) in these249

weakly-activated KCs. In contrast, the models that tune excitatory weights or thresholds do not face this problem,250

because inactive KCs can simply increase their excitatory weights or decrease their thresholds. The central problem251

for the inhibitory plasticity model is that inhibition is not a strong enough force in our system to balance out252

variable excitation and thresholds on its own without becoming negative. Indeed, if we relax the constraint that253

coding level be 0.2 without inhibition, such that sparseness is enforced by inhibition alone (not thresholds), then254

variable inhibition can equalize KC activity without becoming negative (Fig. 5G). However, in this case, the coding255

level without inhibition was 99.7% (Fig.5G), which is not observed experimentally [25]. Even allowing a coding256

level without inhibition of 50%, equalizing KC activity still requires some APL-KC inputs to be negative (Fig. 5G).257

Overall, these results suggest that tuning inhibitory weights cannot compensate on its own for variability in other258
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KC parameters. More likely, the system optimizes multiple parameters at once (see Fig. 7 and Discussion).259

To better understand why equalizing average activity improves performance, we asked whether memory perfor-260

mance can also be rescued by equalizing not KC average activity, but rather KC response probability (equivalent261

to average activity if KC activity is binarized, i.e., 0 or 1). Equalizing response probability (as opposed to average262

activity) by tuning KC spiking thresholds has been shown to improve separation of KC odor representations in a dif-263

ferent computational model [34]. However, in our model, this technique (tuning thresholds to equalize KC response264

probability) produced worse classification performance and lower dimensionality compared to tuning thresholds to265

equalize KC average activity (Fig. S4A,B), though still better than the random model (compare Fig. S4 to Fig. 5).266

This result can be understood by considering that dimensionality of neuronal activity is maximized when variance267

along all dimensions is equal (Fig. 3) [40], but equalizing KC response probability still allows KCs to have unequal268

average activity (one KC’s supra-threshold activity might be higher than another’s), which would cause KCs to269

differ between each other in their variances in activity across odors (a KC’s variance in activity depends on its270

average activity because its response to most odors is zero).271
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Figure 5: Compensation in network parameters rescues memory performance.
(A) Schematics of different compensation methods. (A1) Lognormal fit of experimental distribution of the synaptic weights
P (wexp) (red), and its component distributions for different w and θ, P (w | N, θ), for high N = 7 (dotted) or low N = 2
(solid). Shadings of gray indicate different values of θ. (A2-4) Mechanisms for activity-dependent homeostatic compensation.
Overly active KCs weaken excitatory input weights (wji, A2), strengthen inhibitory input weights (αj , A3), or raise spiking
thresholds (θj , A4). Inactive KCs do the reverse.
(B1) Compensation rescues performance, alleviating the defect caused by inter-KC variability in the random model (red)
compared to the homogeneous model (black), whether compensation occurs by setting w according to N and θ (cyan; A1),
using activity-dependent homeostatic compensation to adjust excitatory weights (dark blue; A2), inhibitory weights (green;
A3) or spiking thresholds (magenta; A4). (B2) Differences between models are more apparent when the task is more difficult
due to more stochastic decision-making (c = 1 instead of c = 10 in the softmax function in Eq. 21).
(C-D) Dimensionality of KC representations (C) and standard deviation of KC lifetime sparseness (D) in the models
described above. Activity-dependent models have the highest dimensionality and lowest variability in KC sparseness.
n = 20 model instances with different random PN-KC connectivity. Error bars show two times the SEM, i.e., 95.4% confidence
interval. All bars are significantly different from each other unless the share the same letter annotations, p < 0.05, by Wilcoxon
signed-rank test (for matched models with the same PN-KC connectivity) or Mann-Whitney test (for unmatched models
with different PN-KC connectivity, i.e., fixed vs. variable N), with Holm-Bonferroni correction for multiple comparisons (full
statistics in Table S1). Annotations below bars indicate whether parameters were fixed (empty circle), variable (filled circle),
or variable following a compensation rule (‘H’ for homeostatic tuning, f(N, θ) for parametric tuning).
(E) KC excitatory input synaptic weights (w) after tuning to equalize average activity (blue) follow a similar distribution
to experimental data (black, from Fig. 2A1)
(F) KC spiking thresholds (θ) after tuning to equalize average activity (magenta) have wider variability than the experimental
distribution (black, from Fig. 2A3).
(G) Tuning KC inhibitory weights (α) to equalize average activity requires many inhibitory weights to be negative, unless
the coding level without inhibition is as high as 99.7%.272

273

Robustness of pre-tuned compensations in new environments with novel odors274

Any activity-dependent tuning depends on the model’s context. If a fly tunes its network parameters based on275

experience in one odor context (e.g., smelling only odors of one chemical family), will it still perform well at276

classifying odors in a novel environment with different odors (e.g., odors of a different chemical family)? We277

hypothesized that performance would depend more on tuning context with the activity-dependent compensation278

mechanisms than the activity-independent mechanism where input weights were picked depending on N and θ279

rather than activity.280

To test this, we tuned the parameters in our models using only a subset of odors from [30], grouped by chemical281

class, and then trained and tested the models on odor-reward/punishment associations using the other odors. We282

took the four chemical classes that had the most odors in the dataset: acids, terpenes, alcohols and esters. For each283

class, we tuned the model’s parameters on that class and then trained the model to classify odors in the other 3 classes284

(‘novel’ environment). For matched controls, we trained models that had been tuned on the same 3 classes used285

for training/testing (‘familiar’ environment). As expected, the three activity-dependent models performed worse286

in novel environments than familiar environments, while the activity-independent model performed consistently287

regardless of tuning environment (blue, green and magenta vs. cyan in Fig. 6C). However, in general, tuning odors288

on one class but training/testing on different classes does not fatally damage the activity-dependent compensation289

strategies: although performance is worse in novel environments, it remains better than the random model. Thus,290

activity-dependent compensation is still a good strategy to overcome the pernicious effects of inter-KC variation,291

even if the compensation environment differs from the classification environment (at least within the range of the292
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odors in [30]).293
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Figure 6: Robustness of pre-tuned compensations with novel odors.
(A) For each model fly, network parameters are tuned as in Fig. 5, on a subset of odors. At this stage, no rewards or pun-
ishments are given, and KC output weights are not modified. Then, the model is trained to classify rewarded and punished
odors that are the same as or different from the odors used for tuning. Finally, the model is tested on new noisy variants of
the odors used for training.
(B) Empty symbols (‘novel’ environment): models were tuned on odors from one chemical group (Gi: acids - circles, terpenes
- triangles, esters - diamonds, or alcohols - squares), then trained and tested on odors from the other three groups (Gi 6=j).
Each empty symbol is paired with a matched control (filled symbols) showing how that model would have fared in a ‘familiar’
environment: a model tuned, trained, and tested all on the same three groups of odors as the matched ‘novel’ model was
trained and tested on (Gi 6=j).
(C) Models with activity-dependent compensation (blue, magenta, green) performed worse in novel environment than fa-
miliar environments (matching indicated by connecting lines). In contrast, models with no compensation (black, red), or
compensation based on network parameters alone rather than activity (cyan), performed similarly in novel and familiar envi-
ronments. Mean of 20 model instantiations, where each instantiation received a different permutation of odors (see Methods).
Annotations below graph indicate whether parameters were fixed (empty circle), variable (filled circle), or variable following
a compensation rule (‘H’ for homeostatic tuning, f(N, θ) for parametric tuning). Differences between novel and familiar envi-
ronments, p < 0.05, Wilcoxon signed-rank test, except for: homogeneous model (black), esters; compensation by parametric
tuning (cyan), acids, terpenes, esters (full statistics in Table S1).294

295

Connectome reveals compensatory variation of input strength and numbers296

Our proposed compensatory mechanisms predict correlations between the key model parameters. Excitatory weights297

(w) should be inversely correlated to number of PNs per KC (N) where w is tuned to compensate for variable N298

and θ (Fig. 7B) or where w is tuned to equalize KC activity (Fig. 7C). Meanwhile, inhibitory weights (α) should299

be positively correlated to the sum of excitatory weights (
∑

w, or wN , where w is the mean w per KC) where300

inhibitory weights are tuned to equalize KC activity (Fig. 7D). Such correlations have been observed in larvae [43],301

but they have not yet been analyzed in the adult mushroom body.302

To test these predictions, we analyzed the recently published hemibrain connectome [44, 45], which annotates303

all synapses between PNs and KCs in the right mushroom body of one fly. The connectome reveals three of our304

parameters: the number of PN inputs per KC (N), the strength of each PN-KC connection (w), and the strength305

of inhibitory inputs (α). Although the anatomy does not directly reveal w and α (which can only be measured306
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electrophysiologically), we used an indirect proxy for synaptic strength: the number of synapses per connection307

(i.e., number of sites between two neurons where neuron 1 has a T-bar and neuron 2 has a postsynaptic density,308

counted by machine vision; Fig. 7A). It seems reasonable to presume that, all else being equal, connections with309

more synapses are stronger. Indeed, in the Drosophila antennal lobe, when comparing connections from ORNs to310

ipsilateral PNs vs. contralateral PNs, ipsilateral connections are both stronger [46] and have more synapses per311

connection [47]. Moreover, synaptic counts approximate synaptic contact area throughout the larval Drosophila312

nervous system [48] and synaptic area approximates EPSP amplitude in mammalian cortex [49].313

Therefore, to test if mean w and N are inversely correlated across KCs, we asked if the number of PN inputs314

per KC was inversely correlated to the number of synapses per PN-KC connection. We ignored PN-KC connections315

with 2 or fewer synapses, because the number of synapses per PN-KC connection formed a bimodal distribution316

with a trough around 3-4 (Fig. 7E); we presumed that connections with only 1-2 synapses represent annotation317

errors. We divided KCs into their different subtypes as annotated in the hemibrain [45], because different subtypes318

have different numbers of PN inputs per KC and different numbers of synapses per PN-KC connection ([28]; Fig.319

7E,F, S5). We excluded KCs that receive significant non-olfactory input (γ-d, γ-t, αβ-p, α′β′-ap1). In all analyzed320

subtypes of KCs (γ-main, αβ-s, -m and -c; α′β′-ap2 and -m), the number of PN inputs per KC (N) was inversely321

correlated to the mean number of synapses per PN-KC connection, averaged across the PN inputs onto a KC (proxy322

for w) (Fig. 7G,K, S5). Linear regression showed that on average, there were ≈ 6− 15% fewer input synapses per323

PN-KC connection (w), for each additional PN per KC (N). This negative correlation meant that the number of324

total PN-KC synapses per KC increased only sublinearly relative to the number of PN inputs per KC (Fig. S5).325

We also tested another anatomical proxy of excitatory synaptic strength. Because KCs sum up synaptic inputs326

linearly or sublinearly, their dendrites likely lack voltage-gated currents that would amplify inputs, so synaptic327

input currents likely propagate passively [26]. Therefore, an excitatory input would make a smaller contribution to328

a KC’s decision to spike the farther away it is from the spike initiation zone [50]. While the spike initiation zone329

cannot be directly observed in the connectome, the voltage-gated Na+ channel para and other markers of the axon330

initial segment (also called the ‘distal axonal segment’) are concentrated at the posterior end of the peduncle, near331

where axons from KCs derived from the four neuroblast clones converge [51, 52]. This location can be approximated332

in the connectome as the posterior boundary of the ‘PED(R)’ region of interest (ROI) (magenta dots, Fig. 7A,J).333

From this point, we measured the distance along each KC’s neurite skeleton (i.e., not the Euclidean distance) to334

each PN-KC synapse. In the αβ-c and γ-main KCs (but not other KCs), this distance was positively correlated335

with the number of PNs per KC (Fig. 7H,K, S5). That is, the more PN inputs a KC has, the farther away the336

input synapses are from the putative spike initiation zone (and thus the weaker they are likely to be). Intriguingly,337

of all the KC subtypes, αβ-c KCs show the strongest correlation between number of PN inputs and PN-peduncle338

distance, but the weakest correlation between number of PN inputs and number of synapses per PN-KC connection339

(Fig. 7K), suggesting that different types of KCs might use different mechanisms to achieve the same compensatory340

end.341

14

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 3, 2021. ; https://doi.org/10.1101/2021.02.03.429444doi: bioRxiv preprint 



To test if inhibitory and excitatory input are positively correlated across KCs (as predicted in Fig. 7D), we342

approximated α by counting the number of synapses from the APL neuron to every KC in the calyx (the ‘CA(R)’343

ROI). In all types of KCs, the more total PN-KC synapses there were per KC, the more calyx APL-KC synapses344

there were (Fig. 7I,K, S5), indicating that indeed, inhibitory and excitatory synaptic input are correlated.345

These results confirm the predictions of our compensatory models. That correlations exist for both excitation346

and inhibition suggests that the mushroom body tunes more than one parameter simultaneously (thresholds may347

be tuned as well, but cannot be measured in the connectome). Such multi-parameter optimization likely explains348

(1) why the correlations in the connectome are not as steep as when only a single parameter is tuned in our models349

(Fig. 7D-F), and (2) why natural compensatory variation of tuned parameters need not be as wide as the variation350

of tuned parameters in our models (Fig. 5F).351
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Figure 7: Connectome analysis reveals compensatory variation in excitatory and inhibitory input strengths. (A) Example
αβ-c KC (bodyId 5901207528) with inputs from 3 PNs (yellow/green/blue dots) and 7 dendritic APL-KC synapses (red
circles). The magenta circle shows the posterior boundary of the peduncle. Line widths not to scale.
(B,C) Mean synaptic weight (w) per PN-KC connection is inversely related to the number of input PNs in models that tune
input weights given N and θ (B), or that tune input weights to equalize average activity levels across KCs (C).
(D) In the model that tunes input inhibitory synaptic weights (α) to equalize average activity levels across KCs, inhibitory
weights are directly related to the sum of excitatory weights per KC (i.e., wN). Note the negative values of α (discussed in
text).
(E,F) Probability distributions of the number of synapses per PN-KC connection (E) and the number of input PNs per KC
(F) in the different KCs subtypes (αβ, γ, α′β′).
(G) Mean number of input synapses per PN-KC connection is inversely related to the number of input PNs per KC, in
γ-main KCs (see Fig. S5 for other KC types).
(H) Mean distance of PN-KC synapses to the posterior boundary of the peduncle (presumed spike initiation zone) is directly
related to the number of input PNs per KC.
(I) The number of APL-KC synapses per KC is directly related to the total number of PN-KC synapses per KC.
(J) Four αβ-c KCs, one from each neuroblast clone. The posterior boundary of the peduncle (magenta circles) lies where
the KC axons begin to converge.
(K) Grids show Pearson correlation coefficients (r) between various KC parameters for all KC subtypes tested (red: positive;
blue: negative). Dots indicate p < 0.05 (Holm-Bonferroni corrected) (full statistics in Table S1). Colored outlines indicate
predictions of models (cyan/blue: models tuning w (G,H); green: model tuning α (I)). Number of KCs for each subtype,
left to right: 588, 222, 350, 220, 127, 119. In (B,C,G,H), red dots are medians and the widths of the violin plots represent
the number of KCs in each bin. Trend lines in (D,G,H,I) show linear fits to the data. Scale bars in (A,J): D, dorsal, P,
posterior, M, medial.352

353

Discussion354

Here we studied the computational costs and benefits of inter-neuronal variability for associative memory. Using355

a computational model of the fly mushroom body, we showed that associative memory performance is reduced by356

experimentally realistic variability among Kenyon cells in parameters that control neuronal excitability (spiking357

threshold and the number/strength of excitatory inputs). These deficits arise from the reduced separability and358

dimensionality of odor representations, which arises from unequal activity levels among Kenyon cells. However,359

memory performance can be rescued by using variability along one parameter to compensate for variability along360

other parameters, thereby equalizing average activity among KCs. These compensatory models predicted that361

certain KC features would be correlated with each other, and these predictions were borne out in the hemibrain362

connectome. In short, we showed (1) the computational benefits of compensatory variation, (2) multiple mechanisms363

by which such compensation can occur, and (3) anatomical evidence that such compensation does, in fact, occur.364

Note that when we say ”equalizing KC activity”, we do not mean that all KCs should respond the same to a365

given odor. Rather, in each responding uniquely to different odors (due to their unique combinations of inputs from366

different PNs), they should keep their average activity levels the same. That is, while KCs’ odor responses should367

be heterogeneous, their average activity should be homogeneous.368

How robust are our connectome analyses? We found correlations between anatomical proxies for the physiological369

properties predicted to be correlated in our models (i.e., KCs receiving excitation from more PNs should have weaker370

excitatory inputs, while KCs receiving more overall excitation should also receive more inhibition). In particular, we371

measured the number of synapses per connection as a proxy for the strength of a connection. As described above,372
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this proxy seems valid based on matching anatomical and electrophysiological data [47–49]. However, other factors373

affecting synaptic strength (receptor expression, post-translational modification of receptors, pre-synaptic vesicle374

release, input resistance, etc.) would not be visible in the connectome. Of course, such factors could further enable375

compensatory variability (see below), so anatomical proxies may actually underestimate the strength of correlations376

between physiological properties.377

We also used the distance between PN-KC synapses and the peduncle as a proxy for the passive decay of synaptic378

currents as they travel to the spike initiation zone. In the absence of detailed compartmental models of KCs, it is379

hard to predict exactly how much increased distance would reduce the effective strength of synaptic inputs, but it380

is plausible to assume that signals decay monotonically with distance. Note that calcium signals are often entirely381

restricted to one dendritic claw [26, 53]. Another caveat is that the posterior boundary of the peduncle is only an382

estimate (though a plausible one: [51, 52]) of the location of the spike initiation zone. However, inaccurate locations383

should only produce fictitious correlations for Fig. 7J and S5H if the error is correlated with the number of PN-KC384

synapses per KC (and only in αβ-c and γ-main KCs, not other KCs), which seems unlikely.385

Our work is consistent with prior work, both theoretical and experimental, showing that compensatory variability386

can maintain consistent network behavior [1–11, 54, 55]. However, to our knowledge, we are the first to analyze the387

computational benefits of equalizing activity levels across neurons in a population (as opposed to across individual388

animals or over time). A recent pre-print showed that equalizing response probabilities among KCs reduces memory389

generalization [34], but we showed that equalizing average activity outperforms equalizing response probabilities390

(Fig. S4), because only the former equalizes variance in activity among KCs to maximize dimensionality. Another391

model of the mushroom body used compensatory inhibition, in which the strength of inhibition onto each KC392

was proportional to its average excitation [31], similar to our inhibitory plasticity model (Fig. 5A2). However,393

the previous work did not analyze the specific benefits from the compensatory variation; it also set the inhibition394

strong enough that average net excitation was zero, whereas we show that when inhibition is constrained to be only395

strong enough to reduce KC activity by ≈ half (consistent with experimental data: [25]), inhibition alone cannot396

realistically equalize KC activity (Fig. 5G). In addition, there is experimental support for our models’ predictions397

that KCs with more PN inputs would have weaker excitatory inputs: when predicting whether calcium influxes in398

individual claws would add up to cause a supra-threshold response in the whole KC, the most accurate prediction399

came from dividing the sum of claw responses by the log of the number of claws [53]. However, the functional400

benefits of this result only become clear with our computational models. Finally, the larval mushroom body shows401

a similar relationship between number and strength of PN-KC connections: the more PN inputs a KC has, the fewer402

synapses per PN-KC connection [43]; however, again, the larval work did not analyze the computational benefits of403

this correlation.404

We modeled two forms of compensation: direct correlations between neuronal parameters (Fig. 5A1) and405

activity-dependent homeostasis (Fig. 5A2-4). Both forms improve performance and predict observed correlations406

in the connectome. We cannot directly resolve which mechanism explains the connectome correlations, but can407
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speculate by comparing whether key parameters are correlated with the number of PN inputs (N) but not total408

number of PN-KC synapses (≈ wN), which would suggest a mechanism based on dendritic morphology rather than409

activity, or vice versa (wN but not N), which would suggest the opposite. Where PN-peduncle distance shows410

significant correlations, it is correlated with both number of PN inputs and total number of PN-KC synapses, sug-411

gesting that either mechanism is possible (Fig. 7). Conversely, the number of APL synapses (≈ α) is more strongly412

correlated with the total number of PN-KC synapses than with the number of PN inputs, which is more consistent413

with activity-dependent tuning than parametric tuning. On the other hand, it may be that α is weakly directly414

tuned to both w and N and thus more strongly tuned to the combination, wN .415

Certainly, activity-dependent mechanisms are plausible, as KCs regulate their own activity homeostatically in416

response to perturbations in activity [56]. Indeed, different KC subtypes use different combinations of mechanisms417

for homeostatic plasticity [56], consistent with the different correlations observed in the connectome for different KC418

subtypes. Our activity-dependent models lend themselves to straightforward biological interpretations. Excitatory419

or inhibitory synaptic weights could be tuned by activity-dependent regulation of number of synapses per connection420

or expression/localization of receptors or other post-synaptic machinery. Spiking thresholds could be tuned by421

altering voltage-gated ion conductances or moving/resizing the spike initiation zone [52, 57].422

On the other hand, KCs are not infinitely flexible in homeostatic regulation; for example, complete blockade423

of inhibition causes the same increase in KC activity regardless of whether the blockade is acute (16 - 24 h) or424

constitutive (throughout life) [56]. This apparent lack of activity-dependent down-regulation of excitation suggests425

that activity-independent mechanisms might contribute to compensatory variation in KCs, as occurs for ion con-426

ductances in lobster stomatogastric ganglion neurons [8, 9]. For example, the inverse correlation of w and N arises427

from the fact that the number of PN-KC synapses per KC increases only sublinearly with increasing numbers of428

claws (i.e., PN inputs) (Fig. S5H). Perhaps a metabolic or gene regulatory constraint prevents claws from recruiting429

postsynaptic machinery in linear proportion to their number. (Interestingly, this suppression is stronger in larvae,430

where the number of PN-KC synapses per KC is actually constant relative to the number of claws: [43].) Meanwhile,431

the correlation between number of inhibitory synapses and number of excitatory synapses might be explained if432

excitatory and inhibitory synapses share bottleneck synaptogenesis regulators on the post-synaptic side. Although433

activity-dependent compensation produced superior performance in our model compared to activity-independent434

compensation thanks to its more effective equalization of KC average activity (Fig. 5) (most likely because it takes435

into account the unequal activity of different PNs), activity-dependent mechanisms suffered when the model net-436

work switched to a novel odor environment (Fig. 6). Given that it is desirable for even a newly eclosed fly to learn437

well, and for flies to learn to discriminate arbitrary novel odors, activity-independent mechanisms for compensatory438

variation may be more effective in nature.439

Compensatory variability to equalize activity across neurons could also occur in other systems. The vertebrate440

cerebellum has an analogous architecture to the insect mushroom body; cerebellar granule cells are strikingly441

similar to Kenyon cells in their circuit anatomy, proposed role in ‘expansion recoding’ for improved memory, and442
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even signaling pathways for synaptic plasticity [21, 40, 58–61]. Whereas cortical neurons’ average spontaneous443

firing rates vary over several orders of magnitude [62], granule cells are, like Kenyon cells, mostly silent at rest, and444

it is plausible that their average activity levels might be similar (while maintaining distinct responses to different445

stimuli) [63]. Granule cell input synapses undergo homeostatic plasticity [64], while compartmental models suggest446

that differences in granule cells’ dendritic morphology would affect their activity levels, an effect attenuated by447

inhibition [65], raising the possibility that granule cells may also modulate inter-neuronal variability through activity-448

dependent mechanisms. Future experiments may test whether compensatory variability occurs in, and improves the449

function of, the cerebellum or other brain circuits. Finally, activity-dependent compensation may provide useful450

techniques for machine learning. For example, we found that performance of a reservoir computing network could451

be improved if thresholds of individual neurons are initialized to achieve a particular activity probability given the452

distribution of input activities [66].453
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Methods454

Modelling KC activity455

PN activity was simulated using the odor responses of 24 olfactory receptors [30], passed through an equation

proposed by [29]. For an ORN and PN innervating the ith glomerulus, their responses to the kth odor can be

described using ORNk
i (ORN activity) and xk

i (PN activity):

xk
i = Rmax

(ORNk
i )

1.5

(ORNk
i )

1.5 + (sk)1.5 + σ1.5
(1)

where sk = m
∑

i ORNk
i /190, m = 10.63, representing the gain of lateral inhibition in the antennal lobe, Rmax =

165, representing the maximum PN response, and σ = 12, representing the non-linearity of the ORN-PN response

function. We added noise to PN activity using:

(xk
i )trial = xk

i (1 + CoVN ) (2)

where CoV is the coefficient of variation of PN activity across trials taken from Fig. 2E of [35] and N is a random456

sample drawn from a Gaussian distribution with mean 0 and standard deviation 1. To increase the number of457

stimuli beyond the 110 recorded odors in [30], we generated odor responses in which the activity of each PN was458

randomly sampled from that PN’s activity across the 110 odors used in [30], i.e., xk
i = xa

i where k = 1...K, K being459

the number of simulated odors, and a is randomly sampled from integers from 1 to 110 for each PN and each odor.460

We modeled 2000 KCs. The jth KC received input from a randomly selected set of Nj PNs, where Nj was461

either fixed at 6 or sampled from a Gaussian distribution with mean 6 and standard deviation 1.76 (integer values462

only), based on experimental measurements from 200 KCs [28]. Although more recent results show that PN-463

KC connectivity is not entirely random, as KCs that receive inputs from a certain group of food-odor-responsive464

glomeruli are slightly more likely to receive other inputs from that same group [45, 67], we judged that attempting465

to model this non-randomness would not add to the realism of our model given that we modeled only 24 (out of466

≈50) glomeruli.467

The connection from the ith PN to the jth KC had strength wji, which was 0 for non-connected neurons, and

for connected neurons was either fixed at 1, sampled from a log-normal distribution (µ = −0.0507 and σ = 0.3527,

based on [27]), or tuned by one of the methods described below. KCs received inhibition from APL (modeled as

pseudo-feedforward for simplicity), with a gain that was either constant across all KCs (α) or tuned individually

as described below (αj). The KCs’ spiking thresholds θj were either constant across all KCs, or sampled randomly

from a Gaussian distribution with coefficient of variation 0.26, based on experimental measurements of the difference

between spiking threshold and resting potential in 17 KCs [27]. These spiking thresholds were subject to a scaling

factor Cθ to achieve the correct average coding level (see below). Thus, the activity of the jth KC for the kth odor,
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ykj , was

ykj = Relu(
24
∑

i=1

wjix
k
i − α

M
∑

j=1

24
∑

i=1

wjix
k
i − Cθθj) (3)

where M = 2000 is the number of KCs and Relu is a rectified linear unit:

Relu(x) =











0 x ≤ 0

x x > 0

The coding level, or fraction of KCs active for each odor, averaged across odors, was defined as:

CL =
1

K

K
∑

k=1





1

M

M
∑

j=1

H(ykj )



 (4)

where K and M are the number of odors and KCs, respectively and H(x) is the Heaviside function:

H(x) =











0 if x ≤ 0

1 if x > 0

Experimental data suggest that coding level is around 0.1 normally, and approximately double that (0.2) when

inhibition is blocked [25]. To match these constraints, we minimized this error function with respect to Cθ (thus

preserving the coefficient of variation of thresholds across KCs, i.e., Cθθj):

ǫCL|α=0
=

1

2

[

CL |α=0 −CLtarget|α=0

]2
(5)

where CLtarget|α=0 = 0.2 and we minimized this error function with respect to α:

ǫCL =
1

2
[CL− CLtarget]

2
(6)

where CLtarget = 0.1.468

We tuned Cθ and α using gradient optimization, using the update equations:

∆Cθ = −η
dǫCL|α=0

dCθ

(7)

∆α = −η
dǫCL

dα
(8)

To derive the update rule for ∆Cθ, we differentiate (5) with respect to Cθ:

dǫCL|α=0

dCθ

=
[

CL |α=0 −CLtarget|α=0

] dCL |α=0

dCθ

(9)
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To differentiate CL with respect to Cθ, we need to replace the discontinuous Heaviside function with a continuous

approximation. Similar to [68] a sigmoid function approximates a Heaviside at the limit σ → 0,

H(x) ≈ S(x) =
1

1 + e−
x
σ

(10)

Hence, assuming σ = 1, we can define the coding level as:

CL =
1

K

K
∑

k=1





1

M

M
∑

j=1

S(ykj )



 (11)

Given the derivative of a sigmoid is:

S′(x) =
dS(x)

dx
=

e−
x
σ

[

1 + e−
x
σ

]2

= S(x)(1− S(x))

(12)

Thus,

dCL |α=0

dCθ

=
1

K

K
∑

k=1





1

M

M
∑

j=1

[

S′(ykj |α=0)
dykj |α=0

dCθ

]





= − 1

K

K
∑

k=1





1

M

M
∑

j=1

[

S′(ykj |α=0)H(ykj |α=0)θj
]





(13)

combining (9) and (13), and plugging in (7) we can get the update equation for Cθ as

∆Cθ = η
[

CL |α=0 −CLtarget|α=0

] 1

K

K
∑

k=1





1

M

M
∑

j=1

[

S′(ykj |α=0)H(ykj |α=0)θj
]



 (14)

For simplicity, this can be re-written using the average operator notation 〈〉 across odors (indexed by k) and KCs469

(indexed by j),470

∆Cθ = η
[

CL |α=0 −CLtarget|α=0

] 〈

S′(ykj |α=0)H(ykj |α=0)θj
〉

j,k
(15)

Similarly, for ∆α we differentiate (6) with respect to α,

dǫCL

dα
= [CL− CLtarget]

dCL

dα
(16)
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Similarly,

dCL

dα
=

1

K

K
∑

k=1





1

M

M
∑

j=1

[

S′(ykj )
dykj
dα

]





= − 1

K

K
∑

k=1





1

M

M
∑

j=1



S′(ykj )H(ykj )
∑

j

∑

i

wjix
k
i









(17)

combining (16) with (17) then putting in (8),

∆α = η [CL− CLtarget]
1

MK

K
∑

k=1

M
∑

j=1



S′(ykj )H(ykj )
∑

j

∑

i

wjix
k
i



 (18)

and using the 〈〉 notation:

∆α = η [CL− CLtarget]

〈

S′(ykj )H(ykj )
∑

j

∑

i

wjix
k
i

〉

j,k

(19)

These update equations were used to adjust values of θ and α in any random instantiation of the fly’s network471

to match the experimentally observed coding levels. Note that because the update equation for α is the same for472

all j, the same equation applies when αj is tuned for each KC (see below).473

Modelling olfactory associative learning474

Learning occurred through synaptic depression at the output synapse from KCs onto MBONs according to this

exponential decay rule:

∆vj = vj(e
−ηyk

j − 1) (20)

where vj is the synaptic weight between the jth KC and the MBON of the ‘wrong’ valence and η is the learning475

rate. Thus, KCs active for a punished odor weaken their synapses to the approach MBON while KCs active for476

the rewarded odor weaken their synapses to the avoid MBON. This can be seen as the model fly learning from477

‘mistakes’ during its training phase [69, 70].478

The behavior of the fly was determined by a softmax equation:

P (approach) =
ecMBONapproach

ecMBONavoid + ecMBONapproach
(21)

where the constant c governs how probabilistic or deterministic the decision-making is. At high c, the model479

approaches a completely deterministic model where the fly will approach the odor 100% of the time whenever the480

approach MBON’s activity is higher than the avoid MBON’s activity; at very low c, the model approaches random481

chance; in between, the fly’s behavior is probabilistic but biased by the imbalance between the activity of the two482

MBONs.483
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We trained the model on 15 noisy trials of the odors (no repetitions) and tested it on 15 unseen noisy trials of484

the same odors, and calculated the accuracy as the fraction of trials in which the model behaved correctly (i.e.,485

avoided punished odors and approached rewarded odors).486

Metrics for evaluating Kenyon cell odor representations487

Angular distance between two vectors A and B was calculated using:

φ =
2

π
arccos

A ·B
‖A‖‖B‖ (22)

Dimensionality was calculated according to the equation in [40]:

dim(y) =
(
∑m

i=1 λi)
2

∑m
i=1 λ

2
i

(23)

where λi are the eigenvalues of the covariance matrix of y. Whereas Litwin-Kumar et al. calculated dimensionality488

analytically given inputs with defined distributions, we calculated it numerically given simulated PN inputs. Because489

dimensionality cannot be accurately calculated with a small number of inputs, we simulated KC activity for 1000490

input odors for dimensionality calculations.491

Sparseness was calculated according to [25, 41]. Using the notation of this paper, the lifetime sparseness of the

jth KC for a set of K odors is:

Sj =
1

1− 1
K











1−

(

∑K
k=1

yk
j

K

)2

∑K
k=1

(yk
j
)2

K











(24)

If a cell is completely silent, firing to no stimuli, ykj = 0 for all k and sparseness is undefined due to division by zero.492

We used the Davies-Bouldin Index (DBI; [39]) to measure the degree of separation between clusters of the KCs

responses for two odors, or between the clusters of the rewarded odors responses versus the punished odors responses.

The DBI measures the ratio between the within-cluster variance and the inter-cluster distance. Let clusters C1 and

C2 consist of sets of A and B N -dimensional data points, X = {x1, x2, ...xA} and Y = {y1, y2, ...yB}, respectively.
The DBI is defined as:

DBI(C1, C2) =
var(X) + var(Y )

distance(X,Y )
(25)

where X and Y are the centroids of clusters C1 and C2, and distance(X,Y ) is the Euclidean distance between the

two, while var(X) and var(Y ) are the within-class variances, such that,

var(X) =
1

A

A
∑

i=1

(

xi −X
)2

(26)
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var(Y ) =
1

B

B
∑

i=1

(

yi − Y
)2

(27)

High DBI indicates poor separation (more overlap) between clusters C1 and C2, due to either high within-cluster493

variance or low inter-cluster distance.494

Models for compensatory variability495

Parametric tuning of excitatory input weights496

We approximated the probability distribution of PN-KC synaptic weights (w) using the distribution of amplitudes497

of spontaneous excitatory post-synaptic potentials (mini-EPSPs) in KCs, measured by [27]. This experimental498

distribution was approximately log-normal, as has been described for cortical synapses [62, 71], so we modeled w as499

following a log-normal distribution. We simulated values of w such that the overall distribution of w would follow500

this log-normal distribution, yet individual KCs would sample w from different log-normal distributions depending501

on N and θ, such that KCs with lower N or higher θ would have higher w, i.e., sampling from a log-normal502

distribution shifted to the right (Fig. 5A1).503

The probability of PN-to-KC synaptic weights could be estimated from the probability summation rule,

P (w) =

∫

θ

∫

N

P (w | N, θ)P (N)P (θ)dNdθ (28)

where P (w | N, θ) is the conditional probability distribution of the input synaptic weights for a KC that has N claws504

and spiking threshold θ, sampled from probability distributions P (N) and P (θ), respectively. We approximated505

P (N) and P (θ) as the Gaussian distributions described above (see Fig. 2), and we approximated integration over506

θ as summation at small intervals (∆θ = 2.5).507

We modeled the constituent conditional probability distributions P (w | N, θ) as also being log-normal, based on508

previous studies which approximate the sum of log-normal distributions as another log-normal variable by matching509

the first two moments of the power sum and its individual log-normal contributors [72–74]. This approximation510

holds in our case (the Kullback-Leibler Divergence metric (KLD) converged to less than 0.001).511

To get the posterior lognormal distributions P (w | N, θ), we minimized the distance metric Kullback-Leibler

Divergence (KLD) between P (w) and
∫

θ

∫

N
P (w | N, θ)P (N)P (θ)dNdθ. To implement compensatory tuning in

these conditional probabilities, such that a KC with fewer inputs (lower N) or higher spiking threshold (higher θ)

would have stronger inputs (higher median w), we parameterized the medians µ̃ of each conditional distribution in

N and θ as:

µ̃ = exp (µ) = k

√

θ

N
(29)

Thus,

µ = ln

(

k

√

θ

N

)

(30)
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P (w | N, θ) =
1

wσ
√
2π

exp











−

(

ln(w)− ln

(

k
√

θ
N

))2

2σ2











(31)

We used gradient descent optimization to find the values of σ and k in Eq. 31 that would minimize the fitting

error:

ǫ = KLD[P (w), P (w)]

=

∫

P (w) ln

[

P (w)

P (w)

]

dw
(32)

where

P (w) =

∫

θ

∫

N

P (w | N, θ)P (N)P (θ)dNdθ (33)

First, we found the optimal σ by gradient optimisation:

∆σ = −η1
dǫ

dσ
(34)

The derivative of the fitting error with respect to σ is:

dǫ

dσ
= −

∫

dP (w)

dσ

P (w)

P (w)
dw (35)

with,
dP (w)

dσ
=

∫

θ

∫

N

dP (w | N, θ)

dσ
P (N)P (θ)dNdθ (36)

where dP (w|N,θ)
dσ

is:

dP (w | N, θ)

dσ
=

1

wσ2
√
2π

exp−

(

lnw − ln

(

k
√

θ
N

))2

2σ2





1

σ2

(

lnw − ln

(

k

√

θ

N

))2

− 1





(37)

Similarly for k,

∆k = −η2
dǫ

dk

dǫ

dk
= −

∫

dP (w)

dk

P (w)

P (w)
dw

(38)

such that,
dP (w)

dk
=

∫

θ

∫

N

dP (w | N, θ)

dk
P (N)P (θ)dNdθ (39)
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with dP (w|N,θ)
dk

given by:

dP (w | N, θ)

dk
=

1

kwσ3
√
2π

exp−

(

lnw − ln

(

k
√

θ
N

))2

2σ2

(

lnw − ln

(

k

√

θ

N

))

(40)

Starting from arbitrary values for k and σ and using small learning rates η1 and η2, at each iteration, the512

gradient descent algorithm alternated between using σ to update k and using k to update σ. We stopped the513

gradient descent (i.e., the algorithm converged) at ǫ < 0.001.514

Tuning KC input excitatory weights to equalize KC activity515

In this model, we reduce the high variance in KCs’ average activity levels by tuning their input synaptic weights,

such that each jth KC adjusts its input synaptic weights (wji) to make its average activity level yj reach a certain

desired level A0. We initially analyzed this problem using an error function:

ǫ =
1

2
[yj −A0]

2

yj =
1

K

K
∑

k=1

ykj

(41)

where ykj is the jth KC’s response to the kth odor calculated as in equation (3) and K is the number of odors.

Finding the weights to minimize the error in (41) can be found by gradient optimisation,

∆wji = −η
dǫ

dwji
(42)

with,

dǫ

dwji

= [yj −A0]
1

K

K
∑

k=1

dykj
dwji

(43)

Taking the derivative of ykj w.r.t. wji yields:

dykj
dwji

= H(ykj )(x
k
i − αxk

i ) (44)

Plugging (44) in (43) gives:

dǫ

dwji

= [yj −A0]
1

K

K
∑

k=1

H(ykj )(x
k
i − αxk

i )

= [yj −A0]
〈

H(ykj )(1− α)xk
i

〉

K

(45)
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Hence, wji will be updated as follows:

∆wji = −η [yj −A0]
〈

H(ykj )(1− α)xk
i

〉

K
(46)

The equation above means that a KC with an average activity yj higher (lower) than A0 will scale down (up)

its input synaptic weights, wji, proportional to both the difference (ykj − A0) and the average input activity from

the ith PN. Note that in this derivation a KC must have non-zero average activity, i.e., H(ykj ) = 1 for at least

one odor, for its weights to be updated. We believe such a rule would be biologically implausible, as there should

not be a discontinuity between a silent KC and a nearly silent KC. To allow totally silent KCs (which have only

subthreshold activity) to update their weights in the same way as active KCs, we heuristically apply the following

rule:

∆wji = −η [yj −A0]
〈

(1−H(ykj ))(1− α)xk
i

〉

K
(47)

Adding (46) and (47) we obtain:

∆wji = −η [yj −A0]
〈

(1− α)xk
i

〉

K
(48)

The rule has a fixed point yj = A0 since
〈

(1− α)xk
i

〉

K
> 0. Note that we apply the constraint wji ≥ 0. How516

updates for wji = 0 are treated depends on the reason why wji = 0: if the ith PN and jth KC are not connected,517

then the update is not applied. But if they were originally connected and the update rule pushed wji to zero, the518

update rule will continue to be applied.519

To test whether performance is affected by adding the heuristic term to allow silent KCs to update their weights,520

we compared the performance using update rule Eq. (46) vs. (48). The rule without the heuristic performed521

significantly worse and had lower dimensionality than the rule with the added heuristic for activating silent KCs522

(Fig. S3A,B). This means that a formally derived update rule for w was not enough, since it would not equalize523

activity for all KCs (silent KCs will remain silent) and would not enhance the population coding as in the heuristic524

rule.525

We further noted that Eq. (48) contains a factor xk
i meaning that the update to wji depends on the average

input activity from the ith PN. As this rule makes the biological interpretation more complex (the synaptic update

depends on both pre- and post-synaptic activity), we also tested a simplified rule where synaptic changes depend

only on the average KC activity:

∆wji = −η [yj −A0] (49)

This simplification did not affect memory performance or the tuned distribution of weights (Fig. S3A1,A2,D), but526

it improved the KCs’ dimensionality (Fig. S3B) and the robustness of the model to novel odor environments (Fig.527

S3E). This improvement in the model robustness might be because including the extra factor xk
i in the learning rule528

caused the model to be overfitted to the tuning environment. Therefore, we used Eq. (49) for the results presented529
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in the main figures, as it is simpler and produces better performance, despite not being formally derived from an530

error function. As with Eq. (48), this update rule has a fixed point yj = A0.531

Tuning KC input inhibitory weights to equalize average KC activity532

In this model, we model each KC as adjusting its individual input inhibitory synaptic weights from APL, to match

its average activity level yj to a certain desired level A0. We minimize the error function in Eq. (41) by adjusting

αj instead of wji:

∆αj = −η
dǫ

dαj
(50)

dǫ

dαj

= [yj −A0]
1

K

K
∑

k=1

dykj
dαj

(51)

Differentiating ykj with respect to αj yields

dykj
dαj

= H(ykj )



−
M
∑

j=1

24
∑

i=1

wjix
k
i



 (52)

Plugging (63) in (51) gives,

dǫ

dαj

= [yj −A0]
1

K

K
∑

k=1

H(ykj )



−
M
∑

j=1

24
∑

i=1

wjix
k
i





= [yj −A0]

〈

H(ykj )(−
M
∑

j=1

24
∑

i=1

wjix
k
i )

〉

K

(53)

Therefore,

∆αj = η [yj −A0]

〈

H(ykj )(
M
∑

j=1

24
∑

i=1

wjix
k
i )

〉

K

(54)

Similar to the previous section, we assume that weight changes for silent neurons happen in the same way as

for active neurons:

∆αj = η [yj −A0]

〈

(1−H(ykj ))(
M
∑

j=1

24
∑

i=1

wjix
k
i )

〉

K

(55)

.533

Adding (54) and (55) we obtain the inhibitory plasticity rule allowing KCs to achieve equal average activity:

∆αj = η [yj −A0]

〈

M
∑

j=1

24
∑

i=1

wjix
k
i

〉

K

(56)

Given that
〈

∑

j

∑

i wjix
k
i

〉

K
is a constant as wji is not updated in this model, this term can be subsumed into534

the learning rate, so this equation reduces to:535

29

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 3, 2021. ; https://doi.org/10.1101/2021.02.03.429444doi: bioRxiv preprint 



∆αj = η [yj −A0] (57)

Besides the homeostatic tuning of the APL inhibitory feedback values, these individual values of αj also have536

to satisfy the sparsity constraint in Eq. (5). Therefore, the learning rule for these inhibitory weights requires537

simultaneously optimizing both error functions, Eq. (5) and (41). Thus combining Eq. (56) and the derivative of538

the sparsity constraint (CL=10%) with respect to each value of αj ,539

∆αj = η1 [yj −A0]− η2
dǫCL

dαj

(58)

∆αj = η1 [yj −A0]− η2 [CL− CLtarget]
dCL

dαj

(59)

where540

dCL

dαj

= − 1

MK

K
∑

k=1



S′(ykj )H(ykj )
M
∑

j=1

24
∑

i=1

wjix
k
i



 (60)

Combining (59) with (60),

∆αj = η1 [yj −A0] + η2 [CL− CLtarget]

〈

S′(ykj )H(ykj )
M
∑

j=1

24
∑

i=1

wjix
k
i

〉

k

(61)

We tested re-parameterizing αj into Cααj where Cα is tuned across all KCs to adjust coding level while αj is541

tuned individually to equalize KC activity levels, but this had no effect on memory performance, so we kept the542

simpler model formulation.543

Tuning KC spiking thresholds to equalize average KC activity544

In this compensatory technique, we tune individual KCs’ spiking thresholds θj to achieve equal average activity

across the KC population. Starting with arbitrary initial values, each KC adjusts its spiking threshold so its average

activity across K odors reaches a target level, A0, by minimizing the error in average activity as in Eq. (41) by

gradient optimization:

∆θj = −η
dǫ

dθj

dǫ

dθj
= [yj −A0]

1

K

K
∑

k=1

dykj
dθj

(62)

Differentiating ykj , the expression in Eq. (3), with respect to θj yields

dykj
dθj

= H(ykj ) [−Cθ] (63)

30

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 3, 2021. ; https://doi.org/10.1101/2021.02.03.429444doi: bioRxiv preprint 



Plugging (63) in (62) gives,

dǫ

dθj
= [yj −A0]

1

K

K
∑

k=1

H(ykj ) [−Cθ]

= − [yj −A0]Cθ

〈

H(ykj )
〉

k

(64)

Therefore,

∆θj = η [yj −A0]Cθ

〈

H(ykj )
〉

k
(65)

Similar to Eq. (47), we assume that spiking thresholds are updated for silent KCs as well:

∆θj = η [yj −A0]Cθ

〈

(1−H(ykj ))
〉

k
(66)

Adding (65) and (66) we obtain the spiking thresholds plasticity rule allowing KCs to achieve equal average

activity:

∆θj = ηCθ [yj −A0] (67)

Tuning spiking thresholds to equalize KCs response probabilities545

We tested an alternative strategy to tune θ suggested in [34]: to equalize not yj but rather the average response546

probability of each KC across K odors without inhibition, Pj , i.e.:547

P j =
1

K

K
∑

k=1

H(ykj |α=0) (68)

As in Eq. (5), we set this target response probability, P target
j |αj=0, to 0.2 to match experimental findings that

blocking inhibition approximately doubles response probability [25]. We minimized the error function:

ǫ =
1

2

[

Pj − P target
j |αj=0

]2
(69)

by adjusting θj by gradient optimization:

∆θj = −η
dǫ

dθj
dǫ

dθj
=
[

Pj − P target
j |αj=0

] dPj

dθj

(70)

To differentiate Pj , as in Eq. (13), we approximated the discontinuous Heaviside function with a sigmoid:

dPj

dθj
=

1

K

K
∑

k=1

dS(ykj |α=0)

dθj

dS(ykj |α=0)

dθj
= S′(ykj |α=0)

dykj |α=0

dθj

(71)
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Recalling the formula of ykj in (3), it follows

dykj |α=0

dθj
= −CθH(ykj ) (72)

Combining (72) with (71), and plugging in (70),

dǫ

dθj
= −

[

Pj − P target
j | α=0

]

Cθ

〈

S′(ykj |α=0)H(ykj |α=0)
〉

K
(73)

Thus, θj values are updated by,

∆θj = ηCθ

[

Pj − P target
j | α=0

] 〈

S′(ykj |α=0)H(ykj |α=0)
〉

K
(74)

As in Eq. (47), (66) and (55), we can write a symmetric rule for silent KCs:

∆θj = ηCθ

[

Pj − P target
j |α=0

] 〈

S′(ykj |α=0)(1−H(ykj |α=0))
〉

K
(75)

Adding (75) and (74) leads to an activity-dependent update rule for θj , given all the incoming input odors:

∆θj = ηCθ

[

Pj − P target
j |α=0

] 〈

S′(ykj |α=0)
〉

K
(76)

In this model, the sparsity constraint CLtarget|α=0 = 0.2 is satisfied by P target
j |αj=0 = 0.2, because coding level

equals the average of response probabilities across KCs:

CL =
1

K

K
∑

k=1

(
1

M

M
∑

j=1

H(ykj ))

=
1

M

M
∑

j=1

(
1

K

K
∑

k=1

H(ykj ))

= 〈Pj〉j .

(77)

Optimization of the multiple objective functions548

As noted above, homeostatic tuning of wji, θj , or αj needs to happen while maintaining the sparsity constraints,549

Eq. (5) and (6). (It is important to note that the homeostatic update rules are meant to represent a biological550

process while the sparsity constraints merely fit our model to experimental data and stand in for unknown processes551

that lead to a coding level of 0.1.) Since these activity-equalizing tunings both depend on and change the network’s552

sparsity level, we used a sequential optimization approach to optimize each objective function, Oi, at a time. For553

each i, we find the optimal parameters {Pi} minimizing an objective Oi, using the current estimates of the other554

parameters {Pj} from all the other objectives, {Oj} where j 6= i. The algorithm iterates for all i to minimise each555

of the objective functions, until it reaches a global minimum where the errors from all of the objective functions556
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fall below a certain tolerance, τO.557

Given an initial estimate for Cθ, α, θj and wji, the algorithm goes as follows:558

Algorithm 1: Tuning of KCs parameters to equalize activity while constraining coding level

Result: Cθ, α, parameters to be tuned for activity equalization [wji or θj ]

Initialize: [Cθ=1, α=0, ǫ1= ǫ2=1, ε3= 1, τ1=0.2 τ2=0.01, τ3= 0.06A0]

Initialize tuned parameter for activity equalization [wji or θj ] ∈ U[0,1]

while any in [ǫ1, ǫ2, ε3] > [τ1, τ2, τ3] do

1. Using the current values for θj and wji, update Cθ using Eq.(15)

2. Using the value of Cθ from step (1) and current values for wji, and θj , update α using Eq. (19)

3. Using Cθ and α from (1) and (2) respectively, update wji using Eq. (46) or θj using Eq. (67)

4. Re-calculate the errors for the three objectives, Eq. (5), (6) and (41):

ǫ1 =| CL|α=0

CL
− 2 |

ǫ2 =|CL−0.1 |
ε3 =| yj −A0 |;

end while

559

In our implementation we initialize the parameters to be tuned for activity equalization (wji, θj or αj) from a560

uniform random distribution U = [0, 1] (the non-tuned parameters follow the distributions in Fig. 2). In addition,561

we set the error for the first and second sparsity constraint, Eq. (5) and (6), to be τ1=| CL|α=0

CL
− 2 |=0.2, while τ2=562

| CL − 0.1 |=0.01 respectively. This means allowing the coding level without and with the APL feedback to fall563

within [1.8CL ≤ CL |α=0≤ 2.2CL], and [0.09 ≤ CL ≤ 0.11] respectively. For the activity equalization objective,564

the error ε3 is a column vector of size M , of the differences between the target average activity value A0, and the565

current average activity for each KC, yj . This objective function is satisfied when all the values in the vector ε3566

are less than 6% of the target activity.567

Note that in the inhibition-tuning model, we tune the same parameter, αj (a vector of M values instead of a568

constant), to jointly satisfy both the sparsity and the activity-equalization objectives. In this case, step (3) above569

is removed and step (2) updates αj using Eq. (61).570

In the model where we tune θj to equalize response probability rather than average activity (Fig. S4), equalizing571

response probability without inhibition to 0.2 also solves the coding level constraint (Eq. (77)). Thus, in this case,572

the algorithm iterates between 2 steps: (1) update θj according to Eq. (76), (2) use these values to update α573

according to Eq. (19), as follows,574
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Algorithm 2: Tuning of KCs spiking thresholds to equalize response probabilities

Result: Cθ, α, [θj ] to be tuned for equalizing KCs response probabilities

Initialize: [Cθ=1, α=0, ǫ1= ǫ2=1, τ1=0.2, τ2=0.01]

Initialize [θj ] ∈ U[0,1]

while any in [ǫ1, ǫ2] > [τ1, τ2] do

1. update θj using Eq. (76)

2. Using these new values of θj in step (1), update α using Eq. (19)

3. Re-calculate the errors for the two objectives, Eq. (69) and (6):

ǫ1 =| Pj − P target
j |αj=0 |

ǫ2 =|CL−0.1 |
end while

575

In our optimization pipeline, there is a potential problem in the models where KC activity is equalized by tuning

αj or θj . In these models wji is not tuned, so for values of A0 that are too high relative to values of wji, excitation

will be too low to reach the high targets given the constraints Cθθj > 0, CL = 0.1 and CL |α=0= 0.2, meaning the

algorithm does not converge. (This is not a problem when tuning wji because wji can go arbitrarily high, whereas

thresholds cannot go below zero.) Therefore, wji values must be chosen in a sensible range relative to A0 (keeping

in mind that the value of A0 is arbitrary: see below). Rather than further complicating the objective cost functions

by introducing a tunable scaling factor for wji, we found that in practice the algorithm converged if wji values

(starting from a log-normal distribution with µ = −0.0507, σ = 0.3527) were multiplied by A0

CL
(where CL = 0.1).

The target activity A0 is arbitrary because if parameters can be found to satisfy our model constraints (yj = A0,

CL = 0.1 and CL |α=0= 0.2) for a particular A0 > 0, then a solution also exists for yj = cA0 for any c > 0, because:

cykj = c Relu(
24
∑

i=1

wjix
k
i − αj

M
∑

j=1

24
∑

i=1

wjix
k
i − Cθθj)

= Relu(
24
∑

i=1

(cwji)x
k
i − αj

M
∑

j=1

24
∑

i=1

(cwji)x
k
i − cCθθj)

(78)

That is, to scale yj by a factor c, one need only scale the parameters wji and Cθ by c. In other words, only the576

relative magnitudes of A0, wji and Cθ, not the absolute magnitudes, are meaningful.577

Robustness analysis578

Of the 110 odors tested in [30], we took the four chemical classes with the most odors (acids, terpenes, alcohols579

and esters), so that tuning parameters on a single class would provide a reasonable number of odors (at least 15).580

Because each class had different numbers of odors, and the memory task is more difficult when more odors need581

to be classified, we equalized the number of odors in each task by randomly sampling 15 odors from those classes582

that had more than 15 members (terpenes, 16; alcohols, 18; esters, 24), with a different random sampling for each583

model instantiation. Because of the small number of odors used for tuning, it was not always possible to equalize584
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the activity of every single KC; in particular, in the threshold-tuning models in a novel environment, we allowed a585

maximum of 5 KCs to fall outside the ±6% bound on average activity.586

Connectome analysis587

KC neurite skeletons and connectivity were downloaded from the hemibrain connectome v. 1.1 [44]. KCs (excluding588

those that receive significant non-olfactory input) were selected as neurons whose ‘type’ field was KCg-m, KCab-c,589

KCab-m, KCab-s, KCa’b’-ap2 or KCa’b’-m. PN inputs for a KC were identified as neurons whose ‘type’ field included590

adPN, lPN or vPN (NB: some of these, e.g., vPNs, do not project to the mushroom body and so were never counted)591

and that formed more than 2 synapses with the KC (see Fig. 7B). KCs with truncated skeletons lacking the dendritic592

tree were excluded. The posterior boundary of the peduncle was the most posterior node in a skeleton annotated as593

being in the ‘PED(R)’ region of interest (annotations at https://storage.cloud.google.com/hemibrain/v1.1/hemibrain-594

v1.1-primary-roi-segmentation.tar.gz). The boundary between the calyx and peduncle regions in the hemibrain was595

defined by innervation by PNs (or lack thereof) (personal communication, K. Shinomiya). The distance from this596

point to each PN-KC synapse along the KC’s neurite skeleton (i.e., not the Euclidean distance) was measured as597

described in [36].598

Code availability599

Modeling and connectome analysis were carried out using custom code written in MATLAB, which is available at600

https://github.com/aclinlab/CompensatoryVariability.601
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Figure S1: Similar analyses to Fig. 2 and 3 with original odor responses from [30]. (A) Inter-KC variability degrades the
memory performance when using the 110 odorants from [30]. (B-C) The Davies-Bouldin index is higher in the random
model.615
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Figure S3: Alternative update rules for tuning KCs’ input excitatory weights.
(A) Performance of different models at different indeterminacy constants (A1: c = 10; A2: c = 1): blue, the method in
the main figures, Eq. (49), where a given KC’s input weights are all adjusted equally (‘H’); dark blue, Eq. (48), where a
given KC’s input weights are adjusted individually according to the average activity of the PN (‘Hindiv’); light blue, Eq. (46),
where only non-silent KCs adjust their input weights (‘Hactive’).
(B) Dimensionality of KC odor representations. The ’H’ model has a significantly higher dimensionality than both the
‘Hindiv’ and ‘Hactive’ models. n = 20 model instances with different random PN-KC connectivity. Error bars show two times
the SEM, i.e., 95.4% confidence interval. Bars with the same letter annotations are not significantly different from each other;
all other comparisons are significant p < 0.05, by Wilcoxon signed-rank test with Holm-Bonferroni correction for multiple
comparisons.
(C-D) Probability distribution of the tuned excitatory weights (compare to Fig. 5E).
(E) The ‘Hindiv’ model performs worse than the ‘H’ model in novel environments (see legend of Fig. 6).619
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by Wilcoxon signed-rank test.
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Figure S5: Connectome analysis on all KC subtypes (γ-main, αβ-s, -m and -c; α′β′-ap2 and -m). (A-D) Probability
distributions of the number of synapses per PN-KC connection (A,C) and the number of input PNs per KC (B,D) in αβ and
α′β′ KCs separated out by subtype (compare to Fig. 7E,F). (E) Mean number of input synapses per PN-KC connection is
inversely related to the number of input PNs per KC. (F) Mean distance of PN-KC synapses to the posterior boundary of
the peduncle (presumed spike initiation zone) is directly related to the number of input PNs per KC in γ and αβ-c KCs.
(G) The number of APL-KC synapses per KC is directly related to the total number of PN-KC synapses per KC. (H) The
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