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Abstract. Single-degree-of-freedom (SDOF) nonlinear oscillators are widely used for model-

ling systems with just one degree-of-freedom in addition to single mode approximations to 

structural elements such as beams and cables, as well as other multi-degree-of-freedom 

(MDOF) applications. In this work, an investigation of the behavior of SDOF nonlinear oscil-

lators is carried out using the method of direct normal forms. So far, this method has only 

been considered as a theoretical technique used for solving limited nonlinear dynamical sys-

tems in which low orders of nonlinearities appear, involving quadratic and cubic nonlineari-

ties.  In this work, thanks to the implementation of symbolic computations, the method of 

direct normal forms is generalized for solving nonlinear SDOF systems with any order of pol-

ynomial (or geometric) weak nonlinearities.  Using this new approach, the effect of any high-

er order nonlinear term, or any combination of nonlinear terms can be investigated. 

Backbone curve relations are obtained for a selection of example systems representing both 

hardening and softening systems, and the results are verified by comparing the approximate 

analytical solutions to numerical solutions generated using COCO numerical continuation 

toolbox in Matlab. 
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1 INTRODUCTION 

 

Nonlinear normal forms method is a well-established technique for obtaining approximate 

solutions for nonlinear oscillators with various types of weak (typically smooth) nonlinearities. 

In principle, it can be used for either SDOF or MDOF problems; although for systems with 

more than a few degrees-of-freedom the algebraic complexity quickly escalates. It is also pos-

sible for the analyst to select certain resonant (or non-resonant) cases to study, by making one 

(or sometimes more) near-identity transforms [3]. The analytical basis of the technique is to 

use matrix algebra via a series of analytical steps that finally detect the desired resonances and 

can be used to find approximate solutions, such as so-called backbone curves, for the SDOF 

or MDOF system being considered.  

 

 

While this method has the potential to be applied for a wide range of applications, it can 

generate large and complicated mathematical terms. As a result, it could be helpful to use 

symbolic packages, which can deal with such complex mathematical expressions and also of-

fer the possibility of enhancing the accuracy of solution by increasing the number of terms 

truncated in the solution.  

 

 

Another way to simplify such computations is to reduce the system order prior to compu-

tation. This is a pragmatic way to decrease the matrix sizes involved, however the size of the 

residual terms (i.e. those excluded by the reduction) should be estimated in order to ensure the 

accuracy of the final solution. Using a computation package, such as Maple software, makes it 

possible to build a highly structured code that can, in principle, solve for any order of nonlin-

earity and potentially a large number of nonlinear terms. In this work, the number of terms is 

limited to two. 

 

 

The origin of the idea of normal form transformations is attributed to the work of Poinca-

ré. Following this, the application of normal forms method for SDOF and MDOF is discussed 

widely in the literature. Notably the Hamiltonian normal form (and Birkhoff normal forms) 

were introduced for conservative dynamical systems [21], and are typically used to model un-

damped unforced applications in physics and engineering. The work of Arnold [22] did much 

to extend and promote the idea of normal form transformation in engineering mechanics. The 

normal form approach was extended to problems of forced and damped systems of coupled 

nonlinear oscillators by Jezequel and Lamarque, [24], and given recast in a perturbation 

framework by Nayfeh [25]. 

 

 

Because most mechanical vibration problems are naturally described by sets of second-

order differential equations, a variant of the normal forms method applied directly to second 

order dynamical problems was first introduced by Neild and Wagg in [3]. The authors origi-

nally referred to this modified technique as ‘second order normal forms’. This approach will 
be used during the formulation and discussion in this work.  
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Compared with other techniques, the primary advantage of the direct normal forms is the 

ability of inherently computing the harmonics without pre-assuming any specific harmonic 

components included in trial solutions. Thus, no prior knowledge of the harmonic components 

in the response of the system is required and no additional complexity is needed when consid-

ering the harmonics. Furthermore, the process of direct normal forms can be formulated in a 

matrix-based manner, which makes its application more appropriate for the computer automa-

tion. 

 

 

The direct normal form technique has been used in a number of conducted research works, 

investigating nonlinear dynamics of mechanical systems. Xin et al., [9], considered the SDOF 

nonlinear oscillators of polynomial-type nonlinearities using the direct normal form technique, 

their work involved investigation of velocities and displacements, whilst illustrating the con-

tributions of the different polynomial nonlinearities in different forms to the system response 

by the resulting resonance response functions (RRFs).  

 

 

Shaw et al. [23], studied the performance of the nonlinear vibration isolator using the di-

rect normal form technique. The system was modelled as a SDOF oscillator with cubic and 

quintic nonlinear terms. The authors estimated a group of backbone curves of the nonlinear 

vibration isolator by considering its equivalent conservative system. Cammarano et al. [9] in-

vestigated the optimal load for the nonlinear energy harvester in the case of purely resistive 

loads. Their work was carried out both analytically and numerically, and the results showed 

that analytical solutions obtained using direct normal forms were in very close agreement with 

the numerical results within the frequency range of interest. The direct normal form technique 

was also applied to study the nonlinear dynamic behaviors of MDOF systems, see for exam-

ple [9] and references therein.  

 

 

However, in order to generalise the applications of direct normal forms, thanks to the im-

plementation of Maple symbolic computations, this work focuses on studying SDOF nonline-

ar systems with higher orders of geometric nonlinearities. One reason for taking this approach 

is that, when attempting the direct normal forms analysis of such systems, usual hand calcula-

tions, can be extremely difficult as the number of terms included increases. 

 

 

Due to the inherent nature of nonlinearities, the use of direct normal forms is not limited 

to nonlinear oscillators; many real-life engineering applications exhibit geometric, or even 

damping nonlinearities quite naturally. Therefore, the direct normal form technique has been 

used to study nonlinear beams, cables, shells, plates and multi-storey buildings - see [3] for 

detailed description of many of these applications. In this work, the direct normal forms 

method is used to analyse some SDOF oscillators with one, or two, geometric nonlinear terms. 

The application of this method, with the aid of symbolic computation algorithm, enables a 

robust computational method for the investigation of the dynamics exhibited by these types of 

oscillators using backbone curves. 
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2 DIRECT NORMAL FORMS METHODOLOGY 

 

For the case of unforced vibrating systems, the technique is applied using four main con-

secutive steps: 

 

Step 1: Linear modal transformation in order to decouple the linear terms. 

Step 2: Derivation of the equation of motion for the nonlinear transformation. 

Step 3: Applying the near-identity transform. 

Step 4: Solving the resulting normal forms equation (or equations). 

 

In addition, studying systems that are externally forced usually requires one further trans-

formation, in which, any non-resonant forcing terms are to be excluded. Finally, damping 

term (usually viscous damping) is normally included within the nonlinear vector.   

 

2.1 Computation of backbone curves using direct normal forms 

 

Consider the case of nonlinear forced-damped SDOF oscillator, whose equation of motion 

may be written as 

 

,rxx Pr),x(x,Nx(t)K(t)xC(t)xM   ,                                (1) 

 

where the over dots represent derivation with respect to time, x represents the physical dis-

placements, M, C and K denote the mass, damping coefficient and linear stiffness respectively, 

Nx(x) is the nonlinear restoring force,   is used to denote smallness of the nonlinear terms, the 

amplitude of the forcing term is denoted by xP , and r is the forcing vector which can be writ-

ten as    TtitiT

mp eerr  ,,r where the forcing frequency is denoted a by  . 

 

 

As mentioned earlier, direct normal forms analysis is applied using four main steps, for 

convenience, only key parts of the analysis are to be discussed in this work while the com-

plete detailed analysis of this type of systems is extensively discussed in [3]. Moreover, for 

the application of the direct normal form technique, the nonlinear terms are assumed to be ex-

pressed in a polynomial form in terms of x. 

 

 

From Eq. (1) all nonlinear terms are gathered in one term, (x)N x . Herein, both damping 

and nonlinear terms are assumed to be efficiently small compared to the linear stiffness and 

the forcing term, hence, more conveniently Eq. (2) can be rewritten as 

 

,rPx r),x(x,Nx(t)K(t)xM x
                          (2)   

 

where (t)xCr),x(x,Nr),x(x,N xx
   
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Now, the application of direct normal forms begins, by writing Eq. (2) in its linear modal 

normal form, using the transformation qx , simply by applying Φqx , where Φ is the ma-

trix containing the mode shapes, then, Eq. (2) becomes 

 

,),( rPr q qq,Nqq q
              (3) 

where   ),()(
1

rr qΦΦq,NM,qq,N x

TT

q
 


,   xq PP TT M 

1
 

 

 

Herein, H(u)εuq   where u  and H(u) are the fundamental and harmonic components of q 

respectively. 

 

The assumed solution has the form  

,
22

tiitii

mp
rr ee

U
ee

U
uuu

  












                                                                        (4) 

 

Where U ,   and 
n  are the displacement amplitude, phase lag, and response frequency, re-

spectively. 

 

 

In order to complete the analysis, qN , in view of Eq. (4), should be decomposed into two vec-

tor *n  and *u  where *n is a row vector contains the coefficients part and *u is a column vec-

tor represents the nonlinear functions of u. 

 

For the case of polynomial nonlinear terms (as appears in Eq. 2), the th element of 
*u may be 

written as 

 



,, mp s

mn

s

pn uuu *                                                                                                                     (5) 

 

Where lps ,  and lms , are exponents of pu  and mu  in the th element of 
*u )( j  respectively. This 

step is symbolically done in the proposed algorithm for every term in
*u . In order to identify 

the resonant nonlinear terms retained in )( jun from )( jn , a vector )( j , is introduced, i.e. 

 

  2

2

1

,,,,,)( rnrn

N

n

nmjnpjnj ss  







 


                                                                                        (6) 

 

Finding 
*β matrix is crucially important to complete the analysis, and it is performed symboli-

cally with a series of iterative loops that capture the power indices in Eq. (5) and then substi-

tute the result in Eq. (6). 

 

The procedure discussed above is a short summary of the direct normal forms technique. In 

the following subsection, two examples of SDOF nonlinear oscillators are studied; the first 

example represents a SDOF conservative (unforced and undamped) oscillator with two differ-

ent orders of geometric nonlinearities, whereas the second example is a SDOF oscillator with 
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viscous damping and harmonic forcing applied away from resonance. Lastly, the frequency 

response of a general system of a forced damped nonlinear oscillator with two types of geo-

metric nonlinearities is studied. It is important to mention that all manipulations and solutions 

to be shown are computed using Maple symbolic computation packages with the aid of the 

COCO toolbox in Matlab for numerical comparisons and verifications.    

 

 

2.2 SDOF conservative oscillator with various nonlinearities 

Considering the following general formula for unforced, un-damped SDOF oscillator, 

 

,0)()()()( 21

2  txtxtxtx n

                                                                                         (7) 

 

where 
n is the natural frequency of the system, 1  and 

2  are arbitrary small coefficients 

for the nonlinear terms,  and   are the lower and higher orders of the nonlinear terms, re-

spectively. Furthermore, in order to achieve stable energy levels, at least one of the nonlinear 

orders (i.e.  and  ) should be an odd number, for detailed discussion of the potential func-

tions and how they are used to study the stability level of the system refer to [3].  

 

Using this approach it is possible to compare the results for different configurations of  and 

 . Such systems with different parameters and orders of nonlinearities can be theoretically 

used for modelling some engineering applications. In principle, the symbolic computations 

method introduced in this work has the potential to be applied to general SDOF systems with 

any number of nonlinear terms. In order to test this method we start with two nonlinear terms 

described by Eq. (7) and increase the order, accordingly, it is possible to understand the capa-

bilities and limitations of this method.    

 

The following procedure illustrates the use of symbolic computations of a normal form meth-

od in order to solve Eq. (7) for 2  and 7 , nevertheless, following the same procedure, 

it is possible to solve the equation for any other values, as long as at least one exponent is odd. 

 

Direct normal forms analysis of such systems undergoes a series of transformations that in-

volve complex mathematical manipulations, in this work the most important results are shown, 

focusing on the utilization of symbolic computation software, i.e. Maple. Rewriting Eq. (7) 

with 2 and 7 , leads to 

 

,0)()()()( 7

2

2

1

2  txtxtxtx n                                                                                         (8) 

 

The first step is using Eq. (3) in view of Eq. (2) to make the linear modal transformation, in 

this step it should be noticed that for SDOF systems the transform is unity and qx  , then 

 

,(q)NΛqq q 0  where
2

n  and 
2

2

2

1)( qqNq  q                                               (9) 
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The second step is the near-identity transform, and for 1 , rewriting the nonlinear terms 

using u , one should obtain 
7

12

2

11 uαuα(u)Nq   and 111 mp uuu  , thus 

 

    7

112

2

111

**

)1( ),()( mpmpmp uuuu  uuunun                                                         (10)  

 

 

Expanding Eq. (10), )()1( un will contain many terms (11 term in this case), these terms have 

to be primarily decomposed into coefficients and nonlinear functions vectors *n  and *u , re-

spectively.  

 

 22222212211

* 72135352172 n                             (11a) 

  T

mpmpmpmpmpmpmppmpm uuuuuuuuuuuuuuuuuu 1

6

1

2

1

5

1

3

1

4

1

4

1

3

1

5

1

2

1

6

1111

7

1

7

1

2

1

2

1

* u   (11b) 

 

 

As the number of nonlinear terms and their corresponding orders increase, or when consider-

ing higher order accuracy (i.e. 2 , 3 , ...) this initial step becomes harder to be manipulated  

by usual hand calculations. Symbolically, the proposed algorithm can be efficiently completed 

to do this step and produce *n  and *u matrices.  

 

 

Using the proposed symbolic algorithm, we have been able to study several SDOF oscillators 

with two weak nonlinearities of variable orders. The key point in applying direct normal 

forms, especially for SDOF problems, is the number of terms involved in the matrices. Table 

1 shows the number of terms for cases of conservative nonlinear oscillators of various orders 

of nonlinearities, i.e. for different configurations of  and  . Values in the highlighted cells 

represents the case when only one nonlinear term appears in the EOM. 

 

 
Table (1): Number of terms involved in matrices for selected values of   and  

  
  3 5 7 9 11 13 

2 7 9 11 13 15 17 

3 4 10 12 14 16 18 

4 9 11 13 15 17 19 

5 10 6 14 16 18 20 

6 11 13 15 17 19 21 

7 12 14 8 18 20 22 

8 13 15 17 19 21 23 

9 14 16 18 10 22 24 

10 15 17 19 21 23 25 

11 16 18 20 22 12 26 

12 17 19 21 23 25 27 

13 18 20 22 24 25 14 
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The increasing number of terms appearing in Table 1 leads to additional difficulties for hand 

calculations to be performed. Importantly, more complex systems will lead to a higher num-

ber of terms; some examples of more complex cases include: 

 

 the EOM involves viscous damping (in this case two additional terms are to be added 

to those in Table 1), 

 the system contains more than two types of polynomial nonlinearities,   

 solving the EOM for a higher order accuracy (i.e. 2 )  

 and when using the direct normal forms technique for MDOF systems, 

 

all of the aforementioned cases can yield to a dramatic increase in the size of the matrices, 

thus, the mathematical complexity is also increased, these causes can justify turning to sym-

bolic computation method.    

 

 

In order to complete the analysis, by applying Eq. (6), *β  can be written as 

 

 2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

* 24800824483483 rrrrrrrrr  β                         (12) 

 

 

It should be emphasized that, according to direct normal forms analysis, any zero value in 
*β matrix indicates the presence of a resonant term; while any nonzero value indicates a non-

resonant or harmonic term. 

 

  

The next step, illustrates the resulting coefficients of resonant terms 
*

un and of harmonic terms 

*h  for both resonant and non-resonant cases (refer to [3] for detailed analysis). In symbolic 

programming, this step is based on conditional loop manipulation for each element in 
*β  with 

respect to *n . The results are  

 

 00353500000002

* un                                                                  (13a) 





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24

7

8

21
00

8

21

24

7
2

483483

1 2222
1

2211

2

1

* 
r

h                           (13b) 

 

If the analysis is only truncated to 1  accuracy, which regularly leads to acceptable inspection 

of the nonlinear effects of small nonlinearities, the final step is rewriting the transformed 

equation of motion. For the non-resonant case, Eq. (9) in u -transformed coordinate system 

becomes 

 

,0**  unuu uΛ    

 

  ,035 3

1

4

1

4

1

3

1

2  mpmpn uuuuuu                                                                                 (14) 
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and the near identity transform is written as 

 

,**uhuq   


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112
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r uuuuuu

uu
uu

u
u

u
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











uq                                  (15) 

 

 

Substituting in the assumed solution Eq. (4), and solving the positive (or negative) complex 

exponential terms by exact balancing, one can get the equation of the backbone curve for this 

system, which is 

 

6

2

22

1
64

35
Unr                                                                                                                (16) 

 

Following the same aforementioned procedure, one should be able of finding the backbone 

curve for any values of   and  in Eq. (7). One advantage of having a computer pattern in 

such case is the ability of doing several runs with different conditions. Table 2 shows the 

backbone curve obtained for the first four values of   when 2  for the 1  expansion. It is 

clear that a general pattern is repeated for the backbone equation found, so if 2  it could 

be generalized for any value of   that  

 

...,7,5,3,1

2

22

1    
Uinr                                                                                       (17) 

 

Where i  is a constant. 

 

 

Table (2): Backbone curve equations of 
1  accuracy for different values of   while 2  

Value of   Equation of motion Backbone curve equation 

3 0)()()()( 3

2

2

1

2  txtxtxtx n   
2

2

22

1
4

3
Unr    

5 0)()()()( 5

2

2

1

2  txtxtxtx n   
4

2

22

1
8

5
Unr    

7 0)()()()( 7

2

2

1

2  txtxtxtx n   
6

2

22

1
64

35
Unr    

9 0)()()()( 9

2

2

1

2  txtxtxtx n   
8

2

22

1
128

63
Unr    
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Practically, for weak nonlinear case, the values of 
1 and

2 should be small, typically less 

than unity, Fig. (1) shows the backbone curves for the conservative oscillators appearing in 

Table 2, using the following numerical values; 2.01  , 1.02   and  n
 rad/s.  

 

 
Fig. (1): Conservative backbone curves for different values of  while 2  

 

 

Furthermore, we could obtain the backbone curve relation truncated to 1  accuracy for any 

values of   and   in Eq. (7). Table 3 shows some examples of these results. 

 

 

 

Table (3): Backbone curve equations of 
1  accuracy for different values of   and   

Value 

of   

Value 

of   
Equation of motion Backbone curve equation 

3 5 0)()()()( 5

2

3

1

2  txtxtxtx n   
4

2

2

1

22

1
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5
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UUnr    

4 7 0)()()()( 7

2

4

1

2  txtxtxtx n   
6

2

22

1
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The following findings are noted: 

 

 Any even nonlinearity found in the EOM is removed by the normal form transfor-

mation and does not appear in the backbone curve. This phenomenon is found in liter-

ature in terms of quadratic nonlinearity, here we generalise this finding for any even 

nonlinearity. 

  

 Referring to Table 3 and comparing with Table 2, it is clear that the frequency detun-

ing accompanied with direct normal forms resulted in, at least for 
1  accuracy, a be-

havior similar to superposition regarding the final backbone curve expression. 

 

 Some of these results are numerically verified using COCO numerical continuation 

toolbox in Matlab (see Fig. (3)), and acceptable agreement between analytical back-

bone curves and numerical backbone manifolds is seen.  

 

 

In conclusion, in order to generalise the 
1  backbone curve relation for any SDOF nonlinear 

oscillator with two types of nonlinearities, Eq. (7), in view of Table 1 and Table 2, provided 

that   and   are odd, the following relation can be obtained 

 
1

22

1

11

22

1

    UUnr          (18) 

 

Where 1  and 2  are constants directly related to the order of the nonlinearity, Table 4 shows 

the values of this constant for several orders of the nonlinear terms. Finally, as mentioned ear-

lier, any even nonlinearity in the EOM will be removed by the normal form and will not ap-

pear in Eq. (18). 

 

 

Table (4): Values of the constant i  appearing in the backbone curve relation, Eq. (18)   

Order of 

nonlinearity 
3 5 7 9 11 13 15 17 

i  
4

3
 

8

5
 

64

35
 

128

63
 

512

231
 

1024

429
 

16384

6435
 

32768

12155
 

 

 

Using Eq. (18) and Table 4 it is possible to get the conservative backbone curve relation for 

any nonlinear oscillator with two different types of polynomial nonlinearities. As an example, 

if the EOM contains both cubic and quintic nonlinearities, i.e. 

 

,0)()()()( 5

2

3

1

2  txtxtxtx n                                                                                          

 

then, the conservative backbone curve of 1  accuracy will be 
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2.3 Non-resonant Duffing oscillator with cubic nonlinearity 

 

As an example of a more complex system, we now consider the system of a Duffing oscillator 

with cubic nonlinearity, viscous damping and forcing away from resonance where the ratio 

between the driving frequency and the natural frequency is 1/3 (i.e. 3/1a ),  

 

 tRtxtxtxtx nn  cos)()()(2)( 32          (19) 

 

Using the proposed direct normal forms technique applied symbolically, it is required to gen-

erate analytical conservative backbone curve equations for 1  accuracy, and compare with 

forced (and lightly damped) response curves. The step by step procedure involves large matri-

ces and algebraic terms, hence, only the key results are to be shown, while further results for 

matrix algebra manipulations can be found in Appendix 1. After applying direct normal forms 

analysis we get  

 

          0sin2cos2cos4243
4

1
11111

3

11

2

1

223

1   tUteteU rrnrrrn   

 (20) 

Where 
)(2 22 


n

R
e


. 

 

Applying the suitable trigonometric identities, and then balancing the sines and cosines terms 

in Eq. (20) we get 

 

 1

3

1 sin  eUrn           (21a) 

   1

32

1

23

1

2 cos
2

1

8

3
3  eUe rn                   (21b) 

 

 

Hence, it is possible to use Eq. (21) to get an expression for U as a function of 1r , therefore, 

computing the forced response curve analytically, this has been previously done in [3] by ap-

plying traditional hand calculations. In order to compare with our proposed symbolic compu-

tation method, the same problem has been solved in conservative case (unforced-undamped 

case), and the conservative backbone curve is computed using Eq. (18) and Table (4) and 

plotted in Fig. (2), along with the analytically computed forced-damped response curves for 

several values of R using Eq. (21). The numerical values chosen for this figure are 2n  

rad/s, 01.0  and 2.0 . 
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Fig. (2): Backbone curve of damped forced Duffing oscillator with cubic nonlinearity 

 

 

Figure (2) represents a typical backbone curve and response curves for any forced damped 

nonlinear system. From this figure, several important observations can be noticed; first of all, 

as the value of   is positive, hardening behavior is clearly seen, in contrary, if  is negative 

softening behavior will be noticed. Furthermore, as the figure shows the relation between nat-

ural frequency and amplitude, the backbone curves do not perfectly coincide with the mani-

folds, and this is due to the presence of damping. Finally, as the forcing amplitude R becomes 

higher, more matching between the backbone curves and their manifolds occurs. 

 

 

Finally, in order to compare the frequency response of several nonlinear terms in combination, 

recall Eq. (5) in its forced damped case, that is 

  

 tRtxtxtxtxtx nn  cos)()()()(2)( 21

2         (22) 

 

Various values of   and can be considered, the corresponding EOM can be studied using 

direct normal forms and analytical backbone curve relations are then obtained. Three cases 

are studied, linear oscillator and cubic-quintic oscillator in both hardening and softening cases 

(3-5 Hardening, 3-5 Softening). Figure 3 represents backbone equation for all previous cases 

along with their forcing manifolds obtained numerically using COCO. Figure 3 is generated 

using the numerical data: general parameters for all cases 2n  Hz, 05.0  and 1R . In 

the case of hardening cubic-quintic oscillator 2.01   and 3.02  . Finally, for softening 

cubic-quintic oscillator 2.01   and 3.02  .  
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Fig. (3): Frequency response of various types of nonlinearities 

 

Figure 3 illustrates the effect of both hardening and softening nonlinear terms on the frequen-

cy response of the system; firstly, compared to the linear case, hardening polynomial nonline-

arities the shift the peak to the right whilst minimizing the maximum vibration amplitude of 

the system. On the other hand, softening nonlinear terms cause shifting to the left and maxim-

izing the vibration amplitude. However, using Eq. (18) along with Table 4 it is possible to ob-

tain the conservative backbone curves for SDOF oscillator with two nonlinear terms, and 

compare with the forced-damped frequency response computed numerically using COCO 

toolbox in Matlab.  

 

 

3 CONCLUSION 

 

In this work, the direct normal forms method is used to study the dynamical behavior of 

SDOF oscillators with higher orders of polynomial nonlinearities. Symbolic computations us-

ing Maple were implemented for the analytical solutions, where backbone curves expressions 

of 1  order were obtained and the results were verified using COCO numerical continuation 

toolbox in Matlab. A general formula for any SDOF nonlinear oscillator with two polynomial 

nonlinearities are obtained by computing high number of terms in the solution (refer to Table 

1).  

 

The overall truncated analytical results show good agreement with the numerical results, ac-

cordingly, extending the direct normal forms using symbolic computations can yield to some 

desired findings regarding the dynamics of the system. Although the proposed technique 

overcomes the mathematical complexities and enables fast analysis of SDOF nonlinear oscil-

lators, its limited to weakly nonlinear systems were the nonlinear terms are modelled by poly-

nomial terms in the EOM, so that the direct normal forms technique is applicable.  
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Overall, the work shows good insight regarding the implementation of symbolic computations 

when studying SDOF nonlinear oscillators, were we have been able to analytically compute 

the conservative backbone curves for any SDOF oscillator with two nonlinear terms. 
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APPENDIX 1  

 

Matrix manipulation of forced damped Duffing oscillator of cubic order nonlinearity, 

with forcing away from resonance. 
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