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Abstract

Shear-based fracture propagation in fluid-saturated porous materials is investi-

gated using a displacement–pressure formulation that includes acceleration and

inertial effects of the fluid. Pressure-dependent plasticity with a nonassociated

flow rule is adopted to realistically represent the stresses in the porous bulkmate-

rial. The domain is discretized using unequal order T-splines and cast into a finite

element method using Bézier extraction. An implicit scheme is used for the tem-

poral integration. The solid acceleration-driven fluid flow reacts to stress waves,

but it results in pressure oscillations. Adding fluid acceleration terms dampens

these oscillations and increases the fluid pressure near the fracture tips. By sim-

ulating a typical shear fracture case, it is shown that stick-slip like, or stepwise,

fracture propagation occurs for a high permeability, also upon mesh refinement.

The acceleration driven fluid flow results in a build-up of pressure near the frac-

ture tip. Once this pressure region encompasses the fracture tip, propagation

arrests until the pressure has diffused away from the crack tip, after which prop-

agation is resumed and the build-up of pressure begins anew. This results in a

stick-slip like behavior, with large arrests in the fracture propagation. Stepwise

propagation related to the initial conditions has also been observed, but disap-

pears once the fracture length exceeds the size of the region influenced by the

initial conditions.

KEYWORDS

Cosserat continuum, isogeometric analysis, porous medium, shear fracture, stepwise fracture

propagation

1 INTRODUCTION

Seismic activity, either involving preexisting faults or new fractures, is related to changes in the interstitial fluid pressure

in the surrounding porous rock.1–4 Observations and laboratory experiments have shown that the presence of fluids can

induce instabilities5 and that increases in the fluid pressure can trigger earthquakes.6 Simulations have further shown

that changes in the fluid pressure can result in shear fracture propagation,7,8 but also in arresting already propagating

fractures.9
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Simulations on shear-based fracture propagation are typically combined with off-fault plasticity with a nonassociated

flow rule, either assuming drained or undrained behavior for the porous bulk material.10–13 These simulations show that

inclusion of the fluid has a large impact on the plastic strains.However, using a “drained” assumption neglects the pressure

changes due to compression and the inertial effects of the fluid required to distribute local pressure increases. While

the undrained assumption gives a better representation in the low-permeability limit, it neglects fluid diffusion. Indeed,

allowing fluid diffusion has been shown to alter the plastic strains significantly,14 and simulations without plasticity have

shown the influence of the fluid diffusion on the fracture propagation.15 Simulations without plasticity and acceleration-

driven flow have shown that the interstitial fluid pressure can potentially stop the fracture from propagating.16

The acceleration of the fluid is often neglected in the expression for the fluid velocity in Darcy’s law.17–19 This is a

reasonable assumption for low-frequency responses, but it is less clear whether this assumption holds close to a propa-

gating fracture considering the accelerations that occur around the crack tip. Simulations have shown that the presence

of these accelerations invalidates the assumption of a low-frequency response and that neglecting the fluid acceleration

terms results in different solutions.20 Additionally, the fluid acceleration term in Darcy’s law damps the pressure and

stress waves,21–23 and therefore, results in different values for the stresses near the fracture tip, which has been shown

using a simplified formulation.24 Also when simulating porous materials with a relatively high porosity and permeability,

neglecting this term causes differences in the solution.25

Recently, several authors have argued that the propagation of fractures in porous materials is not smooth, but

stepwise.26–29 This stepwise propagation is observed in experiments with pressurized fractures,30–33 resulting in pres-

sure oscillations at the inlet. Stepwise fracture propagation has also been argued to be one of the sources of intermittent

earthquakes.34 Results from simulations, however, rarely show a stepwise propagation. It was observed to depend on the

element size,35,36 but disappeared upon mesh refinement,37–39 and therefore, was concluded not to have a physical origin.

Simulations exhibiting stepwise fracture propagationwere, however, published inRefs. 40, 41, but the numerical scheme

employedmayhave promoted this phenomenon. Stepwise propagation of pressurized fractures that are independent of the

element size has also been shownusing ahybrid peridynamics/finite element approach,42 resulting in pressure oscillations

at the inlet similar to those observed experimentally.

Most of this research was aimed at pressurized fractures, while stepwise fracture propagation in shear has also been

observed experimentally. Stepwise propagation was observed by Ref. 43 when using coarse meshes, but this disappeared

upon mesh refinement, even though it was claimed to have a physical origin.29 Therefore, we believe that so far there are

no conclusive simulations that reveal the existence of a stepwise shear fracture propagation, and under which conditions

and for which physical parameter values, they occur.

Our aim is to investigate stepwise shear fracture propagation observed in fluid-saturated porous materials. For this

purpose, we will first derive the governing equations, neglecting as few terms as possible, while adhering to the standard

displacement–pressure formulation. Nonassociated plasticity is included in this scheme to accurately represent reality,

and a Cosserat continuum is used to resolve mesh sensitivity and convergence issues that can originate from the use of

nonassociated plasticity. The result is a monolithic scheme that includes nonassociated plasticity, shear-based fracture

propagation, and acceleration-driven fluid flows.

After deriving the governing equations and describing the method used to include all acceleration terms in Section 2,

we will show the effects of including these acceleration terms in Section 4, informing the decisions made for which terms

are included in the remaining analysis. Through a mesh refinement study and simulations with varying permeability, we

will analyze several types of stepwise fracture propagation in Sections 5. Finally, a second case is simulated in Section 6,

showing that the occurrence of stepwise propagation of shear fractures is case dependent.

2 GOVERNING EQUATIONS

The porous material is modeled as a Cosserat continuum, describing the kinematics of the (two-dimensional) solid by the

displacements 𝑢𝑥 and 𝑢𝑦 and a Cosserat microrotation 𝜔𝑧.
44,45 A Cosserat continuum introduces an internal length scale

𝓁𝑐. It removes the ill-posedness and the ensuing the mesh dependence caused by the nonassociated plasticity,
46–49 and

maintains the quadratic convergence of Newton–Raphson schemes used to solve nonlinear boundary value problems.50

2.1 Including fluid inertia terms

The porous medium is described using the total momentum balance of the solid and fluid, the mass balance for the fluid,

and the momentum balance for the fluid combined with Darcy’s law.18,19 These equations can be written in a form that
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incorporates a Cosserat continuum as:

𝑳𝑇(𝝈𝑠 − 𝛼𝑝𝒎) − 𝝆𝑠
(
1 − 𝑛𝑓

)
�̈�𝑠 − 𝝆𝑓𝑛𝑓𝑰

𝑇
𝑐 �̈�𝑓 − 𝝆𝑓𝑰

𝑇
𝑐 (𝒒 ⋅ 𝛁)𝒒 = 𝟎, (1)

1

𝑀
�̇� + 𝛼𝛁 ⋅ (𝑰𝑐�̇�𝑠) + 𝛁 ⋅ 𝒒 = 0, (2)

𝒒 = 𝑛𝑓
(
�̇�𝑓 − 𝑰𝑐�̇�𝑠

)
= −

𝑘

𝜇

(
𝛁𝑝 + 𝜌𝑓�̈�𝑓 +

𝜌𝑓

𝑛𝑓
(𝒒 ⋅ 𝛁)𝒒

)
, (3)

using the Biot modulus 𝑀, the Biot coefficient 𝛼, the intrinsic permeability 𝑘, the fluid viscosity 𝜇, the porosity 𝑛𝑓 ,

and the interstitial fluid pressure 𝑝 (with compression taken as positive). The displacement of the solid material is

described by 𝒖𝑇𝑠 = [𝑢𝑥 𝑢𝑦 𝜔𝑧]𝑠 and 𝒖
𝑇
𝑓
= [𝑢𝑥 𝑢𝑦]𝑓 describes the displacements of the fluid. Next to the standard Cauchy

stress components, the solid stress vector 𝝈𝑠 includes the couple stress introduced by the Cosserat continuum, 𝝈
𝑇
𝑠 =

[𝜎𝑥𝑥, 𝜎𝑦𝑦 , 𝜎𝑧𝑧, 𝜎𝑥𝑦 , 𝜎𝑦𝑥, 𝑚𝑥𝑧∕𝓁𝑐, 𝑚𝑦𝑧∕𝓁𝑐]. The Darcy fluid flux describes the velocity of the fluid relative to the solid,

𝒒𝑇 = [𝑞𝑥 𝑞𝑦], using thematrix 𝑰𝑐 to only select the displacements, and to eliminate the Cosseratmicro-rotation. Thematri-

ces used in Equations (1)–(3) are for a two-dimensional domain given by:

𝑳𝑇 =

⎡
⎢⎢⎢⎢⎣

𝜕

𝜕𝑥
0 0 0

𝜕

𝜕𝑦
0 0

0
𝜕

𝜕𝑦
0

𝜕

𝜕𝑥
0 0 0

0 0 0 −1 1 𝓁𝑐
𝜕

𝜕𝑥
𝓁𝑐

𝜕

𝜕𝑦

⎤
⎥⎥⎥⎥⎦

𝒎 = [1 1 1 0 0 0 0]𝑇 𝝆𝑠 =
⎡
⎢⎢⎣

𝜌𝑠 0 0

0 𝜌𝑠 0

0 0 Θ

⎤
⎥⎥⎦

𝝆𝑓 =
⎡
⎢⎢⎣

𝜌𝑓 0 0

0 𝜌𝑓 0

0 0 0

⎤
⎥⎥⎦

𝑰𝑐 =

[
1 0 0

0 1 0

]

with 𝜌𝑠 and 𝜌𝑓 the density of the solid and the fluid, respectively, and Θ = 2𝜌𝑠𝓁
2
𝑐∕(1 + 𝜈) the rotational inertia.48

The terms related to the convective momentum transport in Equations (1) and (3), (𝒒 ⋅ 𝛁)𝒒, require separate degrees of

freedom to be used for the fluid flux in order to obtain the gradients of the fluid flux. However, the effect of these terms

is usually very small,18 and these terms will therefore be neglected. This allows the interior of the porous material to be

described using only the solid displacement 𝒖 and the interstitial fluid pressure 𝑝 (and history variables).

To eliminate the fluid acceleration term in Equation (1), the definition of the Darcy fluid flux is substituted for the fluid

acceleration term, resulting in:

𝑳𝑇(𝝈𝑠 − 𝛼𝑝𝒎) − 𝝆�̈�𝑠 − 𝝆𝑓𝑰
𝑇
𝑐 �̇� = 𝟎 (4)

with volume averaged density 𝝆 = (1 − 𝑛𝑓)𝝆𝑠 + 𝑛𝑓𝝆𝑓 . The effect of including separate inertia terms, compared to themore

commonly taken approach of assuming the fluid inertia term �̇� to be negligible,18,42,51–53 will be investigated in Section 4.

The acceleration of the fluid at time 𝑡 + Δ𝑡 is determined using a 𝜃-scheme:

�̇�𝑡+Δ𝑡 =
1

𝜃Δ𝑡

(
𝒒𝑡+Δ𝑡 − 𝒒𝑡

)
+

(
1 −

1

𝜃

)
�̇�𝑡. (5)

Using this temporal discretization, themomentum balance of the fluid combined with Darcy’s law, Equation (3), is rewrit-

ten in a partial time discretized form as:

𝒒𝑡+Δ𝑡 = −
𝑘

𝜇

(
𝛁𝑝𝑡+Δ𝑡 + 𝜌𝑓

(
𝑰𝑐�̈�

𝑡+Δ𝑡 +
1

𝑛𝑓
�̇�𝑡+Δ𝑡

))
, (6)

𝒒𝑡+Δ𝑡 = −
𝑘

𝜇

(
𝛁𝑝𝑡+Δ𝑡 + 𝜌𝑓

(
𝑰𝑐�̈�

𝑡+Δ𝑡 +
1

𝑛𝑓

(
1

𝜃Δ𝑡

(
𝒒𝑡+Δ𝑡 − 𝒒𝑡

)
+

(
1 −

1

𝜃

)
�̇�𝑡
)))

. (7)

Using the values at the old time step, 𝒒𝑡 and �̇�𝑡, as history variables results in an explicit expression for the fluid flux, only

dependent on the displacement and pressure:

𝒒𝑡+Δ𝑡 =

(
1 +

𝜌𝑓𝑘

𝑛𝑓𝜇𝜃Δ𝑡

)−1(
−
𝑘

𝜇
𝛁𝑝𝑡+Δ𝑡 −

𝑘𝜌𝑓

𝜇
𝑰𝑐�̈�

𝑡+Δ𝑡 −
𝑘𝜌𝑓

𝜇𝑛𝑓

(
(1 −

1

𝜃
)�̇�𝑡 −

1

𝜃Δ𝑡
𝒒𝑡
))

. (8)
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This expression is substituted in the mass conservation for the fluid, Equation (2), resulting in the partial time-discretized

mass balance at time 𝑡 + Δ𝑡:

1

𝑀
�̇�𝑡+Δ𝑡 + 𝛼𝛁 ⋅

(
𝑰𝑐�̇�

𝑡+Δ𝑡
)
+

(
1 +

𝜌𝑓𝑘

𝑛𝑓𝜇𝜃Δ𝑡

)−1

𝛁 ⋅

(
−
𝑘

𝜇
𝛁𝑝𝑡+Δ𝑡 −

𝑘𝜌𝑓

𝜇
𝑰𝑐�̈�

𝑡+Δ𝑡 −
𝑘𝜌𝑓

𝜇𝑛𝑓

(
(1 −

1

𝜃
)�̇�𝑡 −

1

𝜃Δ𝑡
𝒒𝑡
))

= 0. (9)

Similarly for Equation (4), discretizing the time derivative of the fluid flux using Equation (5), and substituting the

expression of the fluid flux at time 𝑡 + Δ𝑡, Equation (8), results in:

𝑳𝑇
(
𝝈𝑡+Δ𝑡𝑠 − 𝛼𝑝𝑡+Δ𝑡𝒎

)
−
(
𝝆 − 𝐴𝑛𝑓𝝆𝑓

)
�̈�𝑡+Δ𝑡𝑠 + 𝐴𝑛𝑓𝑰

𝑇
𝑐 𝛁𝑝

𝑡+Δ𝑡 + 𝝆𝑓𝑰
𝑇
𝑐 (1 − 𝐴)

(
1

𝜃Δ𝑡
𝒒𝑡 −

(
1 −

1

𝜃

)
�̇�𝑡
)
= 𝟎 (10)

with the constant A defined as:

𝐴 =
𝜌𝑓

𝑘

𝜇

𝑛𝑓𝜃Δ𝑡 + 𝜌𝑓
𝑘

𝜇

. (11)

Simplifications are often made by assuming the porous medium to be either drained or undrained. In the drained limit,

the pressure throughout the domain is equal to a reference pressure, and taken to be constant. This assumes that the

interstitial fluid instantly attains a uniformpressure, and that the effects of the inertia related to the fluid fluxes required for

this are negligible. In contrast, the undrained limit assumes no fluid flow, representing an impermeable porous material.

Then, the only source of pressure changes is the compression of the solid and the interstitial fluid.

When the intrinsic permeability is low, the constant𝐴 and the fluid flux 𝒒𝑡 both approach zero, and as a result, Equation

(10) contains only a single inertia term. This is consistent with undrained formulations, in which the volume averaged

density is used. All terms related to fluid fluxes also cancel from the mass balance, Equation (9), and 𝑘 = 0 corresponding

to the undrained formulation.

In contrast, when approaching the drained limit by using a large permeability, 𝐴 becomes one. For this limit, the solid

inertia term only depends on the density of the solid, with the fluid using a separate inertia term solely based on the

pressure gradient. The effect of using a large permeability in the mass balance results in the acceleration-driven fluid

flow becoming more significant. This can be observed from Equation (8). When a high permeability is used such that

(𝜌𝑓𝑘)∕(𝑛𝑓𝜇𝜃Δ𝑡) >> 1, the expression for the fluid flux becomes:

𝒒𝑡+Δ𝑡 = −𝑛𝑓𝜃Δ𝑡

(
1

𝜌𝑓
𝛁𝑝𝑡+Δ𝑡 + 𝑰𝑐�̈�

𝑡+Δ𝑡 +
1

𝑛𝑓

((
1 −

1

𝜃

)
�̇�𝑡 −

1

𝜃Δ𝑡
𝒒𝑡
))

.

This shows that the fluid flux is limited for higher permeabilities, and becomes independent of the intrinsic permeabil-

ity and viscosity in this limit. This is in contrast with the drained assumption, where it is assumed that in the high-

permeability limit, the fluid flux becomes large enough to limit any interstitial pressure changes. Therefore, differences

between the drained assumption and the high-permeability cases are to be expected, with the caseswith actively simulated

fluid flow not approaching the drained limit. Instead, these high-permeability cases will approach the limit indicated by

the above equation.

2.2 Plasticity model

The stresses in the solid material are assumed to be linearly related to the elastic strain:

𝝈𝑡+Δ𝑡𝑠 = 𝑫𝑒

(
𝜺𝑡+Δ𝑡 − 𝜺𝑡+Δ𝑡𝑝

)
(12)

with𝑫𝑒 the linear-elastic stiffness matrix for a Cosserat continuum
49 and the total strain 𝜺𝑡+Δ𝑡 = 𝑳𝒖𝑡+Δ𝑡. A nonassociated

Drucker–Prager plasticity model is used to model the plastic deformations, with the yield function and plastic potential
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defined as:

𝑓 =
√
3𝐽2 + 𝛼𝑠𝑝𝑠 − 𝑘𝑠 𝑔 =

√
3𝐽2 + 𝛽𝑠𝑝𝑠 (13)

with 𝑝𝑠 the solid pressure (tension positive), 𝐽2 the second invariant of the deviatoric stresses in a Cosserat continuum
45,54

and 𝛼𝑠, 𝛽𝑠, and 𝑘𝑠 related to the angle of internal friction 𝜙, dilatancy angle 𝜓, and cohesion 𝑐 through:

𝛼𝑠 =
6sin𝜙

3 − sin𝜙
𝛽𝑠 =

6sin𝜓

3 − sin𝜓
𝑘𝑠 = 𝑐

6cos𝜙

3 − sin𝜙
. (14)

More implementation details related to the integration of the plastic strain and the used tangential stiffness matrix are

given in Ref. 50.

2.3 Discontinuity models

The discontinuity is modeled using interface elements, which are only present for the fracture. Ahead of this fracture,

the material is considered fully intact and is governed by the equations for the poroelastic medium. It is assumed the

fracture propagates in mode II, and is solely governed by the shear stress. Once the stresses in the continuum ahead of the

fracture exceed the fracture criterion |𝜎𝑦𝑥| > −𝑓𝑝𝜎𝑦𝑦 ,
55 the discontinuity is propagated and additional interface elements

are inserted. This propagation criterion uses the peak coefficient 𝑓𝑝 to model a cohesionless material, with the required

shear stress for fracture propagation depending on the normal stress.

At the discontinuity, a discontinuous pressure model39,56,57 has been used, which allows for a discontinuous pressure

distribution across the fracture, with an independent pressure degree of freedom inside the fracture. For closed fractures,

without fluid flow inside the fracture in the tangential direction, the mass balance inside the fracture is given by:

0 = 𝒏−
𝑑
⋅ 𝒒− + 𝒏+

𝑑
⋅ 𝒒+ = 𝑘𝑖

(
𝑝+ + 𝑝− − 2𝑝𝑑

)
, (15)

and the fluid flux imposed on the porous material is given by:

𝒏+
𝑑
⋅ 𝒒+ = 𝑘𝑖

(
𝑝+ − 𝑝𝑑

)
, (16)

𝒏−
𝑑
⋅ 𝒒− = 𝑘𝑖(𝑝

− − 𝑝𝑑), (17)

using the pressure inside the discontinuity𝑝𝑑 and the interstitial fluid pressures at the top and bottomwalls of the fracture,

𝑝+ and 𝑝−, respectively. The normal vectors at the top and bottom of the fracture, 𝒏+
𝑑
and 𝒏−

𝑑
, are taken as positive when

pointing outward. The interface permeability 𝑘𝑖 governs the amount of fluid that can flow across the fracture. It is an

indication of the resistance to the fluid flow originating from plastic deformations and damage close to the discontinuity

caused by the fracturing process. This interface permeability therefore allows to include the effects of damage andplasticity

on the fluid flow, even though the region of these effects is smaller than the element size. To keep the formulation as simple

as possible, the interface permeability will be assumed as constant.

In a local coordinate system, the tractions at the discontinuity are given by:

𝝉±
𝑑
=
⎡⎢⎢⎣

𝜏𝑑𝑠
𝜏𝑑𝑛 − 𝑝𝑑

𝜏𝜔

⎤⎥⎥⎦
. (18)

To prevent negative fracture opening heights, we set the following relations:

𝜏𝑑𝑛 = 𝑑𝑛�𝑢𝑛� 𝜏𝜔∕𝓁
2 = 𝑑𝜔�𝜔𝑧� (19)

with high values for the dummy stiffnesses 𝑑𝑛 and 𝑑𝜔, and �𝑢𝑛� and �𝜔𝑧� the jumps in the normal displacement and

the microrotation, respectively. The tangential component of the interface traction is determined through an exponential
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traction separation law:

𝜏𝑡 = 𝑓𝑟𝜏𝑑𝑛 + (𝑓𝑝 − 𝑓𝑟) 𝜏𝑑𝑛 exp (−2�dx�∕𝐷𝑐) (20)

with 𝑓𝑝 and 𝑓𝑟 the peak and residual coefficients of friction. 𝐷𝑐 is the weakening distance, given by 𝐷𝑐 = 2𝑐∕(𝑓𝑝𝜏𝑛 −
𝑓𝑟𝜏𝑛) where 𝑐 is the fracture energy. The used exponential relation was preferred over the more commonly used linear
degradation model10,55,58 in order to retain a smooth function, which improves the convergence of the nonlinear solver.

The maximum jump in the tangential displacement �dx� is treated as a history variable, and therefore, it is equal to the

current tangential displacement jump �𝑢𝑡�, or constant when the current displacement is lower than the previously obtain

tangential displacement.

2.4 Discretization

The time discretization of Equations (9) and (10) has been carried out using a Newmark scheme for the displacements

and a 𝜃-scheme for the interstitial fluid pressure:

�̇�𝑡+Δ𝑡 =
𝛾

𝛽Δ𝑡

(
𝒖𝑡+Δ𝑡 − 𝒖𝑡

)
−

(
𝛾

𝛽
− 1

)
�̇�𝑡 −

(
Δ𝑡𝛾

2𝛽
− Δ𝑡

)
�̈�𝑡, (21)

�̈�𝑡+Δ𝑡 =
1

𝛽Δ𝑡2
(
𝒖𝑡+Δ𝑡 − 𝒖𝑡

)
−

1

𝛽Δ𝑡
�̇�𝑡 −

(
1

2𝛽
− 1

)
�̈�𝑡, (22)

�̇�𝑡+Δ𝑡 =
1

𝜃Δ𝑡

(
𝑝𝑡+Δ𝑡 − 𝑝𝑡

)
+

(
1 −

1

𝜃

)
�̇�𝑡. (23)

This introduces history variables for the solid velocity and acceleration, and the fluid pressure change at time 𝑡. These

history variables, and the old fluid flux 𝒒𝑡 and fluid flux change �̇�𝑡, are updated at the end of each time step. In contrast,

the history variable for the plastic strain, 𝜺𝑡𝑝, and the interface displacement, �dx�, are updated at the end of each time step

and after each fracture propagation step. This ensures these path-dependent variables accurately capture the loading and

unloading that can occur during fracture propagation.

The fracture propagation is considered to be part of the time step. Therefore, once a converged solution is achieved,

the stresses ahead of the fracture tip are checked and if all these stresses exceed 𝑓𝑡 = −𝑓𝑝𝜎𝑦𝑦 , the fracture is propagated

a single element (checked at both ends of the fracture). Afterwards, more iterations are carried out to again establish an

equilibrium solution for the current time step and the new fracture length. Next, the propagation criterion is checked

again. This is repeated until no further propagation occurs and a converged solution is reached, resulting in an implicit

scheme for the governing equations and the fracture length.

T-splines have been used for the spatial discretization.59,60 This allows a higher-order interelement continuity, result-

ing in continuous stresses and fluid fluxes between the elements.61,62 Furthermore, by using T-splines, the displacement

gradient, and thus the strains and stresses, can be directly evaluated at the boundaries of elements. This facilitates the

fracture propagation criterion as it is not necessary to extrapolate stresses from the interior of the elements. The T-splines

are used in a similar manner as traditional Lagrangian interpolants by using Bézier extraction, decomposing the spline-

based functions in a linear combination of Bernstein polynomials.63 This allows the displacement, the interstitial fluid

pressure, and the pressure in the discontinuity to be expressed as a sum over all elements:

𝒖 =

𝑛𝑒𝑙∑
𝑒𝑙=1

𝑵𝑒𝑙
𝑠 𝒖

𝑒𝑙, (24)

𝑝 =

𝑛𝑒𝑙∑
𝑒𝑙=1

𝑵𝑒𝑙
𝑓
𝒑𝑒𝑙, (25)
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𝑝𝑑 =

𝑛𝑖𝑒𝑙∑
𝑖𝑒𝑙=1

𝑵 𝑖𝑒𝑙
𝑑𝑓
𝑝𝑑

𝑖𝑒𝑙, (26)

with:

𝑵𝑠 =
⎡
⎢⎢⎣

𝑵𝑥 𝟎 𝟎

𝟎 𝑵𝑦 𝟎

𝟎 𝟎 𝑵𝜔

⎤
⎥⎥⎦
. (27)

To fulfill the inf-sup condition,64 and thus to prevent spurious oscillations, the interpolants for the solid displacement

need to be an order higher than the interpolants for the fluid pressure. Therefore, quartic T-splines were used for the

solid displacement, 𝑵𝑥 and 𝑵𝑦 , whereas cubic T-splines were used for the interstitial and discontinuity fluid pressures,

𝑵𝑓 and𝑵𝑑𝑓 (only defined at the discontinuity). The inf-sup condition does not impose any requirements on the order of

the interpolants for the Cosserat rotation𝑵𝜔, and it was chosen to use cubic T-splines to reduce the resulting number of

degrees of freedom. For the elements and geometry of the quartic and cubic meshes to match, the interelement continuity

of the meshes needs to be the same. This is achieved by repeating the mesh lines of the quartic T-spline mesh, resulting

in both meshes having a 𝐶2 interelement continuity, thus allowing for continuous and smooth stresses and fluid fluxes.

The discontinuity is represented using spline-based interface elements.65–68 By using T-splines, these interface elements

can be inserted only for the fractured elements, in contrast to B-splines that require the interface elements to be inserted

along a line passing through the complete domain. This removes the need for a formulation for nonfractured interface

elements.69 The displacements and Cosserat microrotation are discontinuous across the interface elements,70 with the

tractions at the interface determined by Equation (18). The interstitial fluid pressure is also discontinuous across the

discontinuity, with an additional degree of freedom added at the discontinuity to represent the pressure inside the dis-

continuity. The fluid flux between the porous material and the interior of the discontinuity is governed by Equations

(15)–(17).

Using the discretization from Equations (21)–(26), the momentum balance from Equation (10) is discretized as:

𝒇𝑒𝑥𝑡 − 𝒇𝑖𝑛𝑡 − 𝒇𝑑 = 𝟎 (28)

with the external force vector defined in a standard manner as:

𝒇𝑒𝑥𝑡 = ∫
Γ𝑡

𝑵𝑇
𝑠 𝒕 + 𝑵𝑇

𝑠 𝑹
𝑇𝑺𝑹𝑵𝑠

(
𝛾

𝛽Δ𝑡

(
𝒖𝑡+Δ𝑡 − 𝒖𝑡

)
−

(
𝛾

𝛽
− 1

)
�̇�𝑡 −

(
Δ𝑡𝛾

2𝛽
− Δ𝑡

)
�̈�𝑡
)
dΓ, (29)

where 𝒕 is the traction imposed on the boundary of the domain, and 𝑺 is the damping matrix used for the absorbing

boundary conditions:50,71

𝑺 = 𝝆𝑠

⎡
⎢⎢⎣

𝑐𝑝 0 0

0 𝑐𝑠 0

0 0 0

⎤
⎥⎥⎦
,

using the pressure and shear stress wave speeds 𝑐𝑝 and 𝑐𝑠. The internal force vector is given by:

𝒇𝑖𝑛𝑡 = ∫
Ω

𝑩𝑇𝝈𝑡+Δ𝑡𝑠 − 𝛼𝑩𝑇𝒎𝑵𝑓𝒑
𝑡+Δ𝑡 dΩ + ∫

Ω

𝑵𝑇
𝑠

(
𝝆 − 𝐴𝑛𝑓𝝆𝑓

)
𝑵𝑠

(
1

𝛽Δ𝑡2
(
𝒖𝑡+Δ𝑡 − 𝒖𝑡

)
−

1

𝛽Δ𝑡
�̇�𝑡 −

(
1

2𝛽
− 1

)
�̈�𝑡
)
dΩ

− ∫
Ω

𝐴𝑛𝑓𝑵
𝑇
𝑠 𝑰

𝑇
𝑐 𝛁𝑵𝑓𝒑

𝑡+Δ𝑡 + (1 − 𝐴)𝑵𝑇
𝑠 𝝆𝒇𝑰

𝑇
𝑐

(
1

𝜃Δ𝑡
𝒒𝑡 −

(
1 −

1

𝜃

)
�̇�𝑡
)
dΩ

(30)
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using 𝑩 = 𝑳𝑵𝑠. Finally, the forces related to the discontinuity are obtained from:

𝒇𝑑 = ∫
Γ𝑑

𝑵𝑇
𝑠 𝑹

𝑇(𝝉𝑑)𝑡+Δ𝑡 dΓ𝑑 (31)

with 𝑹 the rotation matrix at the discontinuity.

Similarly, mass conservation, Equation (9) is discretized as:

𝒒𝑒𝑥𝑡 − 𝒒𝑖𝑛𝑡 − 𝒒𝑑 = 𝟎 (32)

with the external fluxes defined as:

𝒒𝑒𝑥𝑡 = Δ𝑡 ∫
Γ𝑞

𝑵𝑇
𝑓
𝑞 dΓ (33)

and the internal flux vector as:

𝒒𝑖𝑛𝑡 = −∫
Ω

1

𝑀
𝑵𝑇
𝑓
𝑵𝑓

(
1

𝜃

(
𝒑𝑡+Δ𝑡 − 𝒑𝑡

)
+ Δ𝑡

(
1 −

1

𝜃

)
�̇�𝑡

)
dΩ

−∫
Ω

𝛼𝑵𝑇
𝑓
𝑰𝑐𝑩

(
𝛾

𝛽

(
𝒖𝑡+Δ𝑡 − 𝒖𝑡

)
− Δ𝑡

(
𝛾

𝛽
− 1

)
�̇�𝑡 − Δ𝑡2

(
𝛾

2𝛽
− 1

)
�̈�𝑡
)
dΩ

−
𝑘Δ𝑡

𝜇

(
1 +

𝜌𝑓𝑘

𝑛𝑓𝜇𝜃Δ𝑡

)−1

∫
Ω

(
𝛁𝑵𝑓

)𝑇
𝛁𝑵𝑓𝒑

𝑡+Δ𝑡 +
𝜌𝑓

𝑛𝑓

(
𝛁𝑵𝑓

)𝑇((
1 −

1

𝜃

)
�̇�𝑡 −

1

𝜃Δ𝑡
𝒒𝑡
)

+ 𝜌𝑓
(
𝛁𝑵𝑓

)𝑇
𝑰𝑐𝑵𝑠

(
1

𝛽Δ𝑡2
(
𝒖𝑡+Δ𝑡 − 𝒖𝑡

)
−

1

𝛽Δ𝑡
�̇�𝑡 −

(
1

2𝛽
− 1

)
�̈�𝑡
)
dΩ.

(34)

The fluxes due to the fluid flow normal to the fracture are given by:

𝒒𝑑 = 𝑘𝑖Δ𝑡 ∫
Γ𝑑

𝑵𝑇
𝑓

(
𝑵𝑑𝑓𝒑

𝑡+Δ𝑡
𝑑

−𝑵𝑓𝒑
𝑡+Δ𝑡

)
dΓ, (35)

and the mass balance for the interior of the fracture, Equation (15), is discretized as:

𝑘𝑖Δ𝑡 ∫
Γ𝑑

𝑵𝑇
𝑑𝑓
𝑵𝑓

(
𝒑+ 𝑡+Δ𝑡

+ 𝒑− 𝑡+Δ𝑡
)
− 2𝑵𝑇

𝑑𝑓
𝑵𝑑𝑓𝒑

𝑡+Δ𝑡
𝑑

dΓ𝑑 = 𝟎. (36)

Equations (28), (32), and (36) are solved in amonolithicmanner using aNewton–Raphson scheme. The systemmatrices

used for this scheme are given in Appendix A. A quadratic convergence rate was obtained using these system matrices.

3 DESCRIPTION OF THE CASE STUDIED

The effect of including pressure- and acceleration-driven fluid flows is now demonstrated by simulating a typical case that

features a propagating shear fracture.10,11 A domain of 500 m × 250 m is considered with an initial horizontal fracture in

the center of the domain with a length of 75 m, see Figure 1. Only horizontal fracture propagation is allowed.

At the boundaries of the domain, absorbing boundary conditions are imposed to reduce the reflection of pressure and

shear waves. External tractions are applied at the boundaries, 𝑡𝑥𝑥 = 8.55 MPa, 𝑡𝑦𝑦 = 10 MPa, 𝑡𝑥𝑦 = 𝑡𝑦𝑥 = 1.8 MPa. The

porous material is characterized by a Young’s modulus 𝐸 = 10 GPa, a Poisson ratio 𝜈 = 0.25, a Cosserat shear mod-

ulus 𝐺𝑐 = 4 GPa, a Cosserat length scale 𝓁𝑐 = 1 cm, and density 𝜌𝑠 = 2500 kg∕m3. A water-like fluid is used, using

𝜇 = 1 mPa ⋅ s and 𝜌𝑓 = 1000 kg∕m3. The bulk modulus of the solid is 𝐾𝑠 = 10 GPa, the fluid bulk modulus 𝐾𝑓 = 2 GPa,

the Biot coefficient 𝛼 = 1.0, a porosity 𝑛𝑓 = 0.3, and the interface permeability 𝑘𝑖 = 10−10 m∕Pas. The peak friction coef-

ficient was set 𝑓𝑝 = 0.45, the residual coefficient of friction 𝑓𝑟 = 0.045, and fracture energy 𝑐 = 17.4 kJ∕m2. A cohesion-
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F IGURE 1 Geometry and applied traction of the simulated case

less, nondilatant Drucker–Prager plasticity model (𝑐 = 0, 𝜓 = 0◦) is adopted, with an angle of internal friction 𝜙 = 31◦.

The intrinsic permeability of the porous material was varied between 𝑘 = 10−10 m2 and 𝑘 = 10−7 m2, and additional sim-

ulations were run using the undrained (𝑘 = 0 m2) and the drained (𝑝 = 0 Pa and 𝒒 = 0 m∕s) assumptions. These values

for the permeability cover the range from negligible effects of acceleration-driven flow to the fluid flux being dominated

by inertial effects.

The spatial discretization uses cubic T-splines for the interstitial pressure, the discontinuity pressure, and the Cosserat

microrotation, while quartic T-splines were used for the displacements. Three different meshes were used. The first mesh

consists of a layer of 320 × 10 Bézier-extracted elements near the interface, surrounded by layers of 160 × 5 and 80 × 15

elements (hereafter referred to as 320 × 50). The second mesh adds an extra refinement layer of 640 × 10 elements at the

interface, for a total of 60 elements in the vertical direction (referred to as 640 × 60). Finally, the third mesh halves all the

elements, resulting in a mesh of 1280 × 120 elements.

The conditions at 𝑡 = 𝑡0 are a zero interstitial fluid pressure and a zero pressure at the discontinuity, with the solid being

in equilibrium and without any plastic deformations at this time. This is imposed by simulating the first 𝑡0 = 1 s of the

simulation with time steps of Δ𝑡 = 0.01 s with no plastic strains or fracture propagation being allowed, and a constant

and zero pressure imposed in the domain. During this initial period, the discontinuity is not allowed to propagate and

no plastic strains are allowed to occur (both the propagation criteria and the yield criteria are ignored). Furthermore, the

interstitial pressure is constrained to 𝑝 = 0 MPa in the complete domain. After this initial period, starting from 𝑡 = 𝑡0, the

simulation is carried out using a time step Δ𝑡 = 0.04 mswithout the constraints that have been applied initially. The time

step is such that evenwith the finest mesh, the fracture will only propagate over two elements (due to the symmetry) every

5–10 time steps. The temporal discretization for the solid displacement used 𝛽 = 0.4 and 𝛾 = 0.75 as parameters, and for

the temporal integration of the fluid 𝜃 = 1.0.

4 EFFECT OF THE FLUID INERTIA TERMS

The effect of terms that account for acceleration-driven fluid flow in the mass balance and separate inertia terms in the

momentum balance is analyzed by adding these terms one-by-one. The first simulation uses only the pressure gradient-

driven flow, the
𝑘

𝜇
𝛁𝑝 term in Equation (6), and uses a single inertia term, thus neglecting the acceleration of the fluid

relative to the porousmaterial, �̇� = 0 in Equation (4). Next, the solid acceleration-driven flow is added,
𝑘𝜌𝑓

𝜇
𝑰𝑐�̈� in Equation

(6), and after that the acceleration of the fluid relative to the solid is taken into account for the mass balance,
𝑘𝜌𝑓

𝜇𝑛𝑓
�̇� in

Equation (6). Finally, two separate inertia terms are used to include the relative acceleration in the momentum balance

by including 𝝆𝑓𝑰
𝑇
𝑐 �̇� from Equation (4). All simulations have been carried out using the 640 × 60 mesh, and an intrinsic

permeability 𝑘 = 10−8 m2.

The interstitial fluid pressure that results from these simulations is shown in Figure 2. Without acceleration-driven

flow, only slight changes in pressure occur due to the compression of the porous material, as shown in Figure 2(A). These

high- and low-pressure regions are diffused over a large area because of the high permeability.
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F IGURE 2 Interstitial fluid pressure at time

𝑡 − 𝑡0 = 52 ms when different acceleration terms are

included in the formulation

Including solid acceleration-driven fluid flow results in the fluid pressure reacting to the acceleration waves in the

solid, see Figure 2(B). For the sides of the fracture that are under compression (top right and bottom left), this causes low-

pressure regions at the location of the stress waves that originate from the fracture tips, encapsulated by two high-pressure

regions that result from the accelerations forcing the fluid away from the stress waves. However, pressure oscillations can

be seen throughout the domain due to this coupling between the fluid fluxes and solid acceleration.

Adding the fluid acceleration term in Darcy’s law removes these interstitial pressure oscillations, as shown in

Figure 2(C). This is a result of the fluid acceleration term adding additional damping to the formulation, thereby

decreasing the magnitude of the stress and pressure waves away from the discontinuity. Adding the fluid acceleration

term also increases the pressure at the fracture tips, resulting in higher pressures on the compression sides, and lower
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F IGURE 3 Shear stress 𝜎𝑦𝑥 at time 𝑡 − 𝑡0 = 52 ms

when different acceleration terms are included in the

formulation

pressures on the extension sides compared to the cases without this term. Finally, using separate inertia terms in the

mass balance does not result in any significant changes in the interstitial fluid pressure (Figure 2D).

The shear stress 𝜎𝑦𝑥 is shown in Figure 3. Similar to the fluid pressure, slight stress oscillations occur when only the

solid acceleration term is included, and disappear if the fluid acceleration term is added. Using separate inertia terms

results in slight changes in shear stress, mainly near the center of the domain. However, the effect of the acceleration and

separate inertia terms on the shear stress (and other stress components, not shown here) is small compared to the effects

on the fluid pressure.

From these results, it can be concluded that the acceleration-driven flow has a significant effect on the fluid pressure,

and needs to be included in the formulation. The inclusion of separate inertia terms, however, results in lengthy terms
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F IGURE 4 Effect of mesh refinement

on the fracture propagation

in the internal force vector, while having near to no effect on the resulting pressures and stresses. In the remainder of

this paper, only the acceleration-driven fluid flow terms will therefore be included, while neglecting the effects of using

separate inertia terms.

5 STEPWISE FRACTURE PROPAGATION

5.1 Mesh refinement

The three different meshes were used to simulate the undrained, the drained, 𝑘 = 10−8 m2, and 𝑘 = 10−10 m2 cases to

investigate the effect of the interface element size on the fracture propagation. For the drained (not shown), the undrained

(Figure 4B), and the 𝑘 = 10−10 m2 cases, the interface element size does not significantly alter the fracture propagation.

With the coarse 320 × 60 mesh, small steps in the fracture length are seen, with the size of these steps corresponding to
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F IGURE 5 Effect of mesh refinement on

the fracture propagation using 𝑘 = 10−8 m2

F IGURE 6 Fracture propagation length

for different values of the intrinsic

permeability

two interface element lengths. These steps originate from the element-wise fracture propagation resulting in a minimum

propagation length corresponding to the element size. If the shear stress is not sufficient to fracture a complete element,

as evaluated in all the integration points of the interface element, no fracture propagation occurs. Once the stress rises

and exceeds the fracture toughness, the complete element fractures at once, resulting in a jump in the fracture length.

Due to the symmetry of the simulated cases, this results in either two or no elements fracturing, and thus creating jumps

in the fracture length equal to two element lengths. These jumps decrease upon mesh refinement, but do still occur even

for the finest mesh as shown in Figure 5. Therefore, this stepwise fracture propagation is solely caused by the spatial and

temporal discretization of the problem, and does not originate from a physical phenomenon. It is important to note that

if the time step size is increased such that the fracture propagates at least once during each time step, these steps in the

fracture propagation will disappear since the propagation is assumed to occur as part of the time step. This is in contrast

to fracture propagation schemes that assumes the fracture to propagate in between time steps,40,41 where these steps will

remain independent of the used temporal discretization.

The results for the 𝑘 = 10−8 m2 case are shown in Figure 4(A). In contrast to the other cases, there is a clear difference

between the three meshes. Next to the steps originating from the element size, the coarsest mesh also shows a temporary

arrest in the fracture propagation. Upon mesh refinement, these arrests become more common. The finest mesh also

shows that the duration of the arrests increases. The difference between this manner of stepwise fracture propagation and

the element-sized steps observed for all cases is clearly seen in Figure 5. The small steps occur for all meshes, but the

pronounced stick-slip like behavior results in large plateaus when plotting the fracture length as a function of time. While

this behavior occurs for all meshes, only the finemeshes resolve the fracture propagation in sufficient detail to distinguish

the smaller arrests close to the start of the simulation from the element-wise fracture propagation. Furthermore, while

the propagation velocity does not differ between the coarsest and finest mesh, the additional stick-slip behavior results in

a significantly slower fracture propagation.
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F IGURE 7 Plastic strain ((𝜀2𝑥𝑥 + 𝜀2𝑦𝑦)
1∕2) at

time 𝑡 − 𝑡0 = 120 ms around the right half of

the discontinuity

5.2 Effect of the permeability

Results for the complete range of permeabilities that have been analyzed are presented in Figure 6 for the 1280 × 120mesh.

As also shown in the previous section, stick-slip like behavior is observed for the simulations with a high permeability,

whereas this does not occur for lower permeabilities, and neither for the drained and undrained cases. Due to the lack of
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F IGURE 8 Fracture length and location of Figures 9–10 using 𝑘 = 10−8 m2

stick-slip behavior, the 𝑘 = 10−10 m2case approaches the fracture propagation length of the undrained case, while for high

values of the permeability the fracture propagates slower than for the drained case. Relative little difference is seen between

𝑘 = 10−8 m2 and 𝑘 = 10−7 m2, suggesting that for these values, the behavior of a highly permeable porous material is

approached. This indicates that while the undrained limit is a good approximation for cases with a low permeability, the

drained limit neglects important physical phenomena and, accordingly, does not correctly approximate the behavior for

high values of the permeability.

The plastic strain near the right fracture at time 𝑡 − 𝑡0 = 120 ms is shown in Figure 7. The undrained and drained cases

show a similar behavior as was observed in Ref. 11, with the plasticity being limited to the extensional side of the fracture,

and plastic deformations occurring over a larger area for the drained case compared to the undrained case. While the 𝑘 =

10−10 m2 case approximates the results from the undrained case, the plastic strains obtained for the higher permeability

cases differ significantly from the drained case. Large plastic deformation peaks are observed at the locations of the pauses,

while more plastic deformation is seen between these pauses. In contrast to the other cases, the higher permeability cases

also display a slight amount of plastic deformation on the compression sides of the discontinuity. This further confirms

that the high permeability cases do not approach the behavior of the drained limit case.

5.3 Explanation for stick-slip like fracture propagation

To explain the cause of the stick-slip behavior, we consider the simulation for 𝑘 = 10−8 m2 at four different times, see Fig-

ure 8. The interstitial fluid pressure is given in Figure 9 and the shear stress, causing propagation of the fracture, is shown

in Figure 10. When the fracture propagation restarts, there is a large low-pressure region on the compression side next to

a small high-pressure region, while the reverse takes place at the extension side (Figure 10A). This small high-pressure

region increases in size and attains a maximum during crack propagation, while the low-pressure region detaches and

diffuses away from the discontinuity (Figure 10B). Simultaneously, a new low-pressure region emerges behind the grow-

ing high-pressure region. Due to the inclusion of the acceleration-driven fluid flow, fluid is transported away from this

low-pressure region, further decreasing its pressure, toward the high-pressure region. This allows a build-up of the pres-

sure near the crack tip. Once this region starts to overtake the crack tip (Figure 10C), crack propagation arrests. However,

due to the acceleration terms in Darcy’s law, the high-pressure region continues to overtake the crack tip (Figure 10D).

Only when the high-pressure region above the fracture, and the low-pressure region below it have overtaken the crack

tip, fracture propagation is resumed and a new high-pressure region starts to build up behind the crack tip.

The effect of alternatingly building up high- and low-pressure regions influences the shear stresses near the interface,

as shown in Figure 10. While the shear stress is concentrated around the crack tip at the beginning of fracture propagation

(Figure 10A), the high- and low-pressure regions diffuse this stress over a growing region (Figures 10B and 10C). Once

the fracture has arrested, this shear stress is distributed over a significantly larger region compared to the beginning of

the fracture propagation. The effect of the pressure overtaking the fracture is also clearly seen in Figure 10(D). Once the
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F IGURE 9 Interstitial fluid pressure around the right crack tip for 𝑘 = 10−8 m2

shear stress concentrations emerge again, as a result of the pressure regions being away from the discontinuity, crack

propagation restarts.

Considering the results for a lower permeability (Figure 11) or when the fluid acceleration terms are not included

(Figure 12), we observe that these alternating pressure regions do not occur. For the low-permeability case, the

acceleration-driven fluid flow terms are small compared to the pressure changes induced by the compression of the porous

material. The shear stresses are also concentrated near the fracture tip for both these cases, in contrast to the case with a

high permeability, where these stresses diffused over a larger region. This shows that the stick-slip like behavior is purely

caused by the acceleration-driven fluid flow, and that excluding acceleration-driven fluid flow terms significantly alters

the crack propagation.

6 SUPERCRITICAL SHEAR FRACTURE PROPAGATION

A second case is now considered with a combination of external forces to cause the propagation velocity of the fracture

to exceed the shear wave speed. Now 𝑡𝑥𝑥 = 19 MPa, 𝑡𝑦𝑦 = 10 MPa, 𝑡𝑥𝑦 = 𝑡𝑦𝑥 = 2.4 MPa, while all everything else corre-

sponds to the previous case study, Section 3.

The crack velocity, obtained using the 1280 × 120 mesh, is shown in Figure 13(A). Different from the previous case,

no stick-slip like behavior occurs. Furthermore, the simulations for different values of the permeability all approach the

undrained case, while the crack in the drained case propagates slightly slower. This can be explained by considering

the interstitial fluid pressure in Figure 14. The simulation for 𝑘 = 10−8 m2 still results in a high-pressure region next to
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F IGURE 10 Shear stress 𝜎𝑦𝑥 around the right crack tip for 𝑘 = 10−8 m2

F IGURE 11 Interstitial fluid pressure and shear stress around the right crack tip for 𝑘 = 10−10 m2 at 𝑡 − 𝑡0 = 120 ms
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F IGURE 1 2 Interstitial fluid pressure and shear stress around the right fracture tip for 𝑘 = 10−8 m2 without acceleration terms in Darcy’s

law 𝑡 − 𝑡0 = 120 ms

F IGURE 13 Fracture length for varying permeability using the altered external load
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F IGURE 14 Interstitial fluid pressure around the right fracture tip at 𝑡 − 𝑡0 = 60 ms

a low-pressure region on the compressive side of the fracture. However, due to the high propagation velocity, this high-

pressure region cannot overtake the fracture tip, and therefore, the interstitial fluid pressure does not initiate the stick-slip

behavior observed before. Comparing the results for 𝑘 = 10−8 m2, 𝑘 = 10−10 m2 and the undrained case also shows why

the propagation velocity is similar in those cases. No interstitial fluid pressure is present in front of the fracture, whereas

the combination of acceleration-driven fluid flow (for the high-permeability case) and compression of the porousmaterial

results in similar pressures just behind the fracture tip.

While no stick-slip behavior originating from the interstitial fluid pressure is observed, small arrests in the crack prop-

agation still occur for all cases, see Figure 13(B). They are independent of the value of the permeability, and only occur

up to 𝑡 − 𝑡0 ≈ 40 ms (corresponding to a fracture from 𝑥 = 125−375 m). Thereafter, arrests are no longer observed, only

elementwise fracture propagation. The cause of these small arrests lies in the shear stress (Figure 15). Before the onset of

fracture propagation, the domain is in equilibrium. However, once propagation occurs, it happens faster than the shear

stress can react, resulting in the fracture propagating through the initially present shear stress and causing oscillations.

These oscillations are responsible for the short arrests. Eventually, the fracture exits the region that was influenced by the

initial position of the fracture and these stress oscillations disappear.

7 CONCLUDING REMARKS

A pressure–displacement formulation has been presented for fluid-saturated porous media that includes acceleration-

driven fluid flow and separate inertia terms. It has been shown that these acceleration-driven flow terms can have a
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F IGURE 15 Shear stress around the right fracture tip using 𝑘 = 10−8 m2

significant impact. Including the solid acceleration results in the interstitial fluid pressure reacting to the pressure and the

shear stress waves, but also causes oscillations in the interstitial fluid pressure. Adding the fluid acceleration adds extra

damping, removing these oscillations and limiting changes in fluid pressure away from the source of the stress waves. The

fluid acceleration term is also responsible for causing small high- and low-pressure regions near the fracture tip. Finally,

simulations using separate inertia terms for the fluid and solid show near to no effect of using these separate inertia

terms.

Simulations of a shear fracture in a porous material with varying permeability show several types of stepwise frac-

ture propagation. The first type of stepwise fracture propagation is related to the elementwise fracture propagation, and
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was shown to gradually vanish upon mesh refinement. These steps originate from the small time step used during these

simulations, causing either zero or two elements to fracture. This necessitates small time steps. This type of stepwise prop-

agation shows a consistent pattern of very short arrests followed by a jump in fracture length equal to a single element (or

two-element lengths in case of symmetric problems). This type of stepwise propagation is a numerical artifact, and does

not have a physical origin.

The second type of stepwise propagation observed was a stick-slip like behavior that originates from the acceleration-

driven fluid flow. This results in alternating high- and low-pressure regions near the fracture tip, arresting the fracture

propagation once one of these regions starts to overtake the fracture tip. This stick-slip like behavior could be observed only

when a sufficiently fine mesh was employed, and only occurred for simulations using a high value of the permeability, so

that the acceleration terms could dictate the changes in interstitial fluid pressure.

Finally, simulations have been carried out using a combination of external forces that resulted in a crack propagation

velocity exceeding the shearwave speed. For these simulations, the interstitial fluid pressure build-up is unable to overtake

the fracture, and therefore, the second type of stepwise propagation does not occur. However, a third type of stepwise

propagation was observed, originating from the initial conditions not adapting fast enough to the propagating fracture.

The fast fracture propagation resulted in stress oscillations when propagating through the initial stress, with these stress

oscillations causing small arrests in the fracture propagation. These arrests disappear once the fracture exits the region

influenced by the initial stress field.
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APPENDIX A: SYSTEMMATRICES

The discretized equations are solved using a monolithic Newton–Raphson scheme, calculating the iterative increments

through:

⎡
⎢⎢⎣

𝑲 +𝑴 +𝑲𝑑 + 𝑲𝑒𝑥𝑡 𝑸𝑠 +𝑴𝑓 𝑸𝑑

𝑸𝑓 + 𝑨𝑠 𝑪𝑓 +𝑯 +𝑯𝑑 𝑯𝑑𝑑

𝟎 𝑯𝑇
𝑑𝑑

𝑯𝑑𝑓

⎤
⎥⎥⎦

⎡
⎢⎢⎣

d𝒖

d𝒑

d𝒑𝑑

⎤
⎥⎥⎦
=
⎡
⎢⎢⎣

𝒇𝑒𝑥𝑡

𝒒𝑒𝑥𝑡
𝟎

⎤
⎥⎥⎦
−
⎡
⎢⎢⎣

𝒇𝑖𝑛𝑡 + 𝒇𝑑

𝒒𝑖𝑛𝑡 + 𝒒𝑑
𝒒𝑑,𝑖𝑛𝑡

⎤
⎥⎥⎦

(A.1)

with the submatrices for the momentum balance given by:

𝑲 = ∫
Ω

𝑩𝑇𝑫𝑒𝑓𝑓𝑩 dΩ, (A.2)

𝑴 = ∫
Ω

1

𝛽Δ𝑡2
𝑵𝑇
𝑠

(
𝝆 − 𝐴𝑛𝑓𝝆𝑓

)
𝑵𝑠 dΩ, (A.3)
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𝑲𝑑 = ∫
Γ𝑑

𝑵𝑇
𝑠 𝑹

𝑇𝑫𝑖𝑹𝑵𝑠 +𝑵𝑇
𝑠 𝑹

𝑇𝑫𝑐𝑧𝑚𝑹𝑵𝑠 dΓ𝑑, (A.4)

𝑲𝑒𝑥𝑡 = ∫
Γ

𝛾

𝛽Δ𝑡
𝑵𝑇
𝑠 𝑹

𝑇𝑺𝑹𝑵𝑠 dΓ, (A.5)

𝑸𝑠 = −∫
Ω

𝛼𝑩𝑇𝒎𝑵𝑓 dΩ, (A.6)

𝑴𝑓 = −∫
Ω

𝐴𝑛𝑓𝑵
𝑇
𝑠 𝑰𝑐𝛁𝑵

𝑇
𝑓
dΩ, (A.7)

𝑸𝑑 = −∫
Γ𝑑

𝑵𝑇
𝑠 𝒏Γ𝑑𝑵𝑑𝑓 dΓ𝑑, (A.8)

and the effective stiffness matrix obtained by first inverting

𝑪𝑒𝑓𝑓 =

⎡
⎢⎢⎢⎣

𝑰 + Δ𝜆𝑗𝑫𝑒
𝜕2𝑔

𝜕𝝈2
𝑗

𝑫𝑒
𝜕𝑔

𝜕𝝈𝑗(
𝜕𝑓

𝜕𝝈𝑗

)𝑇

−
w𝜎0

Δ𝑡

⎤
⎥⎥⎥⎦
,

then selecting the upper left 7 × 7 submatrix, and multiplying the result with the linear-elastic stiffness 𝐷𝑒.

The matrix that contains the dummy stiffness values used to prevent a negative fracture opening reads:

𝑫𝑖 =
⎡⎢⎢⎣

𝑑𝑛 0 0

0 0 0

0 0 𝑑𝜔

⎤⎥⎥⎦
.

If the history variable is larger than the current tangential displacement, then the tangential stiffness component is given

by:

𝐷𝑐𝑧𝑚(𝑡, 𝑛) = −𝑓𝑟𝑑𝑛 + (𝑓𝑝 − 𝑓𝑟) exp (−2�d𝑥�∕𝐷𝑐)
(
−𝑑𝑛 + 𝑑𝑛�𝑢𝑛� ⋅ 2�d𝑥�∕𝐷2
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(
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2
))

.

Otherwise, the nonzero components read:

𝐷𝑐𝑧𝑚(𝑡, 𝑡) = 2(𝑓𝑝 − 𝑓𝑟)𝑑𝑛�𝑢𝑛�∕𝐷𝑐 exp (−2�𝑢𝑡�∕𝐷𝑐)

𝐷𝑐𝑧𝑚(𝑡, 𝑛) = −𝑓𝑟𝑑𝑛 + (𝑓𝑝 − 𝑓𝑟) exp (−2�𝑢𝑡�∕𝐷𝑐)
(
−𝑑𝑛 + 𝑑𝑛�𝑢𝑛� ⋅ 2�𝑢𝑡�∕𝐷

2
𝑐 ⋅ 2𝑐∕

(
(𝑓𝑝 − 𝑓𝑟)𝑑𝑛�𝑢𝑛�

2
))

.

The submatrices related to the mass balances of the porous material and the fracture are given by:

𝑸𝑓 = −∫
Ω

𝛼𝛾

𝛽
𝑵𝑇
𝑓
𝑰𝑐𝑩 dΩ, (A.9)

𝑪𝑓 = −∫
Ω

1

𝑀𝜃
𝑵𝑇
𝑓
𝑵𝑓 dΩ, (A.10)

𝑨𝑠 = −∫
Ω

𝑘𝜌𝑓

𝜇Δ𝑡𝛽

(
1 +

𝜌𝑓𝑘

𝑛𝑓𝜇𝜃Δ𝑡

)−1(
𝛁𝑵𝑓

)𝑇
𝑰𝑐𝑵𝑠 dΩ, (A.11)
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𝑯 = −∫
Ω

𝑘Δ𝑡

𝜇

(
1 +

𝜌𝑓𝑘

𝑛𝑓𝜇𝜃Δ𝑡

)−1(
𝛁𝑵𝑓

)𝑇
𝛁𝑵𝑓 dΩ, (A.12)

𝑯𝑑 = −∫
Γ𝑑

𝑘𝑖Δ𝑡𝑵
𝑇
𝑓
𝑵𝑓 dΓ𝑑, (A.13)

𝑯𝑑𝑑 = ∫
Γ𝑑

𝑘𝑖Δ𝑡𝑵
𝑇
𝑓
𝑵𝑑𝑓 dΓ𝑑, (A.14)

𝑯𝑑𝑓 = −∫
Γ𝑑

2𝑘𝑖Δ𝑡𝑵
𝑇
𝑑𝑓
𝑵𝑑𝑓 dΓ𝑑. (A.15)
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