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Abstract

Background: Numerical solutions of the chemical master equation (CME) are important
for understanding the stochasticity of biochemical systems. However, solving CMEs is a
formidable task. This task is complicated due to the nonlinear nature of the reactions and
the size of the networks which result in different realizations. Most importantly, the
exponential growth of the size of the state-space, with respect to the number of different
species in the system makes this a challenging assignment. When the biochemical system
has a large number of variables, the CME solution becomes intractable. We introduce the
intelligent state projection (ISP) method to use in the stochastic analysis of these systems.
For any biochemical reaction network, it is important to capture more than one moment:
this allows one to describe the system’s dynamic behaviour. ISP is based on a state-space
search and the data structure standards of artificial intelligence (AI). It can be used to
explore and update the states of a biochemical system. To support the expansion in ISP, we
also develop a Bayesian likelihood node projection (BLNP) function to predict the likelihood
of the states.

Results: To demonstrate the acceptability and effectiveness of our method, we apply the
ISPmethod to several biological models discussed in prior literature. The results of our
computational experiments reveal that the ISPmethod is effective both in terms of the
speed and accuracy of the expansion, and the accuracy of the solution. This method also
provides a better understanding of the state-space of the system in terms of blueprint
patterns.

Conclusions: The ISP is the de-novo method which addresses both accuracy and
performance problems for CME solutions. It systematically expands the projection space
based on predefined inputs. This ensures accuracy in the approximation and an exact
analytical solution for the time of interest. The ISP was more effective both in predicting the
behavior of the state-space of the system and in performance management, which is a vital
step towards modeling large biochemical systems.
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Background
In systems biology, it is crucial to understand the dynamics of large and complicated

biochemical reaction networks. Recent advances in computing and mathematical tech-

niques mean it is easier for biologists to deal with enormous amounts of experimental

data, right down to the level of a single molecule of a species. Such information reveals

the presence of a high level of stochasticity in the networks of biochemical reactions. In

biochemical reaction networks, stochastic models have made significant contributions

to the fields of systems biology [1, 2], neuroscience [3], and drug modeling [4].

In a complex system, biochemical reactions are often modeled as reaction rate equa-

tions (RREs) using ordinary differential equations (ODEs). Examples of this kind of

work include the biochemical networks of Alzheimer's disease (AD) [5]; the pathways

in the fungal pathogen Candida albicans [6]; and the COVID-19 coronavirus pathogen

network [7]. In each of these examples, the behavior of different pathways is still largely

unknown. All these models only contain species with small copy numbers and widely

different reaction rates; the probabilistic descriptions of time evolution of molecular

concentrations (or numbers) are more suited for understanding the dynamics of such

systems. One probabilistic approach for modeling a biochemical reaction network is to

deduce a set of integro-differential equations known as chemical master equations

(CMEs) [8, 9]. CMEs describe the evolution of the probability distribution over the en-

tire state-space of a biochemical system that jumps from one set of states to another

set of states in continuous time: they are a continuous time version of Markov chains

(CTMCs) [8, 10] with discrete states. By defining the Markov chain [10, 11], we can

consider the joint and marginal probability densities of the species in a system that

changes over time [12].

In such cases, the development of RREs with molecular numbers becomes very im-

portant. The biochemical reaction network can be defined in terms of the discrete state

X ≡ ðx1;…; x~NÞT vector of non-negative integers x~N for the given conditions, where ~N

≥1. {X(t) : t ∈ K; φ} defines a stochastic process, where K is the indexing scheme and φ is

the sample space. Following the derivation in [9], for every reaction, there exists a reac-

tion channel, RM, which determines the unique reaction in the system with a propensity

function kM. The specific combinations of the reactant species in RM will react during

an infinitesimal [t, t + dt) time interval. The average probability aμ(X(t))dt of a particular

RM fires within [t, t + dt) is the multiplication of the numbers of reactant species, de-

noted by square brackets, by kM. For example,

R1:C →
k1 A a1:k1 C½ �ð Þ

R2:Aþ E→
k2 T ; a2:k2 A½ �: E½ �ð Þ

R3:T →
k3 C; a3:k3 T½ �ð Þ

k2
In the case where the reactants are of the same type, for example Aþ A→ T , then

a2:k2ð½A�½ðA − 1Þ�
2 Þ. The set consisting of all the reaction channels, RM, is the union of sets

of fast reactions and slow reactions [12]. They are categorized into sets of RM(fs) and

RM(sr) reactions, respectively, based on their propensity values. Therefore,

RM ¼ RM fsð Þ⋃RM srð Þ: ð1Þ
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A reaction is faster than others if its propensity is of several orders of magnitude lar-

ger than the other propensity values (see the list of abbreviations and notations at the

end).

Chemical master equation

In this paper, we consider a network of biochemical reactions at a constant volume.

The network consists of ~N ≥1 different species fS1;…S ~Ng. They are spatially homoge-

neous and interact through M ≥1 reaction channels in thermal equilibrium. The num-

ber of counts of each different species defines the state of the system. If all the species

are bounded by S, then the approximate number of states in the system would be S
~N

[13]. Each state X ≡ ðx1;…x~NÞT . x~N, denotes the number of molecules (counts) of each

species. For every state, X, the probability satisfies the following CME [8],

∂P tð Þ Xð Þ
∂t

¼
XM
μ¼1

aμ X − vμ
� �

P tð Þ X − vμ
� �

−
XM
μ¼1

aμ Xð ÞP tð Þ Xð Þ ð2Þ

where P(t)(X) = the probability function, representing the time-evolution of the system,

given that t ≥ t0 and the initial probability is, Pðt0ÞðX0Þ,
M = elementary chemical reaction channels R1, … .. RM,

aμ = chemical reaction propensity of channel μ = {1, 2,…. M}, and

vμ = the stoichiometric vector that represents a change in the molecular population

of the chemical species due to the occurrence of one RM reaction. The system transi-

tions to a new state: X + vμ records the changes in the number of counts of different

species when the reactions occur.

We note that aμ(X − vμ)dt is the probability for state (X − vμ) to transition to state X

through chemical reaction, RM, during [t, t + dt), and
PM

μ¼1aμðXÞdt is the probability

for the system to shift from state X as a result of any reaction during dt. If X J ¼ fX1;

……:X
S
~Ng is the ordered set of possible states of the system indexed by {1, 2…K} hav-

ing S
~N elements, then Eq. (2) represents the set of ordinary differential equations

(ODEs) that determines the changes in probability density P(t)= (P(t)(X1), … PðtÞðX
S
~NÞÞT .

Once XJ is selected, the matrix-vector form of Eq. (2) is described by an ODE:

∂P tð Þ

∂t
¼ A:P tð Þ; ð3Þ

where the transition rate matrix is A = [ai,j]. If each reaction leads to a different state,

Xi
0 , then the elements in submatrix Ai,j are given as:

Ai; j ¼
−
XM
μ¼1

aμ Xið Þ; if i ¼ j

aμ Xið Þ; if Xi
0 ¼ Xi þ vμ

0; otherwise

8>>><
>>>:

ð4Þ

This equation represents the infinitesimal generator of the Markov process [10, 14,
15]. Rows and columns are ordered in lowercase letters, i and j respectively. The entry

of ai,j of the matrix determines the propensity for the chemical system to transition
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from one state to another state, given that i ≠ j, are non-negative. The diagonal terms of

the matrix are defined by ajj, when i = j and the matrix has a zero-column sum, so its

probability is conserved. From Eq. (3) we can derive the Pðt f Þ probability vector at the

final time, tf, of interest given an initial density of Pðt0Þ:

P t fð Þ ¼ exp t f A
� �

:P t0ð Þ; ð5Þ

where the matrix exponential function is defined by the convergent Taylor series as

[16, 17]

exp t f A
� � ¼ I þ

X∞
n¼1

t f A
� �n

n!
: ð6Þ

However, algorithms, such as in [13, 18–20] truncate Eq. (6) infinite summation to
approximate Eq. (3) at the cost of a truncation error.

Initial value problem

If vμ or vM, for μ or M = {1, 2,…. M} are the stoichiometric vectors for RM reaction

channels, then we will define the stoichiometric matrix for the system by Vμ or

VM = [v1; v2;……vμ]
T. If φ is the sample space and X0 ∈ φ is the initial state of the

system, XJ denotes the only set of states in φ. To solve P(t)(X) in Eq. (2) for X ∈ φ,

we define the P(t) vector as(P(t)(X))X ∈ φ or ðPðtÞðXÞÞX∈X J
for a finite set of states,

then ∂PðtÞ
∂t is defined as a vector ð∂PðtÞ

∂t ÞX∈φ. Solving the CME involves finding the solu-

tion of the initial value problem over a time period using the differential equation

Eq. (3) when t > 0, whereas, Pðt0Þ is the initial distribution at t = 0. Here, the sample

space φ can be infinite for large biochemical systems. Finding the solution for Eq. (3) for

the given parameters with a finite set of states XJ is a major problem for CME’s because in

large biochemical systems the size of A will be extremely large.

For example, consider an enzymatic reaction network [13] described by reactions R1:

S þ E→
k1 C, R2:C→

k2 S þ E, R3:C →
k3 P þ E. This network of reactions involves four spe-

cies: namely, S− substrate, E− enzyme, C− complex and P− product molecules. The

X ≡ (x1, x2, x3, x4)
T ≡ (S, E,C, P)T represents any state of the system, with X0 ≡ (S0, E0,C0,

P0) given as the initial state. The stoichiometric vectors are given by v1 = (−1, −1, 1, 0),

v2 = (1, 1, −1, 0), v3 = (0, 1, −1, 1). Therefore, for (x1, x2, x3, x4) x~N ¼ 4 , the propensity

functions are:

R1 : a1 x1½ �; x2½ �; x3½ �; x4½ �ð Þ ¼ k1 � x1 tð Þ � x2 tð Þ
R2 : a1 x1½ �; x2½ �; x3½ �; x4½ �ð Þ ¼ k2 � x3 tð Þ
R3 : a1 x1½ �; x2½ �; x3½ �; x4½ �ð Þ ¼ k3 � x3 tð Þ

The set of states reachable from X0 is finite in number. With multiple explosions of
the number of states in a large model, the size of A increases exponentially.

As seen in Eq. (5), solving Eq. (2) becomes a problem when the model’s dimensions

grow due to the increase of species present in the system. This is particularly true for

large biochemical models. The approximate estimate of S
~N shows how the size of the

problem increases. This explosion in size is known as the curse of dimensionality [9,

13]. The CME solution given in Eq. (5) has two major parts: (a) the expansion of the
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state-space, and (b) the approximation of the series. For the expansion of state-space,

Finite State Projection (FSP) [21] and Sliding Windows (SW) [18] are used to find the

domain. Methods like Krylov subspace [13] and Runge Kutta [22] are commonly used

for approximation (of the series) of the CME Eq. (5).

Although CME has been employed and solved explicitly for relatively small biological

systems [13, 18–20, 23, 24], computationally complaisant but accurate solutions are

still unknown for most significant systems and for large systems which have an

infinite (or a very large) number of states. This lack of closed-form solutions has

driven the system biology research towards Monte-carlo Algorithms (MC) [25] to

capture dynamics. One algorithm, the Stochastic Simulation Algorithm (SSA) by

Gillespie [9], has been used in the CME. Although the original FSP state-space

expansion has been used in research [21, 26], it has some drawbacks [21]. The FSP

[21] and its variants [20, 24, 26, 27] are based on r-step reachability [26]. While

SW [18] is also a FSP based method, it employs a stochastic simulation algorithm

(SSA) to find the domain. This is more effective than FSP and suitable for stiff

problems. Add-on weighting functions like GORDE [28] and likelihoods [24]

methods are used to improve the expansion. FSP GORDE [28] removes the states

with small probabilities before the calculation of Eq. (5). This practice saves com-

putational time, meaning that FSP GORDE performs faster than conventional FSP

r-step reachability. However, removing the probabilities before the calculation of

Eq. (5) increases the steps error and affects the accuracy of the final solution at tf
regardless of whether the state-space is small or large. If one is interested in solv-

ing stiff and/or large systems, it will greatly affect the solution.

The FSP variant, Optimal Finite State Projection (OFSP), [20] based on r-step reach-

ability, performs better in terms of producing optimal order domain. It is faster than

both FSP and FSP GORDE. However, it is infeasible to use SW for large CME problems

because creating hyper-rectangles is a very difficult task. At least four-times the number

of SSA simulations are required to minimize the error by half, because of very low con-

vergence rates of routines in MC . The original SSA takes a long time, because one

simulation may have several different RM. Recently, the SSA’s efficiency has been greatly

enhanced by researchers through various schemes such as τ leaps (adaptive) [29, 30].

Thus, we compare the OFSP and SSA (τ leaps adaptive) against the ISP in terms of

finding the domain, accuracy and computational efficiency. Key to solving the CME

remains in finding the right projection size (domain) for large models which would

then ensure efficient approximation.

In this paper, we focus primarily on developing the expansion strategy, namely

the Intelligent State Projection (ISP) method, to mitigate several problems: the ac-

curacy of the solution, the performance of the method and projection size. The

ISP has two variants: the Latitudinal Search (LAS) and the Longitudinal-Latitu-

dinal Search (LOLAS). It treats the Markov chain of a biochemical system as a

Markov chain tree structure and states as objects of class node. Based on the di-

mension of the system, search is performed in a latitudinal way for different model

sizes using the ISP LAS method. Whereas, bidirectional search is applied using

ISP LOLAS, which quickly expands the state-space up to a specified bound limit.

To support the expansion strategy, we also develop the Bayesian Likelihood Node

Projection (BLNP) function, based on Bayes’ theorem [31, 32]. It is adjoined with
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the ISP variants to determine the likelihood of events at any interval at the mo-

lecular population level. BLNP provides confidence to the expansion strategy by

assigning probability values to the occurrence of future reactions and prioritizing

the direction of expansion. The ISP embedding BLNP function inductively expands

the multiple states with the likelihood of occurrence of fast and slow reactions

[12]. It also defines the complexity of the system by predicting the pattern of

state-space updation, and the depth of the end state from the initial state. When

used for any size of biological networks, LAS’ memory usage is proportional to the

entire width of expansion; it is less than ISP LOLAS. Both methods are feasible

and differentiated for various types of biological networks. However, the computa-

tional time for both variants depend on the nature of the model and the size of

the time step used. At any point, the amount of memory in use is directly propor-

tional to the neighboring states reachable through a single RM reaction. ISP LOLAS

uses considerably less memory, even when it retracts to the initial node to track

new reactions, then revisiting the depth many times.
Results
Having discussed the CME solution, we now discuss the modeling and integration

of the biochemical reaction systems for the ISP methods, as well as the assumptions

underlying these methods. Using ISP, we tested its ability to reproduce the model

to measure dynamics of the key parameters in the models. The ISP method is a

novel, easy-to-use, technique for modeling and expanding the state-space of bio-

chemical systems. It features several improvements in modeling and computational

efficiency.

The computational experiment (initializing and solving the model) was conducted on

the carbon-neutral platform of Amazon® Web Service Elastic Computing (EC2), in-

stance type large (m5a), running on HVM (hardware virtual environment) virtualization

with variable ECUs. We used multicore environment 16vCPU @ 2.2GHz, AMD EPYC

7571 running Ubuntu 16.04.1 with relevant dependencies, and 64GB memory with 8GB

Elastic Block Storage (EBS) type General Purpose SSD (GP2) formatted with Elastic File

System (EFS). The performance mode was set to General Purpose with input-output

per second (IOPS = 100/3000). We used the type bursting throughput mode (see Sup-

plementary Information (SI) 1).
Intelligent state projection

The main aim of the proposed algorithm is to expand the XK iteratively, such that XK

contains a minimum number of states carrying the maximum probability mass of the

system. To create the sample space for ISP, a Markov chain tree Ѭ [33] was used to

visualize a biochemical system to exhibit the transition matrix as directed trees [10, 11]

of its associated graph. Additionally, the Markov chain tree Ѭ generates sample space

of the system to represent Markov processes associated with the Markov chain and the

transition matrices of biochemical reaction networks. In following section, we visualize

the Markov chain of the biochemical system as a Markov chain graph (tree) for ISP

compatibility.
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Markov chain as a Markov chain tree

We define the Markov chain tree, Ѭ, [33] as infinite and locally finite. It is a special

type of graph with a prominent vertex called a parent node without loops or cycles. If

graph Gmc is a state-space of the finite state Markov chain with fPðXi;Xi
0 Þ j Xi;Xi

0∈

Gmcg transition probabilities meeting the condition
X
X

i
0

PðXi;Xi
0 Þ ¼ 1, then the induced

Markov chain tree is a combination of valued Gmc random variables with the distribu-

tions inductively defined from PðXi;Xi
0 Þ with an initial state, Xi ∈Gmc. That being the

case, it is easy to expand this class of Markov random field through a Markov chain

tree structure for biochemical systems. Furthermore the Markov chain tree and the

Markov processes can be equated as explained in [34] for the stochastic analysis.

Since we are interested in aperiodic states in the expansion of state-space, we shall

assume the reducibility or simplification of the Gmc; namely for each Xi;Xi
0∈Gmc

through Ѭ. Therefore, let us concentrate on the case where Gmc is considered as a locally

finite connected graph. The transition probabilities of each state are not equal due to the

propensities and parameters of different reactions in the biochemical system. Consequently,

a Markov chain tree, Ѭ, can be used to visualize a biochemical system process to exhibit

a transition matrix as directed trees of its associated graph [10, 11]. It can also be used to

generate a sample space for the system to represent the Markov processes and the transi-

tion matrices of biochemical reaction networks. We discuss the details needed to represent

Markov models on trees and working with graphs for state-space later.

If XJ is the finite set of cardinality {1, 2……. K} of a Markov chain Ѫc, then A is the

transition probability matrix associated with XJ. A state-space is, substantially, a class of a

set of states containing the unique state of the system. The arcs between the states repre-

sent the transitions from the initial state to the end state. This transition is defined as tran-

sient and communicating class in graphs. When all the transitions are combined, every

state-space takes the form of a graph and creates the state-space of the system, as shown

in Fig. 1 below.

We can now associate chain Ѫc with the directed graph Gmc = (XJ,Vμ), where Vμ = [v1;

v2;……vμ]. vμ defines the transition from state Xi to Xi
0 and is denoted as vμ ¼ fðXi;Xi

0 Þ
; ai; j > 0g. For every transition ðXi;Xi

0 Þ∈X J , then weight ωðXi;Xi
0 Þ is ai, j.

Suppose Gmc has a cycle, which starts and terminates at some state, Xi ∈XJ. If there is

a transition from Xi to Xi
0 , we add a unique transition by creating a cycle from Xi back

to itself and then consider the original transition from Xi to Xi
0 . This contradicts the

uniqueness of the walk in tree [35]. In terms of the CTMC of a biochemical system

process, the change in molecular population is defined by a stoichiometric vector, so,

in Gmc, there must be at least one intermediate state that will send the system back to

the previous state to create the cycle. This process categorizes the forward and back-

ward reactions given the initial state, X0, of the system. The transient class of the tran-

sition leads the system to a unique state that defines the forward reaction in the

system. In contrast, the communicating class of a transition defines the reversible reac-

tion in the system. We define such systems as transient class systems and communicat-

ing class systems. Large biochemical systems are usually a combination of both classes.

A biochemical system is visualized as a tree Ѭ [33] to enable the expansion of the

state-space. A tree, Ѭ, is a special form of graph in data structure constituting a set of



Fig. 1 Markov chain graph showing forward and reversible reactions through four different states
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nodes and a collection of edges (or arcs), each of which connects to an ordered pair of

nodes. Gmc is considered a directed tree, Ѭ. It is rooted with N0 = (X0, ƌl) if it contains a
unique walk to Ni = (Xi, ƌl + 1) and does not contain any cycles. Meanwhile, if Xi∈

XJ\{X0} has exactly one outgoing transition away from X0 it is called an arborescence. If

it makes its transition towards N0 = (X0, ƌl) it is called an anti-arborescence. An arbores-

cence is a subset ⊆Vμ that has one edge out of every node that contains no cycles and has

maximum cardinality. For example, if set U = {5, 7, 8, 10} contains 4 elements, then the

cardinality of ∣U∣ is 4.

If Xi and Xi
0 are the states other than the initial X0 state, there is a transition from Xi

to Xi
0 , so Xi has at least one transition. Now, suppose Xi has two walks, (Xi, Xi + 1) and

(Xi, Xi + 2). Concatenating these walks to the walks (Xi + 1, Xi
0 ) and (Xi + 2, Xi

0 ), respect-

ively, we have two distinct changes in state from Xi to Xi
0 in Gmc. However, in Ѭ, this

concatenation is not considered, which makes them Directed Acyclic Graphs (DAG) (see

Fig. 2). Most of the biochemical models Gmc can be visualized as DAGs irrespective of

the nature of the reactions present in the model. Figure 2 shows the equivalent Gmctree of

shown in Fig. 1. The trees are less complex as they have no cycles, no self-loops. Yet they

are still connected, meaning they can depict the state-space.

The weight of the tree containing all e edges is defined by ,

where ωðeÞ ¼ ωðXi;Xi
0 Þ ¼ ai; j is the weight of an edge starting from Xi and ending at

Xi
0 when [36]. For systems which have both forward and backward reactions,

if nJ is the total number of nodes indexed by {1, 2…K} the same as states, then nK is the

set of nodes carrying XK, and n
0
K is the set of nodes carrying X

0
K given N0 root node of

the tree Ѭ, then the walk from one node to another node is given by:

f Ni;Ni
0

� �
; f Ni

0 ;Ni
� � j N0

� �
∈X J ; ð7Þ

Ѭ is formed by superimposing the forward transitions between the states Xi and Xi
0 ,

with the reverse orientation. Where Xi
0 and Xi, indicate backward reactions, these

are graphically denoted as an individual edge from Ni = (Xi, ƌl) to Ni' = (Xi, ƌl + 11)

to Ni = (Xi, ƌl + 2) in a tree. The Ni of ƌl + 2 can be renamed as a new node. Ni + 1,

remains as it is at a different depth from the Ni of ƌl but contains the same state

Xi. In the expansion, repeated states are not considered in the domain; therefore,

any node which carries a similar state is considered the same, regardless of the

level and indexing. Consideration of trees for the state-space expansion in ISP not

only helps to reduce the complexity but also improves the accuracy of the solution

of Eq. (5) by identifying nodes which carry probable states. If the Markov chain

graph starts in state Xi ∈XJ, then the mean number of transits to any state Xi
0 con-

verging to aXi;Xi
0 is given by the (i, i′)th value of



Fig. 2 Equivalent tree of a Markov chain graph, as shown in Fig. 1. This is a special form of graph which
has no cycle and no self-loops. It depicts the state-space of the system in the form of a tree (DAG)
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A ¼ lim
n→∞

1
n

� �Xn − 1

k¼0

Ak : ð8Þ

U is the set of all arborescences. Let UXi;X 0 is the set of all arborescences which have

i

a transition from Xi to Xi
0 and kUXi;Xi

0 k is the sum of the weights of the arborescences

in UXi;Xi
0 then according to the Markov chain tree theorem [33],

aXi;Xi
0 ¼

UXi;Xi
0

��� ���
Uk k ð9Þ

aXi;Xi
0 is probabilistic in nature. This nature is not only restricted to the systems

which have irreducible Markov chains, in which graph Gmc is strongly connected while

carrying probable state-spaces, but also for the systems that can be simplified by con-

verting to a Markov chain tree and then by reducing that tree by ignoring the states

which have low probabilities in space φ.

Expansion criterion for state space

As previously mentioned, the states are indexed using {1, 2……. K} in the domain de-

noted by set XJ. To derive the time, based on the state-space expansion conditions, the

probability exponential form of the CME Eq. (5) is evaluated for approximation up to

the desired final time tf in steps. To focus on the probable states that contribute most

to the probability mass in the domain, we first define the set of non-probable states

(those which have the least probability mass) as X
0
K , which are to be bunked. The num-

ber of states will usually be infinite, without selecting probable states for the domain.

By doing this we can avoid recalculating the probabilities and decrease the computa-

tional efforts by keeping the domain small. This bunking can also be applied to the
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initial distribution of the system at t0. If submatrix A
0
j contains the non-probable set

X
0
K of states, then the probability of set will be,

P tð Þ X
0
K

	 

¼ exp t:A

0
j

	 

:P tð Þ X0ð Þ: ð10Þ

The criterion for defining the non-probable states is determined by the τm tolerance

value. A
0
j will only be considered to have non-probable states if,

A
0
j ¼

nonprobable states;
else;
probable states;

8<
:

if P tð Þ X
0
K

	 

< τm

if P tð Þ X
0
K

	 

≥τm

ð11Þ

Similarly, submatrix Aj has a probable set XK of states if P(t)(XK) ≥ τm otherwise, the

states from XK are bunked to X
0
K if P(t)(XK) < τm. For any iteration, if PðtÞðX0

K Þ≥τm then

(from Eq. (11)) some states from X
0
K return to XK in the next iteration to increase the

accuracy of the approximate solution (Ӕ). The column sum of the approximate solution

(Ӕ) of these states is defined as:

Ӕ ¼ IT exp t f A j
� �

:P tð Þ X0ð Þ; ð12Þ

where, I = (1,…1)T is of an appropriate length. Declaring some states as non-

probable and removing them before calculating the probabilities as seen in [28] will de-

crease the accuracy of Ӕ with the cumulative step errors. This can be validated from

the state probabilities that have been ignored in the domain:

Ӕ ¼ 1 − P tð Þ X
0
K

	 

: ð13Þ

We define the step error in terms of the probabilities bunked. If error∝PðtÞðX0
K Þ then,

error ¼ 1 − IT exp t f Aj
� �

:P tð Þ X0ð Þ ð14Þ
error ¼ 1 −Ӕ ð15Þ

Every expansion step explores at least one new state and change {XK} but not neces-

sarily fX0
Kg if:

P tð Þ XKð Þ≥τm > P tð Þ X
0
K

	 

; ð16Þ

is satisfied. For ideal systems with a given initial probability of Pðt0ÞðX Þ , the fX0 g
0 K

should be null and so Pðt f ÞðX0
K Þ ¼ 0. For such systems fXKg; fX0

Kg ϵ fX Jg for final pro-

jection and,

P t fð Þ X Jð Þ ¼ P t fð Þ XKð Þ þ P t fð Þ X
0
K

	 

; ð17Þ

P t fð Þ X Jð Þ ¼ P t fð Þ XKð Þ þ 0: ð18Þ

Pðt f ÞðX JÞ in Eq. (18) is the solution of Eq. (3) after the state-space is expanded to XK.

However, for large biochemical systems, Eq. (18) may not hold completely true, due to

the nature ((fast (RM(fs)) and slow (RM(sr))) of some reactions present in the system;

therefore, the condition in Eq. (11) will pass the states from X
0
K to XK. The states with

the lowest probabilities will be bunked when:
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P tð Þ X
0
K

	 

<< P t fð Þ XKð Þ; ð19Þ

This improves the solution. Removing without calculating the probabilities of some
states is one of the lags of the current methods [18, 20, 21, 24, 26–28]; it is a result of

achieving the truncated domain and saving computation time. To address this, we set a

PðtÞðX0
K Þ leakage point based on:

P tð Þ XKð Þ≥τm leakð Þ > P tð Þ X
0
K

	 

; ð20Þ

where, τm(leak) for systems will reform Eq. (16) as:
P tð Þ XKð Þ≥τm�0:4 > P tð Þ X
0
K

	 

; ð21Þ

which would then zip the X
0
K further by leaking the highest probabilities to XK so that

the probability sum is no longer conserved. The motivation of setting this ration is to

reconsider (up to 40% of X
0
K ) the bunked states to improve the Ӕ solution and decrease

the expansion step error. While modeling the biochemical system, if the slow and fast reac-

tion [12] criterion is considered during expansion, then τm(leak) will be defined as,

¼

τm�
no:of RM srð Þ
� �
no:of RM fsð Þ
� � ; if no:of RM srð Þ < no:of RM fsð Þ

else;

τm�
no:of RM fsð Þ
� �
no:of RM srð Þ
� � ; if no:of RM srð Þ > no:of RM fsð Þ

else;
τm�0:4; if no:of RM fsð Þ ¼ no:of RM srð Þ:

8>>>>>>>>><
>>>>>>>>>:

ð22Þ

We consider Eq. (21) criterion for all the computational experiments in this study.

The conditions in Eqs. (21) and (22) will lead to an optimal set of states as,

XK⟵XK −X
0
K ; ð23Þ

at td in the domain. When XK is updated at every tstep before reaching tf, this creates
several intermediate domains which we define as Bound. At t0, the domain only has the

initial state of the system; therefore, we define the Bound as:

ð24Þ

After a single tstep of expansion, if XK is updated with a new state or set of states, it

creates:

ð25Þ

at td. Here, ƌl denotes the depth level of the latest state or set of states that has been

added in the domain to form Boundupper. This Boundupper is re-labeled and considered

as Boundlower for the next tstep of the expansion. If the expansion is to be limited in the

number of Bounds, then every count(ƃlimit) leads to:

ð26Þ

where, ƃlimit is the bound limit. For example, if ƃlimit = 2, then the count(ƃlimit) will be

from 0→
to
1→

to
2. If the count(ƃlimit) is increased to ƃlimit for Itr

th iterations, then Boundupper
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in the current iteration will be Boundlower for the next iteration. Every Boundlower state will

be the strict subset of every consecutive Boundupper given as:

Boundlower Zð Þ⊂Boundupper Zð Þ: ð27Þ

and the upper bound as:

Boundupper Zð Þ ¼ Domain at Zthiteration; ƌl
� �

; ð28Þ

where Z is the number of Bounds (or intermediate domains). The 2D pyramid domain

in Fig. 3 graphically illustrates the increase in the population of states in the domain with

the increase in iterations (Itr). The apex of the pyramid represents the initial state X0 of

the system at Boundlower(1) at t0, whereas the base represents the deepest level where the

system ends with the final domain carrying set XK with the maximum probability mass.

For large biochemical systems, the number of created Bounds are based on Itr. They

have million/billions of states. Expansion can be terminated by defining time tf at which

the solution is required. To have an auto break-off point in the expansion, it is first ne-

cessary to define the criteria that limits Itr or when no more new states can be searched.

Therefore, we define this criterion in the following section. This criterion also applies

to biochemical systems which have fast and slow reactions [12].

Cease of criterion after updating

In every expansion step, the domain is validated by Eq. (21) and new states are added

in XK as long as:

1 − IT exp t f A j
� �

:P tð Þ X0ð Þ≥τm; ð29Þ

is satisfied for probable states and stops if Eq. (29) is not satisfied. This leads to a
point at tf where error < τm, but the expansion can be extended to meet accuracy re-

quirements by re-considering the criteria as:
Fig. 3 General framework of 2D pyramid domain showing increases in domain size concomitant with the
increase in state with an increase in the bounds. Boundlower(1) represents the initial condition, whereas
Boundupper(Z) represents the final domain which carries the explored set of states of the system
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1 − IT exp t f A j
� �

:P tð Þ X0ð Þ≥τm�
no:of RM srð Þ
� �
no:of RM fsð Þ
� � ; ð30Þ

1 − IT exp t f A j
� �

:P tð Þ X0ð Þ≥τm�
no:of RM fsð Þ
� �
no:of RM srð Þ
� � ; ð31Þ

1 − IT exp t f A j
� �

:P tð Þ X0ð Þ≥τm leakð Þ; ð32Þ

before steps to tf. However, the size of XK obtained through Eqs. (30), (31) and (32)
at tf will be greater compared to the size of XK obtained by Eq. (29) at tf, as the latter

will have fewer states. In Eqs. (30), (31) and (32), with the increase in the size of Aj, the

value of the left-hand side will also increase, resulting in an improvement in Ӕ. When

considering any Markov process of a biochemical system of any size in which the prob-

ability density expands according to Eq. (3) then Eqs. (30), (31) and (32) will approximate

the solution within τm� ðno:of RMðsrÞÞ
ðno:of RMðfsÞÞ , τm�

ðno:of RMðfsÞÞ
ðno:of RMðsrÞÞ and τm(leak), respectively, of the true

solution of the CME, which is Eq. (3).

Computational experimental results

The ISP method is initialized and parameterized using the initial conditions of the

models. Due to a large number of mathematical operations and equations, simultan-

eous parameter predictions with a limited number of experimental values is often com-

plicated for dynamic systems. Therefore, the consistency with the available

experimental data was ensured at each step of the ISP. This method has led to the suc-

cessful development of several functions that integrate large number of processes sup-

porting extensive expansion of the state-space.

To demonstrate the ISP LAS algorithm, we first consider the catalytic reaction system

[37] defined by the reactions

S →
k1 B→

k2 C; Bþ P →
k3 Bþ E ð33Þ

depicted as a network in Fig. 4 as:

In this biochemical system (dimension = 5), reactant P will transform into product E

via complex B when reactant S acts as a catalyst for the reaction and produces C. We

rewrite this catalytic reaction system as a network of three reactions:

R1:S→
k1 B; ð34Þ

R2:B→
k2 C; ð35Þ

R3:Bþ P→
k3 Bþ E; ð36Þ

with the initial copy counts S0= 50, P0= 80, B0 =C0 = E0 The reaction rate parameters are

k1= 1, k2= 1000, k3= 100. These species counts are used as a state-space to define the

model and these copy counts are tracked as ð½S�; ½B�; ½C�; ½P�; ½E�Þ∈ ~N≔ðx0; x1; x2; x3; x4Þ.
In reaction R1, the copy count of S is reduced by 1, which increases the copy count of

B by 1. In reaction R2 the copy count of B is reduced by 1, which increases the copy

count of C by 1. In contrast, reaction R3 decreases the B and P counts by 1 and in-

creases the B and E counts by 1. As in R3, B acts as a catalyst to convert P to E and B
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is retained in the same reaction. We can now define the transitions associated with R1,

R2, R3 in the stoichiometric vector VM matrix as:

VM ¼
v1
v2
v3

2
4

3
5 ¼

− 1
0
0

1
− 1
0

0
1
0

0
0
− 1

0
0
1

2
4

3
5: ð37Þ

For LAS method compatibility, the associated Markov chain of this model is con-

verted into a Markov chain tree with the states in terms of the nodes with additional

information such as the number of RM reactions required to reach the state. In the

growing Markov chain tree, the transition between the nodes:

Ni →
vμ X0 tð Þ;X1 tð Þ;…:;XK tð Þð Þ

Niþ1; ð38Þ

is defined in the typical form of the dictionary Dict. We express the propensity func-
tions of the three reactions in terms of the states ð½S�; ½B�; ½C�; ½P�; ½E�Þ∈~N . Node

N1 = (X0, ƌ1) carries the initial state X0 of the system at an initial depth of level 1. Fur-

ther, nJ = (XK, ƌ1, 2, …) is expanded and the states updated by following the LAS order.

The corresponding propensities Δai,j are updated in the Ai,j matrix in every iteration, based

on the LAS updating trend (for example, see SI 2). The system began with S0= 50, P0= 80.

Gradually all the reactants are transformed to products, E and B. The system ends in

nJ = (X1, 2, ……14666, ƌl).
Figure 5 shows the LAS method’s response when solved with τm = 1e − 6 for tf =

0.5 sec. Due to the nature of the model reaction rates, small steps tstep = 0.01 sec

are taken to capture the moments based on non-negative, non-zero states for the

domain. LAS successfully creates the domain of an optimum order, with 14666

states at tf, by introducing the new states to the domain with time, as shown in

Fig (a) in Fig. 5. This pattern demonstrates that the frequency (the number of

states at any time t) of expansion increases in depth when the number of active re-

actions increase in the system. With the addition of probable states, the domain

contains enough probability mass to approximate the solution up to tf. The states
Fig. 4 Catalytic reaction network with five ~N ¼ 5 species S, B, C, P, and E in a network defining reaction, as
given in Eq. (33)



Fig. 5 Expansion and updation of the states and set of states explored for the catalytic reaction system
using the LAS method. (a) demonstrates that state-space expansion increases the number of new states in
the domain. The size and colour of shows the increase in the size of the domain with the states’
population. In (b), LAS unfolds the state-space pattern to update the states in the domain and expands
14666 probable states in 0.5 secs
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are updated in sets as seen in Fig (b) of Fig. 5, for the catalytic system after every

iteration.

The state-space pattern in Fig (b) of Fig. 5 can be used as a blueprint of the catalytic

systems’ state-space to compare with other model’s blueprints for their characteristics

and occurrence of reactions. Such a pattern can be used to predict the behavior of large

network state-space expansions when the set of occurrences of the initial reactions are

similar in different systems. The solution of Eq. (5), up to tf, for the domain created by

LAS, is shown in Table 1. The system’s conditional probabilities based on its species

are shown in Fig. 6.

In three test runs, the ISP LAS run time for the catalytic system was 4677 secs when

solving Eq. (5) with 14666 states. The probability of the species in Figure SI 17 (see SI

9) shows the nature of the reactions affecting each species’ count in the system. The in-

volvement of species B in all the reactions results in its highest probability at tf. Species

B also acts as a catalyst for R3, converting species P to E; therefore, both have equal

probabilities at the time of solution.

Figure 6 shows the total probability bunked at t′ while progressing with the expan-

sion. Bunking produces an error (w.r.t approximation), with time when the number of

states increases with the expansion. LAS produces minimal error of order 10−5, as given

in Table 1.

To demonstrate the ISP LOLAS algorithm, we consider the coupled enzymatic reac-

tions defined by the reactions

S þ E1 →
k1 C1 →

k2 S þ E1; C1 →
k3 P þ E1

ð39Þ

P þ E2 →
k4 C2 →

k5 P þ E2; C2 →
k6 S þ E2

ð40Þ

depicted as a network in Fig. 7 as:

This biochemical system (dimension = 6) describes two sets of enzymatic reactions

transforming species S into species P and transforming species P back into S. We re-

write C reactions system as a network of six reactions:



Table 1 LAS expansion response and solution at tf for the catalytic system

tf = 0.5,
tstep = 0.01

Run-time
(sec)

Domain Expansion time
(sec)

Error at tf

ISP LAS 4677 14666 0.5 1.865e − 05
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R1:S þ E1 →
k1 C1; R2:C1 →

k2 S þ E1

R3:C1 →
k3 P þ E1; R4:P þ E2 →

k4 C2

R5:C2 →
k5 P þ E2; R6:C2 →

k6 S þ E2

ð41Þ

with initial copy counts S= 50, E1= 20, E2= 10, C1 =C2 = P= 0 and reaction rate parame-

ters of k1 = k4= 4, k2 = k5= 5, k3 = k6= 1. These species counts are used as a state-space

to define the model. These copy counts are tracked as:

S½ �; E1½ �; C1½ �; P½ �; E2½ �; C2½ �ð Þ∈~N≔ x0; x1; x2; x3; x4; x5ð Þ:

As in the previous example, we can now define the transitions associated with R1, R2,

R3, R4, R5, R6 in the stoichiometric vector VM matrix as:

VM ¼

v1
v2
v3
v4
v5
v6

2
6666664

3
7777775
¼

− 1 − 1 1 0 0 0
1 1 − 1 0 0 0
0 1 − 1 1 0 0
0 0 0 − 1 − 1 1
0 0 0 1 1 − 1
1 0 0 0 1 − 1

2
6666664

3
7777775

ð42Þ

For the LOLAS method, the associated Markov chain of this model is converted to a
Markov chain tree with the states in terms of nodes with additional information, such
Fig. 6 Total probability of states bunked at t′ from the domain of the catalytic system produced by ISP LAS
iteration while expanding and solving the CME



Fig. 7 Coupled enzymatic reactions network. The figure shows six ~N¼6 species, S, E1, C1, P, E2, C2, in a
network, defining reactions, as given in Eqs. (39) and (40)
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as the number of RM reactions required to reach the state. In growing Markov chain

tree, the transition between the nodes:

Ni →
vμ X0 tð Þ;X1 tð Þ;…:;XK tð Þð Þ

Niþ1; ð43Þ

is defined in the typical form of the dictionary Dict. We express the propensity func-

tions of the six reactions in terms of the states ð½S�; ½E1�; ½C1�; ½P�; ½E2�; ½C2�Þ∈~N.

Node N1 = (X0, ƌ1) carries the initial state X0 of the system at the initial depth (level 1).

Then nJ = (XK, ƌ1, 2, ……) is further expanded and the states updated by following the

LOLAS order. The corresponding propensities Δai,j are updated in the Ai,j matrix in every

iteration, based on the given LOLAS updation trend (for example, see SI 2). Initially, the

system started with S= 50, E1= 20, E2= 10. Gradually all reactant species were transformed

into products resulting in the system ending in nJ = (X1, 2, ……8296, ƌl).
Figure 8 shows the LOLAS method response when solved with τm = 1e − 6 for tf = 2.0

sec. Due to the nature of the model reaction rates, small steps tstep = 0.01 sec are taken

to capture the moments. These are based on non-negative, non-zero states for the do-

main. LOLAS successfully creates the domain of an optimum order with 8296 states at

tf by introducing the new states to the domain with time, as shown in Fig (a) of Fig. 8.

In Fig (b) of Fig. 8, demonstrates that the frequency (the number of states at any time

t) of expansion increases in depth when the number of active reactions increases in the

system. With the addition of probable states, the domain contains enough probability

mass to approximate the solution up to tf.

Fig (a) of Fig. 8 depicts state-space expansion which increases the number of addi-

tions of new states in the domain. In Fig (b) of Fig. 8, ISP LOLAS unfolds the state-

space pattern to update states in the domain and expands 8296 probable states in 2.0

sec. As a blueprint of the dual enzymatic reaction network, the state-space pattern in

Fig (b) of Fig. 8 can be compared with other model blueprints in terms of its character-

istics and reactions. Such a pattern is considered to predict the behavior of a large net-

work state-space expansion when the set of occurrences of the initial reactions are

similar in different systems. The solution of Eq. (5), up to tf, for the LOLAS-created do-

main is shown in Table 2. The system’s conditional probabilities based on species are

shown in Figure SI 18 (see SI 10)



Fig. 8 Expansion and updating of the states and set of states explored for the dual enzymatic reaction network using
the ISP LOLASmethod. shows the increase in the domain size with the states’ populations. shows the point
in time where new set of states are explored and updated in the domain
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In three test runs, ISP LOLAS′ run time for the dual enzymatic reaction network was

≈1614 secs when solving Eq. (5) with 14666 states. The probability of the species in Fig-

ure SI 18 (see SI 10) shows the nature of the reactions which affect each species’ count

in the system. At tf, the probabilities of E2 and C2 remain high compared to E1 and C1

at different molecular counts. This results in a low probability of P compared to S. We

know that this network transforms species S into species P and then transforms species

P back into S. Based on the current probabilities of the species at tf, the future probabil-

ity of P will increase. S will remain the same or decrease. With this change, the prob-

abilities of E2 and C2 decrease in comparison to E1 and C1.

Figure 9 shows the total probability bunked at t′ while progressing with the expan-

sion. The bunking produces an error (w.r.t approximation) with time when the number

of states increases with the expansion and provided that, LOLAS produces a minimal

error of order, 10−5, as given in Table 2.

We extend the application of our ISP method to simulate a large model of the G1/S net-

work [38] under the condition of DNA-damage. We want to determine the number of

states at different points in time and predict the conditional probabilities of the protein

species based on events leading to the formation of different complexes in the system.

The G1/S model (dimension = 28) with a DNA-damage signal transduction pathway

is considered to be very stiff in nature, so while some molecular counts of certain pro-

teins increase very rapidly others do so slowly. This makes it tough to solve, even for a

short time period. The model is solved for tf = 1.5 sec with ƃlimit = 1, τm = 1e − 6, tstep =

0.1. The systematic exploration of nodes carrying probable states are undertaken in a

similar way as discussed in Table SI 4 of SI 3 and depicted (see Figure SI 7 of SI 3) in

six stages (denoted as Ŝ), representing RM reactions with propensity, aμ, with the arcs

as transitions.

The nodes are expanded up to tf to enable identification of the reaction channels re-

sponsible for variations in the proteins. From the transitioning factor of the 2nd-tier, we
Table 2 LOLAS’ expansion response and solution at tf for the dual enzymatic reaction network

tf = 2.0,
tstep = 0.01

Run-time
(sec)

Domain Expansion time
(sec)

Error at tf

ISP LOLAS 1614.22 8296 2.0 5.953e − 05



Fig. 9 Total probability of states bunked at t′ from the domain produced by dual enzymatic reactions
system in the ISP LOLAS iteration while expanding and solving the CME
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can see that every node has an average of at least ≈97 possible child nodes carrying

states. Further, Dict is expanded for n-tiers of the child nodes to add more states to the

domain. Additionally, nJ = (XK, ƌl = 1,2,……) is expanded and updated, as per the

ISP LOLAS trend (see Table SI 5 of SI 3).

The ISP LOLAS method response for the number of states in the domain and time, t, is

shown in Fig. 10. The initial response suggests that only a few reactions were active until

t= 0.4 sec. After that time, more reactions triggered that explosively take the exploration

above 0.5 million states in 0.5 sec. For such a large model, this combination of explosion

states was expected as proteins undergo several excursions due to the number of reactions

in fractions of time, t. The second explosion of states occurs after 1.0 secs when almost all

the reactions (involving the species, given in SI 4.1) become active in the network. The

size and colour of the 2D pyramid in Fig (a) of Fig. 10 shows the increase in the size of

the domain with the state explosions. The number of sets of states that create the bounds

at t are shown in Fig (b) of Fig. 10. With the exploration of the set of 517584 states, the

Bound(3)upper = {X0, 1, 2…..604677} is formed at 0.5 sec carrying 604677 states. Some states

were bunked at 0.5 secs resulting in approximation errors that reach 2.42e − 06 at 0.6 sec.

At tf, the LOLAS ends up with a domain defined by Bound(4)upper = {X0, 1, 2…..3409899} car-

rying 3409899 states with 3.52e − 06 approximation errors.

Fig (a) of Fig. 10 demonstrates that the state-space expansion increases the number

of additions of new states in the domain. ISP LOLAS quickly expands the state-space

up to ≈3.5 million states in 1.5 secs. In Fig (b) of Fig. 10, ISP LOLAS unfolds the state-

space pattern to update states in the domain and expands 3409899 states up to tf.

The corresponding propensities, Δai, j, are updated in the Ai, j matrix in every iter-

ation, based on the ISP LOLAS update trend. The system started with the initial state

of the protein species and gradually, as protein levels change in the system, it exploits

the copy counts that shift the system to a new state. The change in protein levels

causes the system to transform into new states: here we see the manifestation of the

Markov process of the system. The ISP LOLAS captures this process and defines several



Fig. 10 The expansion and updating of the states and set of states explored for the G1/S model based on
the ISP LOLAS method. shows the increase in the domain size with the states’ populations. shows
the point in time where new set of states are explored and updated in the domain
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bounds of the domain at different time intervals, as indicated by the pyramid in Fig. 3.

To investigate the expansion of states more closely, the order of bounds at different

time intervals, and the number of states present in the bounds, are provided in Table 3.

The size of bound created in each duration reveals that for every step, the growth of

the domain is eight-to-ten times the previous size of the domain.

The set of nodes N1, N2, . . …N3409900 carries unique states representing the set of

state(n3409900) = (X0, 1, 2, …3409899) that forms the state-space of the model. It is import-

ant to note that some proteins are synthesized and promoted by the network itself, as

evidenced by some reactions of the pathway, which increase the frequency of the re-

peated states. However, ISP LOLAS validation does not consider them for the domain.

Equation (5)’s solution, up to tf for the domain, created by ISP LOLAS, is shown in

Table 4.

Over three test runs, the ISP LOLAS′ run time for the G1/S model was 1372 secs for

solving Eq. (5), with the optimal domain having 3409899 states. The ISP LOLAS re-

sponse given in Fig. 11, shows the system’s probabilities bunked at t′ during the expan-

sion (w.r.t approximation), when the number of states increases with the expansion,
Table 3 Lower and upper bounds of the domain for the G1/S model given by the ISP LOLAS trend
based on bound limit ƃlimit

Z Bound(Z)lower Bound(Z)upper States Duration

1 Bound(1)lower = {X0}
formed at t= 0.0 sec
Approximation = 1

Bound(1)upper = {X0, 1, 2…..9808}
formed at t= 0.1 sec
Approximation = 0.999999867

9808 0.0 – 0.1 sec

ƃlimit = 1, count(ƃlimit) = 0, 1,

2 Bound(2)lower = Bound(1)upper
formed at t= 0.1 sec
Approximation = 0.999999847

Bound(2)upper = {X0, 1, 2…..87393}
formed at t= 0.2 sec
Approximation = 0.999999173

87393 0.1 – 0.2 sec

ƃlimit = 1, count(ƃlimit) = 0, 1

3 Bound(3)lower = Bound(2)upper
formed at t= 0.4 sec
Approximation = 0.999999157

Bound(3)upper = {X0, 1, 2…..604677}
formed at t= 0.5 sec
Approximation = 0.99999701

604677 0.4 – 0.5 sec

ƃlimit = 1, count(ƃlimit) = 0, 1

4 Bound(4)lower = Bound(3)upper
formed at t= 1.1 sec
Approximation = 0.99999699

Bound(4)upper = {X0, 1, 2…..3409899}
formed at t= 1.5 sec
Approximation = 0.99999648

3409899 1.1 – 1.5 sec

ƃlimit = 1, count(ƃlimit) = 0, 1



Table 4 ISP LOLAS’ expansion response and solution at tf for the G1/S model

tf = 1.5 sec,
tstep = 0.1

Run-time
(sec)

Domain Expansion time
(sec)

Error at tf

ISP LOLAS 1372 3409899 1.5 3.52e − 06
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and provided that ISP LOLAS produces minimal errors of the order of 10−6, as given in

Table 4 and Fig (a) of Fig. 11. We set the checkpoint to examine the initial state’s prob-

ability over time. The response in Fig (a) of Fig. 11 indicates that the probability of the

system remaining in the initial (normal) state decreases with time in the presence of

DNA damage, which triggers the change in protein levels.

The conditional probabilities of the species’ systems are given in Fig. 14 and SI 8. In

the case of DNA-damage, large numbers of the most notable parameters increase, com-

pared to normal conditions (in cell cycle progression). The increase is predominantly

related to x14 (p21) having a high initial probability, see Fig(14) of Figure SI 19 (see SI

11). The feedback (negative) of x24 (p53) increases its probability, see Fig(24) in Figure

SI 19 (see SI 11), such as the association rate of x16 (p21/CycE/CDK2 − P), the rate of

synthesis of x14 (p21) by x24 (p53), the rate of degradation of x14 (p21), and the rate of

synthesis of x24 (p53) by DNA-damage signal. The conditional probabilities of the two

key proteins, x10 (p27) and x1 (CycE), are affected by the change in the cell’s response

to the level of the DNA-damage signal, see Fig (10) and Fig (3) in Figure SI 19 (see SI

11). The parameters related to x10 (p27), as well as x1 (CycE), greatly affect the prob-

ability of x21 (E2f) with time, see Fig (21) in Figure SI 19 (see SI 11). The impact of x1
(CycE) involves additional parameters related to CycA, because the release of supple-

mentary x21 (E2f) depends on x20 (Rb − PP/E2f) hyperphosphorylation by the activation

x7 (CycE/CDK2 − P), which affects the probability of x21 (E2f).

When the release of x21 (E2f) is affected, the probability of x1 (CycE) increases, see

Fig (3) in Figure SI 19 (see SI 11). This leads to the progression to the S-phase, followed

by the temporary suspension of cell cycle progression. The increase in probability of

x24 (p53) shows cell support to repair the DNA damage. The parameters and the prob-

abilities relating to x14 (p21) and x24 (p53) become important in the case of DNA
Fig. 11 The ISP LOLAS′ response for total probability bunked at t′ from the domain and checkpoint for
examining the initial state probability over time. (a) shows how ISP maintains accuracy by keeping low
errors. (b) shows the decline in the probability of the system remaining in the initial state in the presence
of DNA damage
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damage. When combined, the conditional probability of these parameters indicates the

involvement of the DNA-damage signal in the transition of G1/S.
Discussion
In this section, we discuss ISP performance, focusing specifically on the speed and ac-

curacy of the expansion, domain size and accuracy of the solution in comparison with

other methods.
Comparison with other methods

An approximation of 10−5 is used to find the approximate number of realizations required

by the SSA for the 10−4 global error. Realizations were computed until the difference was

less than 10−4 between the known distribution and the empirical distribution.

Approximately 106 and 105 runs were required to obtain the right distribution for the

catalytic and dual enzymatic reaction networks, respectively. In the catalytic system, we

observe (see Table 5) that both versions of ISP are faster than the OFSP of r-step reach-

ability and the SSA of sliding windows. We attribute this greater efficiency to LOLAS

having fewer states and less computational time than the OFSP method. LOLAS has

better accuracy at tf. Similary, the ISP was much faster than the SSA, and the total

number of realizations required from the SSA to have an error at tf still large than that

of LOLAS is 106. In the dual enzymatic network, we observe (see Table 5) that both

versions of ISP are faster than the OFSP of r-step reachability and the SSA of sliding

windows; we attribute the improvement to both ISP variants having an efficient domain

with a small approximation error and less computational time than that of the OFSP

method and better accuracy at tf. Similarly, both ISP variants were much faster than

SSA, as the total number of realizations required to have an empirical distribution with

the error at tf is ≈12 times more than the domain produced by ISP.

We also compared the error at tf to determine the solution’s efficiency. As seen in

the results, the increase in the step error in OFSP affected the solution at tf. Figure 12

(see Fig (a) and (b)), compares the ISP (LAS and LOLAS) with OFSP on the basis of the

approximation error at t during the expansion of the catalytic and dual enzymatic
Table 5 Comparison of the solution of the catalytic reaction system based on ISP, OFSP and SSA

tf = 0.5,
tstep = 0.01

ISP OFSP SSA

LAS LOLAS

Catalytic reaction system (tf = 0.5, tstep = 0.01)

Run-time (sec) 4677 2706 8767 17428

Domain at tf 14666 13089 14665 106 Runs

Expansion time 0.5 0.5 0.5 -

Error at tf 1.865e − 05 1.532e − 05 1.917e − 05 ≈9.81 x 10−3

Dual enzymatic reaction system (tf = 2.0, tstep = 0.01)

Run-time (sec) 2386 1614 2804 6374

Domain at tf 8282 8296 8266 105 Runs

Expansion time 2.0 2.0 2.0 -

Error at tf 7.470e − 05 5.953e − 05 1.060e − 04 ≈9.94 x 10−3



Fig. 12 Comparing ISP (LAS and LOLAS) with OFSP, based on the solution of the catalytic and dual
enzymatic reaction networks
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reaction networks, respectively. Addressing the step error in ISP and the selection of

the probable states results in a more efficient solution at tf compared to OFSP.

The typical firing nature of reactions in the catalytic system makes them stiff. There-

fore, the selection of states becomes difficult to approximate. While some species in the

system increase abruptly, others do so very slowly because the kinetic parameters (k1=

1, k2= 1000, k3= 100) have large differences: this triggers reactions at different rates. Re-

action R1, is categorized as a slow reaction in the network: it affects the fast reaction,

R2. As the computation results of Table 5 show, the ISP found that only 13089 probable

states were required to solve the system up to tf. This not only saves computational

time (see Fig. 13) compared to OFSP and SSA, and improves the solution’s accuracy. In

OFSP, applying the compression at every step or after a few steps is still computation-

ally expensive for a model like the catalytic reaction system, as seen in Table 5 and Fig

(a) of Fig. 13.

The network shown in Fig. 7 consists of two interlinked enzymatic reaction systems.

These systems transform species S and P into each other via the other species, making

the system stiff in nature. The selection of states thus becomes difficult for approxima-

tion. This is due to some species (S and E1) in the system increasing abruptly, while

others take longer to increase. Some of the kinetic parameters (k1 = k4= 4, k2 = k5= 5)

have large differences from other kinetic parameters (k3 = k6= 1): this triggers reactions

at different rates. Categorized as the fastest reaction in the network, R affects species S,

C, E. It is followed by other reactions involving other species. As the computation
Fig. 13 Comparing computational time for ISP (LAS and LOLAS) with OFSP and SSA by computational time.
All methods were applied to the catalytic and dual enzymatic reaction networks that were previously
integrated in the experimental results section
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results in Table 5 show, the ISP LAS indicated that only 8282 probable states are re-

quired to solve the system up to tf. Likewise, ISP LOLAS identified that only 8296 prob-

able states are required to solve the system up to tf This saves computational time (see

Fig. 13), compared to OFSP and SSA, and improves the solution’s accuracy. In OFSP,

applying the compression at a defined step or after a few steps is still computationally

expensive for models like the dual enzymatic reaction system, as seen in Table 5 and

Fig (b) of Fig. 13.

The total computation effort required at every step, when compressing the number of

states up to tf, is approximately equal to the total computation effort required when the

compression is applied in the gaps in some steps on a set of states up to tf. Moreover, the

state-space will remain the same at tf , regardless of when the compression is applied.

A comparison of the computational times in Table 5 shows that both versions of ISP

are significantly faster than other methods. Figure 14 shows the CPU utilization (%) of

LOLAS and OFSP with respect to run-time (minutes). The dedicated throughput (see

SI 1.1) between EC2 and EBS was not used to solve the model. The average CPU exer-

tion is about 60%, which is a considerable workload for a given model. The expansion

and approximation began when CPU use was at ≈1.6422% in the catalytic reaction sys-

tem and ≈1.23% in the dual enzymatic reaction system, at t= 0 sec. It increases up to

60.0% and then drops down to zero at tf.
Theoretical interpretation of methods

Although, SSA recognizes the support and wastes no time in searching for the right do-

main and creating independent realizations which can be run parallel on multi-core en-

vironment, solving the system via Eq. (5) is quicker than creating realizations via

stochastic simulation [39–41]. This is because the N-term approximation [42, 43] of

the probability distribution to create the required number of realizations is always less

than, or equal to, the minimal support approximation up to same error. These
Fig. 14 AWS® CPU utilization percentage, when the catalytic reaction system is solved up to tf= 0.5 sec, and
the dual enzymatic reaction system solved up to tf= 2.0 sec, using OFSP and LOLAS. The performance
analysis was carried out using CloudWatch® (Statistic: Average, Time Range: Hour, Period: 5 Minutes)
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realizations were computed until the difference was less than the prescribed approxi-

mation between the known distribution and the empirical distribution. In terms of the

system dimension, which is usually defined by the number of species in the system, the

approximation of Eq. (5) in ISP becomes smaller problem to solve compared to ap-

proximation through SSA. This enables ISP to perform better.

In contrast, OFSP creates a hyper-rectangle and applies truncation to guarantee the

minimal order domain for the approximation. OFSP truncates the state space after every

few steps to ensure the minimum size of the domain and enable greater computational

speed. However, differences in reaction firing changes the probability of some states at a

later stage; therefore, truncating the state space in OFSP after every few steps or at every

step would remove probable states from the domain, which in turn would affect the

accuracy of the solution. As a result of this, OFSP′s overall performance is compromised.

In contrast, ISP first explores the states based on guided exploration through the BLNP

function (see method section (a)) and then leaks the set of states X
0
K which have the low-

est probabilities in the bunker at t′ without removing them (see Eq. (20)). It recalls these

sets of states when the probabilities of these states increase at later time.

In ISP, the time and space complexity (refer to SI 7) of removing and accessing the

states in the bunking and recalling process is optimum, compared to the overall time and

space complexity of the truncation step in OFSP [20]. As seen in Table 5, the number of

states present in the domain for the catalytic reaction network in ISP LAS is approxi-

mately equal to number of states present in the domain produced by OFSP. Additionally,

the number of probable states in the domain for the dual enzymatic reaction system in

ISP LAS is quite more as compared to the domain produced by OFSP. However, better

complexity and the guided selection of probable states for the domain produces low ap-

proximation errors and means that ISP LAS performs better overall than OFS. Similarly,

ISP LOLAS outperforms OFSP in finding the optimum domain due to its bi-directional

exploratory nature (see methods section (c)). This feature helps ISP LOLAS to achieve a

more accurate solution (see Table 5 and Fig. 12) as well as a quicker computational time

(see Fig. 13). These benefits are also due to fact that ISP visualizes the state-space as a

Markov chain graph or a tree (see Markov chain as a Markov chain tree section) which ul-

timately decreases the complexity in the expansion phase.
Conclusions
This paper has introduced a novel approach, ISP,to model biochemical systems. This

new approach addresses both performance and accuracy problems in CME solutions.

Provided all probable states are not added into the domain, up to the desired tf, variants

of ISP (LAS and LOLAS) provide systematic ways of expanding the state-space. We

have demonstrated the effectiveness of our methods with several experiments using real

biological models: the catalytic reaction system, the dual enzymatic reaction system,

and the G1/S model (large model). The results and the algorithm’s responses reveal im-

provements in how different sized biological networks can be modeled: even state-

spaces with 3409900 nodes (see Table 3) carrying states up to ≈3.5 million can be ex-

plored within a reasonable time. The results also show that the domain laid out by ISP

had an optimal order and was successful in finding probable system states, all the while

maintaining high levels of accuracy and efficient computational timing.
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We have compared the ISP results against two popular methods: OFSP (r-step reach-

ability) and SSA (τ leaps adaptive). ISP outperformed the other methods, in computa-

tional expense, accuracy and projection size. The ISP was more effective in terms of

predicting the behavior of the state-space of the system and in performance manage-

ment, which is a vital step in modeling large biochemical systems. Unlike other

methods, the ISP keeps the lowest states probabilities in the bunker without removing

(as removed in OFSP) them, before calculation (as removed without calculation in

FSP GORDE). It computes the probabilities at t without computing large numbers of

realizations (as done in SSA).

The diverging nature of the ISP response, with respect to OFSP in Fig. 19, also

shows that the solution improved with t and at a higher tf. For example, in the

large model (case study 2), the computation time was 1372 sec and the solution

was 3.52e − 06 at tf, which was lower than the small model results (the catalytic

reaction system). These results show ISP’s compatibility with the distinct size of

biochemical models.

These examples have demonstrated that ISP is a very promising technique for sys-

tem’s biology. For stiff models, such as the G1/S and Candida albicans models, the ISP

yielded plenty of information. Likewise, it provided opportunities for stochastic analysis

of large models. ISP can be used to compute the probabilities of the species up to the

required time. One could also use ISP to conduct robustness and sensitivity analysis on

the dynamics of biochemical systems and to keep track of what reactions are more ac-

tive in the system at a particular time. ISP is also able to determine the complexity of

the system by defining the bounds with number states and keep track of the nested

state-space patterns (called the ISP model blueprint) that were updated at the end of

each step. Outlining the patterns of expansion of states to predict the projection folds

can be used for updating the new states.

We anticipate that the current structure of the ISP variants can be employed for dif-

ferent classes and varieties of biological systems. Additionally, they can be used to com-

pute the configurations with many reactions, as long as the notable part of the state-

space density is present between Bound(Z)lower and Bound(Z)upper. When there was a

high probability of the molecular population of the species undergoing several excur-

sions in a fraction of time, then the ISP uses a small tstep to capture these moments.

While such computations were still challenging in the expansion phase for typical

models they can be addressed more closely in combination with the second part of the

CME solution: that is, the approximation phase. There are several methods which can

be used to address these challenges.

Approximation methods, such as the Krylov sub-space, can be used to effectively

compute the matrix exponential times of a vector. While it was mathematically attract-

ive to aggregate the states or decompose the large sparse matrix into a small dense

matrix using the Krylov sub-space, this method may not be computationally efficient in

the absence of an efficient domain. Performance can also be enhanced by employing

the fast math functions, compatible with the multicore environment. We have clearly

outlined the core ideas behind the ISP variants. We have highlighted the differences

and similarities between them and other methods that cover the computational and

theoretical considerations that are essential before any of the approximation methods

becomes feasible for an efficient CME solution.
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Methods
To understand and predict the dynamics of the state-space response in biochemical

systems, we have developed an analytical numerical method called ISP. This method in-

tegrates the reactions’ propensities describing the Markovian processes through set of

nodes governing set of states of the system. The two variants of ISP, named LAS and

LOLAS, consist of several modules that incorporate sets of inputs and functions within

several compartments. Figure 15 depicts all the ISP modules. The integrated form is

discussed later in Tables 7 and 8.

These modules and sub-modules constitute the ISP method. They track key changes

in the components that follow changes in the reaction propensities by population and

activation of the species. The modules also describe the dynamics of the biochemical

system. The method also permits the time form quantification of state-space based on

the size and model dimension.

The ISP states expansion strategy is based on the Artificial Intelligence (AI) standards

[44–47], state-space search and relative successor (Suc) operator or function which per-

form operations on inputs. AI refers to the study of intelligent agents [48] of a system

that perceives and takes action to successfully achieve goals. Most of the problems can

be formulated as searches. They can be solved by reducing to one of searching a graph

or a tree. To use this approach, we must specify the successor operator which defines

the sequence of actions leading from initial to goal state at different time intervals, that

lead to the solution.

In terms of AI, we define the state-space as a set of states in the system we can

get to by applying Suc to explore new states of a biochemical network. Suc can be

applied explicitly, which maps the current state to the output states, or defined im-

plicitly, in that it acts on the current state and transforms it into a new state. In

the state-space graph for biochemical networks, we do not define the goal state (or

end state) explicitly. Instead, it is defined by Suc implicitly in intervals based on the

nature (fast, slow, reversible and irreversible) of the reactions in the system, the
Fig. 15 Comprehensive ISP method flow chart. A description of the modules (steps), sub-modules and the
list of components are discussed in SI 5
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duration of expansion and the introduction of stochasticity into the system. This

should systematically expand the state-space from XK at t to XK + 1 at t + 1 by

going through each node nJ at depth ƌl of the Markov chain graph to evaluate the

Markov processes; the expansion aims to occupy most of the probability mass

during [XK +XK + 1], and the Markov processes can be solved for probability distri-

bution at t + 1.

Where XJ is the finite set of states and Gmc = (XJ,Vμ) is the Markov chain graph on

XJ associated with A = [ai,j], given X0 as the initial state and XK as the set of the ex-

plored state, where X0 ∈XK then the implicit successor is defined as,

Suc→V μ XK tð Þð Þ: ð44Þ

Equation (44) gives the new states of the system, where, Vμ is the set of stoi-
chiometric vectors vμ function defining the state transitions from any present

state Xi ∈ XK to new state Xi
0∉XK . The sample space in the graph contains the

unique state of the system stored in a transition matrix, which satisfies Eq. (7)

conditions. This transition matrix is a compressed row format (CSR) [49, 50]

based on an index of rows ⟶ columns delimited by commas generating the dic-

tionary Dict of the model which defines the transitions between nodes in the

state-space and the mapping of states. Through Suc, we can know nothing more

than the neighbors (child nodes) of the current node (states reachable through a

single reaction). We then consider these neighbors (child nodes) as our only goal

states; there can be many in numbers. In a situation such as this, search trails

are referred to as blind or uninformed searches. In the following section, we dis-

cuss the infrastructure of an uninformed search, the type of data structure we will

be dealing with.

Infrastructure for searching

A data structure is required to retain the search track in the graph for problem state-

space expansion. For each node, Ni, of the tree, we create a structure consisting of five

elements:

(1) Ni.State: represents state Xi in the state-space corresponding to Ni;

(2) Ni.Parent: represents the parent node of the child node Ni;

(3) Ni.Depth: represents the depth of state state Xi;

(4) Ni.Cost: represents the cost ϾNi;N
0
i
of the transition from Ni to N

0
i in the state-

space;

(5) Ni.Action: represents the action applied via Suc on the parent node to reach Ni.

To explore new states in the system, we consider the initial state state(N1) = (X0, ƌl)
as input to the successor, Suc. Once the expansion is initiated, the Dict will temporarily

(in run-time) store the information for the transition from one node to another in the

state-space that binds to the reaction propensities aμ. This shift is denoted by an arrow

→, which shows multiple transitions from the parent nodes to the child nodes contain-

ing the end state. The set of nodes n J ¼ fN1;N2;…::N
S
~Ng is a data structure that

incorporates the Markov chain graph Gmc. We explore all the nodes that store the set
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of states XK as well as some additional information about the state, such as the depth

and transition cost, from one state to another in the system. If a set of states(nJ) =XJ,

then ϾNi;N
0
i
is the transition cost to reach stateðN 0

iÞ ¼ Xi
0 from state(N1) = X1 and

depth(nJ) = ƌl defines the depth of the set of nodes in Gmc, then the standard relation be-

tween a set of nodes and a set of states is given by nJ = (XJ, ƌl) or

and the standard relation between a single node and a single state is given by Ni = (Xi, ƌl)

or if the transition cost is considered.

For example, Fig (a) of Fig. 16 shows the Markov chain graph, Gmc, with nJ = 10, ƌl =
4. Its equivalent tree Ѭ is shown in Fig (b) of Fig. 16 with nJ = 15, ƌl = 5. In the tree

nodes N1 =N11 =N12 carries the same state, X1 at ƌl = 1, 2 and 3, respectively, where walk

N2→N11 and N7→N12 represent the backward reaction of the forward reaction repre-

sented by walk N1→N2 and N1→N7, respectively.

The set of nodes with states are represented as

ð45Þ

ð46Þ

In general, the transition cost, , is defined as:

ð47Þ

is the summation of all the propensities aμ of the RM reactions that take the

system to its final state. For example, to expand to state(N10) = X10 of Fig (a) of

Fig. 16 is given by

If these are the possible paths for the expansion that expands XK at every iteration

then will be defined by the only path that has the lowest PðtÞðX0
K Þ. This

can be generalized as follows:

ð48Þ

which means that in order to minimize the expansion cost for the optimal do-

main XK at least one path should have states with high probabilities for XK. It is

best to follow the path with , which leaks the minimum probabilities

of the system.



Fig. 16 A Markov chain graph and its equivalent tree. (a) depicts a Markov chain graph (Gmc) with nJ nodes
carrying XJ states. The arcs show transitions between the nodes. Together, they form a Markovian process.
(b) depicts an equivalent tree Ѭ of Gmc as DAG representing the state-space of the system
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For large biochemical models, there exist infinite cases when the node is unreachable

from the initial or another node; such cases are ignored when

because some probabilities are always dropped in the ap-

proximation. Therefore, as defined by the lowest PðtÞðX0
K Þ is strictly limited

to,

ð49Þ

Upon expanding the root node N1, we expand the child nodes carrying new states,

and then the child-child nodes are explored. The walk between nodes Ni →
V μðXK ðtÞÞ

Ni + 1

is defined by dictionary Dict. This represents the occurrence of RM reactions through

M elementary channels. For Fig (a) of Fig. 16, the typical form of dictionary is given

below:

D ¼ ð½1→2; 7�; 2→1; 3; 5½ �; 3→4; 5½ �; 4→6½ �; 5→6½ �; 6→8½ �;
7→1; 8; 9½ �; 8→10½ �; 9→Nil½ �; 10→9½ �Þ;

ð50Þ

and is indexed with the propensities, [ai,j], for all the RM reactions. As the propen-
sities are changing by Δai,j, we consider the recent values of ai,j in every iteration of ISP

that corresponds to the reactions involved. To make the feasible for any

type of biochemical system (stiff, non-stiff) to capture probable states, it is important to

consider the expansion cost for small tstep (time step). This may be because there are

some cases when to reach two or more different child nodes are equal

or very close to each other. In addition, we intend to expand the state-space in the dir-

ection of carrying states with high probability mass. To achieve this, we treat or convert

our uninformed search to an informed search infrastructure at run-time to have intui-

tive knowledge beyond our reach. Figure 17 shows the limits of our visibility in the

state-space.

Consequently, it is important to track the reactions which have high propensity func-

tion values. As it is difficult to determine the direction of the expansion, in the follow-

ing section (a), we develop the post successor function on Bayes’ theorem [31, 32] to

prioritize the expansion direction based only on those reactions that can be triggered at



Fig. 17 Limits of our visibility in the state-space before expansion. Visualized using a Markov chain graph,
where is the initial node and are nodes that are directly reachable from the initial node when

exactly one RM occurs. When a further RM occur, the system jumps to other nodes
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a particular time point. In sections (b) and (c), we outline the direction strategy with

the depth and bounds of the expansion.
Bayesian likelihood node projection function

Bayesian methods [32, 51] are based on the principle of linking prior probability with

posterior probability through Bayes’ theorem [31, 32]. Posterior probability is the im-

proved form of prior probability, via the likelihood of finding factual support for a valid

fundamental hypothesis. Therefore, we employ the standards of Bayes’ theorem to de-

velop a function targeted to ensure the quality of the expansion based on RM reactions

active in the network at any particular moment. For a concise definition for the pur-

pose of fundamentals, refer to SI 6.

To improve the quality of expansion through a projection function, one may find

it useful to remove the set of states which have low probabilities before calculating

Eq. (3). However, removing these states will compromise accuracy as the step error

will increase at every t. Moreover, removing these probabilities will greatly affect

the solution, as defined at tf (at which a solution is required), for large dimension

systems which have large state-spaces, as the step error will be much higher due

to dropping probabilities without solving Eq. (3). In large systems, any species may

change its behavior after a certain number of firing of reactions triggering inactive

reactions in the network that will affect the probabilities of the states. If a change

in behavior increases the probabilities of certain states, then removing them in an

earlier stage is not wise.

Through the Bayesian Likelihood Node Projection (BLNP) function, we seek to

predict the posterior probability based on the parent state’s probability and calcu-

late the likelihood of the occurrence of reactions that will take the system from

the present state to the future state. Through BLNP, we can capture knowledge

about the system that will help us to make better predictions about the future

state. We are also able to ensure the accuracy of the solution and an optimal

domain.
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It is important to decide on the direction of the expansion when choosing the

future state of the system, as any reaction can occur and take the system to any

new state. To understand this situation more clearly on a node level, we assume

a Markov chain graph as shown in Fig. 18 of this system which has almost the

same number of species count. In Fig. 19, the expansion is at intermediate pos-

ition, as the initial state state(N0) = X0 is already expanded and now the expan-

sion of state(N2) = X2 can be undertaken. To calculate the likelihood of the

occurrence of reactions R1, R2, R5, we consider the propensities ai, j as a param-

eter. Δai,j depends on the kinetic parameter of the reaction. To assign weight to

our belief, we deduce a function that will calculate the probability of reactions

occurring and prioritize the expansion in order from reactions resulting in states

with high probabilities to reaction giving states with low probabilities. It is im-

portant to note that none of the probabilities will be removed before the calcula-

tion of Eq. (5). With this function, the likelihood of occurrence of RM can be

computed.

We consider each node as a junction of the prior reactions fR0
1……:R

0
Mg with propen-

sities fa0
1;N……:a

0
N 0Ng having prior likelihood values fb0

1;N……:b
0

N
0
;N
g and future reac-

tions {R1……. RM} with propensities {a1, N′……. aN, N′} having likelihood values {b1, N′
……. bN, N′}, as given in Fig. 18.

To calculate the likelihood of the reactions, it is necessary to have prior information

about the occurrence of reactions. If the expansion is to be done at the initial node sta-

te(N0) = X0 (at level 1), then the prior likelihood value b
0
N ;N 0 is considered as the initial

probability or as ≈1. Once the initial node has been explored, we can calculate the like-

lihood of the reactions inductively. To calculate the probabilities b1, N′, …. , bN, N′ of

the occurrence of R1, …. , RM, we first calculate the weighted probabilities PN, 1(ω), …

… .,PN ;N
0 ðωÞ of a system leaving any state by:
Fig. 18 Current state (N2) = X2, and future states (N3, 4, 5) = (X3, 4, 5, dl = 3) with corresponding reactions R1, R2,
R5 and assumed propensities a2, 3 = 38, a2, 4 = 39, a2, 5 = 40, respectively, at any time t, given b0, 2 = 0.4871,
b6, 2 = 0.5128



Fig. 19 Node N as a junction of forward and backward reactions RM, where a
0
1;N0 , … .,a

0
N;N0 are propensities

of the prior reactions. b
0
1;N , … .,b

0
N0 ;N are the likelihood of the prior reactions
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ð51Þ

and multiply it with the prior probability b
0
1;N……:b

0

N
0
;N

of the system. This will calcu-

late the likelihood inductively, as RM is responsible for transforming the system to the

present state(Ni) = Xi at t, leading to a function,

b NN1;::NMjb0

1;N…:N
0
;N

	 

¼ aμ X − vμ

� �
XM
μ¼1

aμ X − vμ
� � �b

0

N
0
;N

X − vμ
� �0 ð52Þ

where,

PN ;1…:N ;N
0 ωð Þ ¼ aμ X − vμ

� �
XM
μ¼1

aμ X − vμ
� � ; ð53Þ

b NN1;::NMjb0

1;N…:N
0
;N

	 

¼ PN ;1…:N ;N

0 ωð Þ�b0

N
0
;N

X − vμ
� �0

: ð54Þ

Once bðNN1;::NMjb0

1;N…:N
0
;N
Þ is calculated for all the adjacent nodes, the values are

arranged in descending order. Every value is bound to one reaction and represents

the likelihood of the occurrence of the reaction that takes the system from the

present node to the child nodes. Based on likelihood values (highest to lowest), the

corresponding reactions are considered one by one and labelled as true events for

expansion. For example, if a system has R1, R2, R3 reactions that bound to BLNP

likelihood values in order from highest to lowest, respectively, then three events

take the system to new state. When R1 is considered for expansion, R2 and R3 are

labeled false events and R1 as the true event. When the second highest BLNP like-

lihood value is considered, which is for R2, then it is labeled the true event and

the others, R1, R3, are labeled false events. Similarly, the last and lowest BLNP like-

lihood value is for R3, which is labeled as the true event and the others as false

events. All states are added in the domain in order from the 1st true event to the
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3rd true event. The Eq. (54) of probabilities bðNN1;::NMjb0

1;N…:N
0
;N
Þ is what we call a

BLNP function.

Figure 18 shows the Markov chain tree for selection present at level 2 (assuming that

the initial node is already expanded). Here we calculate the weighted probability of a

system leaving state(N2) = X2 by:

P2;3 ωð Þ ¼ aμ X − vμ
� �

X3
μ¼1

aμ X − vμ
� � ¼ 0:3247

similarly, P2, 4(ω) = 0.3333 and P2, 5(ω) = 0.3418.
At level 2, the conditional probability of the occurrence of reaction R1, given the

probability of occurrence of reaction R1 at level 1, is given by:

b N2;3jb0
0;2

	 

¼ aμ X − vμ

� �
X3
μ¼1

aμ X − vμ
� � �b

0
0;2 x − vμ
� �0

;

Similarly, the occurrence of reaction R1 at level 2, given the probability of occurrence

of reaction R6 at level 1, is given by:

b N2;3jb0
6;2

	 

¼ aμ X − vμ

� �
X3
μ¼1

aμ X − vμ
� � �b

0
6;2 x − vμ
� �0

:

If at level 1, state(N1) = X1 and at level 2, state(N2) = X2 are explored through R1 then
we say that this is a true event and temporarily consider other events false events with

respect to the other reactions. Such a condition holds true for the other two cases,

when, at level 1, state(N1) = X1 is explored through R1 followed by an exploration of

state(N2) = X2 either by R2 or R5. Given b
0
0;2ðX − vμÞ

0
and b

0
6;2ðX − vμÞ

0
, we calculate the

likelihood of all the RM events, as given in Table 6. The likelihood values of future reac-

tions cannot be equal, as they are based on the probabilities of occurrence of prior

reactions.

From Fig. 18 and Table 6, we can infer, based on the prior reactions for RM, where

M = {1, 6} that:
Table 6 Events with the likelihood of future reactions. Here true events define the expansion of
nodes

bN;N0 N0, 2 N6, 2 bN, N′(Value) Rnext

bðN2;3jb0
0;2Þ True False 0.1581 R1, 1

bðN2;3jb0
6;2Þ False True 0.1665 R6, 1

bðN2;4jb0
0;2Þ True False 0.1623 R1, 2

bðN2;4jb0
6;2Þ False True 0.1709 R6, 2

bðN2;5jb0
0;2Þ True False 0.1664 R1, 5

bðN2;5jb0
6;2Þ False True 0.1752 R6, 5
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Case 1 (R1): At level 2, if the prior reaction is R1 and holds a true event for N0→N2

then:

b N2;5jb0
0;2

	 

> b N2;4jb0

0;2

	 

> b N2;3jb0

0;2

	 


as per bN, N′ the likelihood of occurrence of reactions will be in the order R5 > R2 > R1.
Case 2 (R6): At level 2, if the prior reaction is R6 and holds a true event for N6→N2

then

b N2;5jb0
6;2

	 

> b N2;4jb0

6;2

	 

> b N2;3jb0

6;2

	 


as per bN, N′ the likelihood of occurrence of reactions will be in the order R5 > R2 > R1.

There will be M number of cases (equal to elementary chemical reaction channels) if

there are R
0
M prior reactions in the system that bring the system to the current node. The

likelihood value will change based on b
0

N
0
;N
ðX − vμÞ0 . The BLNP function cannot be used

standalone for expansion because it only assigns weightage to direction for expansion. In

the Intelligent state projection section, we have derived the condition for our expansion

strategies to work with the Markov chain graph state-space and defined the criteria for

the formation of bounds (domain formed at anytime t) with time. The BLNP function

(with expansion strategies), will choose the probable states in large biochemical systems

where it is important to capture the moments at time t that define a system’s behavior.

BLNP will be useful for identifying the most active reactions in the system while guiding

the expansion towards the set of states with high probability mass.

Latitudinal search strategy

We delve deeper into the first subroutine of the ISP called the Intelligent State Projec-

tion Latitudinal Search (ISP LAS). Figure 20 manifests the infrastructure of the LAS

strategy, showing Gmc, the queue and the domain. LAS’ queue data structure is based

on the FIFO (First In, First Out) method. In this method, the oldest state added to the

queue is considered first. We define and exploit the direction of expansion step-by-step

based on intuitive knowledge (as discussed in section (a)), gained from the probability

of future reaction events. We follow the conditions (as discussed in the results section).
Fig. 20 Infrastructure of the Latitudinal Search strategy, showing Gmc, the queue and the domain
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Furthermore, we show step-by-step how the nodes are explored, and states updated in

the domain in Itr iterations.

At level ƌl the states are expanded only after all the states at level ƌl − 1 have

been expanded; that is, the search is undertaken level-by-level and depth ƌl increases
in every Itr iteration. In the case of networks with reversible reactions, the ISP condi-

tion will prevent LAS from returning to the state it came from and also prevent transi-

tions containing cycles resulting in DAG with no repetition of any state whatsoever;

however, changes in propensities ai,j are validated. Verifying the explored states in XK

in iterations ensures that the algorithm completes and that a deadlock in the state tran-

sition cycles cannot occur.

The time complexity of LAS depends on the average transitioning factor Ŧ and depth

ƌl and is given by (see SI 7 for detailed discussion),

ð55Þ

where,

ð56Þ

For the nodes at the deepest level ƌl, all walks are valid except for the very last

node which stores the end state of the system. Therefore, once the end state is found,

based on Eq. (20), LAS will zip X
0
K , further leaking the highest probabilities to XK

for the solution of Eq. (3) which includes the end state of the system. As no state

is ever repeated in the domain, space complexity will decrease when the set of

states X
0
K is bunked at t′seconds in iterations if Eqs. (19) and (20) are satisfied. In

Eq. (13), PðtÞðX0
K Þ is computed according to Eq. (5) (the exponential form of the

CME), where τm is the tolerance and I is the identity matrix. Due to this stepping

bunking of X
0
K from XK, the time complexity O(Ŧd + 1) reduces to

, where |XJ| is the size of the state-space [13]. In contrast,

the expansion of new nodes carrying similar states tend to increase

however, repetitive states are ignored.

If the input τm is too small, the algorithm automatically uses the default value of

sqrt(eps). Here sqrt is the square root and eps is the default value of the epsilon on ma-

chine. The expansion of child nodes containing state(Ni) = Xi stops if the condition of

Eq. (32) is not satisfied. If the criterion of slow and fast reaction [12] is considered, then

the condition of Eq. (31) or (32) is used, depending on the number of RM(sr) and RM(fs).

Table 7 shows the steps of the LAS method with the embedded BLNP function, from

steps 4a to 5b.

LAS will be optimal if the transitions between all the states are uniform; that is,

all the RM reactions have the same propensity values. However, in real biochemical

models, this condition is unusual. To see a step-by-step demonstration of the

ISP LAS algorithm on a toy model, refer to SI 2. We now turn our attention to

the second variant of the ISP. We apply the method to a toy model to see how it

differs from LAS.



Table 7 Steps of ISP latitudinal search (LAS) algorithm

Step 0: Inputs: Initial node N0, aμ, vμ, tol τm, tf, tstep
Initialize: Boundlower ¼ XK ; b

0
Ni ;NðX − vμÞ

0 ¼ PðtÞðX0Þ;A ¼ ½�
Step 1: Start from parent node Ni = (X0, ƌl) ← Current State of the system at td,

Step 2: Flag the current node as explored, update A and add the state Xi in the domain so that; if 1 − IT exp
(t. Aj). P

(t)(X0) ≥ τm(leak) holds true go to Step 3; else stop the algorithm

Step 3: Sort exp(t. Aj). P
(t)(X0) and shift the set of states in X

0
K at t

0
having smallest probabilities, if

P(t)(XK)≥ τm(leak) > PðtÞðX0
K Þ and at td update XK←XK − X

0
K

Step
4a:

Extend the graph dictionary Dict by vμ(Xi(t)) by 1 level to check all the nodes nj = (Xj, ƌl , ϾNi ;N
0
i
ð minÞÞ

adjacent to Ni: Boundupper ← RM(Boundlower) reachable by exactly RM reactions (from fast to slow)
having ϾNi ;N

0
i
ð minÞ. If nK = (XK, ƌl, ϾNi ;N

0
i
ð minÞÞ be the set of adjacent nodes such that nK ∈ nJ then

go to next Step,

Step
4b:

Compute the BLNP function for nK∈ Boundupper:
bðNN1;::NMjb0

1;N:…N
0
N
Þ ¼ PN;1:…N;N0 ðωÞ�b0

N
0
;N
ðX − viÞ

0

Step
5a:

If nK = (XK, ƌl, ϾNi ;N
0
i
ð minÞÞ∈domain, then update the values of the set of states XK present in domain

and take domain ← domainprevious ∪ domain and go back to Step 1; else If nK = (XK, ƌl, ϾNi ;N
0
i
ð minÞÞ∉

domain, then add it to the queue in order, according to reachability and go to the next Step,

Step
5b:

sort bðNN1;::NMjb0
N1;::NMÞ in descending order and update queue←ðqueue; bðNN1;::NMjb0

1;N:…N
0
;N
ÞÞ

Step 6: Pull out the nodes nK = (XK, ƌl, ϾNi ;N
0
i
ð minÞÞ from the queue in order and add the set of states XK in

the domain as domain ← domain + XK and take domainprevious ∪ domain, then go back to Step 1,

Output: domain with probable states
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Longitudinal-latitudinal search strategy

Here, we delve deeper into the second sub-routine of ISP called the Intelligent State Pro-

jection Longitudinal Latitudinal Search (ISP LOLAS). Figure 21 visually represents the in-

frastructure of the LOLAS strategy, showing the Gmc, stack and the domain. The stack

data structure of LOLAS is based on the LIFO (Last In, First Out) method. In this method,

the newest state added to the stack is considered first. In particular, we define the bound

limit and exploit the direction of the expansion step-by-step based on intuitive knowledge

(as discussed in section (a)), gained from the probability of future reaction events and fol-

low the conditions (as discussed in the Results section). Furthermore, we show step-by-

step how nodes carrying states are explored in a bidirectional way and how these states

were updated in the domain in Itr iterations.

The states at level ƌl are expanded only after the neighboring states at level ƌl − 1 have

been expanded for RM: that is, the search is undertaken level-by-level. Depth ƌl increases
Fig. 21 Infrastructure of the Longitudinal Latitudinal Search strategy, showing the Gmc, the stack and the domain
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in the same Itr iteration up to a certain ƃlimit (bound limit). The expansion limit is set by

ƃlimit, ƌstep (depth step). In contrast to LAS, it is not set by depth ƌl,. The LOLAS search

updates the dictionary Dict of Gmc by the stoichiometric vector function, vμ(X(t)) on state

at level ƌl to explore the child nodes carrying states on levels ƌl + 1, ƌl + 2 … .. ƌl + l,

where l = {1, 2…. ∞} and then retracts to level ƌl at which new state exploration decisions

can be made. In the case of networks with reversible reactions, the ISP conditions will pre-

vent LOLAS from returning to the state it came from and prevent transitions containing

cycles resulting in DAG with no repetition of any state whatsoever; however, the change

in propensities ai, j is validated. Verifying the explored states in XK in iterations ensures

that the algorithm completes and that deadlocks in the state transition cycles cannot occur.

In the absence of ƃlimit, the algorithm will not retract. It will explore longitudinally by

tracking only one RM reaction. In addition, the algorithm will not terminate with an opti-

mal order domain carrying a maximum probability mass. This would lead to an increase in

the approximation error. Instead, it will terminate when carrying only those set of states as

a result of tracking only a few RM, creating an insufficient domain for approximation.

Therefore, by default, the value of ƃlimit ≥ 1 is kept for large systems and can be increased

depending upon the model’s dimension and the availability of the testing environment’s

random access memory (RAM). LOLAS’ worst-case time complexity depends on the aver-

age transitioning factor Ŧ. Depth ƌl is given by (see SI 7 for a detailed discussion):

ð57Þ
Table 8 Steps of ISP longitudinal latitudinal search (LOLAS) algorithm

Step 0: Inputs: Initial node N0, ƌstep, ƃlimit, aμ, vμ, tol τm, tf, tstep
Initialize: Boundlower ¼ XK ;b

0
Ni ;NðX − vμÞ

0 ¼ PðtÞðX0Þ;A ¼ ½�
Step 1: Initialize count(ƃlimit) and start from parent node Ni = (X0, ƌl) ← Current state of the system at td,

Step 2: Flag the current node as explored, update A and add the state Xi in the domain so that;
if 1 − IT exp (t. Aj). P

(t)(X0) ≥ τm(leak) holds true go to Step 3; else stop the algorithm.

Step 3: Sort exp(t. Aj). P
(t)(X0) and shift the set of states in X

0
K at t

0
having smallest probabilities,

if P(t)(XK)≥ τm(leak) > PðtÞðX0
K Þ and at td update XK←XK − X

0
K

Step
4a:

For ƌstep, extend the graph dictionary Dict by vμ(Xi(t)) for count(ƃlimit) to check all the nodes
nj = (Xj, ƌl , ϾNi ;N

0
i
ð minÞÞ adjacent to Ni: Boundupper ← RM(Boundlower) reachable by exactly

RM reactions (from fast to slow) having ϾNi ;N
0
i
ð minÞ. If nK = (XK, ƌl , ϾNi ;N

0
i
ð minÞÞ be the set

of adjacent nodes such that nK ∈ nJ, then go to the next Step,

Step
4b:

Compute the BLNP function for nK∈ Boundupper:
bðNN1;::NMjb0

1;N:…N
0
N
Þ ¼ PN;1:…N;N0 ðωÞ�b0

N
0
;N
ðX − viÞ

0

Step
5a:

If nK = (XK, ƌl , ϾNi ;N
0
i
ð minÞÞ∈domain, then update the values of the set of states XK

present in domain and take domain ← domainprevious ∪ domain and go back to Step 1; else If
nK = (XK, ƌl , ϾNi ;N

0
i
ð minÞÞ∉domain, then add it to the stack in order, according to reachability

and go to next Step,

Step
5b:

sort bðNN1;::NMjb0
N1;::NMÞ in descending order and update stack←ðstack; bðNN1;::NMjb0

1;N:…N
0
;N
ÞÞ

Step 6: Pop of the top nodes nK = (XK, ƌl , ϾNi ;N
0
i
ð minÞÞ from the stack and add the set of states XK in the

domain as domain ← domain + XK and take domainprevious ∪ domain, and go to next Step,

Step 7: If count(ƃlimit) = ƃlimit creates Boundupper = {domain} up to ƃlimit then label Boundlower ← Boundupper
and go back to Step 1; else if count(ƃlimit) < ƃlimit creates {domain} up to count(ƃlimit) then go to next
Step,

Step 8: count(ƃlimit)← count(ƃlimit) + 1 and go to Step 4a

Output: domain with probable states
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LOLAS only stores the transition path to the end state besides the neighbors of each

relevant node in the exploration. Once all descendants are updated with the relevant

propensities in the projection, it discards the node from the domain (explored), making

it ready for the approximation. LOLAS first considers the R1 reaction and the corre-

sponding stoichiometric vector v1 of the system, to explore all the neighboring states

up to bound limit ƃlimit. It then considers R2, R3, … ..,RM for the same ƃlimit and the cor-

responding v2, v3, … .. , vM to explore the states. For count(ƃlimit), LOLAS retracts to the

R1 reaction and explores the new neighboring states longitudinally. It then reconsiders R2,

R3, … .. , RM to explore the other states in a similar fashion. Provided with this reaction

tracking pattern, the BLNP function alters this trend and guides this tracking by consider-

ing reactions in a different order based on their propensities and the number of probable

states of the system.

If the system is ending in a set of state XK carried by nK at tf, then LOLAS will ex-

plore the states efficiently, as long as count(ƃlimit) ≤ ƃlimit, otherwise count(ƃlimit) is reset

for further expansion. Choosing the appropriate ƌlimit and ƃstep depends on the type of bio-

chemical reaction network and the computing configuration. Starting with a depth 1→ ƃli-
mit, LOLAS explores all the states until they return null. It then resets the count(ƃlimit) and

retracts to explore again. In most cases, fewer states are positioned at the lower level.

They increase at a higher level when the number of active RM reactions increases, so

retracting provides the ability to track all the reactions simultaneously. The nature of the

LOLAS expansion means that it is able to find more states at any time t compared to LAS.

It is also able to find them at the deepest level of the graph. The states at depth ƌl are ex-

plored once, the states at depth ƌl − 1 are explored twice, states at depth ƌl − 2 are explored

three times and so on, until it has explored all the system’s states. If the input τm is too

small, the algorithm automatically uses the default value of sqrt(eps). Here sqrt is the

square root and eps is the default value of the epsilon on machine. The expansion of the

child nodes containing state(Ni) = Xi stops if the condition of Eq. (32) is not satisfied. If

the slow and fast [12] reaction criterion is considered, then either Eq. (31) or (32) condi-

tions are used depending on the number of RM(sr) and RM(fs). Table 8 shows the LOLAS

method, with an embedded BLNP function from steps 4a to 5b.

Refer to SI 3 for the step-by-step demonstration of the ISP LOLAS algorithm, where

we assume the same toy model system.
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Abbreviations
ai,j or aμ: Propensity of chemical reaction; Δai,j: Change in propensity; a

0
1;N0 , … .,a

0
N;N0 : Propensities of the prior

reactions; afr: Probability of a jump process from state Xi − 1 to Xi per unit time; arv: Probability of a jump process from
state Xi to Xi − 1 per unit time; A or Ai,j: Defines the transition between i, j and its weightage; ƃlimit: Exploration bound

limit in LOLAS; b
0

N
0
;N
ðX − vμÞ0 : Prior Bayesian likelihood values {b

0
1;N ;……b

0

N
0
;N
}; bðNN1;::NMjb0

1;N…:N
0
;N
Þ: Represents

Bayesian likelihood value given prior b
0

N
0
;N
; Boundlower or BoundL: Define the set of states {X1, 2……S, b1, 2, 3, …. limit} at

ƃlimit already present in the domain for current iteration; Boundupper or BoundU: Define the set of states {X1, 2……S, b1, 2,

3, …. limit} at ƃlimit added in the domain at the end of current iteration; c, c1, c2: Constants; : Total transition/

walk cost from node Ni to N
0
i ; Dict: Dictionary of the model having transition records; ƌl: Exploration depth limit in LAS;

ƌstep: Exploration depth step in ISP; dim: Dimension of sub-matrix in Sliding Windows Method; domain: Defines the set
of states of domain in current iteration that forms Boundupper; domainprevious: Defines the set of states of domain in
previous iteration that forms Boundlower; Dj: Diagonal matrix whose diagonal entries are one; e: Markov chain tree
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edge, representing walk from Ni to N
0
i ; e1: First unit basis vector in Krylov Subspace Method; error: Represents error

value in calculation; exp(): Exponential function; eps: Epsilon; Έy: Denote the sequence of events Έ1, Έ2… .,;
f(y): Represents the positive real value function of y; Gmc: Represents graph associated with the Markov chain tree; Hdim

: Upper matrix (Hessenberg Matrix); IT: Identity matrix I = diag (1, 1,…..1)T; Itr: Denote the iterations in ISP; kM: Kinetic

parameter of the chemical reaction where M = {1, 2…. ∞}; l: Used as subscript for length of depth, for example ƌl;
nJ: Set of nodes as {N1;N2;……:N

S
~N
}; nK: Set of nodes carrying set of XK at any iteration; n

0
K : Set of nodes carrying set

of X
0
K at any iteration; N0: Root node carrying initial state X0; Ni or Ni: Any node; ~N or fS1;……:S~Ng: Number of

different species; num1, num2: Random number generated by uniform random number generator (URN); Pðt0ÞðX0Þ
: Initial probability at t = 0; P(t)(XK): Probability of set of states at time t; PN;N0 ðωÞ: Weighted probability of transition

from Ni to N
0
i ; RM: M elementary chemical reaction channels {R1, R2……. RM}; R

0
M : Prior M elementary chemical reaction

channels fR0
1; R

0
2……:R

0
Mg; RM(fs): M elementary chemical reaction channels of fast reactions; RM(sr): M elementary

chemical reaction channels of fast reactions; tract: Number of retractions in LOLAS; S
~N : Approximate number of states;

Ŝ: Number of stages in expansion {1, 2,…….}; SI: Supporting information; Suc: Implicit successor or operator;
sqrt: Square root; t0: Time at which initial conditions of system are defined; t′: Time at which X

0
K is dropped from the

domain; t: Any random time in seconds; td: Time at which XK is updated in the iteration; tf: Final time at which
solution is required; Ŧ: Transitioning factor; UXi ;Xi

0 : Set of all arborescences; ∣U∣: Define the cardinality of any set;

v: Krylov Sub-space method - A column vector of a length equal to the number of different species present in the
system; vμ or vM: Stoichiometric vector represents the change in the molecular population of the chemical species by
the occurrence of one RM reaction. It also defines the transition from state Xi to Xi

0 in the Markov chain tree; vμ(X(t)) or
vM(X(t)): Stoichiometric vector function, where X is any random state; vμ or vM: Matrix of all the Stoichiometric vectors
[v1; v2;……vμ]; W

y: Probability that is computed inductively by W(0) = P(0) in uniformization method; x1;……:x~N

: Number of counts of different species; X or Xi or Xi
0 : Any random state; X0: Initial state or initial condition; XJ: Ordered

set of possible states fX1;……:X
S
~N g of the system; XK: Set of new states or domain at any iteration; X

0
K : Set of states

dropped from domain at t′ at any iteration; y, y0: Positive integers; Yy: Poisson process given that 0 < y≤M; Z: Number
of bounds in ISP; τm or tolm: Tolerance value; τm(leak): PðtÞðX0

K Þ leakage point; Ӕ: Approximate solution of the CME;
ω: Weight or cost of single transition from Xi to Xi

0 . It is equivalent to ai,j; Ѫc: Markov chain representing biochemical

process; Ѭ: Markov chain tree with nJ; λt: Uniformization rate; : Number of nonzero elements in Pj; φ: Sample space;

Ω: Asymptotic lower bound; O: Asymptotic upper bound; Θ: Asymptotic tight bound; {1, 2…….K}: Indexing of set of
states and set of nodes; μ = {1, 2,….M}: Channels of chemical reaction propensity
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