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ABSTRACT

Real-time monitoring of drinking water in a water distribution system (WDS) can e�ec-

tively warn and reduce safety risks. One of the challenges is to identify the contamination

source through these observed data due to the real-time, non-uniqueness, and large scale

characteristics. To address the real-time and non-uniqueness challenges, we propose an

adaptive multi-population evolutionary optimization algorithm to determine the real-time

characteristics of contamination sources, where each population aims to locate and track

a di�erent global optimum. The algorithm adaptively adjusts the number of populations

using a feed-back learning mechanism. To e�ectively locate an optimal solution for a pop-

ulation, a co-evolutionary strategy is used to identify the location and the injection pro�le

separately. Experimental results on three WDS networks show that the proposed algorithm

is competitive in comparison with three other state-of-the-art evolutionary algorithms.

Keywords: Multi-population adaptation, dynamic bilevel optimization, evolutionary com-

putation, contamination source identi�cation

INTRODUCTION1

Water distribution systems (WDSs) are highly susceptible to various threat attempts, in-2

cluding uncertain natural disasters, deliberate destruction, and system failures. For example,3

a contamination source injected into a WDS will spread through the system rapidly and ex-4

pose the people to health risks. Detection of the contamination in a WDS using sensors could5

yield useful observations to identify and locate such contamination threat events. Based on6

these observations, we can deduce the location, initiation time, and historical injection rate7

by solving an inverse problem with an optimization algorithm given the observation data8

under a water distribution simulation model. Because of the rapid di�usion of contaminants9

in a WDS, we should identify the source characterizations quickly and accurately.10

The problem is challenging due to the real-time, non-uniqueness/multi-modal, large-11

scale, and expensive characteristics. The real-time property requires the search to be data-12

driven, i.e., the search starts immediately after the contamination is detected at any sensor,13
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and continuously adapts to changes when new observation data come. The non-uniqueness14

means that more than one solutions conform to the observation data, which requires the15

algorithm to have the capability of searching more than one solution simultaneously. The16

large scale property means that the search space will increase exponentially due to the17

increase of the number of dimensions of the vector of the injection rate as observation data18

increase. The problem will become expensive to simulate when the scale of the network19

increases. There are mainly three kinds of methods for the identi�cation of contamination20

source in WDSs, including the particle inversion method (Zierolf et al. 1998; Laird et al.21

2005; Shang et al. 2002; Costa et al. 2013), the machine learning method (Perelman and22

Ostfeld 2013; Taormina and Galelli 2018; Huang and Mcbean 2009; Yang et al. 2011), and23

the simulation-optimization method (Guan et al. 2006; Liu et al. 2008; Seth et al. 2016; Hu24

et al. 2015). The �rst two methods can only deduce the location of the contamination source,25

while the third method can deduce all the information of a contamination event. Therefore,26

the simulation-optimization method is adopted in this paper.27

To address the real-time and non-uniqueness challenges, we propose a new adaptive multi-28

population evolutionary algorithm where the water distribution network model is coupled29

directly with a dynamic bilevel optimization model to evaluate solutions as new observa-30

tion data come. To address the non-uniqueness di�culty, we incorporate a multi-population31

method where each population aims to locate a di�erent solution, and the number of pop-32

ulations is adaptively adjusted to adapt to the increase of observation data by a feed-back33

learning mechanism and hence to identify alternative solutions as many as possible. The34

population diversity across all network nodes will be adaptively increased according to the35

evolving state of populations measured by a node covering ratio. Thus, at any stage of the36

observation event, possible solutions that best conform to the observations are identi�ed.37

In order to speed up the search for a possible solution, in each population, a cooperative38

co-evolutionary strategy is proposed to locate the location and historical injection rate sep-39

arately. Experiments in this paper are based on an EPANET 2.0 model (Rossman 2000) of40
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the water distribution network. Experimental results on three di�erent networks show that41

the proposed algorithm outperforms several other peer algorithms.42

The rest of this paper is organized as follows. Section 2 brie�y reviews the related43

work. Section 3 presents a simulation-optimization model for the problem and introduces44

our proposed method. Section 4 presents experimental results on three networks. Finally,45

conclusions and future work are given in Section 5.46

RELATED WORK47

In this section, we focus on the review of simulation-optimization methods, which can be48

classi�ed into three categories according to the optimization method used. These algorithms49

include the gradient descent (GD) method, the particle swarm optimization (PSO) , and the50

genetic algorithm (GA).51

The basic idea of a GD method is to use the gradient direction of the current position as52

the search direction. Guan et al. (2006) adopted the gradient descent method as the search53

operator to solve the problem of locating pipe network contamination sources based on the54

simulation-optimization model. Xin et al. (2013) got the locally optimal solution according55

to the direction of gradient descent search. In this method, when approaching the optimal56

value, the convergence speed will gradually slow down, that is, the closer to the objective57

value, the step length will be smaller, and even causes a zigzag drop.58

The genetic algorithm is based on the Darwinian evolution of �survival of the �ttest�. In59

the literature, several papers (Preis and Ostfeld 2008; Preis and Ostfeld 2006; Sreepathi et al.60

2007) used GAs to solve the problem and achieved promising results. Cristo et al. (2008),61

�rstly established the potential node-set representing the solution of pollution sources � water62

contamination matrix, then used a GA to search the optimal solution. Yan et al. (2016) used63

a hybrid encoding method to code the contaminant source identi�cation problem according64

to the properties of a variable, and combined the crossover and mutation operations. Sankary65

et al. (2018) proposed a framework to obtain monitoring data by placing mobile sensors using66

an adaptive GA.67
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The PSO, which is a swarm intelligence method, originated from the study of the �ocking68

behavior of birds simulating their behavior of �ying and foraging in groups. Guneshwor et69

al. (2018) proposed a simulation-optimization model by using a radial point collocation70

method and the PSO to identify the unknown groundwater contaminant sources. In this71

method, due to the lack of dynamic adjustment of particle velocity, it is easy to fall into72

local optima. Besides the above search algorithms, an evolution strategy algorithm based on73

a Gaussian mutation operator (GD-ES) was proposed to generate new individuals (Zechman74

and Ranjithan 2009), and an elite graduation selection strategy was introduced to determine75

the o�spring.76

From 2008 to 2011, Liu et al. (2008, 2010, 2011) proposed a multi-population method77

with GA, which uses an adaptive dynamic optimization technology (ADOT) to make a78

real-time response to injection events to locate contamination sources. To overcome the79

premature convergence issue, the algorithm (Liu and Ranjithan 2010) starts with a large80

number of randomly generated populations and removes populations that are close to each81

other during the optimization process. A diversity-driven mechanism is used to increase the82

population diversity for the survival selection in the later evolution stage. The algorithm83

achieves a great performance in comparison with other optimization algorithms, but it still84

lacks the mechanism to search the spaces that are not covered by any population at the85

global level. The number of populations only decreases as time goes on. This issue will be86

addressed in this paper.87

In addition to the literature on contamination source identi�cation described above, there88

are some important studies on the use of evolutionary algorithms to determine the optimal89

locations of sensors and the developing an early warning system. Ostfeld and Salomons90

(2004) presented a method for �nding the optimal layout of an early warning detection91

system. In the next year, Ostfeld and Salomons (2005)extended their previous work by92

a introducing uncertainties to the demands and injected contamination events. Berry at93

al. (2006) introduced a mixed-integer programming method for sensor placement. In the94
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same year, Propato (2006)formulated a mixed-integer linear programming model to identify95

optimal sensor locations for early warning against accidental and intentional contaminations.96

Oliker and Ostfeld (2014) improved the event-detection ability by including the support97

vector machine for the detection of outliers and a multivariate analysis for examining the98

relationship between water-quality parameters and their mutual patterns.99

METHODOLOGY100

An inverse problem can be constructed to identify the contamination source character-101

istics, where the input is a set of concentration observations at sensors and the objective is102

to minimize the error between predicted concentration and actual observation at sensors on103

the network using a water distribution simulation model.104

Simulation-optimization Model105

The simulation-optimization model has two sub-models: a simulation model and an106

optimization model. The simulation model mainly describes the water movement in a WDS,107

including the water �ow model and the solute transport model. The optimization model108

can transform the problem into an optimization problem of describing the location of the109

contamination source, the injection start time, and the injection history information.110

The water �ow model and water quality model in urban common water supply network

can be realized by the hydraulic simulation function of water quality in EPANET 2.0. The

model can simulate the di�usion of solutes in contamination events and feedback of node

concentration data. We de�ne

yj(t) = µ(x(t)), j = 1, . . . , K (1)

where yj(t) denotes the concentration data of contaminants detected by sensor j at time111

step t (each sensor is set at a di�erent node); x(t) = (xu,xl(t)) denotes information of a112

contamination event at a single source at time step t, xu ∈ N denotes the location of the113

contamination source; xl(t) = (x0, xx0 , xx0+1, . . . , xt) ∈ Rt−x0+2 denotes the injection pro�le,114
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where x0 is the starting time and (xx0 , xx0+1, . . . , xt) is a time series of injection rate from115

x0 to t; µ is a simulation model of water distribution systems with the input x(t) and the116

observed output y(t) of K sensors.117

Given the water quality hydraulic simulation model, the problem of locating and tracing118

contamination sources can be converted into a dynamic bilevel optimization problem. The119

upper-level optimization task is to �nd the location (xu) of a contamination event, and the120

lower-level task is to �nd the injection history pro�le (xl(t)), which is de�ned as a dynamic121

optimization problem whose variables will increase as time goes on. Note that, the problem122

is de�ned as a single-level optimization problem in previous work discussed in Section 2.123

In our experiments, we found that the location variable has a signi�cant in�uence on the124

distribution of the objective value and the injection pro�le variables do not. Therefore, we125

divide the problem into two levels and solve them cooperatively.126

In this paper, the square root of the mean squared error between the observed data of

a possible solution and the actual observed data of contamination sources is used as the

objective, which is shown below:

min
xu,xl(t)

fu(xu,xl(t)) =

√∑K
j=1

∑t
s=0 [yj(s)−y̌j(s)]2

K·t

s.t. xl(t) ∈ arg min
xl(t)

{fl(xu,xl(t))}
(2)

where y̌j(s) denotes the observed data at sensor j at time step s of the actual contamination127

source. Therefore, the objective is to minimize the cumulated error over all sensors so far128

since the initial observed data are obtained, i.e., to �nd a solution that complies with the129

actual observation data. The two levels of problems all aim to minimize the prediction error130

but have di�erent tasks. In this paper, we solve the problem in an online manner under a131

real-world scenario.132

As mentioned above, the problem is di�cult due to the real-time, non-uniqueness, large133

scale, and expensive properties. For a typical WDS, the number of sensors is far less than the134
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number of nodes in the network due to the cost reason, which leads to the incompleteness135

of the observation data and causes many global optima of Eq. (2) at a time during the136

optimization process. It is a typical multi-modal optimization problem, and hence, multi-137

modal optimization techniques are needed to �nd as many global optima as possible for138

decision-makers to decide the actual one.139

For the real-time property, the contamination source identi�cation needs to start once140

contaminants are detected immediately. With the increase of the observation data, the input141

of the objective function will continuously change, which may cause the optimal solution set142

to change. Therefore, it is necessary to identify the optimal solution location in real-time143

when solving the problem, that is, to solve the problem with dynamic optimization method,144

to ensure that the source information can be obtained in time when the contamination event145

occurs.146

The large-scale property couples with the expensive property. There are mainly three147

aspects to be considered. Firstly, when the scale of a WDS is quite large, the simulation148

time of evaluating a solution will become una�ordable (i.e., it becomes expensive), and the149

value range of the location of xu will be increased sharply, resulting in a sharp increase in150

solution space. Secondly, the dimension for historical contamination injection rate of xl will151

increase as the contamination event keeps on. As the dimension of xl increases linearly,152

the solution space increases exponentially, which makes it challenging for an algorithm to153

�nd the optimal solution. Thirdly, when multiple contamination sources exist, the solution154

representation becomes multiple time series, which makes the problem much more di�cult155

to solve.156

In this paper, we mainly focus on addressing the former two considerations in a network157

with a single contamination source. To address them, we propose an adaptive multiple158

population framework to �nd multiple global solutions and adaptively adjust the number of159

populations to adapt to the changes in observed data.160
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Adaptive Multi-population Algorithm161

Multi-population (MP) methods are very e�cient for tracking and locating multiple162

optima in dynamic environments. This section presents the details of the adaptive multi-163

population (AMP) framework proposed in this paper.164

Algorithm Framework165

The framework has three basic components: clustering, parallel search, and diversity166

increasing components. Figure 1 shows the framework, where m is the size of a population167

(�xed in the paper), k(T ) is the total number of populations at time T (a counter that keeps168

the number of times the diversity increasing component is triggered after clustering), k̃(T )169

is the number of populations survived after the parallel searching, and ∆k(T ) is the number170

of population to be added.171

Algorithm 1 presents the pseudo-code of the framework of the adaptive multi-population172

algorithm. The framework starts with a set of randomly initialized individuals at T=0, then173

clusters these new individuals to a set of populations. Populations simultaneously search for174

global optima and merge if their best individuals locate at the same node on the network.175

When the coverage ratio over all nodes does not change over two successive generations, it176

will trigger the diversity increasing procedure where a feedback learning method is used to177

control the number of populations to be added.178

Generation of Multiple Populations179

The idea of divide-and-conquer is adapted to make each population search for di�erent180

regions, which is equivalent to reducing the search area of each population. For this purpose,181

the k-means clustering method is adopted in this paper to generate multiple populations182

whose search areas are not overlapping with each other.183

We �rstly generate a certain number of individuals at node i with a probability pi, which

is the same (pi = 1/n, n is the number of nodes of a network) for all nodes at the beginning
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Algorithm 1: Pseudo-code of the adaptive multi-population framework

Set T ← 0;
Randomly initialize k(T ) ∗m solutions;
while new observation data are detected do

Clustering newly generated solutions;
while coverage ratio changes do

Cooperatively co-evolve each population by GL (Xia and Li 2016) and
SaDE (Qin et al. 2009) for one iteration;
if the best solutions of more than one population cover the same node then

Merge these populations by the competition mechanism;

Update the coverage ratio on the whole network;

Update the node selection probability by Eq. (3);
Estimate the number of populations (∆k(T )) to be increased by Eq. (5);
Generate ∆k(T ) ·m solutions on the network according to the probability
obtained by Eq. (3);
T ← T + 1;

of a run and is updated before the increase of populations by:

pi(T ) = 1−
T∑

s=0

κi(s)/max
i∈n

T∑
s=0

κi(s) (3)

where κi(s) is the accumulated times of node i visited by individuals since the start of the run.184

From Eq. (3), we can see that the more times a node is visited, the smaller the probability185

of being selected when generating new solutions. For example, if a node has never been186

visited by any individuals, the probability of being chosen will be one when generating new187

solutions.188

After that, the nodes covered by all new individuals are then clustered by the k-means189

clustering method. Algorithm 2 shows the procedures of the k-means clustering method,190

where the estimation of the number of clusters ∆k(T ) to be clustered will be given later191

in Section 3. Eventually, individuals of a cluster consist of a new population. Note that192

the shortest distance of two nodes across the network can be used instead of the Euclidean193

distance used in this paper.194
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Algorithm 2: Pseudo-code of the k-means clustering

Initialize ∆k cluster centers;
while clusters do not converge, i.e., cluster centers are still changing do

for each node do
Calculate the Euclidean distance from the node to each cluster center;
The node is assigned to the cluster whose center is nearest to the node;

Recalculate the center of each cluster;

Cooperative Co-evolutionary Search195

The representation of the solution to the problem is composed of discrete and continuous196

parts. The location variable is an integer, and the injection pro�le is represented by a vector197

of real values. To alleviate the di�culty in searching the solution of the hybrid representation,198

we use the cooperative co-evolution (CC) strategy (Potter and De Jong 1994) to solve the199

upper-level and lower-level problems separately.200

Cooperative Co-evolution201

Cooperative co-evolution (Potter and De Jong 1994; Yang et al. 2017) is an extension of202

the traditional evolutionary algorithm inspired by the strategy of divide-and-conquer when203

dealing with large scale optimization problems. By decomposing decision variables into a204

set of independent groups (each group of variables consists of a subproblem), the original205

problem can be solved by solving these subproblems by di�erent algorithms. We use two206

di�erent single-population based algorithms to solve the two levels problems using the CC207

strategy, i.e., when evaluating a solution in one population, the value of the remaining208

information is taken from the best solution of the other population.209

Genetic Learning210

Genetic learning (GL) (Xia and Li 2016) is an optimization method based on probability211

and statistics. It consists of two components: gene prediction and gene exploration. The212

gene prediction uses a probability model build on historical data to select genes, and the213

gene exploration attempts to discover new genes to increase the population diversity. These214

two components interact to form a feedback system. The genetic learning method makes215
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Algorithm 3: Pseudo-code of the genetics learning algorithm

for each individual do
idx← node index of the current individual;
obj ← prediction error of the current individual;
sum_objidx ← sum_objidx + obj;
countidx ← countidx + 1;

full use of the historical information generated in the iteration process. It analyses the216

�tness of each individual in every possible value of each decision variable and calculates the217

probability of each value being selected. It then performs the mutation operation in each218

dimension according to these probabilities.219

We use this method to �nd the injection location of the upper-level problem. For each

population, we count the cumulative prediction objective value sum_obj of each node in the

network. Algorithm 3 shows the speci�c steps. The probability of node idx to be selected

can be obtained by:

pidx =
meanmax −meanidx∑n
i=1 meanmax −meanidx

(4)

where meanidx = sum_objidx/countidx, meanmax = max(meani | i = 1, 2, · · · , n). The220

probability will be updated every iteration. The nodes with smaller errors have larger prob-221

abilities to be selected for GL.222

Strategy Adaptation Di�erential Evolution223

Di�erential evolution (DE) (Storn and Price 1997) is a simple yet e�ective optimization224

algorithm, especially for solving continuous optimization problems. The strategy adaptive225

di�erential evolution algorithm (SaDE) (Qin et al. 2009) is an enhanced version, where226

the di�erential operators are selected adaptively according to their performance in previous227

generations. Here four classical di�erence operators DE/rand/1, DE/best/1, DE/target-to-228

best/1 and DE/best/2 are used to optimize the initial time and historical injection rate.229

Note that the recommended values for parameters of SaDE (Qin et al. 2009) were used in230

this paper.231
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Population Management232

Population removal and population increase are two critical components of the adaptive233

multi-population framework, especially in dynamic environments (Yang and Li 2010; Li and234

Yang 2012; Li et al. 2015). The population removal component aims to remove redundant235

populations, and hence to save computational resources. The population increase component236

aims to increase the diversity in the areas which have not been searched or not su�ciently237

searched so far, and hence to �nd more global optima solutions.238

Population Removal239

After the clustering, each population will cover a unique search area containing one or240

serval geographically closed nodes on the network. As the search goes on, some of the241

populations may move toward the same area, and �nally, converge at the same node of that242

area. This causes redundant search, which should be prevented. To prevent more than243

one population from searching in the same area, we check their best solutions. When their244

best solutions locate at the same node on the network, these populations are deemed to be245

overcrowded.246

To address the overcrowding issue, we introduced a competition mechanism. When two247

or more populations overcrowd in one area, they will compete with each other. We �rst248

merge all overcrowding populations in that area, then rank all individuals of the combined249

population according to the objective value, �nally keep the best m individuals and remove250

the remaining. The overcrowding detection is performed every iteration, and the competition251

mechanism will be triggered whenever overcrowding populations are detected.252

Population Increase253

Increasing populations means increasing the diversity for exploring unexplored areas.254

However, to increase populations, we need to know when, how many, and where to generate255

new random solutions.256

The moment to increase populations has a signi�cant impact on the performance of257

an algorithm in dynamic environments (Li et al. 2015). Frequently increasing the diversity258
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causes the ine�ciency issue in the exploitation of global optima, while infrequently increasing259

the diversity causes the algorithm to fail to track the changes of the optima. In order to260

solve this problem, we increase populations when all populations enter into a stable status261

on the network indicated by the coverage ratio over all nodes, i.e., we increase populations262

when the coverage ratio does not change over two successive iterations.263

After the identi�cation of the moment to increase populations, the next step is to de-

termine how many populations to be increased. Inspired by (Li et al. 2016), we propose a

feedback learning strategy based on historical data to estimate the number of populations to

be increased. After the detection of the moment to increase populations, we record the num-

ber of populations (k̃(T )) survived from the competition, then compare the reduced number

with the previous increased number (∆k(T − 1)), which is set to k(T = 0)/2 initially. If

the reduced number is less than the previous increased number, which is a positive feedback

and means that new areas have been discovered, then the current increased number will

be increased by one based on the previous increased number (∆k(T − 1)); if the reduced

number is greater than the previous increased number, which is a negative feedback and the

current increased number will be decreased by one based on the previous increased number;

otherwise, there is no change:

∆k(T ) =


∆k(T − 1) + 1 if ∆k(T − 1) < k(T )− k̃(T )

max(∆k(T − 1)− 1, 1) if ∆k(T − 1) > k(T )− k̃(T )

∆k(T − 1) if ∆k(T − 1) = k(T )− k̃(T )

(5)

Note that, there is at least one population to be increased in the negative feedback case to264

make sure that �nding new global optima is always possible.265

Finally, we can generate random solutions to increase the population diversity. Di�erent266

from the traditional random immigrant scheme where new solutions are uniformly randomly267

generated at all nodes without considering the distribution of the current and historical268

solutions on the network, we generate new solutions at node i with probability pi obtained269
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by Eq. (3). This way, infrequently visited nodes have large probabilities of being explored,270

which is very helpful for �nding new global optima.271

Note that, in order to respond to changes in dynamic environments, change detection is272

usually needed, or an algorithm is directly informed at the moment when a change occurs. For273

example, the algorithm (Liu et al. 2011) is informed once new data come, and mutation step274

lengths are reinitialized. In this paper, we do not need to detect changes. Here, to respond to275

changes, the population increase is determined only based on the current evolutionary status276

of the whole populations but not necessarily at the moment of a change occurring, i.e., the277

distribution of all solutions on the network does not changes means that the algorithm278

becomes converging and needs to be diversi�ed to enhance the exploration capability.279

RESULTS AND DISCUSSION280

In this section, we conduct two groups of experiments to study the performance of the281

proposed algorithm. The �rst group of experiments aims to analyze the e�ect of the critical282

parameters on the performance of our algorithm, including the initial number of populations283

k and the size of a single population m. The second group of experiments aims to compare284

the performance of our algorithm with several state-of-the-art evolutionary algorithms.285

Experimental Setup286

Our algorithm treats the water distribution network as a �black box�, the structure of the287

networks has little impact on the performance of the algorithm. When the scale of a WDS288

is quite large, the simulation time of evaluating a solution will become una�ordable, and the289

value range of the location will be increased sharply, resulting in a sharp increase in solution290

space. As a result, the algorithm performance may deteriorate. Then we take scales of the291

networks as main factor in�uencing the performance of algorithms.292

Three networks were chosen with the scale from 97 nodes to 430 nodes, as shown in293

Figure 2. The con�guration of each network is shown in Table 1, where the sensor nodes294

were set according to the literature in the way that they can cover as many nodes as possible295
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during the injection events. For each network, we set three di�erent test cases, which are296

listed in Table 2, where the injection rate changes every 10 minutes.297

In the experiments, the simulation duration was set to 24 hours, and observation data298

were collected from sensors every 10 minutes. Given the above con�gurations in Table 2,299

we assume that the range of [0h, 4h] for the start time and [5g, 30g] for the injection mass.300

Therefore, new solutions are randomly initialized within these ranges. To reduce the com-301

plexity of the problem, we assume the injection duration is known for all algorithms in this302

paper. All the results in this paper are averaged over 20 independent runs, and each test303

case was run for 200,000 objective evaluations.304

Before the experiments, we conduct the hydraulic simulation for three water distribution305

network, we analyzed the water age of all nodes, and concluded that if the pollutants were306

injected at the water source, it can reach at each node during the simulation. We set sensors307

according to the locations provided by literature and our experience to make the coverage of308

the sensor as large as possible. Therefore, the occurrence of injection events can be detected309

within the simulation time even if some sensors are in low-�ow zones.310

We use a success rate and the prediction error to evaluate the performance of an algo-311

rithm. A successful run is a run where the true injection node is found, so the success rate is312

the number of successful runs over the total number of runs. Note that, the prediction error313

is averaged over all successful runs, not over the total number of runs in this paper.314

Parameter Sensitivity Analysis315

In this subsection, network 1 with con�guration 1-3 in Table 2 was used to test the316

performance change of our algorithm with di�erent combinations of k ∈ {10, 20, 40} and317

m ∈ {20, 50, 100}, where each combination is listed in Table 3.318

As shown in Table 4, the success rate is one regardless of the change in the size of a319

single population and the initial number of populations. The prediction error varies a little320

with di�erent combinations. Figure 3 shows the change in the coverage rate and the number321

of populations on instance 1-3 of network 1 with a �xed single population size of m=50,322
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where the initial number of populations is set to k=10/20/40 from left to right. From the323

�gure, it can be seen that the number of the diversity increase during the run is the same324

(i.e, �ve times) and the number of populations �nally survived is maintained at all about325

nine. It indicates that the initial number of populations has no signi�cant impact on the326

performance of the proposed algorithm. Due to the adaptation mechanism, the number327

of populations will be adjusted to an appropriate number for a speci�c problem. For the328

following experiments, the default initial number of populations is set to 20.329

Figure 4 shows the change in the coverage rate and the number of populations on instance330

1-3 of network 1 with a �xed initial number of populations of 20, where the size of a single331

population is set to m=20/50/100 from left to right. For the instance 1-3-4 with m=20,332

compared with the instance 1-3-5 withm=50, the size of the overall populations is not enough333

to explore the whole search space. Therefore, the algorithm will frequently increase new334

populations to make up for the lack of the overall population size to improve its exploration335

capability. When m=100, the population size is enough for the problem, and the frequency336

of adding new population becomes low, which saves unnecessary computational overhead.337

Similarly, it can also be seen that the di�erent sizes of a single population have no signi�cant338

impact on the performance of the algorithm due to the diversity trigger mechanism. For a339

small size, more new populations will be added to achieve the best exploration capability340

and vice versa.341

Comparison with Other Algorithms342

In this subsection, three state-of-the-art simulation-optimization-based algorithms are343

chosen to compare with our algorithm, named AMP-CC(GL-SaDE) for short. The peer al-344

gorithms are ADOT-CC(GL-SaDE) (Liu et al. 2011), GD-ES (Zechman and Ranjithan 2009),345

and LRM-ADOT-CC(GL-SaDE) (Liu et al. 2012). Both ADOT-CC(GL-SaDE) and LRM-346

ADOT-CC(GL-SaDE) use an adaptive dynamic optimization technique based on multi-347

populations. The di�erences is that LRM-ADOT-CC(GL-SaDE) uses a logistic regression348

to predict the possible location of an injection event. GD-ES (Zechman and Ranjithan 2009)349
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uses evolution strategies (ESs) implemented with a tree-based encoding to represent variable-350

length decision variables. Note that, in order to compare the performance of the adaptive351

framework proposed in this paper with the one used in ADOT-CC(GL-SaDE) (Liu et al.352

2011) and LRM-ADOT-CC(GL-SaDE) (Liu et al. 2012), we use the same search method353

for each population (the cooperative co-evolutionary algorithm introduced in Section 3) for354

these three algorithms. The suggested parameter values were used for all the other three al-355

gorithms. Besides, the number of objective evaluations and consumed time for optimization356

are equivalent among our algorithm and three state-of-the-art algorithms.357

Comparison of the Success Rate and Prediction Error358

Table 5 shows the comparison of the success rate obtained by the four algorithms on359

each test instance where the best result of each instance is shown in bold font. It can be360

seen that AMP-CC(GL-SaDE) outperforms all the other three algorithms on �ve out of nine361

instances. AMP-CC(GL-SaDE) achieves a success rate of one on �ve out of nine instances362

and a minimum success rate of 0.9 on the other instances. For simple test instances with a363

short injection history, all the four algorithms can �nd the true location for all runs except364

GD-ES on instances of networks 2 and 3. However, when the injection pro�le increases, the365

performance of all the algorithms becomes worse. Compared with ADOT-CC(GL-SaDE),366

LRM-ADOT-CC(GL-SaDE) does improve the success rate due to the location prediction367

mechanism.368

Table 6 presents the comparison of the prediction error obtained by all the four algorithms369

on all the test instances where the best result of each instance is shown in bold font. In370

each test case, the Wilcoxon rank sum test at a signi�cant level of 0.05 is performed on371

the prediction error between our algorithm and other peer algorithms. The errors with372

su�xes +, −, or ≈ indicate that the prediction errors obtained by other peer algorithms373

are signi�cantly better than, signi�cantly worse than, and statistically equivalent to our374

algorithm, respectively.375

From Table 6, it can be seen that AMP-CC(GL-SaDE) outperforms all the other three376
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algorithms on all test instances. The performance of AMP-CC(GL-SaDE) is signi�cantly bet-377

ter than the other three algorithms on instances 1-1, 2-1, 2-2, and 3-3. The error achieved378

by GD-ES is the worst among all the algorithms on small scale instances (networks 1 and 2).379

LRM-ADOT-CC(GL-SaDE) introduces a pre-screening mechanism based on a logical regres-380

sion model, which improves the performance on the small instances of networks 1 and 2, but381

not on the large instances of network 3. Due to the adaptation of the number of populations,382

AMP-CC(GL-SaDE) achieves much smaller errors than ADOT-based algorithms.383

To test the impact of changing the total number of objective evaluations on the per-384

formance of the four algorithms, we run all the algorithms on instance 1-3 with di�erent385

maximum numbers of objective evaluations. Figure 5 presents the comparison of the num-386

ber of populations obtained when the run �nishes and the average best prediction error of387

each algorithm under di�erent maximum numbers of evaluations on the test instance 1-3.388

From the comparison, we can have (1) AMP-CC(GL-SaDE) achieves the largest number of389

populations and it is always superior to other algorithms in terms of the prediction error and390

(2) the advantage of multi-population methods over single population methods can also be391

seen in the comparison, where all the errors obtained by the three multi-population methods392

decrease when the maximum number of objective evaluations increases.393

Comparison of the Diversity Maintaining394

Figure 6 presents the comparison of the change in the coverage ratio and the number of395

populations for the four algorithms on instances 1-3 (sub-�gures on the top) and 3-1 (sub-396

�gures on the bottom). To some extent, the change in the coverage ratio during the runtime397

re�ects the exploring capability of an algorithm, i.e., the ability to maintain the population398

diversity. Among the four algorithms, only GD-ES does not consider the population diversity.399

In Figure 6, the coverage ratio of GD-ES sharply drops to a low level even at the beginning400

of the run and maintains at that low level till the end of the run on both test instances. This401

may results in a premature convergence issue since the problem is highly multi-modal, which402

can explain the reason for the lower success rate of GD-ES than the other three algorithms.403
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The improvement of diversity is the key to improve the success rate of the algorithm, so404

how to increase diversity will directly a�ect the ability to �nd optimal solutions. ADOT-405

CC(GL-SaDE), LRM-ADOT-CC(GL-SaDE), and AMP-CC(GL-SaDE) all adopt the same406

search methods but use di�erent multi-population frameworks. AMP-CC(GL-SaDE) uses407

the AMP framework proposed in this paper, and the other two use the ADOT framework408

(Liu et al. 2011). The essential di�erence between the two frameworks is the mechanism of409

increasing diversity. The ADOT framework uses a distance evaluation strategy to disperse410

individuals in the population to other regions, but it does not increase the coverage ratio411

as necessary. It is because ADOT does not increase individuals, but move them to other412

nodes already covered by existing solutions. This can be validated from the coverage ratio of413

ADOT-CC(GL-SaDE) and LRM-ADOT-CC(GL-SaDE) in Figure 6. Although this strategy414

increases the exploring ability to a certain extent, it does not expand the scope of exploration415

in essence, and its ability to search for new optima is not strong enough, which leads to the416

lower success rate in comparison with the AMP framework.417

From the two curves of AMP-CC(GL-SaDE) on instance 1-3 in Figure 6 (the top right),418

it can be seen that when the coverage ratio remains for several iterations, the number of419

populations increases and the coverage ratio rises sharply to nearly one. At this moment,420

AMP-CC(GL-SaDE) expands the exploring area to the whole network. The AMP framework421

increases the population diversity at the global level, while the ADOT framework increases422

the population diversity at the local level within each population. Therefore, the exploring423

capability of the AMP framework is much stronger than that of the ADOT framework.424

Moreover, in the AMP framework, new solutions are initialized in the areas, where no425

solution is covering, with a very large probability. During the runtime, the number of times426

for each node visited by solutions is recorded. The more times the node is visited, the more427

computing resources are spent at that node to optimize the injection history. However,428

when new solutions are added, more computing resources are placed at the nodes with a few429

visitors to �nd more global optima.430
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Di�erent from the behavior of AMP-CC(GL-SaDE) on instance 1-3, the algorithm does431

not increase populations during the whole run on instance 3-1, i.e., the diversity increasing432

component is not triggered ( similar to the ADOT framework). The scale of the network 3 is433

much larger than that of network 1. Although the lowest level of the coverage ratio is similar434

in the two cases, the number of nodes covered on instance 3-1 is much larger than that on435

instance 1-3. This means that for the same given number of individuals, the population436

diversity on instance 3-1 is also much larger than that on instance 1-3. Therefore, given a437

limited evaluation budget, the algorithm spends more computing resources on exploiting the438

current area rather than exploring new areas and tries to improve its performance on the439

optimization of the historical injection pro�le. The comparison in the two scenarios shows440

that the AMP framework can adapt to problems with di�erent scales.441

Comparison of the Injection Pro�le442

Figure 7 shows the time-varying mean of contaminants concentrations observed at four443

detection points on instance 1-3, where the solid red curve refers to the actual observation444

data, the solid dark curve refers to the contaminants concentrations simulated by the best445

solution found by the algorithms, and the gray dashed curves are for the remaining solutions.446

It can be seen that the general trend of the dark solid curves are very close to the actual447

data, i.e., the optimal solutions found by the algorithms are sound. Compared with the448

other three algorithms, AMP-CC(GL-SaDE) �nds more optimal solutions. The comparison449

further veri�es that AMP-CC(GL-SaDE) has stronger exploring capability than the other450

three algorithms.451

When we observe the change in the prediction error of the best solutions obtained by the452

four algorithms in Figure 8, all the three multi-population based algorithms can quickly locate453

the injection event in the beginning of the run except GD-ES. However, it is interesting to454

observe that the performance of the three algorithms deteriorates when the new observation455

data keep coming. The prediction errors of both ADOT-CC(GL-SaDE) and LRM-ADOT-456

CC(GL-SaDE) are even worse than that of GD-ES after the number of evaluations reaches457
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30,000. Among the four algorithms, AMP-CC(GL-SaDE) achieves the minimal error for458

most of the running time.459

Performance Investigation on Dynamic Contamination Sources460

In this subsection, we identify dynamic contamination sources by our algorithm. To make461

sure that there is enough time for distributing the injected masses, the simulation duration462

was set to 48 hours, and observation data were collected from sensors every 10 minutes, other463

parameters of our algorithm were set as above. However, the location of the contamination464

source changes every six hours. Network 1 with four contamination sources change was used465

to test the performance by our algorithm. The injection rate of four sources was all set to466

30,25,20,15,10,5,5,10,15,20,25,30 for simplicity. Considering that the current water quality of467

the water distribution network will be a�ected by the contamination sources in the previous468

stages, in our algorithm. Each simulation is from the beginning to the current time phase.469

In each stage, when a sensor detects that the contamination exceeds a certain threshold, the470

algorithm starts to optimize and search for the optimal location and injection rate of the471

pollution source in the current stage.472

Table 7 shows the errors and success rates over 20 runs. The success rate of �nding the473

real contamination source in each stage is 0.95, 1, 1 and 1. It can be seen that our algorithm474

also works well for dynamic contamination sources and can accurately �nd the real sources475

at each stage. The prediction error is shown in Figure 9. There are three peaks in the �gure,476

because when the pollution source changes, the optimal solution of the existing population is477

no longer the global optimal solution, and the error will suddenly increase. However, the error478

quickly drops due to the parallel search ability of the proposed algorithm. Figure 10 shows479

the time-varying mean of contaminants concentrations observed at four detection points of480

one single run, where the solid red curve refers to the actual observation data, the solid dark481

curve refers to the contaminants concentrations simulated by the best solution found by the482

algorithm in terms of the error, and the gray dashed curves are for the remaining two best483

solutions. It can be seen that that there are four peaks during the runtime, which means484
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there are four di�erent sources of pollution, and our algorithm can track the optimal solution485

well.486

CONCLUSIONS487

This paper proposes an adaptive multi-population framework to solve the contamination488

source identi�cation problem in the water distribution system. The problem is de�ned as a489

dynamic bilevel optimization problem. To handle the real-time and non-uniqueness charac-490

teristics of the problem, we develop an adaptive mechanism to enhance the exploring ability491

of multi-population methods and a cooperative co-evolution strategy for the bilevel opti-492

mization problem. The AMP framework can automatically remove redundant populations493

and adds a proper number of populations at a proper moment, which makes it adaptable to494

di�erent problems.495

From the experimental results, we can draw the following two conclusions. Firstly, the496

multi-population based methods have advantages over single-population based algorithms.497

Secondly, by removing crowding populations in over-exploited areas and adding new popu-498

lations in unexplored areas, the AMP framework can �nd more candidate solutions than the499

ADOT framework. As a result, it signi�cantly improves the success rate in �nding the true500

optimal solution.501

We want to pursue the following work in the future. Firstly, more uncertain factors502

should be considered during the simulation, e.g., network structures and the sensor locations.503

Secondly, multiple contamination sources should also be considered in a dynamic scenario.504

Thirdly, the simulation of large scale problems is very time-expensive, which is challenging505

to simulation-optimization based methods. Finally, the number and the location of sensors506

on the network is also an interesting topic.507

DATA AVAILABILITY508
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repository online in accordance with funder data retention policies.510
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The source code for all the involved algorithms in this paper will be released in OFEC,511

which is an open framework for evolutionary computation, at the link https://github.512

com/Changhe160/OFEC.513
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TABLE 1. Network con�gurations

Network # of nodes # of sensors Sensor location
1 97 4 113, 147, 211, 120
2 279 12 J-124, J-202, J-204, J-196, J-122, J-267, J-115, J-197, J-14,

J-55, J-3, J-58
3 430 16 J-56, J-321, J-296, J-11, J-258, J-209, J-118, J-345, J-112,

J-121, J-69, J-171, J-200, J-6, J-342, J-229
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TABLE 2. Con�gurations for nine test instances

Instance Location Start time Duration (min) Injection rate

Network 1
1-1 113 0:00 60 5,10,15,20,15,10
1-2 157 2:00 120 30,25,20,15,10,5,5,10,15,20,25,30
1-3 267 4:00 240 30,5,30,5, . . ., 30,5,30,5

Network 2
2-1 J-196 0:00 60 5,10,15,20,15,10
2-2 J-124 2:00 120 30,25,20,15,10,5,5,10,15,20,25,30
2-3 J-146 4:00 240 30,5,30,5, . . ., 30,5,30,5

Network 3
3-1 J-37 0:00 60 5,10,15,20,15,10
3-2 J-242 2:00 120 30,25,20,15,10,5,5,10,15,20,25,30
3-3 J-56 4:00 240 30,5,30,5, . . ., 30,5,30,5
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TABLE 3. Combinations of the initial number of populations (k) and the population
size (m) for test instance 1-3 in Table 2

Instance 1-3-1 1-3-2 1-3-3 1-3-4 1-3-5 1-3-6 1-3-7 1-3-8 1-3-9
k 10 10 10 20 20 20 40 40 40
m 20 50 100 20 50 100 20 50 100
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TABLE 4. Success rates and prediction errors of di�erent combinations of k and m
on network 1 with con�guration 1-3

Instance 1-3-1 1-3-2 1-3-3 1-3-4 1-3-5 1-3-6 1-3-7 1-3-8 1-3-9
Success rate 1 1 1 1 1 1 1 1 1

Error 1.55E+01 1.33E+01 1.36E+01 1.31E+01 1.30E+01 1.38E+01 1.55E+01 1.40E+01 1.41E+01
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TABLE 5. Success rate of all the four algorithms in all the test cases

Algorithm 1-1 1-2 1-3 2-1 2-2 2-3 3-1 3-2 3-3
GD-ES 1 0.1 0.1 0.7 0.8 0.6 0.8 0.7 0.8
ADOT-CC(GL-SaDE) 1 0.65 0.5 1 1 0.7 1 0.9 0.4
LRM-ADOT-CC(GL-SaDE) 1 0.65 0.7 1 1 0.3 1 0.7 1

AMP-CC(GL-SaDE) 1 0.95 1 1 1 0.9 1 0.9 0.9
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TABLE 6. Prediction error and standard deviation of all the four algorithms in all
the test cases

Instance GD-ES ADOT-CC(GL-SaDE) LRM-ADOT-CC(GL-SaDE) AMP-CC(GL-SaDE)
1-1 7.8E+00±2.4E+00− 5.4E-02±2.3E-03- 2.7E-02±4.5E-03- 0

1-2 6.4E+00±0≈ 3.6E+00±1.2E+00≈ 3.5E+00±1.7E+00≈ 2.6E+00±1.9E+00
1-3 1.3E+01±0≈ 1.5E+01±3.2E+00≈ 1.5E+01±4.2E+00≈ 1.3E+01±3.0E+00
2-1 6.6E+00±1.5E+00− 8.7E-03±2.8E-04− 2.3E-02±3.3E-03− 0

2-2 9.3E+00±9.5E-01− 3.1E-02±7.5E-03− 6.2E-02±6.1E-03− 0

2-3 1.5E+01±1.4E+00≈ 1.6E+01±1.7E+00≈ 1.5E+01±4.2E+00≈ 1.4E+01±1.3E+00
3-1 7.7E+00±2.9E+00≈ 6.2E+00±2.2E+00≈ 8.6E+00±1.9E+00≈ 4.5E+00±2.3E+00
3-2 8.5E+00±2.3E+00≈ 7.5E+00±3.8E+00≈ 1.1E+01±4.3E+00≈ 7.2E+00±2.6E+00
3-3 1.2E+01±1.7E+00− 1.3E-01±1.1E-02− 2.1E-01±1.8E-02− 5.4E-02±2.1E-03
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TABLE 7. Results of dynamic sources over 20 runs on network 1

Run ID Location Error Standard deviation
1 193 120 205 113 3.48E-02 2.94E+00
2 193 120 205 113 8.67E-02 4.80E+00
3 193 120 205 113 3.75E-02 4.63E+00
4 193 120 205 113 2.51E-02 4.46E+00
5 193 120 205 113 2.70E-02 2.70E+00
6 193 120 205 113 5.00E-02 1.85E+00
7 273 120 205 113 1.50E-01 8.26E+00
8 193 120 205 113 3.29E-02 2.89E+00
9 193 120 205 113 3.74E-02 4.02E+00
10 193 120 205 113 1.97E-02 3.17E+00
11 193 120 205 113 1.15E-02 3.31E+00
12 173 120 205 113 7.90E-02 6.37E+00
13 193 120 205 113 8.35E-02 2.36E+00
14 193 120 205 113 1.70E-02 4.37E+00
15 193 120 205 113 1.72E-02 4.43E+00
16 193 120 205 113 3.52E-02 5.75E+00
17 193 120 205 113 2.42E-02 3.36E+00
18 193 120 205 113 4.78E-02 3.54E+00
19 193 120 205 113 2.01E-02 2.28E+00
20 193 120 205 113 3.07E-02 1.80E+00
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FIG. 1. Framework of the adaptive multi-population method
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FIG. 3. The change in the number of populations and the coverage ratio on instances
1-3-2/5/8
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FIG. 4. The change in the number of populations and the coverage ratio on instances
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FIG. 7. Solutions found by the four algorithm on instance 1-3
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FIG. 10. Sensor concentration in the case of dynamic contamination sources
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