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[1] We explore implications for modeling and noise analysis of stochastic seasonal
processes of climatic origin in geodetic time series. Seasonal signals are generally
modeled as sinusoids with annual periods (and harmonics thereof), each with constant
amplitude and phase. However, environmental noise that underlies the seasonal signal in
geodetic time series has a reddened power spectral density (PSD). We investigate
the form of the PSD of a time series having a stochastic seasonal component and find
that for frequencies greater than the nominal seasonal frequency, the PSD of the time
series reflects the PSD of the seasonal amplitudes. For example, if the PSD of the
seasonal amplitudes can be expressed as an inverse power law, then the PSD of the
time series will behave as an inverse power law for high frequencies. Stochastic
seasonal variability will also induce a peak near the nominal seasonal frequency in
addition to that of the mean seasonal signal and will be relatively flat below this
frequency. It is therefore possible that some of the noise in Global Navigation Satellite
Systems (GNSS) time series reported by others may be associated with neglecting
the stochastic component of the seasonal signal. We use a GNSS time series from site
ZIMM as an example to demonstrate the existence of a variable seasonal signal
(without attributing its cause), and we use an example Gravity Recovery and Climate
Experiment (GRACE) time series from Alaska to demonstrate that use of a
nonstochastic seasonal model can have a significant impact on the value and uncertainty
of time-variable rates estimated from the time series.

Citation: Davis, J. L., B. P. Wernicke, and M. E. Tamisiea (2012), On seasonal signals in geodetic time series, J. Geophys. Res.,
117, B01403, doi:10.1029/2011JB008690.

1. Introduction

[2] The study of noise in geodetic time series has been
pursued for a number of important reasons. Understanding
noise in the time series is vital for the detection and inter-
pretation of the signals of interest. It is especially important
in understanding the uncertainties of parameters estimated
from the time series [e.g., Langbein and Johnson, 1997; Zhang
et al., 1997; Beavan, 2005; Langbein, 2008; Santamaría-
Gómez et al., 2011]. Noise can also reveal shortcomings in
the models and techniques used for the underlying analysis
from which the time series are obtained [e.g., Penna and
Stewart, 2003; Penna et al., 2007; King et al., 2008; King
and Watson, 2010].
[3] The “noise” in the time series is defined to be the

residual signal relative to a model that is estimated prior to or
simultaneous with the noise analysis. This model generally
includes a seasonal signal, for seasonal signals are present in
a variety of geodetic time series. In some cases, the seasonal

signals reflect geophysical signal. For example, some Global
Navigation Satellite Systems (GNSS) sites experience a
real seasonal motion associated with local environmental
effects, such as rain [e.g., King et al., 2007], temperature
[e.g., Prawirodirdjo et al., 2006], surface loading [e.g., van
Dam et al., 2001], and aquifer pumping [e.g., Bell et al.,
2002]. Other environmental effects do not involve actual
motion of the antenna phase center. For example, multipath/
scattering [e.g., Elósegui et al., 1995] is not modeled in the
phase solutions and thereby induces a systematic error in the
position estimate that appears as correlated noise in the time
series [e.g., Park et al., 2004; King and Watson, 2010].
[4] The seasonal signal is typically represented by sums of

sinusoids with annual frequency and its harmonics. Whether
this seasonal signal represents systematic error (the elimi-
nation of which by the development of improved models is
always preferable) or true climatic signal, it is important to
model this seasonal signal since it can impact parameters of
interest estimated from the time series, particularly the site
velocity [e.g., Blewitt and Lavallée, 2002; Bos et al., 2010].
However, there is reason to expect that the seasonal signal in
geodetic time series (itself being a response to environmental
changes) is not time-invariant. Environmental variables
are known to have a red power spectrum and are typically
expressed in terms of an inverse power law [e.g., Vasseur
and Yodzis, 2004]. Biological populations, for example, are
known to exhibit a red spectrum in response to environmental
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noise that underlies seasonal variability [e.g., Halley and
Inchausti, 2004].
[5] Several previous analyses have taken interseasonal

variability into account. Murray and Segall [2005] modeled
the seasonal amplitudes as a random walk process and used
a Kalman filter to estimate the time-dependent parameters,
an approach used in the study ofWernicke and Davis [2010]
as well as here.Davis et al. [2006] used piecewise continuous
linear polynomials to represent the seasonal amplitudes, and
Bennett [2008] employed a more general representer method.
[6] Recent studies have identified periodic noise in GPS

time series at harmonics of the GPS draconitic frequency
[e.g., Barrett, 2008; Ray et al., 2008; Tregoning and Watson,
2009; King and Watson, 2010]. The draconitic period for the
GPS constellation is �351.4 days [Tregoning and Watson,
2009], making the draconitic frequency �1.04 cycles per
year (cpy). Thus, an individual time series would have to
have a length of �25 years to separate noise at the funda-
mental draconitic frequency and the climatic seasonal fre-
quency of 1 cpy. Noise in the draconitic spectrum is
therefore identified by stacking power spectra of GPS time
series. Near the lower harmonics (annual and semiannual),
climatic seasonal signals appear to dominate the error spec-
trum [Barrett, 2008; Ray et al., 2008], although both
unmodeled multipath [King and Watson, 2010] and atmo-
spheric loading contributions at tidal periods [Tregoning and
Watson, 2009] have been shown to yield noise at the dra-
conitic annual and semiannual frequency. In this study we
assume that the term “seasonal” applies to climatic seasonal
signals, and we leave to future study the problem of sepa-
ration of climatic and draconitic signals.
[7] Below, we explore the implications for modeling and

noise analysis of stochastic seasonal processes of climatic
origin in geodetic time series. We investigate the form of the
power spectral density of a time series having a stochastic
seasonal component. We then model this seasonal variability
using a Kalman filter in two types of geodetic time series.
The first is a time series of the vertical coordinate of site
position of a GNSS site. We also consider a time series of
surface mass calculated from Gravity Recovery and Climate
Experiment (GRACE) data, wherein the observed seasonal
signal is greater than the variability in the rate. We begin by
developing a theory for expressing this variability, focusing
on the annual signal.

2. Theory

[8] In this section we develop an expression for the time-
variant seasonal process as the sum of a deterministic com-
ponent with an annual period (which we term the “annual
signal”) and a zero-mean stochastic component. The sum
of these two components creates a harmonic process with
a variable period centered on 1 year; we use the term
“stochastic seasonal process” for this combined process.
Higher-order harmonics (semiannual and higher) are also
involved in the description of seasonal processes. We ignore
these higher harmonics in the development in this section,
but the expressions can be applied to all of the harmonic
components.
[9] To develop an expression for the power spectral

density (PSD) of the stochastic seasonal process, it is sim-
plest to adopt the following generalization of the standard

time-invariant annual process [e.g., Young et al., 1991;
Durbin and Koopman, 2001]:

x tð Þ ¼ a1 tð Þcos 2pf○t þ a2 tð Þsin2pf○t; ð1Þ

where f○ = 1 cpy and a1(t) and a2(t) are instantaneous time-
variable amplitudes. Equation (1) can of course be written in
the equivalent form

x tð Þ ¼ A tð Þcos q tð Þ ¼ A tð Þcos 2pf○t þ f tð Þ½ �; ð2Þ

where q(t) is the total instantaneous phase, A(t) is the
instantaneous amplitude, and f(t) is the instantaneous phase
offset. The phase offsets and amplitudes in equations (1) and
(2) are related by

A2 ¼ a21 þ a22 and f ¼ �tan�1 a2
a1

� �
: ð3Þ

As discussed above, we develop only the annual terms of the
stochastic seasonal signal.
[10] The motivation for equations (1) and (2) lies in the

observation that any small segment of the time series may be
described as a nearly annual sinusoid, assuming that the
amplitude does not change too rapidly over the period f○

�1.
Equation (2) implies that the instantaneous frequency f var-
ies as a function of time through the variation of f as

f tð Þ ¼ 1

2p
dq tð Þ
dt

¼ f○ þ 1

2p
df tð Þ
dt

; ð4Þ

and we therefore find no need explicitly to include a time
dependence for f○ in equations (1) or (2).
[11] In equation (1), we take a1(t) and a2(t) to be stochastic

processes. Without any loss of generalization, we can
decompose each of these into the sum of a long-term mean
and a zero-mean stochastic component:

ai tð Þ ¼ �ai þ dai tð Þ i ¼ 1; 2: ð5Þ

We would like for simplicity to be able to assert that the
stochastic processes da1(t) and da2(t) are independent, but
we have no evidence for this. The sinusoidal amplitude A(t)
in equation (2) may vary significantly in terms of its mean,
but we do not expect the phase offset f(t) to vary too rapidly
or significantly, since this would not yield a coherent rec-
ognizable seasonal signal. If the phase offset f(t) is the
constant value f○, then from equations (3) and (5),

�a2 þ da2 tð Þ ¼ � �a1 þ da1 tð Þ½ �tan f○: ð6Þ

Thus, in the case of constant phase offset the two stochastic
processes da1(t) and da2(t) are linearly dependent on one
another. Taking the expectation of both sides in equation (6),
we find that

tan f○ ¼ � �a2
�a1

: ð7Þ

[12] To express a temporal variation in the phase offset,
we introduce an additional zero-mean stochastic process
db(t) such that

�a2 þ da2 tð Þ ¼ �a2
�a1

�a1 þ da1 tð Þ½ � þ db tð Þ: ð8Þ
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Substituting this expression into equation (1) yields

x tð Þ ¼ 1þ da1 tð Þ
�a1

� �
�a1cos 2pf○t þ �a2sin 2pf○tð Þ þ db tð Þsin 2pf○t:

ð9Þ

The first term on the right-hand side of equation (9)
expresses the time-variable, fixed phase offset part of the
seasonal signal, whereas the second term enables the phase
offset f to vary with time.
[13] Equation (9) also enables us to decompose x(t) into a

purely annual sinusoidal term �x(t) and a zero-mean stochastic
seasonal process dx(t):

x tð Þ ¼ �x tð Þ þ dx tð Þ; ð10Þ

�x tð Þ ¼ �a1cos2pf○t þ �a2sin 2pf○t; ð11Þ

dx tð Þ ¼ da1 tð Þ
�a1

�a1cos 2pf○t þ �a2sin 2pf○tð Þ þ db tð Þsin 2pf○t: ð12Þ

In equation (11), the bar over x indicates an ensemble
average. The temporal variability of �x(t) arises solely through
the annual sinusoidal terms.

3. PSD of Seasonal Signals

[14] As discussed in section 1, the PSD is often used in
analysis of GNSS time series to assess noise. In this section,
we explore the implications for the PSD of stochastic sea-
sonal processes.
[15] Using equation (12), we can find an expression for

the PSD of the stochastic seasonal process. We assume that
the stochastic processes da1 and db have power spectral
densities Sa1( f ) and Sb( f ), respectively. We further assume
that da1(t) and db(t) are statistically independent. This
assumption enables us to neglect cross-power components.
The error in this assumption is small as long as the seasonal
process maintains a nearly constant phase offset, a reason-
able assumption for climate-driven seasonal variations.
(Bennett [2008], for example, assumed that this phase offset

was constant.) The PSD Sx( f ) of the stochastic seasonal
process is then given by

2Sx fð Þ ¼ Sa f � f○ð Þ þ Sa f þ f○ð Þ þ Sb f � f○ð Þ þ Sb f þ f○ð Þ; ð13Þ

where

Sa fð Þ ¼ �a21 þ �a22
�a21

� �
Sa1 fð Þ: ð14Þ

[16] The frequency shifts in equation (13) originate in
the sinusoidal multipliers in equation (12) and arise from
the so-called modulation theorem of Fourier transforms
[e.g., Bracewell, 1978]. This modulation has significant
implications if Sa( f ) and Sb( f ) are reddish, which seems
likely (see below). For example, the inverse power law
form S( f ) = C2( f○/∣f∣)a, with a > 0 and C2 = S(f○) has been
used to describe noise in GPS time series [e.g., Langbein
and Johnson, 1997; Zhang et al., 1997; Williams et al.,
2004; Beavan, 2005; Langbein, 2008; Bos et al., 2010;
Santamaría-Gómez et al., 2011]. (It is common to omit the
absolute value signs when considering a one-sided spectrum,
but the modulations require that we consider the negative
f side as well.) If both Sa( f ) and Sb( f ) have this form, then

Sx fð Þ ¼ 1

2
C2
a þ C2

b

� �
f a○

∣f þ f○∣a þ ∣f � f○∣a

∣f 2 � f 2○ ∣a

� �
: ð15Þ

[17] Figure 1 shows the PSD in equation (15) for a = 1
(flicker noise) and a = 2 (random walk). Figure 1 illustrates
some of the important features of stochastic seasonal PSDs.
Although the PSDs of the underlying stochastic processes
(da1, da2, and db) have no spectral lines, the PSD of the
stochastic seasonal process has a spectral line at the annual
frequency (and harmonics if they are considered). For
∣f∣ ≫ f○, the PSD of the seasonal signal approaches the PSD
of the underlying stochastic processes. Thus, for example,
for frequencies greater than about 2 cpy, the seasonal signal
itself will behave like a random walk (if the underlying
stochastic processes are random walks). Another significant
feature is that the PSD of the seasonal stochastic process
rolls over and is nearly flat for low frequencies.
[18] Another PSD that has been evaluated for describing

noise in geodetic time series is the first-order Gauss-Markov
(FOGM) process [Langbein and Johnson, 1997; Beavan,
2005; Langbein, 2008; Santamaría-Gómez et al., 2011],
which has a PSD given by

S fð Þ ¼ s2 b
2pfð Þ2 þ b2

: ð16Þ

In an FOGM process, the covariance R(t) between two
values separated by time t is R(t) = s2exp(�b∣t∣). The
parameter b is therefore an inverse decay time; Santamaría-
Gómez et al. [2011] give a median value for b�1 of 5.5
months for their geodetic time series. The resulting stochastic
seasonal PSD is shown in Figure 2, along with the PSD of the
underlying FOGM processes. The stochastic seasonal PSD
has features similar to those in Figure 1, including the inverse
power law behavior for large f, a resonance (although not

Figure 1. Normalized PSD of equation (15) for a = 1
(blue) and a = 2 (red). Only positive frequencies are shown;
the PSDs are symmetric about f = 0.
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nearly as strong) at f = f○, and a turnover to a flat spectrum
at small f.

4. Examples Using GNSS and GRACE Time
Series

[19] Sinusoids of constant annual frequencies (and har-
monics, generally just the semiannual period) are typically
used for modeling the seasonal variability in geodetic time
series. The wide resonance peaks in Figures 1 and 2, how-
ever, indicate that a consideration of these pure sinusoidal
terms will not remove all the seasonal variability. This sit-
uation is illustrated in Figure 3. Figure 3a shows a time
series of vertical site position, relative to a reference posi-
tion, obtained from an analysis of GPS data from site ZIMM
by the Scripps Orbit and Permanent Array Center (SOPAC).
(See http://sopac.ucsd.edu for a description of data analysis
and estimation of offsets for antenna changes.) This partic-
ular time series was selected since the site has a long history.
The vertical coordinate was used since it often yields a large
seasonal signature due to the sensitivity to seasonal vertical
motion driven by rain [e.g., King et al., 2007] and temper-
ature [e.g., Prawirodirdjo et al., 2006]. Estimates of the
vertical coordinate also have greater sensitivity than do
horizontal coordinate estimates to errors associated with
elevation-angle-dependent errors such as multipath [e.g.,
Elósegui et al., 1995] and atmospheric propagation [e.g.,
Davis et al., 1985; Herring, 1986]. We first limit the time
series to the final 16 years, a period during which the GPS
constellation has been more completely populated. We then
edit the data by iteratively fitting the standard model (i.e.,
straight line plus annual and semiannual sinusoids of con-
stant amplitude) to the data and removing any outlier having
a residual with magnitude greater than or equal to four times
the weighted root-mean-square (WRMS) postfit residual.
Three editing iterations removed �3% of the data and
reduced the normalized c2 statistic by �22%. The log file
for ZIMM (maintained by the International GNSS Service
(IGS) and available at http://igscb.jpl.nasa.gov) indicates
several receiver, firmware, and antenna changes over the
duration of the time series. Estimation of offsets using short

(2 year) segments of data centered on the change indicated
no significant (>2s) values, and so no additional offset
parameters were included in the model here or below. The
16 year edited time series, along with the final best fit
standard model, are shown in Figure 3b.
[20] The PSD for the 16 year edited time series of

Figure 3b is shown by the black curve in Figure 4. This
PSD has a number of features of interest to this study. For
f > 1 cpy the spectrum is roughly that of an inverse power
law with a = 0.9. (For visual comparison, the gray curve is
equation (15) with Ca

2 + Cb
2 = 2 mm2 cpy�1, a = 0.9, and

f○ = 1 cpy.) Spectral peaks are obvious near 1 cpy and 4 cpy,
although there is significant power distributed broadly
between 2 and 3 cpy. The peak near 1 cpy occurs at 0.98 cpy.
Given the frequency resolution (�0.06 cpy) this peak could
be at either the climatic or draconitic annual frequency. The
peak near 1 cpy is broad and strong, and the total variance
within this peak (0.6 cpy ≤ f ≤ 1.4 cpy) is 21.3 mm2. This
peak appears to have too much power to be associated with
errors that manifest themselves at the draconitic annual
period [e.g., Tregoning and Watson, 2009; King and Watson,
2010], and so is likely dominated by climatic seasonal var-
iations. The peak near 4 cpy occurs at 4.19 cpy, close to the
draconitic harmonic of 4.16, so power at this frequency may
be associated with errors that manifest themselves within
the draconitic spectrum. For f < 1 cpy, there is a hint that
the power spectrum flattens out relative to the f �1 behavior
for higher frequencies.
[21] To illustrate the stochastic variability of the seasonal

signal in this time series, we band-pass filter the edited data,
allowing frequencies between 0.7 cpy and 2.5 cpy to pass.
(To deal with data gaps, we first interpolate the data set to
create a daily sampled time series.) The band-pass-filtered
data are shown in Figure 3c. The seasonal signal and its
variability are clearly visible in Figure 3c. The seasonal
amplitudes reach a maximum of 7–10 mm during 2003–
2005 and a minimum of 2–4 mm between 2007 and 2009.
Figure 3d shows the residuals of the edited time series to the
standard model, band-pass filtered as per Figure 3c. The
residuals are, of course, smaller in amplitude than the orig-
inal data, but the seasonal signature is still clear. It has been
more homogenized, and the semiannual variations are more
evident, especially in the earlier part of the time series.
[22] The red curve in Figure 4 is the PSD for the residuals

to the standard seasonal model shown in Figure 3b. This
PSD still shows a significant amount of power near the
annual frequency. The peak has shifted somewhat to 1.07 cpy,
which may indicate that there is some power at the draconitic
annual frequency, but it is not possible to conclusively
determine this due to the frequency resolution of the PSD.
However, the breadth of the peak still indicates that the
periodic signal is time-variable. The residual power near the
annual frequency is consistent with the band-passed residuals
of Figure 3c, which still show a strong seasonal variability.
[23] We have also analyzed these time series with a linear

Kalman filter, described below, that allows for random walk
variation in the rate and sinusoidal amplitudes [Murray and
Segall, 2005; Wernicke and Davis, 2010]. In the stochastic
filter, we used variance rate values of 1 mm2 yr�3 for the rate
term and 0.5 mm2 yr�1 for the sinusoidal amplitudes. The
estimated model for the edited time series is shown in red in

Figure 2. Normalized PSD for the stochastic seasonal pro-
cess for an FOGM process with b�1 = 5.5 months (blue).
The underlying FOGM process PSD is shown in red. Only
positive frequencies are shown.
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Figure 3. Various treatments of estimates of the vertical coordinate, relative to a reference position, for
the GNSS site ZIMM, illustrating the effect of variable seasonal amplitudes. (a) Original time series (plus
1s error bars) from SOPAC. (b) Edited (see text) 16 year time series (black), along with the “standard
model” (red) consisting of the best fit straight line plus annual and semiannual sinusoids. (c) Time series
after band-pass filtering to allow frequencies of 0.7–2.5 cpy to pass (see text), with areas under the positive
values in blue and areas under the negative values in red. Vertical grid lines are spaced by 1 year.
(d) Band-pass-filtered residuals to the “standard model.” (e) Edited 16 year time series (black) along with
a best fit stochastic seasonal model (red). (f) Band-pass-filtered residuals to the stochastic filter model.
Notice the scale differences for Figures 3c, 3d, and 3f).
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Figure 3e. Comparison of the red curves in Figures 3b and
3e demonstrates that a stochastic seasonal process is justi-
fied. The band-passed residuals to the Kalman filter model
(Figure 3f) contain very little seasonal signal. This obser-
vation is reflected in the PSD of the Kalman filter residuals
(blue curve in Figure 4), which has significantly reduced
power (�30 dB) with no obvious peaks in the band-pass
region.
[24] The Kalman-filtered residuals maintain power near

4 cpy, indicating that the response of the Kalman filter
across the band is not constant. The dark gray curve in the
inset in Figure 4 shows the residuals of a Kalman-filtered
zero-mean white noise sequence in which the standard
deviation of each point is the same as that of the original
time series. The filter passes most frequencies except in the
seasonal band and below. This frequency response is a result
of the Kalman filter’s balancing of the noise process (as
indicated by the model and the variances input to the filter)
and the data uncertainties. As seen in Figure 3e, the Kalman
filter solution is quite smooth and, by nature of this

balancing, cannot reflect high-frequency variability unless
the data uncertainties were much smaller.
[25] We implemented a simplified model for equations (10)–

(12) in the Kalman filter, based on the assumption that the
dynamic models for da1 and db are the same:

x tð Þ ¼ a′ tð Þcos 2pf○t þ b′ tð Þsin 2pf○t: ð17Þ

We model a′(t) and b′(t) as random walk processes. The full
model implemented in the stochastic filter used for Figure 3 and
below includes both annual and semiannual terms:

x tð Þ ¼ x○ þ v tð Þ t � t○ð Þ
þ a1′ tð Þcos 2pf○ t � t○ð Þ þ b1′ tð Þsin 2pf○ t � t○ð Þ
þ a2′ tð Þcos 4pf○ t � t○ð Þ þ b2′ tð Þsin 4pf○ t � t○ð Þ; ð18Þ

where v(t), a1′(t), b1′(t), a2′(t), and b2′(t) are modeled as random
walk parameters and t○ is a reference epoch. The difference in
how the seasonal components of equations (18) and (12) are
modeled lies in the fact that in equation (12) the stochastic
amplitudes da1(t) and db(t) could be statistically independent

Figure 4. PSDs for several of the ZIMM time series of Figure 3. Black curve is the PSD of the 16 year
edited time series (Figure 3b). Red curve is the PSD of the residuals to the standard seasonal model (dif-
ference between black and red curves in Figure 3b). Blue curve is the PSD of residuals to the Kalman-
filtered model (difference between black and red curves in Figure 3e). The PSDs were calculated
using a fast Fourier transform approach and a Welch window [Press et al., 2002]. The light gray curve
is equation (15) with Ca

2 + Cb
2 = 2 mm2 cpy�1, a = 0.9, and f○ = 1 cpy. The inset shows residuals (dark

gray) to a Kalman-filtered sequence of random zero-mean white noise values having the standard devia-
tions of the original data. This particular Kalman filter, described in the text, suppresses frequencies in the
seasonal band and lower.
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(although we have not needed to make use of this property),
whereas we know that ak′(t) and bk′(t) are probably not. This
correlation, if we knew its value, could be included in the
dynamic model for the amplitude parameters (by having the
noise covariance matrix have nondiagonal elements). Since we
do not know this correlation, our dynamic model does not
include it. It will be clear from the solutions that we perform
below, however, that the data naturally constrain the parameters
to have nearly constant phase.
[26] Time series of surface mass variations from glaciated

regions can have large seasonal signals, as well as large rates
and significant variations in all these parameters. Figures 5a–
5c show time series of surface mass in terms of equivalent
water depth [e.g.,Wahr et al., 1998] integrated for the region
of Alaskan glaciers [Tamisiea et al., 2005], calculated from
Gravity Recovery and Climate Experiment (GRACE) satel-
lite data. No scaling has been performed to correct for the
undersampling of ice sheet mass changes by areal integra-
tion [Tamisiea et al., 2005], nor have the effects of con-
tamination been carefully removed, since we are using these
estimates only to illustrate the impact of rate variability and
stochastic seasonal processes. Visual inspection of the time
series of mass change (black circles in Figures 5a (top) to 5c
(top)) indicate that both the seasonal amplitudes and the rate
have changes over the �9 year time span since the begin-
ning of GRACE data acquisition, although it can be difficult
to separate these variations. The best fit standard model,
shown in red in Figure 5a (top), does not capture these
variations well, as demonstrated in the bottom plot of this
frame in which the postfit residuals are shown. The WRMS
residual for this model is 26 mm, and large systematic
variations are evident, both at time scales of the entire time
series and at 1–2 year time scales. Because the amplitude
and rate parameters were not allowed to vary in the standard
model, we represent them in Figure 5d as time series with
constant values. (The error bars are almost too small to be
observed in Figure 5d.)
[27] In Figure 5b we show the same time series of mass

changes, but the model represents a best fit model in which
the rate is allowed to vary stochastically but the seasonal
amplitudes remain constant. (We call this model the “vari-
able rate” solution for brevity.) The residuals in this frame
have much less systematic “long-term” behavior, but the
shorter term variability still remains. (The WRMS residual
for this model is 17 mm.) The estimated rate parameter
(Figure 5e, top) displays some variability during 2004–2006,
during which period the residuals are large. The estimated
rate of mass change is actually positive (at the �2s level) in
2008.
[28] The results for the full stochastic model, including

variable rate and a stochastic seasonal model, indicate a
much better fit (Figure 5c), with a WRMS residual of 7 mm
and little systematic nature, except for the period of 2009–
2011. The estimated rate parameter for the full stochastic
model (Figure 5f, top) is smoother than that of the variable
rate model in the 2005–2006 time period. It seems likely that
the rate parameter in the variable rate solution absorbed
some of the seasonal variability. Formally, the parameter
estimates from the full stochastic solution are more uncertain
than those of the stochastic rate-only because the number of
degrees of freedom for the full stochastic solution is less than
that for the rate-only solution; in the absence of systematic

error, the parameter estimates from the full stochastic solu-
tion should therefore be noisier, not smoother.
[29] The value for the estimated annual amplitude (Figure 5f,

bottom, blue points) increases to a maximum and then sub-
sides during 2005–2006. The rate parameter for the full sto-
chastic model does not become significantly positive in 2008
(i.e., within error they may be negative, in contrast to the
variable rate solution), and becomes less positive in 2011,
indicating that the positive rate result at these times for the
variable rate solution may also be influenced by use of the
stochastic seasonal model.
[30] The phase offset estimates for the stochastic model

(Figure 5f, bottom, red points) indicate that, as we assumed,
the phase offset does not vary greatly (less than �15°) with
time. There seems to be a slight negative correlation between
the phase and amplitude during the period 2008–2010.
However, this is a period of rapid amplitude variability that
is not completely captured by the filter using the variance
rates we have chosen for the stochastic model. We used a
value of 1000 mm2 yr�3 for the rate parameter and for all
the seasonal amplitudes (annual and semiannual) we used
500 mm2 yr�1. The postfit residuals (Figure 5c, bottom) also
show some systematic variability during this time period,
and the correlation between amplitude and phase may be an
artifact of the inadequate fit. (This inadequacy may indicate
that larger variance parameters are required or that the Kal-
man-smoothed random walk model does not allow rapid
enough variability. Since this analysis is being performed
only to provide an example of a treatment with variable
amplitude parameters and not to explore the statistics of
melting glaciers, we do not investigate this issue further.)

5. Discussion and Conclusions

[31] In section 3 we obtained the result that, for frequen-
cies greater than the seasonal signals (say 2.5 cpy), the PSD
of a stochastic seasonal process is the PSD of the seasonal
amplitudes. Environmental noise is typically red, and often
can be expressed in terms of an inverse power law of fre-
quency [e.g., Vasseur and Yodzis, 2004]. Therefore, based
on the results presented here we might expect that stochastic
seasonal variability may contribute to the power spectrum
of geodetic time series, since we have demonstrated that
removal of annual (plus semiannual, etc.) sinusoids of con-
stant amplitude leaves behind a strong stochastic seasonal
component. Bennett [2008] also arrived at this conclusion.
[32] For time series estimated from GNSS data, estimation

of a constant seasonal amplitude (our “standard model”) is
usually performed. A number of studies using GNSS time
series have confirmed that they have a red PSD, although
there has been an active discussion in the literature regarding
whether these PSDs are best represented by flicker noise
( f �1), random walk ( f �2), or even an FOGM process (see
equation (16)). One might inquire in light of our results
whether some of the observed power in GNSS time series is
due to the variable amplitude seasonal signal being modeled
using constant amplitude sinusoids. In fact, the FOGM
process PSD was considered because the observed power
spectra tend to flatten at lowest frequencies [Langbein and
Johnson, 1997]. This flattening could be a result of removing
a trend (thereby decreasing power at the lowest frequencies),
or it could also be indicative of a stochastic seasonal process.
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Figure 5. (a–c) Estimates of unscaled mass changes (in terms of equivalent water depth) for Alaska from
the GRACE satellite (black) along with the best fit model (red). The residuals are shown beneath each
data/model plot. (d–f) The estimated rates (top), annual amplitudes (bottom, blue, left scale) and phase
offset (bottom, red, right scale) for each model are shown. Figures 5a and 5d show the standard model.
Figures 5b and 5e show the stochastic model that allows only for velocity variations. Figures 5c and 5f
show the full stochastic model (rate variations plus stochastic seasonal process). Error bars are 1s.
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[33] Langbein [2004] performed a comprehensive analysis
of noise in two-color electronic distance meter (EDM)
measurements at various sites in California. The measure-
ment time series were analyzed with a model in which
changes in rate were allowed but the seasonal amplitudes
were constant in time. This study found that the noise for
various sites could be best characterized as random walk (for
30% of the data), inverse power law with a spectral index
between 1 and 2 (30%), combined band-pass-filtered plus
random walk (30%), and combination of band-pass-filtered
plus power law (10%). The band-passed-filtered spectrum
used by Langbein [2004] passed frequencies around 1 cpy,
and the success of this model could be indicative of a sto-
chastic seasonal process. Visual inspection of the Langbein
[2004] time series, especially those from Parkfield
[Langbein 2004, Figure 5], indicates the presence of a highly
variable seasonal signal in several of the time series.
[34] Accounting for a stochastic seasonal process has a

significant impact on the estimation of the rate. We found
trade-offs between the variable seasonal and rate terms, in
agreement with the findings of Bennett [2008]. Figure 6
shows the results of simulations for five different time
series noise processes: white noise, random walk, flicker
noise, seasonal random walk (that is, stochastic seasonal
process with random walk amplitudes), and seasonal flicker
noise (stochastic seasonal process with flicker noise ampli-
tudes). The covariance matrices for the simulations were set
up using the results from Zhang et al. [1997] and Williams
[2003], modified for a seasonal stochastic process. For
each process, a constant rate was estimated, as well as sea-
sonal terms that consisted of annual and semiannual sines
and cosines. The time series are sampled daily with constant
standard deviation of 1.5 mm. The variance of each sto-
chastic process has a value of unity (with various units). In
Figure 6 we plot the resulting rate uncertainties as a function
of time series length. Comparing the white noise (blue) with
random walk (red) and flicker noise (green) curves gives the
well-known result [e.g., Langbein and Johnson, 1997] that
for those colored noise processes the rate uncertainty is
much larger, and the decrease with time is much flatter, for

the inverse power law cases than for the white noise case.
The rate uncertainties for the stochastic seasonal processes
(dashed red and green curves in Figure 6) also decrease less
rapidly than the white noise case, but these curves parallel
that of the white noise curve for times greater than about
2 years. The stochastic seasonal curves (dashed curves) are
less than their nonseasonal counterparts (solid curves) due in
part to the negative values introduced into a covariance
matrix that is otherwise all positive. Looking at it from the
point of view of the PSD, the resonances that were formerly
at f = 0 have been shifted to f = 1 cpy. To the extent that this
result applies generally to inverse power law processes,
noise analyses that do not allow for stochastic seasonal
processes run the risk of absorbing some of the seasonal
power into the estimates of the nonseasonal noise, thereby
significantly overestimating the rate uncertainties.
[35] From our study, we conclude that a stochastic sea-

sonal process should be a standard component in the models
for geodetic time series. In this study, we used a Kalman
filter to model these variations as random walks [e.g.,
Murray and Segall, 2005; Wernicke and Davis, 2010],
because is was straightforward to implement, although other
approaches have been used [e.g., Davis et al., 2006; Bennett,
2008]. Ignoring these variations, however, will contribute to
positive correlations in the time series and a reddened power
spectrum. The importance of a stochastic seasonal process
will, of course, be dependent on the site and the type of time
series being considered. In our example that used GRACE
mass estimates for Alaska, the seasonal signature practically
overwhelms the rate and the changes in both of these para-
meters can easily be confused. This problem is potentially
more complex to solve since both the change in the rate of
mass loss and its seasonal variability may truly be correlated
because they both are measures of the response of the
Alaskan glaciers to climate.
[36] For geodetic position time series (as from GNSS), as

the models and techniques used in our data analysis
improve, the accuracy of our position estimates improve.
There will therefore be more interest in detecting changes in
site velocities. In such studies, it is imperative that other
known sources of temporal variation such as the variable
seasonal signal be modeled [e.g., Murray and Segall, 2005;
Davis et al., 2006; Wernicke et al., 2008; Bennett, 2008;
Wernicke and Davis, 2010].
[37] Studies of noise in geodetic time series should allow

for the presence of a stochastic seasonal process. If the
underlying environmental/seasonal noise is an inverse power
law, then we find that this will introduce an inverse power
law component to the power of the geodetic time series for
high frequency (f ≫ f○), a broad resonance at f○, and a flat
power for small f. If there are components at harmonics of
the annual period (semiannual, for example), the signals will
be superimposed.
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Figure 6. Estimated velocity uncertainty as a function of
time series length for a white noise process (blue), a random
walk process (red), a stochastic seasonal process with ran-
dom walk amplitudes (dashed red), a flicker noise process
(green), and a stochastic seasonal process with flicker noise
amplitudes (dashed green).
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gov/allData/grace/. GRACE is a joint partnership between the National
Aeronautics and Space Administration (NASA) in the United States and
Deutsches Zentrum für Luft- und Raumfahrt (DLR) in Germany. Generic
Mapping Tools (GMT) [Wessel and Smith, 1998] were used to make the
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