University of Texas Rio Grande Valley

ScholarWorks @ UTRGV

Health and Biomedical Sciences Faculty Publications and Presentations

College of Health Professions

7-1-2015

A new, flaccid, decurrent leaf variety of Juniperus poblana from Mexico: J. poblana var. decurrens R. P. Adams

Robert P. Adams Baylor University

Andrea E. Schwarzbach The University of Texas Rio Grande Valley

Follow this and additional works at: https://scholarworks.utrgv.edu/hbs_fac

Part of the Plant Sciences Commons

Recommended Citation

Adams, R. P., & Schwarzbach, A. E. (2015). A new, flaccid, decurrent leaf variety of Juniperus poblana from Mexico: J. poblana var. Decurrens R. P. Adams. Phytologia, 97(3), 152–163.

This Article is brought to you for free and open access by the College of Health Professions at ScholarWorks (a) UTRGV. It has been accepted for inclusion in Health and Biomedical Sciences Faculty Publications and Presentations by an authorized administrator of ScholarWorks (a) UTRGV. For more information, please contact justin.white(autrgv.edu, william.flores01(autrgv.edu.

A new, flaccid, decurrent leaf variety of *Juniperus poblana* from Mexico: *J. poblana* var. *decurrens* R. P. Adams

Robert P. Adams

Biology Department, Baylor University, Box 97388, Waco, TX 76798, USA Robert_Adams@baylor.edu

and

Andrea E. Schwarzbach

Department of Biomedicine, University of Texas at Brownsville, Brownsville, TX 78520, USA.

ABSTRACT

Analyses of nrDNA and four cp DNAs (petN-psbM, trnS-trnG, trnD-trnT, trnL-trnF) plus morphology and leaf essential oils revealed that the weeping (flaccid), decurrent leafed junipers near Topia, Durango are closely related to *J. poblana* (formerly *J. flaccida* var. *poblana*) and should be recognized as a new variety, *J. poblana* var. *decurrens* R. P. Adams **var. nov.** The leaf oil of *J. p.* var. *decurrens* is dominated by α -pinene (53.2%) with moderate amounts of β -pinene (5.3%), myrcene (4.3%), δ -2-carene (1.2%), δ -3-carene (2.5%), limonene (3.2%), β -phellandrene (3.1%), terpinolene (1.0%), (E)-caryphyllene (1.1%), and germacrene D (1.5%) and shares eleven unique terpenes with *J. poblana*. Published on-line www.phytologia.org *Phytologia 97(3): 152-163 (July 1, 2015)*.

KEY WORDS: Juniperus flaccida, J. martinezii, J. poblana, J. poblana var. decurrens var. nov., *Cupressaceae*, terpenes, leaf essential oil, morphology.

The flaccid leafed Juniperus of Mexico consist of three species: J. flaccida Schlecht. with large (9-12 mm diam.), multi-seeded [(4-)-6-10-(13)] cones; J. poblana (Martínez) R. P. Adams (formerly J. flaccida var. poblana Martínez) with very large (9-15 mm diam.), multi-seeded [(4-)-6-10-(13)] cones and J. martinezii Pérez de la Rosa with small seed cones (5-7 mm), 1-2 seeds per cone and foliage somewhat drooping but branchlets tips erect (Adams, 2014, Pérez de la Rosa. 1985). Juniperus martinezii is quite distinct in its morphology, but the other two taxa differ little in morphology with J. flaccida having radial branching and seed cones tan to brownish purple, whereas J. poblana has distichous foliage in vertical planes like Thuja, and not very flaccid (Zanoni and Adams, 1976, 1979; Adams, 2014) with bluish-brown seed cones. Each of these taxa has leaf margins that are hyaline and nearly entire, with either a few small teeth or merely a wavy margin (Adams, 2014). However, their DNA clearly places them in the serrate leaf margined Juniperus species of the western hemisphere with teethed margins secondarily lost (Adams, 2014).

Juniperus flaccida, J. martinezii and J. poblana have been treated as varieties of J. flaccida, until DNA sequencing of nrDNA (ITS) and trnC-trnD (Adams et al., 2006) revealed that J. flaccida varieties are not monophyletic and they recognized J. f. var. martinezii as J. martinezii and J. f. var. poblana as J. poblana. More recently, Adams and Schwarzbach (2013) published a detailed phylogeny of the serrate junipers of the western hemisphere based on nrDNA and four cp genes. They found J. flaccida (var. flaccida) in a group with J. standleyi (Fig. 1) and J. poblana (J. f. var. poblana) in a well supported sister group relationship. Likewise, Juniperus martinezii (J. f. var. martinezii) grouped with J. durangensis (Fig. 1) supported by high branch support. Their work appears to solidify support for the recognition of J. martinezii and J. poblana.

The differences in morphology and oil composition warrant the recognition of the decurrent leafed, flaccid foliaged, *Juniperus* as a new variety:

Juniperus poblana var. decurrens R. P Adams, var. nov. TYPE: Mexico, Durango, 2 km s of Valle de Topia, 25° 14' 11" N; 106° 26' 55.7" W, 1818 m, R. P. Adams 11926, 30 Jun 2009 (HOLOTYPE: BAYLU), Fig. 2.

Similar to *Juniperus poblana* and *J. flaccida*, but differing in having only decurrent leaves with free, divergent leaf tips.

Juniperus poblana var. *decurrens* is currently known only from the type locality where it is common on hillsides around Topia at about 1550-2000 m.

Other specimens studied: TOPOTYPES: Adams 11927, 11928 (BAYLU); S. González, M. González, I. L. López e Ing. José Soto 7269a, b (BAYLU, CIIDIR, MEXU); Los Pinos, Valle de Topia, A. García 1336 (CIIDIR, MEXU).

Fig. 2. Holotype of J. poblana var. decurrens.

Fig. 3. Leaves and seed cones of *J. poblana* var. *decurrens*.

Fig. 4. Habit of J. poblana var. decurrens.

Fig. 5. Leaf foliage, weeping.

Figure 6. Bark exfoliating in thin, scaly plates on *J. poblana* var. *decurrens*.

General description:

Dioecious. **Trees** to 10 m, branched with round crowns. **Trunk bark** brown exfoliating in thin, scaly plates. **Branches** very flaccid branchlets. **Leaves** all decurrent, with sharp, mucronate, usually divergent tips. **Seed cones** spherical, glaucous, bluish brown, 12-17 mm, mature cones usually show suture lines from fusion of cone-scales, appearing like a soccer ball. **Seeds** (4-)5-7(-9) per cone. **Pollen shed** spring. **Habitat** usually on dry slopes, in pure stands or in mixed forests, at 1550-2000 m elevation. **Uses** none known. **Dist**.: known only from type locality, Topia, Durango, Mexico. **Status**: limited distribution in areas that may be cleared for ranching, so it may become threatened in the future.

The purpose of the present paper is to compare the DNA sequences, volatile oils and morphology of *J. flaccida*, *J. martinezii*, *J. poblana* var. *poblana*, and *J. p.* var. *decurrens*.

The composition of the volatile leaf oils of *J. flaccida* and *J. poblana* (as *J. f.* var. *poblana*) were first reported by Adams, Zanoni and Hogge (1984). The composition of the leaf oil of *J. martinezii* was reported by Adams, Pérez de la Rosa and Cházaro (1990). Recently, Adams and Zanoni (2015) have reported on a re-examination the leaf oils of *J. flaccida, J. martinezii and J. poblana* using modern TIC-GC quantitation methods.

MATERIALS AND METHODS

Specimens collected: *Juniperus poblana* var. *decurrens, R. P. Adams 11926, 11927, 11928,* small trees, to 5 m tall, with strong central axis, foliage very, very, weeping, common, about 2 km s of Valle de Topia. All leaves decurrent, and prickly. Not merely juvenile leaves. 25° 14' 11" N; 106° 26' 55.7" W, 1818 m, 30 Jun 2009, Durango, Mexico; *J. flaccida* var. *flaccida, Adams 6892-6896,* 23 km e of San Roberto Junction on Mex. 60, Nuevo Leon, Mexico; *J. martinezii, Adams 5950-5952, 8709,* 40 km n of Lagos de Moreno on Mex. 85 to Amarillo, thence 10 km e to La Quebrada Ranch, 21° 33.08' N, 101° 32.57' W, Jalisco, Mexico; *J. poblana, Zanoni 2637-2643,* 0.74 mi N of Amozoc on old Rt. 150, Puebla, MX; *Adams 6868-6870,* 62 km s of Oaxaca, Mexico on Mex. 190. Voucher specimens are deposited at BAYLU.

Fresh, air dried leaves (50-100 g) were steam distilled for 2 h using a circulatory Clevenger-type apparatus (Adams, 1991). The oil samples were concentrated (ether trap removed) with nitrogen and the samples stored at 20 °C until analyzed. The extracted leaves were oven dried (100 °C, 48 h) for determination of oil yields.

Oils from 4-5 trees of each taxon were analyzed and average values reported. The oils were analyzed on a HP 5971 MSD mass spectrometer, scan time 1/ sec., directly coupled to a HP 5890 gas chromatograph, using a J & W DB-5, 0.26 mm x 30 m, 0.25 micron coating thickness, fused silica capillary column (see Adams, 2007 for operating details). Identifications were made by library searches of our volatile oil library (Adams, 2007), using the HP Chemstation library search routines, coupled with retention time data of authentic reference compounds. Quantitation was by FID on an HP 5890 gas chromatograph using a J & W DB-5, 0.26 mm x 30 m, 0.25 micron coating thickness, fused silica capillary column using the HP Chemstation software.

One gram (fresh weight) of the foliage was placed in 20 g of activated silica gel and transported to the lab, thence stored at -20° C until the DNA was extracted. DNA was extracted from juniper leaves by use of a Qiagen mini-plant kit (Qiagen, Valencia, CA) as per manufacturer's instructions.

DNA Amplifications and purification: see Adams, Bartel and Price (2009) and Adams and Kauffmann (2010). Sequences for both strands were edited and a consensus sequence was produced using Chromas, version 2.31 (Technelysium Pty Ltd.) or Sequencher v. 5 (genecodes.com). Sequence

datasets were analyzed using Geneious v. (Biomatters. Available from **R**7 http://www.geneious.com/) and the MAFFT alignment program. Further analyses utilized the Bayesian analysis software Mr. Bayes v. 3.1 (Ronquist and Huelsenbeck, 2003). For phylogenetic analyses. appropriate nucleotide substitution models were selected using Modeltest v3.7 (Posada and Crandall, 1998) and Akaike's information criterion. Minimum spanning networks were constructed from mutational events (ME) data, using PCODNA software (Adams et al., 2009; Adams, 1975; Veldman, 1967).

RESULTS AND DISCUSSION

Sequencing nrDNA, petN-psbM, trnS-trnG, trnD-trnT, and trnL-trnF resulted in 4351 bp of data. Adding these data from *J. poblana* var. *decurrens* to other serrate leaf junipers of North America, gave 62 OTUs for Bayesian analysis. This analysis revealed that *J. p.* var. *decurrens* is in a clade with *J. poblana* (Fig. 7), and thence in a clade with a morphologically diverse group of junipers (*J. flaccida, J. standleyi, J. monticola* and *J. jaliscana*).

Fig. 7. Bayesian tree. Numbers next to the branch points are Posterior probabilities (0-1 scale).

To examine the magnitude of the DNA differences, a minimum spanning network was constructed based on differences in mutational events (MEs = SNPs + indels). Only 4 MEs separate *J. poblana* and *J. p.* var. *decurrens* (Fig. 8). These 4 MEs consist of 2 SNPs in the nrDNA, and 1 SNP and 1 indel (1bp) in cp DNA. Notice that *J. flaccida* and *J. p.* var. *decurrens* are separated by 10 MEs (4 SNPs + 1 indel in nrDNA and 1 SNP + 4 indels in cpDNA). Juniperus poblana occupies a central node among a number of morphologically diverse species (Fig. 8).

Figure 8. Minimum spanning network based on 195 MEs (SNPs + indels). The numbers next to the links are the number of MEs. The dashed line is the link between *J. flaccida* and *J. p.* var. *decurrens* (10 MEs) and is not a minimum link.

Analysis of the volatile leaf oils of J. p. var. decurrens, J. poblana, J. flaccida and J. martinezii is given in Table 1. Overall, the leaf oils of J. flaccida and J. poblana are similar and the oil of J. martinezii is quite different. The leaf oil of J. p. var. decurrens is dominated by α -pinene (53.2%) with moderate amounts of β -pinene (5.3%), myrcene (4.3%), δ -2-carene (1.2%), δ -3-carene (2.5%), limonene (3.2%), β phellandrene (3.1%). terpinolene (1.0%), (E)-caryphyllene (1.1%), and germacrene D (1.5%). The leaf oil of J. flaccida is dominated by α -pinene (65.0%) with moderate amounts of β -pinene (4.8%), myrcene (4.3%), limonene (3.5%), β -phellandrene (3.4%), linalool (2.9%) and manool oxide (3.5%). The oil of J. *poblana* is somewhat similar as it is dominated by α -pinene (52.9%) with moderate amounts of β -pinene (4.2%), myrcene (4.3%), limonene (2.2%), β -phellandrene (3.5%) and linalool (1.6%). It contains only one unique compound: trans-verbenol (2.7%). The oil of J. martinezii was quite distinct with major components being α -pinene (16.6%), sabinene (10.4%) and camphor (11.1%) and moderate amounts of β -pinene (1.4%), myrcene (3.6%), limonene (1.8%), β -phellandrene (5.3%), linalool (2.8%), γ -terpinene (1.8%) and terpinen-4-ol (6.1%). It also contain several unique compounds: p-cymenene (0.7%), karahanaenone (1.3%), trans-dehydrocarvone (0.6%), trans-chrysanthenyl acetate (0.5%), linalool acetate (0.4%), noe0iso-3-thyjanyl acetate (0.8%), an aromatic phenol (KI 1320, 0.5%), trans-muurola-4(14), 5diene (0.7%), epi-cubebol (0.5%), cubebol (1.1%), 1-epi-cubebol (1.0%), and an unknown diterpene (KI 1978, 0.6%).

It is interesting that J. poblana and J. p. var. decurrens have similar amounts of α -pinene (52.6,

53.2%) and share eleven unique components: δ -2-carene, δ -3-carene, endo-fenchol, methyl chavicol, elemicin, (E)-nerolidol, epi- α eudesmol, epi- α -muurolol, α -cadinol, KI2264 (diterpene) and trans-ferruginol (Table 1).

The morphology of the leaves of *J. p.* var. *decurrens* is particular. There are three principal leaf types in *Juniperus* (Fig. 9): acicular (sections *Caryocedrus* and *Juniperus*); decurrent (section *Sabina*) and scale-like leaves (section *Sabina*). Within section *Sabina* there are several subtypes of leaves (Fig. 10).

Figure 9. Three basic leaf types in Juniperus.

A comparison of the morphology of *J. poblana*, *J. p.* var. *decurrens* and *J. flaccida* is given in Table 2. The taxa are difficult to separate. A key to these taxa (plus *J. martinezii*) follows:

1. Seed cones large, 9-17 mm diam., (4-) 6-10 (-13) seeds per cone, terminal branch tips drooping (hanging)

2. Foliage flaccid, but not weeping, branching planate, seed cones bluish-brown
J. poblana var. poblana
2. Foliage weeping, branching radially, seed cones brownish-purple, tan-brown
3. All leaves decurrent, with free tips, foliage very weeping, bark exfoliating in thin, scaly, plates
J. poblana var. decurrens
3. Leaves decurrent with mostly appressed tips, foliage weeping, bark exfoliating in thick, inter-
laced stripesJ. flaccide
1. Seed cones small, (5-) 6 (-9) mm diam., 1-2 (-3) seeds per cone, terminal branch tips erect

	J. poblana var. poblana	J. p. var. decurrens	J. flaccida		
leaves	decurrent leaves (DL)	decurrent leaves (DL)	decurrent leaves (DL) with		
	with free tips and some	with free tips and many	free tips and many		
	modified DL with	modified DL with	modified DL with		
	appressed tips.	free tips.	appressed tips.		
leaf tips	mucronate tips on DL	mucronate tips on DL and mod. DL	mucronate tips on DL, acute on modified DL		
leaf gland	about 1/2 DL length	about 1/2 DL length	about 3/4 DL length		
		about 1/2 mod. DL length	about 1/2 mod. DL length		
bark exfoliation	thin, narrow, interlaced	thin, scaly plates	thick, interlaced strips		
pattern	strips				
seed cones	9-15 mm, bluish brown	12-17 mm, bluish brown	9-12 mm. tan-brown		
	,	to purplish brown	to brownish purple		
seeds per cone	(4-) 6-10 (-13)	(4-) 5-7 (-9)	(4-) 6-10 (-13)		
r	(, (,		() ()		

Table 2. Comparison of morphology of J. poblana, J. p. var. decurrens and J. flaccida.

ACKNOWLEDGEMENTS

Thanks to Socorro González for calling my attention to these unusual plants and field assistance in conducting the field trip, and for careful reading of the manuscript. Thanks to Amy Tebeest for lab assistance. This research was supported in part with funds from Baylor University.

LITERATURE CITED

Adams, R. P. 1975. Statistical character weighting and similarity stability. Brittonia 27:305-316.
Adams, R. P. 1991. Cedarwood oil - Analysis and properties. pp. 159-173. in: Modern Methods of Plant Analysis, New Series: Oil and Waxes. H.-F. Linskens and J. F. Jackson, eds. Springler- Verlag, Berlin.

- Adams, R. P. 2007. Identification of essential oil components by gas chromatography/ mass spectrometry. 4th ed. Allured Publ., Carol Stream, IL.
- Adams, R. P. 2014. The junipers of the world: The genus *Juniperus*. 4th ed. Trafford Publ., Bloomington, IN.
- Adams, R. P., J. A. Bartel and R. A. Price. 2009. A new genus, *Hesperocyparis*, for the cypresses of the new world. Phytologia 91: 160-185.
- Adams, R. P. and M. E. Kauffmann. 2010. Geographic variation in nrDNA and cp DNA of *Juniperus* californica, J. grandis, J. occidentalis and J. osteosperma (Cupressaceae). Phytologia 92: 266-276.
- Adams, R. P., J. A. Pérez de la Rosa and M. Cházaro B. 1990. The leaf oil of *Juniperus martinezii* Pérez de la Rosa and taxonomic status. J. Essential Oils Res. 2: 99-104.
- Adams, R. P. and A. E. Schwarzbach. 2013. Taxonomy of the serrate leaf *Juniperus* of North America: Phylogenetic analyses using nrDNA and four cpDNA regions. Phytologia 95: 172-178.
- Adams, R. P., A. E. Schwarzbach and S. Nguyen. 2006 Re-examination of the taxonomy of *Juniperus flaccida* var. *martinezii*, and var. *poblana* (Cupressaceae) Phytologia 88: 233-241.
- Adams, R. P. and T. A. Zanoni. 2015. The volatile leaf oils of *Juniperus flaccida* Schltdl., *J. martinezii* Pérez de la Rosa and *J. poblana* (Mart.) R. P. Adams, re-examined. Phytologia 97: 145-151.
- Adams, R. P., T. A. Zanoni and L. Hogge. 1984. The volatile leaf oils of *Juniperus flaccida* var. *flaccida* and var. *poblana*. J. Natl. Prod. 47:1064-1065.
- Martínez, M. 1963. Las pináceas mexicanas. Tercera edición. Universidad Nacional Autonoma de Mexico. Mexico City.
- Pérez de la Rosa, J. A. 1985. Una nueva especie de Juniperus de Mexico. Phytologia 57: 81-86.
- Posada, D. and K. A. Crandall. 1998. MODELTEST: testing the model of DNA substitution. Bioinformatics 14: 817-818.
- Ronquist, F. and J. P. Huelsenbeck. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572-1574.
- Silba, J. 1985. A supplement to the international census of the coniferae. I. Phytologia 58: 365-370.
- Veldman, D. J. 1967. Fortran programming for the behavioral sciences. Holt, Rinehart and Winston Publ., NY.
- Zanoni, T. A. and R. P. Adams. 1976. The genus *Juniperus* (Cupressaceae) in Mexico and Guatemala: Numerical and chemosystematic analysis. Biochem. Syst. Ecol. 4: 147-158.
- Zanoni, T. A., Adams, R. P. 1979. The genus *Juniperus* (Cupressaceae) in Mexico and Guatemala: Synonymy, Key, and distributions of the taxa. Bol. Soc. Bot. Mexico 39: 83-121.

Table 1. Leaf essential oil compositions for *J. flaccida* (*Adams 6892*), *J. poblana* var. *decurrens* (*Adams 11932*), *J. poblana* var. *poblana* (*Adams 2578*), and *J. martinezii* (*Adams 5974*) based on FID gas chromatography and GCMS identification. Those compounds that appear to distinguish taxa are in boldface.

921 tricvclene 0.2 t t 0.	unczn
	6
924 α-thujene t t t 0.	6
932 α-pinene 65.0 53.2 52.9 16.	6
945 α-fenchene t 0.1 0.1 -	
946 camphene 0.6 0.5 0.7 0.	7
953 thuia-2.4-diene t t 0.2 0.	1
961 verbenene 1.3 0.1 0.6 0.1	2
969 sabinene 0.2 - 0.2 10.	1
974 1-octen-3-ol - 0.1	-
974 β-pinene 4.8 5.3 4.2 1.	1
988 myrcene 4.3 5.6 4.3 3.	6
1001 8-2-carene - 1.2 1.8 -	-
1001 4-methyl, me-pentanoate* 0.1	
1002 α-phellandrene 0.1 0.1 0.1 1.)
1008 & 3-carene - 2.5 1.4 -	
1014 a-terpinene $t t t 1 f$)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2
1024 limonene 35 32 22 1	3
1024 minoritie 0.0 0.2 2.2 1.1	3
1020 p-phenandrene $0.4 0.1 0.0 0.1$,
1032 (2)-p-001110110 1 1 0.1 1 1 1 1 1 1 1 1 1 1 1	1
1044 (E)-p-ocimene 1.5 1.6 0.7 0.4 10E4 (Leminana 0.2 0.4 0.4 1	+
1034 γ-terpinene 0.2 0.1 1.1 4005 sis astrianus huderts 0.2 0.1 0.1 1.3)
1065 CIS-Sabinene nydrate 0.1)
1067 CIS-IIInalooi Oxide (Turanoid) 0.1 - t -	<u>,</u>
1086 terpinolene 0.5 1.0 0.7 0.	3 7
1089 p-cymenene 0.	<u> </u>
1092 <u>96</u> , 109,43,152, CT0-OH 1.0 - 0.3 1.	<u>,</u>
1095 IIIiai00i 2.9 0.7 1.6 2.)
1112 3-11-5-buteri-ine-buterioate 0.2	
1114 endo-renotion - 0.1 0.3 - 1118 cic n month 2 on 1 ol 0.1 0.1 0.2 0	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1
1122 0-041101101011d1 0.0 0.1 1.2 0.4	+
1135 trans pinecary col 0.2 11 0	2
1135 Italis-pillocal veol 0.3 - 1.1 0.1 1136 trans n month 2 on 1 ol 0.2)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1
1141 trans-verbenol	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$)
1154 karabanaenone	2
1154 kalahahaelohe	,
1160 n-mentha-15-dien-8-ol	`
1165 borneol 0.7 0.7 0.6 -	,
1172 cis-pipocamphone 0.2 0.1 0.3 0.3	2
1172 cis-pinocampnone 0.2 0.1 0.3 0.1 1174 terpinen-4-ol 0.3 0.2 0.1 0.3 6)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	•
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5
	, 7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
1186 α -terpineol 0.4 0.9 0.7 0. 1195 myrtenol 0.1 - 0.2 t KL Compound floc6902 flux1022 pob2578 mod	+5074
1186 α-terpineol 0.4 0.9 0.7 0. 1195 myrtenol 0.1 - 0.2 t KI Compound flac6892 fjuv1932 pob2578 mai 1195 myrtenol - - 0.2 t	t5974

KI	Compound	flaccida	decurrens	poblana	martinezii
1200	trans-dehvdrocarvone	-	-	-	0.6
1204	verbenone	t	t	0.6	0.5
1215	trans-carveol	0.1	-	0.7	-
1218	endo-fenchyl acetate	-	0.1	-	-
1223	citronellol	0.1	-	-	-
1232	thymol, methyl ether	-	0.1	-	-
1235	trans-chrysanthenyl acetate	-	-	-	0.5
1239	carvone	-	-	0.2	-
1249	piperitone	0.2	0.1	0.9	0.9
1254	linalool acetate	-	-	-	0.4
1255	4Z-decenol	0.2	-	-	-
1284	bornvl acetate	0.4	0.8	1.1	1.8
1289	trans-sabinyl acetate	-	-	-	0.1
1289	neo-iso-3-thyjanly acetate	-	-	-	0.8
1289	thymol	-	-	0.2	-
1292	(2E,4Z)-decadienal	0.1	-	-	-
1315	(2E,4E)-decadienal	0.1	-	-	-
1320	aromatic phenol <u>149,91,77,164</u>	-	-	-	0.6
1344	myrtenyl acetate	-	-	0.1	-
1345	α-terpinyl acetate	-	-	-	0.2
1345	α-cubebene	0.1	-	0.1	0.3
1396	duvalene acetate	-	0.3	-	-
1403	methyl eugenol	0.1	0.3	-	-
1417	(E)-caryophyllene	0.2	1.1	0.3	0.1
1448	cis-muurola-3,5-diene	-	0.2	-	-
1451	trans-muurola-3,5-diene	-	-	-	0.2
1452	α-humulene	-	-	t	-
1475	trans-cadina-1(6).4-diene	-	0.1	-	0.3
1484	germacrene D	0.1	1.5	0.3	-
1493	trans-muurola-4(14),5-diene	-	0.1	-	0.7
1493	epi-cubebol	-	-	-	0.5
1500	α-muurolene	-	-	t	-
1513	γ-cadinene	-	0.2	-	-
1514	cubebol	-	0.4	-	1.1
1521	trans-calamenene	-	-	t	0.5
1522	δ-cadinene	-	0.4	t	0.4
1528	zonarene	-	0.1	-	0.1
1533	trans-cadina-1.4-diene	-	-	-	t
1548	elemol	0.1	-	0.2	1.0
1555	elemicin	-	0.4	0.2	-
1561	(E)-nerolidol	-	0.9	2.5	-
1582	caryophyllene oxide	0.2	0.8	0.6	0.3
1627	1-epi-cubenol	-	0.7	-	1.0
1630	γ-eudesmol	-	-	-	t
1638	epi-α-cadinol	-	0.8	0.1	-
1638	epi-α-muurolol	-	0.8	0.1	-
1649	ß-eudesmol	-	-	t	0.3
1652	a-eudesmol	-	-	01	0.3
1652	a-cadinol	-	0.8	0.1	-
1695	$\frac{1}{4} = \frac{1}{4} \frac{1}{15} = \frac{1}{5} \frac{1}{10} \frac{1}{10} \frac{1}{10} \frac{1}{10}$	-	0.8	-	
1750	benzyl benzoste		0.0 t	-	
1022	cyclobevadecanolide		ι +		
1955	iso-nimara-8(14) 15-diene	01	- ·		10
1079	diternene 43 81 147 243	-		-	0.6
1097	manovl ovide	3.0	0.6	03	1.0
KI	Compound	flac6802	fiuv/1022	0.5 noh2578	mart507/
2055	abietatriene	0.3	0.1	02010	0.8
2000	abielalitette	0.5	0.1	0.2	0.0

KI	Compound	flaccida	decurrens	poblana	martinezii
2087	abietadiene	-	-	-	2.3
2056	manool	-	0.1	-	-
2105	iso-abienol	-	-	0.1	-
2264	diterpene, <u>43</u> ,55,271,286	-	0.8	t	-
2331	trans-ferruginol	-	0.2	t	-

KI = Kovats Index (linear) on DB-5 column. *Tentatively identified. Compositional values less than 0.1% are denoted as traces (t). Unidentified components less than 0.5% are not reported.