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ALGEBRO-GEOMETRIC SOLUTIONS FOR THE
DEGASPERIS-PROCESI HIERARCHY*

YU HOU', PENG ZHAO', ENGUI FAN%, AND ZHIJUN QIAOS$

Abstract. Though the completely integrable Camassa—Holm (CH) equation and Degasperis—
Procesi (DP) equation are cast in the same peakon family, they possess the second- and third-order
Lax operators, respectively. From the viewpoint of algebro-geometrical study, this difference lies in
hyper-elliptic and non-hyper-elliptic curves. The non-hyper-elliptic curves lead to great difficulty in
the construction of algebro-geometric solutions of the DP equation. In this paper, we derive the
DP hierarchy with the help of Lenard recursion operators. Based on the characteristic polynomial
of a Lax matrix for the DP hierarchy, we introduce a third order algebraic curve K, _2 with genus
r — 2, from which the associated Baker—Akhiezer functions, meromorphic function and Dubrovin-
type equations are established. Furthermore, the theory of algebraic curve is applied to derive
explicit representations of the theta function for the Baker—Akhiezer functions and the meromorphic
function. In particular, the algebro-geometric solutions are obtained for all equations in the whole
DP hierarchy.

Key words. Degasperis—Procesi hierarchy, algebro-geometric solutions, third order algebraic
curve, Baker—Akhiezer function, Riemann-theta function
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1. Introduction. The Degasperis—Procesi (DP) equation
(1.1) Up — Upge + 4UUE — SULULe — Ulggre = 0,

was first discovered in a search for asymptotically integrable PDEs [2]. It arose as a
model equation in the study of the two-dimensional water waves propagating in an
irrotational flow over a flat bed [20], [26], [31]. Given the intricate structure of the
full governing equations for water waves, it is natural to seek simpler approximate
model equations in various physical regimes. The DP equation may be derived in
the moderate amplitude regime: introducing the wave-amplitude parameter ¢ and
the long-wave parameter §. In this regime we assume that 6 < 1 and € ~ §. This
regime is more appropriate for the study of nonlinear waves than dispersive waves, the
stronger nonlinearity of which could allow for the occurrence of wave-breaking. The
other regime studied most is the shallow water system for which § < 1 and € ~ §2. In
the parameter § range, due to a balance between nonlinearity and dispersion, various
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integrable systems like the Korteweg—de Vries (KdV) equation arose as approxima-
tions to the governing equations. However, among the models of moderate amplitude
regime, only the Camassa—Holm (CH) equation and the DP equation are integrable
in the peakon family [3] in the sense that they admit a bi-Hamiltonian structure and
a Lax pair. Also, they are two integrable equations from a family, corresponding to
parameters b = 2 and b = 3, respectively, of the following b-family of equations:

(1.2) Ut — Utgr + (b + Dutiy = Duglizy + Ulges,

where b is a constant.

Quasi-periodic solutions (also called algebro-geometric solutions or finite gap so-
lutions) of nonlinear equations were originally studied on the KdV equation based on
the inverse spectral theory and algebro-geometric method developed by pioneers such
as the authors in [1], [4], [5], [6], [7], [8], [9], [10] in the late 1970s. This theory has
been extended to the whole hierarchies of nonlinear integrable equations by Gesztesy
and Holden using polynomial recursion method [13], [14], [15], [16], [17], [18]. As a
degenerated case of algebro-geometric solution, the multisoliton solution and elliptic
function solution may be obtained [4], [7], [28]. It is well known that the algebro-
geometric solutions of the CH hierarchy have been obtained with different techniques,
see Gesztesy and Holden [14] and Qiao [30]. However, to the authors’ knowledge, the
algebro-geometric solutions of the DP hierarchy are still not presented yet.

Before turning to each section, it seems appropriate to review some related liter-
ature as usual. Over the past three decades soliton equations associated with 2 x 2
matrix spectral problems have widely been studied. Various methods were devel-
oped to construct algebro-geometric solutions for integrable equations such as KdV,
modified KdV, Kadomtsev—Petviashvili equation, Schrodinger, CH equations, sine-
Gordon, Ablowitz—Kaup-Newell-Segur, Ablowitz—Ladik lattice, Toda lattice, etc. [4],
[5], [6], [7], [8], [9], [10], [13], [14], [15], [16], [17], [18], [21], [22], [32], [33]. But it
is very difficult to extend these methods to soliton equations associated with 3 x 3
matrix spectral problems. The main reasons for this complexity get traced back to
the associated algebraic curve, which is the second-order hyper-elliptic in the 2 x 2
matrix spectral problems while it is non-hyper-elliptic of the third order one typically
arising in the 3 x 3 case.

In [29], Qiao proposed the DP hierarchy through the procedure of recursion oper-
ator and connected the DP hierarchy (including the DP equation as a special negative
member) to finite-dimensional integrable systems and gave its parametric solution on
a symplectic submanifold by using the Neumann constraint under the nonlinearization
technique. In [27], the N-soliton of the DP equation is obtained by Hirota’s method.
In [19], the inverse scattering method for the DP equation is studied based on a 3 x 3
matrix Riemann—Hilbert (RH) problem, where the solution of the DP equation is
extracted from the large-k behavior of the solution of the RH problem. In [23], [24],
Dickson, Gesztesy, and Unterkofler proposed an unified framework, which yields all
algebro-geometric solutions of the entire Boussinesq (Bsq) hierarchy. Geng, Wu, and
He further investigated the algebro-geometric solutions of the modified Bsq hierarchy
in a recent paper [25].

The purpose of this paper is to construct the algebro-geometric solutions for the
DP hierarchy which contains the DP equation (1.1) as a special member. The outline
of the present paper is as follows. In section 2, based on the Lenard recursion operators
and the stationary zero-curvature equation, we derive the DP hierarchy associated
with a 3 x 3 matrix spectral problem. An algebraic curve K, _o of arithmetic genus
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r — 2 is introduced with the help of the characteristic polynomial of Lax matrix for
the stationary DP hierarchy.

In section 3, we study the meromorphic function ¢ satisfying a second-order non-
linear differential equation. Moreover, the stationary DP equations are decomposed
into a system of Dubrovin-type equations.

In section 4, we present the explicit theta function representations for the Baker—
Akhiezer function and the meromorphic function. In particular, we give the algebro-
geometric solutions of the entire stationary DP hierarchy.

In sections 5 and 6, we extend all the Baker—Akhiezer function, the meromor-
phic function, the Dubrovin-type equations, and the theta function representations
dealt with in sections 3 and 4 to the time-dependent cases. Each equation in the
time-dependent DP hierarchy is permitted to evolve in terms of an independent time
parameter t,. We use a stationary solution of the nth equation of the DP hierarchy
as an initial data to construct a time-dependent solution of the pth equation of the
DP hierarchy.

2. The DP hierarchy. In this section, we derive the DP hierarchy and the
corresponding sequence of zero-curvature pairs by using a Lenard recursion formal-
ism (see [29] for more details). Throughout this section let us make the following
assumption.

HyPOTHESIS 2.1. In the stationary case we assume that v : C — C satisfies

(2.1) u € C(C), dFu € L>=(C), k € No.
In the time-dependent case we suppose u : C2 — C satisfies
u(-,t) € C°(C), d*u(-,t) € L>=(C), k € Ny,t € C,

(2.2) )
u(zx, ), Uz (x, ) € C(C), z € C.

We start by the following 3 x 3 matrix isospectral problem:

U1 0 1 0
(2.3) Vo, =U¢, =1 1 |, U= 0 01|,
)3 —mz=! 1 0

where m = u—ug,, the function wu is a potential, and z is a constant spectral parameter
independent of variable z. Next, we introduce two Lenard operators

(2.4) K =40 -50°+ 9",
(2.5) J =3(2md + 0m)(0 — %)~ (md + 20m).

Obviously, K and J are two skew-symmetric operators. A direct calculation shows
that
K =(0-0)"4-0*)7"
1

J—l — _m—2/38—1m—1/3(8 _ 83)m—1/38—1m—2/3
27 ’

and we further define an operator
L =K1'J=30-0*"4-0*)"2md+om)(0 — 0*)" (md + 20m).
Choose Gy = % € kerK; the Lenard’s recursive sequence is defined as follows:

(2.6) Gi-1=27'G;, j=12,....

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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Hence G; are uniquely determined, for example, the first two elements read as

1
Go = E, Gi1 = (8 — 33)_1uuw.
In order to obtain the DP hierarchy associated with the spectral problem (2.3),
we first solve the stationary zero-curvature equation

(2.7) Ve — [U, V] =0, V= (Vij)gxg
with
Viir Viz Vi3
(2.8) V=1 Vo Voo Va3 |,
Var Vo Vas

where each entry V;; is a Laurent expansion in z,

n

(2.9) Vi = > V(G2 G j=1,...3, £=0,...,n.

)
£=0

Equation (2.7) can be rewritten as
Vite = Vo1 + 2 'mVig,
Vigw = Vaz — Vi1 — Vi3,
Viz,e = Vaz — Vig,
Vai.» = Va1 + 2 'mVag,
(2.10) Voo = Va2 — Va1 — Vas,
Vazo = Vaz — Vag,
Vaie = 27 'm(Vaz — Vi) + Vo,
Vaoe = —2 'mVig + Voo — Va1 — Vg,
Vaze = —2 'mVig + Voz — Vaa.
Inserting (2.9) into (2.10) yields
V) = 2714 — 0%)Gy + 32720(0 — %)~ (md + 20m) Gy,
VY =3271Gr0 — 3272(0 — 0°) "1 (md + 20m) Gy,
Vl(?f) _ —62’_1Gg,
V) = 2714 = 0%)Ga + 327 2(0%(0 — 0%) 1 (md + 20m)Gy + 2mGy),
2.11) VP = —2:"Go — Graa),
V) = —3271Gy, — 32720 — 0%) " (md + 20m) Gy,
V) = 2714 = 02)Glae + 32720 + 27 'm) (0 — 8%) 1 (md + 20m) Gy,
VY = —2710 - 8%)Gy — 3272(07 1 (md + 20m) Gy — 2mGYy),
Vi = 271(=2Gy — Graw) — 327 2(0(0 — 0%) " (md + 20m)Gy).

Substituting (2.10) and (2.11) into (2.7), we can show that Lenard sequence G, sat-
isfies the Lenard equation

(2.12) KGy=2"2JGy, t=0,1,....

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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For our use in Theorem 6.2, we introduce the following notation:

VO — 4 - 90, VY =30(0 — 0%)"H(md + 20m) G,
Vs = Gua, VD — _3(9 — 8%)1 (md + 20m) G,
V1(§70) = —06Gy, Vl(?fJ) =0,

Vay” = (4 - 0°)Ga,

Vz(lm) =3(0%(0 — 9*) "1 (md + 20m)Gy + 2mGy),

VIO = 22(Go — Graw), VSV =0,

VIO = 3G, VY = 30— 8%) " (md + 20m)Gy,
Viy? = (4= 0%)Gr e,

VA = 3(8 + 27 1m)(8 — 8%) "1 (md + 20m) G,

VD — (9 09Gy, VD = —3071(md + 20m) Gy — 2mG),
VED = 9G, — Grow, VY = —3(8(8 — 8%) L (md + 20m)Gy).

Let 1 satisfy the spectral problem (2.3) and an auxiliary problem

(213) ¢tn - va

where V is defined by (2.8) and (2.9). The compatibility condition between (2.3) and
(2.13) yields the zero-curvature equation

U, — Vo +[U,V] =0,
which is equivalent to the DP hierarchy
(2.14) DP,(u) =ms, — X, =0, n >0,
where the vector fields are given by
X, =JG, =JZL"Gy, n>0.

By definition, the set of solutions of (2.14), with n ranging in Ny, represents
the class of algebro-geometric DP solutions. At times it is convenient to abbreviate
algebro-geometric stationary DP solutions u simply as DP potentials.

The system of equations DP¢(u) = 0 represents the DP equation.

In order to derive the corresponding plane algebraic curve, we consider the sta-
tionary zero-curvature equation

(2.15) 212V, = [U, 2%V,

which is equivalent to (2.7), but the term z'/2V can ensure that the following algebraic
curve is in positive powers of z.

A direct calculation shows that the matrix yI — 2'/2V also satisfies the stationary
zero-curvature equation; then we conclude that

a4

——(det(yl — 22v)) =0,

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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which implies that the characteristic polynomial det(yI — z'/2V) of Lax matrix z*/2V
is independent of the variable z. Therefore we define the algebraic curve

(2.16) Fr(z,y) = det(yl — zl/ZV) =3 +yS.(2) — Tp(2),

where S,(z) and T;(z) are polynomials with constant coefficients of z,

Vit Viz Voo Va3 Vir Vis
217 Sr == )
(2.17) (2) Z(‘ Vo1 Vao “/32 Va3 ‘V31 Va3 )

Viir Vi Vi3
(2.18) To(2) = 2%2| Va1 Vg Vig

Var Vao Va3

In order to ensure the polynomials with integer powers, we introduce z = 2, and the
algebraic curve becomes

(2.19) Fr(Z,y) =y* +yS:(2) = T,(2),

where S,(Z) and T;(Z) are polynomials with constant coefficients of Z,

)

o 2] Vi1 Va2
5r(3) =2 <‘ Vor Vo

4n—+2 )
(220) _ Z S’r‘7j28n+6_2j7
7=0

Voo Vo3
Va2 Va3

Viin Vis
Va1 Va3

Viin Vi Vi3

T.(2) = 2*| Va1 Voo Vag

Va1 Va2 Va3
6n+4

(2.21) =) T EE
=0

We note that T,.(Z) is a polynomial of degree r (r = 3(4n + 3)) with respect to Z,
and then F.(Z,y) = 0 naturally leads to the plane third-order algebraic curve C,_o
of genus  — 2 € N (see Remark 2.2 and Remark 2.3),

(2.22) Kr—o: Fr(Zy) =y* +yS,(2) = T(3) =0, r=12n+09.
The algebraic curve KC,_5 in (2.22) is compactified by joining three points at infinity
Py, 1=1,2,3,
but for notational simplicity the compactification is also denoted by K,._o. Points on
Kr—2o\{Px,}, 1 =1,2,3

are represented as pairs P = (Z,y(P)), where y(-) is the meromorphic function on
K—o satisfying

Fr(z,y(P)) = 0.

The complex structure on K,_o is defined in the usual way by introducing local
coordinates

Cogo: P—=C=2—-2%

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/22/14 to 155.33.120.209. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

1222 YU HOU, PENG ZHAO, ENGUI FAN, AND ZHIJUN QIAO

near points

Qo = (20,y(Qo)) € Kr—2\{Fy = (0,0)},

which are neither branch nor singular points of K,_o; near Py = (0,0), the local
coordinate is

(2.23) (p: P — ¢ =33,

and similarly at branch and singular points of K,_s; near the points P, € K,_2, the
local coordinates are

(2.24) (po, :P—=(¢=2"" i=1,23.

The holomorphic map *, changing sheets, is defined by

. ICT’—Q — ICT’—Q)
P = (§7yj(2)) — P = (anj+1(mod 3)(2))7 Jj=0,1,2,
(2.25) P = (P*)*, etc.,

where y;(2), j = 0,1,2 denote the three branches of y(P) satisfying F,(Z,y) = 0.
Finally, positive divisors on K,_o of degree r — 2 are denoted by
(2.26)

ICT—2 — N()a

kit P k times in {Py,. .., P._s},
P—>DP1,...,PT_2(P):{ 1 occurs k times in {P,..., 2}

0if P¢{P,...,P_a}.
In particular, the divisor (¢(-)) of a meromorphic function ¢(-) on K,_s is defined by
(2.27) (¢(1) : Krcg = Z, P — we(P),

where wy(P) = mo € Z if (po(p")(C) = Y e, Cn(P)C™ for some mg € Z by using
a chart (Up,(p) near P € K, _s.

Remark 2.2. In this paper, we make the following two assumptions about the
curve KCp_o:

(i) The affine plane algebraic curve K,_5 is nonsingular.

(ii) The leading coefficients of S, (z), T;(z) satisty

2/ —
(2.28) iT?’S%Q — T, #0.

Multiplying the polynomial T;.(2) by a constant i € R (or C), one easily finds that
the curve (2.22) changes into

Fr(Zy) = v° +ySe(2) — hT(2) = 0.
Since there exists a constant & such that
24/—3
TSS762 - hTT,O 7é 07

we assume (2.28) is always true for the curve K,_o (2.22) without loss of generality.
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Next, we offer a few words about computing the genus of the curve (2.22) under
the two assumptions in Remark 2.2.

Remark 2.3. In this paper, we denote by K the associated projective curve of an
affine curve K. There are two approaches to compute the genus g of K,_5. One of
them is to use the formula

(2.29) g=n-1)(n=-2)/2,

where n is the degree of corresponding homogeneous polynomial of K, _o, if the curve
KCr—2 is nonsingular (smooth). The Fermat curve is a celebrated example of smooth
projective curves. In general, the projective curve K,_s may be singular even if the
associated affine curve IC,_5 is nonsingular. In this case one has to account for the
singularities at infinity and properly amend the genus formula (2.29) according to the
results of Clebsch, Noether, and Pliicker. An alternative and more efficient way is to
use a special case of the Riemann-Hurwitz formula. The g-number g [34] of IC,_5 and
hence the genus of KC,._o if ;.5 is nonsingular (smooth) is

(2.30) g=1-N+B/2 with B= Y (k(P)-1),
PeEK,—2

where N is the number of sheets of ;._5, B is the total branching number of sheets of
Kr—2, and k(P) — 1 is the branching order of P € K,_s. In the current DP case, one
easily finds NV = 3. Next, one accounts for the computation of B. The discriminant
A(Z) of the curve (2.22) is defined by A(2) = 27T2(2) + 4S2(2) = 22A1(2), where
A1(2) is a polynomial of degree 2r — 2 with A;(0) # 0. Hence the Riemann surface
defined by the compactification of (2.22) can have at most 2r double points. However,
since Z = 0 is a triple root of (2.22), there are at most 2r — 2 double points on K, 5.
Then if all branch points except Py are distinct double points, one obtains (taking
into account the triple point at Pp)

B= ) (k(P)-1)= > (k@) -1+ kD)1

PekK,_2 PEKT_Q\{P()}
= (2r —2) +2=24n + 18.

Substituting the value of N, B into the Riemann-Hurwitz formula (2.30), we derive
g=12n4+7=7r—-2.

Obviously, the DP-type curve I, _o differs from other kinds of algebraic curves
(such as KdV-type, AKNS-type, Bsg-type, etc.) in the sense that it is compactified
by three distinct points Pso, (¢ = 1,2,3) at infinity. Moreover, the genus of C,_s is
not r — 2 if we remove the assumption (i) in Remark 2.2. In the KdV (or AKNS,
Bsq) case, the topological genus is uniquely determined as long as the given affine
curve is nonsingular. However, in the DP case, the assumption that the affine curve
is nonsingular cannot ensure that its topological genus is of one type. Thus we add a
condition (2.28) to the curve K, _s.

Remark 2.4. We investigate what happens at the point infinity on our DP-type
curve K,_5. Following the treatment in [11] we substitute the variable v = 27! into
(2.22), which yields

(U4n+3y)3 4 (ST’,O 4 STJUZ NI Sr74n+2v8”+4)v4”+3y
(2.31) ~ (T + -+ Trgniav® ) = 0.
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Let v; = v*" "3y, and (2.31) becomes
(2.32) v} + Spov1 — Tro =0

as v — 0 (corresponding to Z — oo). This corresponds to three distinct points P,
j = 1,2,3 at infinity (each with multiplicity one), given by the three points (0, X;)
for j = 1,2,3, where X; (j = 1,2,3) are the three distinct roots of (2.32). As each
point at infinity has multiplicity one, none are branch points, and consequently each
admits the local coordinate (2.24) for |Z| sufficiently large.

Similarly, near point Py = (0,0) € K,_o, one finds y*> = 0 by taking # — 0 in
(2.22). This corresponds to one point of multiplicity three at Z = 0. We therefore use
the coordinate (2.23) at the branch point Py.

3. The stationary DP formalism. In this section, we are devoted to a de-
tailed study of the stationary DP hierarchy. Our principle tools are derived from a
fundamental meromorphic function ¢ on the algebraic curve ;5. With the help of
¢ we study the Baker—Akhiezer vector 1) and Dubrovin-type equations.

First, we give a brief description about the Baker—Akhiezer functions. The expo-
nential e? is analytic in C and has an essential singularity at the point z = oco. If ¢(z)
is a rational function, then f(z) = e4®) is analytic in C = CP! everywhere except
at the poles of ¢(z), where f(z) has essential singular points. In the last century
Clebsh and Gordan considered generalizing functions of exponential type to Riemann
surfaces of higher genus. Baker noted that such functions of exponential type can
be expressed in terms of theta functions of Riemann surfaces. Akhiezer first directed
attention to the fact that under certain conditions functions of exponential type on
hyper-elliptic Riemann surfaces are eigenfunctions of second-order linear differential
operators. Following the established tradition, we call functions of exponential type
on Riemann surfaces Baker—Akhiezer functions.

Next, we introduce the stationary vector Baker—Akhiezer function 1) = (11,2, 3)?

Yo (P, x0) = Ulu(x), 2(P))Y(P,x, x0),
Q/JQ(P,ﬁo,xo) =1, P= (E,y) ek, _o \ {Pooi,PQ}, 1=1,2,3, z € C.

Closely related to (P, z,x¢) is the meromorphic function ¢(P, x) on IC,_s defined by

s¥2.0(P 2, 20)
(32) ¢(P 33) m, P e ICT_Q, zeC
such that
(3.3)

Yo (P, x, xq —exp< /¢P$ dx), PeK,2\{Px,, P}, i1=1,2,3.

Since ¢ is the fundamental ingredient for the construction of algebro-geometric solu-
tions of the stationary DP hierarchy, we next seek its connection with the recursion
formalism of section 2. By using (3.1), a direct calculation gives

(3 4) ¢:2y‘/31+cr _ ZFT :292‘/21 _yAr+Br
' y‘/Ql + Ar yQ‘/Bl - yCr + Dr Er ’
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where
Ay = Z(Vaz Va1 — VazVar)
= Z[Vag Va1 + Va1 (Va2 + Vi1)],
(35) B, = %2[‘/22(‘/11‘/21 + Vo3 V1) — Va1 (ViaVar + VagVsa),
Cr = Z(Va1 V32 — Va2 Va1)
= Z[Vo1Vag + Va1 (Vi1 + Vas)],
D, = 2°[V31 (Vi1 Vs — VisVa1) + Vaa (Va1 Vas — VasVa1)],
(36) By = 2%[Va3(Va1Vas — Vi1 Va1 — VasVar) + VisVii ],
Fr = 2°[Va1 (VagVaz — Vin Vi + ViaVar) — Va1 V).

The quantities A,,...,F, in (3.5) and (3.6) are of course not independent of each
other. There exist various interrelationships between them and S,., T}, some of which
are summarized below.

LEMMA 3.1. Let (2,z) € C2. Then

Vo1 Fy = Vo D, — CF = Vi1 S,
A F, =T, Vi + C.Dy,
Va1 Ep = V1 B, — A2 — VA S,,
E,C, =T, V5 + A, B,
Vo1 Dy + Va1 By — Vo1 Va1 S, + A,.C. = 0,
(3.9) T-Vo1 Vs + SrCrVor + 8- Ar Va1 — Ap Dy — B.C. =0,
E.F. = -T,.C.Va1 — T, Ay Va1 + B Dy,
By .= —28.Vo1 + 3B,,

(3.10) 5 5
VE’)IFT,m = _2‘/31Sr+3‘/31Dr+2Z mVE’)BFr"_‘/Blera

where
Jr = Vi Vag — Vi1 Vaa Vg — VigVa1 Vag — Vag Vi + 2V Vaa Via + Va1 Vas Via.
Proof. Using (2.22) and (3.4), we have
F.Vary + F, A, = Viy® + (Va1 D, — C)y + C,. D,
= (Va1 Dy — C2 = V2 S, )y + T.VE + C. Dy,

")
EVaiy+ E.Cr. = VEy® + (Va1 B, — A2y + A, B,
- (‘/élBr - A72« - ‘/2215T)y + Tr‘/221 + ArBra

E,F, = (y*Va1 — yA, + B,)(y*Va1 — yC, + D,.)
= (Va1 Dy + Va1 B, — Va1 Va1 Sy + A, Cr )y
+ (Va1 Va1 + S,.Cp Va1 + Sr A, Va1 — A, D, — B,.C.)y.
—T,.C.Voy — T Ar Va1 + B D,

By comparing the same powers of y, we arrive at (3.7)—(3.9). With the help of (3.6)
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and the stationary zero-curvature equation (2.10), we have

E, = 2 [Var (Vi — Vi1 Vas — VaaVaz + Vaa Vi) — VasVas Vi
+2VasVas Va1 — Va1 Vas Vit + 2V VigVay — VasVai Vi — Via Vi
= —25,.Vo1 + 3B,
Va1 Ey o = 22[2VE (Va1 Vig — Vi1 Vag + VigVar — ViiVag + VaaVas — Vaa Vas)
+ Vi Vi1 Vag — 3V5 Vi + 3V Vit Vag — 3V VasVaa + Vi Voo Vag]
+2272mVa3 Fy 4+ mVay J,
= 2V S, + 3Va1 D, + 22 *mVas F + mVay Jy,
which is just (3.10). O
By inspection of (2.11) and (3.6), one infers that E, and Z?F, are polynomials
with respect to Z of degree r — 5 and r — 3, respectively. Let {uj(x)}j:17,,,7r,5 and

{vj(z)};=1, . r—3 denote the zeros of E,(z) and Z°F,(z), respectively. Hence we may
write

r—>5
(3.11) By =u ]z - u;@)),

j=1

r—3

(3.12) F, = —uu?37? H(% —v;(x)).
Defining
(3.13)  fiy(z) = <,uj(a:), %) €2, 7=1,....,71—5, ze€C,
(3.14) pj(x) = <1/j(x) %) €2, j=1,. -3, zeC.
One infers from (3.4) that the divisor (¢(P,x)) of ¢(P,x) is given by
(3.15) (6(P, 7)) = Dy o) (P) = P, ) (P);
where

2(3:) = {171(33), s 719T—3($)}v E(ZIJ) = {Poozapoosvﬂl(x)v e 71&7’—5(1;)}'

That is, Py, 71(x), ..., Ur_3(x) are the r—2 zeros of ¢(P, x) and Peo,, Pooys Pooys f11(),
ooy fir—5(x) its r — 2 poles.
Since from (2.25), y;(2), j = 0, 1,2 satisfy F,.(Z,y) = 0, that is,

(3.16) (v =) =1 (2) (Y —y2(2) = v° +yS.(3) - T,(2) = 0,
we can easily get

Yo +y1 +y2 =0,
Yoy1 + yoy2 + y1y2 = Sr(2),

voy1y2 = Tr(Z),

Yo +yi +yi = —25:(3),

Yo +ui + s = 3T,(2),
Yoyt + vous + yivs = SE(2).

Further properties of ¢(P,x) and v9(P,x,zo) are summarized as follows.

(3.17)
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THEOREM 3.2. Assume (3.1), (3.2), P = (Z,y) € Kr—2 \ {Poo;, Po}, ¢ = 1,2,3,
and let (Z,z,10) € C3. Then

bon(P,2) + 357 (P, )b (P, ) + 7263 (P,z) — ”;f(%) ¢o(P,)
(3.18) _ ) o)
— ¢(P,x) — 2 W(b (Pz) +m(x)z™" + (@) z2=0,
T * T ok T :_EBFT(’g?x)
(3.19) ¢(P,2)p(P*, z)p(P™", x) T(g’”f)
(3.20) 6(P,2) + 6(P*, ) + (P, 7) = z%
1 N 1 N 1 _ Fro(Z2)  m(z)Jr(Z )
(3.21) ¢(P,x)  o(P*,z) (P, x) ZF.(%,2) ZF.(2,1)
' B 2m(z)Va3(Z, )
V51 (2, 7)
y(P)p(P, x) +y(P*)p(P*, ) + y(P**)p(P**, x)
(3.22) _ 3Te(3)Var (5, 7) + 25, () Ar (2, 0)
o E.(Z,7) ) ’
(3.23) b (P, 2, 20 )ba(P*, 2, 20 )ha (P, z, 20) = %
(324) ¢2’I(P,3},$0)¢2’x(P*,$,$0)¢2’I(P**,33,330) = —%,
(3.25)
z,2) 1Y?
o ]
Cy(P)?Vay(2,2') —y(P)Ar(2,2) + 55,.(2)Var (3,2))
X exp (/zo RERD) dx).

Proof. A straightforward calculation shows that (3.18) holds. Next, we prove
(3.19)—(3.25). From (3.2), (3.4), (3.7)-(3.10), and (3.17), we have

(P, x)p(P*, 2)p(P™", )
:2y0%1+0r ngl‘/Bl‘FCr XZyZ‘/Sl‘FOr
yoVo1 + A, Vo1 + A, y2Vo1 + A,

58 Yoy1y2(Va1)® 4+ Cr(Va1)2(Yoyr + yoyz + v1y2) + C2Var(yo + y1 + y2) + C2
yoyry2(Va1)3 + Ar(Va1)2(yoyr + Yoyz + y1y2) + A2Va1 (yo + y1 + y2) + A2

23 Tr(‘/31)3 + Cr(‘/Bl)2Sr + Cr3
Tr(‘/Zl)S + Ar(‘/Ql)ZST + A?

_ 35 (Vs1)’ + Co (Vs Dy = Vi Fr = C7) + C}
o T,(Vo1)2 + A (Va1 By — Va1 E — A?) + Ag

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/22/14 to 155.33.120.209. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

1228 YU HOU, PENG ZHAO, ENGUI FAN, AND ZHIJUN QIAO

¢(P $)+¢(P* :U)—I—(ZS(P** x):2‘/21(y8+y%+y%)_14r(90+y1 +y2)+3Br

E,.
. 2—257"/21 + 3B,
E,
B (Z2)
T E.(3x)]
Lo, 1 1 Vet +ys) = Crlyotyi+ye) +3Dr
o(Px)  o(P*x) (P, ) ZF;
. —25,V31 4+ 3D,
N ZF,
_ F.(Zx) mJ.(Z ) mVis

= 2 ,
ZFr(gam) 2Fr(2a$) 23‘/31

y(P)p(P, x) + y(P*)p(P*, x) + y(P*™)p(P**, z)
_ Ve (yo + i +y3) — Ar(yd +yi +43) + Br(yo + 1 +uo)
E,

_ ZSTT‘/ZI + 2ST‘AT‘
= —ET ,

Q/JQ(P, x, $0)¢2(P*, x, $0)’(/12 (P**, Z, xo)
—ep (71 [ l0R) + 0P )+ 0P

Zo

= exp (/f %dw')
B
"~ Er(w0)
w27w(P7 x, $0)w2,w(P*a z, xO)waw(P**’ Z, {Eo)
— 271¢2(P,$,$0)¢(P, x) X 2717/)2(13*,33,330)(%5(13*7@
Xg_le (P**a z, $0)¢(P**’ ZE)
F,.(2,1)

Using (3.3), (3.4), and (3.10), we obtain
o (P, w,10) = exp <21/ (P, x')dw’)

T 2V, — yA + 25, Vo1 +FE, »
exp (21/ Zy 2T Y 3 dz’
T

0 B,
x .2 2 T
_ Yy ‘/21 - yAr + §Sr‘/21 / 1 Er,m’ /
_exp</m0 . da:+3 . E, dx
[ E(2) ] o /I y*Vor — yA, + 25,V i
B Er(27$0) P ) ET 7

which implies (3.25). O
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Next, we derive Dubrovin-type equations which are first-order coupled systems of
differential equations and govern the dynamics of the zeros p;(z) and v;(z) of E, (2, x)
and F,.(Z,x) with respect to z.

LEMMA 3.3. Assume (2.14) to hold in the stationary case.

(i) Suppose the zeros {p;(x)}j=1,. r—5 of Ex(Z,x) remain distinct for x € Q,
r—s5 satisfy the system of

.....

differential equations,

[Sr (1 (2)) + 3y (2))*]Var (1 (), )
326 Jzﬂj = — — 5 = 1,.. ,T'—5,
(326)  #yule) uTThs] (i (@) — () 7=
k#j
with initial conditions
(327) {ﬂj(xﬂ)}j:L-..,r—E’) S ICT—2

for some fized o € Q,,. The initial value problem (3.26), (3.27) has a unique solution
satisfying

(3.28) fi; € C®(Q, Kys), j=1,...,r—5.

_____ r—3 of Fr.(Z,x) remain distinct for x € Q,,
where Q,, C C is open and connected. Then {v;(z)}j=1,.. r—3 satisfy the system of
differential equations,

2 [Sr(vi (@) + 3y (25 (2))*|Var (v (2), ) + m(@) Jr (v (x), )

wu Thc (v (@) — v (@)
k#j

Vi (@) = vj(@)

3

(3.29) j=1,...,r—3
with initial conditions
(3.30) {7j(z0)}j=1,...r—3 € Kra

for some fixed o € Q.. The initial value problem (3.29), (3.30) has a unique solution
satisfying

(3.31) ;€ C®(0, Kosa), j=1,....r—3.

Proof. From (3.7) and (3.8), substituting Z = p;(z) and v;(z), respectively, we
have

(3.32) V31 (uy(2), )8y (nj (@) — Var (s (), 2) By (i (), ) + A7 (pj (), z)
(3.33) Vi (v(x),2) S, (vj()) — Va1 (vj(x), ) Dy (vj (2), ) + CF (v (x), x)

3

0
0.

Then it is easy to get

By (pj(@),2) = Var(p; (), 2)Sr (1 (x)) + %

(3.34) = [Sr (13 (2)) + y (g ()] Var (g (), ),
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Dy (v;(w), x) = Vi (v (), 2) S (v () + %

(3.35) = [Sr(vj (x)) + y((2))*)Va1 (v (2), 7).
Inserting (3.34) and (3.35) into (3.10), respectively, we obtain

(3.36)  Epa(p;(z),2) = [Sr(pj () + 3y ())*]Var (15 (), v),
(3.37)  Fra(vi(z),2) = [S,(vj(x)) + 3y(25(2))*]Va1 (v (), ) + m(x)J; (v;(2), ).
On the other hand, derivatives of (3.11) and (3.12) with respect to x are

r—>5
(3.38) Eralimp; @) = —utja(z) || (1) — pr(x)),
(=
r—3
(3.39) Fralzmn; @) = wiiv;(z) vja(z) || (i) —vi()).
k2

Comparing (3.36)—(3.39) leads to (3.26) and (3.29). O

Remark 3.4. In Lemma 3.3, we assume that {u;(x)}=1,. r—5 are pairwise dis-
tinct. However, if two or more of {u;(z)};=1,...r—5 coincide at z = x(, the Dubrovin-
type equation (3.26) is ill-defined and the stationary algorithm breaks down at such
value of z. Moreover, 0(Z(P, fi(z))) = 0(Z(P,2(x))) = 0. Therefore, when attempting
to solve the Dubrovin-type equation (3.26), they must be augmented with appropri-
ate divisor Dj(z,) € 0" "2K,_o as initial conditions. The similar analysis holds for

{Vj( )}j 1,...,r—3-

4. Stationary algebro-geometric solutions. In this section we continue our
study of the stationary DP hierarchy and will obtain explicit Riemann theta function
representations for the meromorphic function ¢, the Baker—Akhiezer function 5, and
the algebro-geometric solutions u for the stationary DP hierarchy.

LEMMA 4.1. Let z € C.

~—

(i) Near Py, € K,_2, in terms of the local coordinate ¢ = 271, we have
1 ,
(4.1) = —Z as P — Py,
C =0
where
4.2 = , =0,
(4.2) Ko (o) K1
My
K2,zz + 3 (Ko,zke + Kok2,g) + 3/&3/4:2 — Ky +m= g (K2,& + 2KoK2)
(4.3)
R3 = 0, ......
S s—1
H2< TT + 3 Z R2iK2¢— 2i,x + Z Z R2iR2¢R2¢—2i—20 —
i=0 ¢=0

Mg
(44) = H (ZO 52i52§2i> )

(45)  Koey1 =0, ¢>2, ceN
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(ii) Near Py € K, _a, in terms of the local coordinate ¢ = 2%, we have

o0
(4.6) (P, ) o LT as P — Py,
§=0
where
1 =—m3, 11 =0,
2
My /m)tg — 3ot
Lo = (ma/ )3(12 0702 — 0, t3 =0,
0
Do g o+ to— 0
by = m Y0,z 3L20 O,ww’ Ly = 0’
0
Dz gty — 1) — 3(vo.wta + tot
(4'7) L6 — m ( 044 ) 3L2( 0,1 4 0 4,I)’ L7 _ 0’
0
b T2 (200t -2 + lac—d)  L2c—4 — L2c—d.ze — 3(lolac—2,2 T L0,xl2c—2)
2¢ —

33 ’
(48) LocH1 = 0, s >4, s e N.

Proof. The existence of these asymptotic expansions (4.1) and (4.6) in terms of
local coordinates ¢ = 27! near P, and = 2 3 near P, is clear from the explicit form
of ¢ in (3.4). Insertion of the polynomials V;; (i, = 1,2, 3) then, in principle, yields
the explicit expansion coefficients in (4.1) and (4.6). For example, ko = uy(z)/u(z)
and k1 = 0 in (4.2). However, this is a cumbersome procedure, especially with
regard to the next to leading coefficients in (4.1). Much more efficient is the actual
computation of these coefficients utilizing the Riccati-type equation (3.18). Indeed,
in terms of the local coordinate ¢ = 73, (3.18) can be written as

boa(P,x) + 3¢ 30(P, )by (P, z) + (063 (P, ) — %%(R )
- d)(Pv $) - C_BE

near the point Py. Substituting a power series ansatz

(4.9)

#*(Pa) +m¢ 3+ 223 =
m m

— . Jj+1 <
@ So 22 ()¢ as P — Py
7=0
into (4.9) and comparing the same powers of ¢ then yields (4.7).
Similarly, in terms of the local coordinate ¢ = 271, (3.18) can be written as

boa(P,z) + 3CH(P, )b (P, z) + 263 (P, 2) — ¢(P, ) — ”ﬁ((;)) s (P, )
(4.10) ~ ) 2 by g m(aye + e 1 g

near the point Poo,. Substituting a power series ansatz

m(x)

1 .
— _§ . J
(bc OCJ Oﬁj(ﬁr)c aSP_>P001

into (4.10) and comparing the same powers of ¢ then yields the indicated Laurent series
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relations (4.3) and (4.4). Finally, (4.5) and (4.8) arise from the technical treatment
in section 2 (z = z?%; see (2.19)). 0O

Remark 4.2. We have derived the explicit expressions for kg, koc41,¢ € Ny in
Lemma 4.1. However, the coefficients koc,¢ € N in the high-energy expansion of ¢
are still implicit, since (4.3) and (4.4) involve the z-derivatives of kac,¢ € N and
hence yield a series of second-order ODEs (or PDEs in the time-dependent case) with
variable coefficients. In the process of solving other integrable evolution equations
such as classical Thirring system (near the points Py +; see [15]), CH hierarchy (near
the points P.1; see [14], [15]), if we directly insert an ansatz into a Riccati-type
equation, an analogous problem will arise. The DP hierarchy shares some similarities
with the CH hierarchy at this point. Since the concrete expressions x;,7 > 2,7 € N
are useless in the process of finding the algebro-geometric solutions of DP hierarchy,
we do not intend to write out their explicit forms from (3.4).

We assume K,_o to be nonsingular for the remainder of this section. We now
introduce the holomorphic differentials 7;(P) on KC,_o defined by

1 {51—1d2, 1<1<8n+5,

4.11 Pl=———
( ) m(P) 3y(P)2 4 Sr(2) |y(P)z'=8"=6dz, 8n+6<1<12n+T7,

and choose an appropriate fixed homology basis {a;,b; };;2 on K,_s in such a way
that the intersection matrix of cycles satisfies

ajoby, =06k, ajoar=0, bjoby=0, jk=1,...,7r—2.
Define an invertible matrix E € GL(r — 2,C) as
E=(Ejr)r-2x(r—2), Ejk =/ M55
ak

e(k) = (er(k), .-, ena(k)), e;(k) = (E™")jk,

and the normalized holomorphic differentials

(4.12)

r—2
(4.13) wj:Zej(l)m, / wj =5j71€, / wjzrj)k, j,kZl,...,T—Q.
=1 ak br

One can see that the matrix I' = (I'; ;) (,—2)x (r—2) is symmetric, and it has a positive-
definite imaginary part.

Next, choosing a convenient base point Qo € Ky—2 \ {Pwo,, Po}, the vector of
Riemann constants Z, is given by (A.45) [15], and the Abel maps Ag, (-) and aq (-)
are defined by

AQO : ’CT*Z - J(’CT*Z) = CT?Z/L’I‘fZa
P A (P) = (Agea(P), ..., Age.r—2(P))

P P
= / Wi, .. ,/ wr—2 | (mod L,_o),
Qo Qo

ag, : Div(K,—2) = J(Kr—2),

D ag, (D)= Y D(P)Ag,(P);
PeK,_o

where L, o ={2€C' 2| z=N+TM, N, M € Z"2}.

and
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For brevity, define the function z : K,_g x 0" 2K,_3 — C"~2 by!

é(PaQ) = EQO - AQO(P) +QQO(DQ)7
(4.14) PeKr—2,Q=(Q1,...,Qr—2) €0" K, _o;

here z(-, @) is independent of the choice of base point Qg. The Riemann theta function
0(z) associated with K,_o and the homology is defined by

0(z) = Z exp (27mi{n, 2) + wi{n,nl)), z¢€ C" 2
nes
where (B,C) =B -C" = Z;;lz B;C; denotes the scalar product in C" 2.
The normalized differential wl(.i)q p, (P?) of the third kind is the unique differential

holomorphic on K;—5 \ { P, , Po} with simple poles at P, and Py with residues +1,
respectively, that is,

wgollpo (P) So (C'4+0@1))d¢, as P — P,
(4.15)
W(Pi)clpo (P) S0 (—¢"'+0(1))d¢, as P — P,.

In particular,

/ wgilpo(P):O, j=1,...,r—2.

Then

P
/ W;;IPO(P) = In¢+e®(Qo) +0(), as P— P,
(4.16) Qo 0

/Q o) 1 (P) =~ +e0(@0) +O(), a5 P Py
0

where €®)(Q) is an integration constant.

The theta function representation of ¢(P,x) then reads as follows.

THEOREM 4.3. Assume that the curve IC,_g is nonsingular. Let P = (Z,y) €
Kr—2\{Px,, Po} and let z,zq € Q,,, where Q,, C C is open and connected. Suppose
that Dy (zy, or equivalently Dy(y), 1s nonspecial® for x € Q,,. Then

L OE(P,0(2)0(E(Py, fi(x P
(4.17) ¢(P,z) = _m3(x)952130,g((;;;)é(é(;,gga:;;;exp (e<3’(Qo) —/QO wg’ollp0>-

Proof. Let ® be defined by the right-hand side of (4.17) with the aim to prove
that ¢ = ®. From (4.16) it follows that

P
exp (e(B) (Qo) — / wgoilP(J) So '+ 0(1), asP— Py,
(4.18) 0

P
exp | e®(Qo) —/ wl(.ii | = C+0(?), asP— P
QO 1 C‘)O

1UT72’CT72: Krooa X X Kr_o.
[ —

r—2
2For the definition of a nonspecial divisor, see [12].
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Using (3.15) we immediately know that ¢ has simple poles at ji(x) and P, and simple
zeros at Py and o(z). By (4.17) and a special case of Riemann’s vanishing theorem
[12], [15], [16], we see that ® shares the same properties. Hence, using the Riemann—
Roch theorem [12], [15], [16] yields the holomorphic function ®/¢ =+, where v is a
constant with respect to P. Finally, considering the asymptotic expansion of ¢ and
¢ near Py, we obtain

¢ —m!BO+0()(C+0()

30T w0 ool TOW PR
from which we conclude that v = 1, where we used (4.18) and (4.6). Hence, we prove
(4.17). O

Furthermore, let wg){B(P) denote the normalized differential of the second kind
which is holomorphic on K, _5 \ {PO} with a pole of order 3 at Py,

(4.19)

71
(2) o dz
wPO S(P) - 3(3y( 2 4 S + E /\]T]J C + O( ))d<7 as P — POa

where the constants {A;};j=1, .. r—2 € C are determined by the normalization condition

/.wﬁfjﬁ(P) =0, j=1,...,r—2,
and the differentials {n;(P)};=1,....r—2 (defined in (4.11)) form a basis for the space

of holomorphic differentials. Moreover, we define the vector of b-periods of wg{ig,

2 2 2 1 2 .
(4200 09 =03, 08, U= %Z/bwg,gﬁ, j=1,...,r—2

Then

1. _
[P 2, -3 @0+ 0@, s P Ry

/Q 5320)3(13) o e (Qo) + 157(Q)C2 + 0(¢Y), as P — Pa,,

where 63 (QO) §2) (Qo) are integration constants.

Similarly, the theta function representation of the Baker—Akhiezer function s (P,
x, o) is summarized in the following theorem.

THEOREM 4.4. Assume that the curve K,_o is nonsingular. Let P = (Z,y) €
Kr—2\ {Psx,,Po} and let x,x¢ € Q,,, where Q, C C is open and connected. Suppose
that Dy, or equivalently Dy(,y, is nonspecial for v € §2,. Then

0(Z(P, o()))0(Z(Po, (0)))
0(Z(Po, f1(2)))0(Z(P, (o))

x exp< / “om’ (o/) s’ ( /Q Wiy = eé”(%)) )

Proof. Assume temporarily that

(4.22) pi(x) # pp(x)  for j#kand x € ﬁu C Qyu,

(421) ’lﬁg(P,{E,xo) =

where ﬁu is open and connected. For the Baker—Akhiezer function o we will use the
same strategy as was used in the previous proof. Let ¥ denote the right-hand side of
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(4.21). We intend to prove ¢ = ¥. For that purpose we first investigate the local
zeros and poles of 1. Since

(4.23) o (P, x,z0) = exp <2_1 /I (P, x’)dw’) :

we can see that the zeros and poles of 15 can come only from simple poles in the
integrand (with positive and negative residues, respectively). By using the definition
(3.4) of ¢, (3.10), and the Dubrovin equations (3.26), we obtain

2y2‘/21 - yAr + Br

P =
o(P,) z
. 22/2‘/21 - yAr + %‘/2157“ + %Er,r
= B
=3 lv 3y2+5r +1Er,w 1_3yAr+‘/215r
o3 R, 3B, 3 E,
o 2 3y2 + Sr 1 Er,w ‘/ély(y + \é; )
(424) =z (g‘/g]_ E,r g E,r — ET, .
Hence
B(Pw) = py (2t L Me o)
’ TN B2 3Z-ypy
(4.25) = 2L O(1), as E (),
Z—py
where
N Ar(pj( =
y — y(py(x) = — , o as Z— p(w).
! Var (p()) !
More concisely,
0
(426)  O(Pw) = pui(e) s In(E — 15(2) + O(1) for P near fiy(a)

which together with (4.23) yields

(P, 0) = exp (/ i’ <%1n(2 ) + 0(1)))

Z—pi(w)
CE- #j(ﬂfo)o(l)
(2 —p;(2))O1) for P near jij(z) # f1;(xo),
O(1) for P near fi;(x) = fi;(2o),
(2 — p(20))~'O(1)  for P mear jij(xo) # j1(x),

where O(1) # 0 in (4.27). Consequently, all zeros and poles of ¥ and ¥ on K,_2 \
{Px,, Po} are simple and coincident. It remains to identify the behavior of 1o and ¥
near Py, and Fj.

(i) Near Py, from (4.1), we infer

(4.27)

(4.28) exp (2_1 /I dx' ¢ (P, x’)) =, 1t /1 Ko(x')dz' +O(¢?), as P — Pa,.

xo CA) 0
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Taking into account the expression (4.21) for ¥ then shows that 1o and ¥ have
identical exponential behavior near P, .
(ii) Near Py, from (4.6), we arrive at

/ dr'§(Pe) = - /jm%wx/ (C?+0(). asP = R

Taking into account the expression (4.21) for ¥ then shows that 1o and ¥ have
identical exponential behavior up to order O((?) near P.

The uniqueness result for Baker—Akhiezer functions [13], [15], [16], [18] then com-
pletes the proof ¢ = ¥ as both functions share the same singularities and zeros. The
extension of this result from = € €2, to x € €, then simply follows from the continuity
of ag, and the hypothesis of Dj(a) being nonspecial for z € €2,,. d

The asymptotic behavior of y(P) and S, near Py, is summarized as follows.

LEMMA 4.5.
(429)  y(P) =, —lgé““”‘?’(l +aoC® +a1¢* +0(¢%)), as P— Pu,,
(4.30) S, = o 4 8161 4 Bo¢? + Bi1¢* + 0(¢%)), as P — Pu,,

where 0 = —3Ry and Ny is the root of of algebraic equation (2.32) corresponding to
the point P, € Kr_a.
Proof. From (3.1) and (3.2), we arrive at

(2% — ¢2%)

(4.31) y(P) =V + Voo Z + Vaz¢.

Then, in terms of the local coordinate ( = Z7!, insertion of (2.11) and (4.1) into
(4.31) yields

y(P) = %Z@P(Gnc*‘*w*@ T ST
=0 j=0

Z (é) 4(n+1—£)—1
Z (e) 4(n+1—6) i ﬁjgjfl
=0

(4.32) o —§g<*4”*3(1 + ool + a1 * +0(C%), as P — Pa,.
—

Similarly, we recall the definition of S,

(4.33) Sy = 22(Vi1Vaz + Vi1 Vag + VaaVag — ViaVar — VigVar — VagVas).

Insertion of (4.1) into (4.33) leads to (4.30). O

A straightforward Laurent expansion of (4.11), (4.12), and (4.13) near P, yields
the following results.

LEMMA 4.6. Assume the curve K,_o to be monsingular. Then the wvector of
normalized holomorphic differentials w have the Laurent series

(4.34) w=(wi,...,wr_2) oo (p, +p,C+ O(¢?))d¢
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near Ps, with

-3 0
=——¢(8 5+ ———e(r—2
P gg_lé( n+5)+ 92_1§(r ),
S e(8n+4)—|——g e(r —3)
/_)1_92_1— 02 —1° )
where o = —3Ny, Ny is given in Lemma 4.5.

Proof. Using (4. 29) and (4.30), the local coordinate ¢ = 27! near P.,,, we obtain

(4.35) 3y*+S, o3 §_8" (0% =1+ (20%a0 — Bo) (2 + (2021 + 0% — 1)t +0(¢0)).

Then
1 3¢S+ 1 20°0—fo 2 20%a1 + 0°af — B
3y% + 5, <=0 -1  (0*-1) —(0* - 1)
(2Q2a0 50) > 4 6]
4.36 t— 3 +0
(436) L )<+ 0()
From (4.11), (4.13), and (4.36), we have
r—2 8n—+5 ~l—1 7~ r—2 ~1—8n—6 7~
zZ'7rdz Yz dz
wi = Y eOm=Y e0zzrat Y &0 Fg——a
=1 =1 3y* + 5 1=8n+6 3y° + 5
8n+5 _ r—2 _ n
o ZJF e( <— 1— 1d< Z e(l)yc I+8 +4d<
= j i)~ 5T
=1 3y +S 1=8n+6 3y* + 5r
8n+5

_ 14+8n+5 1 29 ap — o .o
- dec [92—1 @12 °

n <2Q a1+ 0%ad — B (20%a0 — Bo)?
—(0? —1)2 (02 —1)3
=2 1 20%a9 — 3
(1 —l+r—2 _ 0 0 -2
D

20%a1 + 0% — B (20%a0 — Bo)*\ .4
*( @12 T @o1p )“O(“}

Jetroreac

x [14 agC? + a1 ¢* + 0(¢%))d¢

-3 0
C:O (92 — 1ej(8n+5)+ ﬁej(T—Q)

-3 0 2
(437) + [ﬁej(&z + 4) + ﬁ X ej(r — 3):| C + O(C )) d<7
which yields (4.34). O
THEOREM 4.7. Assume that the curve K,._o is nonsingular and let x,zq € C.

Then

1 x
(4.38) ag, (Dﬁ(r)) = ap, (Dg(ro)) + gg(r —2)(z — o) +e(8n + 5)/ dx’(\Ill(H)),
o
1 x
(139) g, (Date)) = a0, (Dstan) + 3e(r — 2w —a0) + el +5) [ do'(Wa(a),
zo
where W1 (p) = Zl2n+4 i(@). In particular, the Abel map does not linearize the
divisor Dy and Dy(.y.
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Proof. We prove only (4.38) as (4.39) can be obtained from (4.38) and Abel’s
theorem. Assume temporarily that

(4.40) pj(x) # pje(x) for j#j5 andx € Q, CC,
where ﬁu is open and connected. Then using (3.26), (4.11), and (4.13), one computes

d
d—aQo.l(Dﬂ(w))
12n+4 12n+4

-2 Z/ = X maedoli(o)
12n+4 —
= D male Z
12n+4 8n—+5 k—1
IS 1) + 30 W s) (K
j=1 ul] 2n+4( — Kp) =1 Sy(ps) + 3y (i)
P#£]
r—2 ~ k—8n—6
y(fs)
+ > ealk) -
vt Srlig) +3y(iy)
12n+4 8n+5 12n+4 N
> ~Van (15 () ECTEES Vi (1 (@)y i)
H12n+4( '[,,Lp) — ¥ H12n+4( '[,,Lp)
~ Z el k 8n—6
k=8n+6
8n+5 12n+4 kf
— Va1 (pj(z)
= Z ei(k) Z 12n+j4 N Z ek
k=1 j=1 Yllp=1 (l“j Hp)  klsmie
P#£]
At Vi (p () (g ) s 50
X Z 120+
j=1 H ( )]
8n+5 12n+4 _(uu +a M4n 2+ )Nk_l r—2
= Z ei(k) Z . 12n+i 4 —+ Z e(k)
k=1 j=1 ullp=1 (s — i) k=8n+6
p#J
12n+4( uu§n+2+bou§n . )Mf 8n—6
X Z T2nt4
j=1 U\ lp=1 (:u] _N;D)
P#£]
Using the standard Largange interpolation argument then yields
d 1
(4.41) %QQO,Z(Dﬁ(w)) = \I/l(ﬁ)el(&fl + 5) + gel(’l“ — 2)
Then we have
1 xr
(442) g, (D)) = 2o, (Dyen)) + 5e(r = 2)(w = 20) + (81 + 5) / da' (W1 (1).

zo

The equality (4.39) follows from the linear equivalence

Dp.. i) ~ Proi(a)
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that is,
AQO (Pool) + QQ, (Dﬁ(ﬂﬁ)) = AQO (PO) + Qo (Dﬁ(ﬂﬁ))7

and (4.42). The extension of all these results from z € ﬁﬂ to x € C then simply
follows from the continuity of ay, and the hypothesis of Dj(,) being nonspecial on
Q. d

Next, we provide an explicit representation for the stationary DP solutions v in
terms of the Riemann theta function associated with IC,_s, assuming the affine part
of IC,—2 to be nonsingular.

THEOREM 4.8. Assume that u satisfies the nth stationary DP equation (2.14),
that is, X,,(u) = 0, and the curve K,_o is nonsingular. Let x € Q,,, where Q, C C
is open and connected. Suppose that Dy, or equivalently Dy, is nonspecial for
x € Q. Then

(4.43) u(z) = u(zo) — i

Proof. Using Theorem 4.4, one can write ¢; near P, in the coordinate ¢ = 271,

as

o (P, x, x0)
(444) = (o0(@) + @)+ oa(0)C* +0(C))

<o ([ amb@r) (1@ +0(h) ) as P P,

0

where the terms og(x),01(z) and o9(x) in (4.44) come from the Taylor expansion
about P, of the ratios of the theta functions in (4.21). That is,

0 (2(P, i(x)))
0 (2(Po, ju(x)))

0 (EQO - AQO (P) + [A7e (Dg(m)))
0 (EQO —Ag, (Po) + ag, (Dg(z)))

— P001
6‘(;@0 - AQO (Pool) + 2Q, (Dﬂ(ﬂﬁ)) + fp Q)

0 (2, — Ag,(Po) + g, (Daw))

9(5420 — A, (Pooy) + gy (Da(ay) — po,i¢ — 2p1,;C% + 0@3))

r—2 r—2 r—2
1 2 1 90 900 2 3
ot [90 "2, (a—” T2 505, M0irer) ¢ O
7j=1 Jj=1 k=1
b0 — 0260C + (30260 — Oy@00)¢* + O(¢?)
¢=0 01
20200 — 0,200
(4.45) = O _ 00 ¢+ 2 S 10, as P Py,
=0 0 01 01
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where
b0 = bo(x) = 0(2(Pec,, f(z))) = 0 (EQ — Ag, (Pooy) + 2, ( g(m))) :
th = 01(z) = 0(Z(Po, ji(x))) =0 (E —Ag, (Po) + ag, (Dg(z))) :
and ,
oy =3 0D 2
Us ~ 3.3 93

denotes the directional derivative in the direction of the vector of b-periods U 52),
defined by

2 2 2 2 1 2 .
(446)  UP = U, UP_,), Uvd) = zm/bwg’oilws’ j=1,...,r =2,

(2)

with wjp_  holomorphic on Ky—2 \ {Ps, } with a pole of order 3 at Pw,,
(4.47) w2 (P) = (C*+0(1)d¢, as P — Ps,.

01,3 ¢—0

Similarly, we have

0 ((Po, o 0 EPaa)) \
0 (E(P. il JER g
= (2—°< <<2>)>‘
So Z—(1+a Indy ¢ +O(¢?)) .
_ bi(z0) 2 .
(4.48) o 90@2) <1+az Inbo(z)| _ ¢+0(C )), as P — Ps, .

Then the Taylor expansion about 1, is as follows:

O(2(P, ju(2)))0(Z(Po, (o))
ValPamn) = GRS B )
o ([ omi @) (£70@o)e? + 0ch)
61(w0) Bo(x) _ (O(wo) bolx) e() o ()
¢S50 {0;(332) Gf(x) + (9(1)(3:2) 9(1)(@ Oc In o () a=zo  Oo(zo) 01(7) >
+ O(Cz)} X exp <(/w 2mé(a:')da:'> (féQ)( C2 +0 C4 )
01(xq) Oo(x 01(xg) Oo(x
o | B+ G R (o) 0t )
+0<<2>} x <1+ ( P [ omta) )<2+0<<4>)
(4.49) ) as P — P,.
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Hence, comparing the same powers of ¢ in (4.44) and (4.49) gives

01(zo) Oo()

oo(x) = 7 ,
(zo) b1 (x)
(4.50) 0
o1(x) = z;gz; Z?Eg (31 In 0y (x) s O In 00(a:)> .
If we set
(4.51) ¥2 5, (00(x) + 01(2)¢ + 02(2)¢* + O(¢?)) exp(A), as P — P,
with

exp (&) = exp (( [ 2mb )i’ ) (7 (@0 + 01¢) )
(1+ (#7@0) [ 2md @) @ +ore).

then we compute its z-derivatives as (P — Py, )

1241

Yo =, (700 +010C+OC) exp (8) + (247 (@o)mi ) ¢+ 0(¢H)) w2

CjO 00,z + Ul,acC + O(<2)7
(4.52)
wZ,wm Cj() 00,z + Ul,me + O(Cz)a

"/)2,zzz = 00,zzx + Ul,zzzc + O(CQ)
¢—0
By eliminating ¢; and %3 in (2.3), we arrive at
o My My
(453) wZ,www = —mz 2 + _wZ,wm - —¢2 + "/12@'
m m

Substituting (4.52) into (4.53) and comparing the coefficients of ¢, we obtain

my
00,zxx = m (007xw - 00) + 00,z

that is,

(00711 - UO)z _ My (u(a}) - urr(x))r

00,22 — 00 m w(x) — Ugy ()

)

which together with the first line of (4.50) leads to (4.43). O

Remark 4.9. We note the unusual fact that Py, as opposed to P,, i = 1,2,3,
is the essential singularity of y. What makes matters worse is the intricate x-
dependence of the leading-order exponential term in 1o, near Py, as displayed in
(4.21). This is in sharp contrast to standard Baker—Akhiezer functions that typically
feature a linear behavior with respect to x in connection with their essential singu-
larities of the type exp((z — x9)¢2) near ( = 0. Therefore, in Theorem 4.7, the Abel
map does not provide the proper change of variables to linearize the divisor D, in
the DP context, which is in sharp contrast to standard integrable soliton equations

such as the KdV and AKNS hierarchies.
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5. The time-dependent DP formalism. In this section we extend the results
of section 3 to the time-dependent DP hierarchy. We employ the notation G, V, Vij,
etc., in order to distinguish them from G;, V, Vj;, etc. In addition, we indicate that
the individual pth DP flow by a separate time variable ¢, € C. In analogy to (3.1), we
introduce the time-dependent vector Baker—Akhiezer function v = (¢1, 12, 13)" b

U(u(xvtp) (P))¢(P,$,$Q,tp,to7p),
V(u( ) (P))w(Pﬂxﬂx(Jvtp?tO,P)?

¢w(P$ x07tp7t0p
Ve, (P, x,w0,tp, top

)
)
)
)

(5.1) ~
2V (u(z, tp), Z2(P))Y(P, x, x0, tp, to.p) = Y(P)Y(P, x, o, tp, top),
o (P, xo, o, top, top) =1, x,tp €C,
where V = (17 i)3x3, and
P
(5.2) Z Ve =D =13, 1=0,...,p

=0

with ‘N/ig-l)(él) determined by Gy, which is defined in (2.6) by substituting G; for G;.
The compatibility conditions of the first three expressions in (5.1) yield that

Ur, (%) = Va(2) + [U(2), V(2)]
(5.3) —Va(2) + [U(%), V(2)]
Vi, (2) + [V(2),V(2)]

I3
Il

I
o o o

A direct calculation shows that yI — ZV(Z) satisfies the last two equations in (5.3).
Then the characteristic polynomial of Lax matrix ZV(2) for the DP hierarchy is an
independent constant of variables x and ¢, with the expansion

(5.4) det(yl — 2V) = y* + yS,.(2) — T (%),

where S,(2) and T,.(Z) are defined as in (2.20) and (2.21). Then the time-dependent
DP curve K, _5 is defined by

(5.5) Kro2: Fr(Z,y) = y* +ySr(2) — Tn(2) = 0.

In analogy to (3.2), we can define the following meromorphic function ¢(P,x,t,) on
K,—2, the fundamental ingredient for the construction of algebro-geometric solutions
of the time-dependent DP hierarchy,

z¢2(P95 20, tp, to,p)
¢2(P7$7$07tp7t0,p) ’

(5.6) d(P x,ty) = Pek,_o, xeC.

Using (5.1), a direct calculation shows that

~yV31(57$7tp)+Or(2 €z )

P7 7t = s z
¢( . ;D) Zy%l(zaxatp)—’_AT(Z?x’tp)
,tp)

t
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where P = (Z,y) € K,_o, (z,tp,) € C? and A, (Z,x,t,), B.(Z,x,t,), Cr(Z,2,t),
D,(z,z,t,), Er(Z,2,tp), Fr(Z,2,tp), and J,(Z, z,t,) are defined as in (3.5) and (3.6).
Hence the interrelationships among them, (3.7)—(3.10), also hold in the time-dependent
case.

Similarly, we denote by {p;(x,tp)}j=1,....r—5 and {v;(z,tp)}j=1,.. r—3 the zeros of
E.(Z,2,t,) and Z°F,(Z,x,1,), respectively. Thus, we may write

r—5
(5.8) E(Z,2,1p) = u(z, tp) H(Z_p’j(xvtp))v
j=1
r—3
(5.9) Fr(z,a,tp) = —u(z, tp)ul(,t,) 22 [[ (2 — vi(z,tp)).
j=1

Defining

(. ty) = (1), (i . 1,) )

AT j 7t ) 7t
(510) — (/‘j(ﬁvtp)v _ (/1’] ({E P) ‘Z tp)) c ICT727
j=1,...,r =5, (x,t,) € C?,

(@) = (v ty), y(0y . 1,) )

_ . OT(Vj(matP)axatP)
(5.11) = (VJ (z,tp), Vo (0 (@.ty), 20ty € Ko,

j=1,...,7r =3, (z,t,) € C%
One infers from (5.7) that the divisor (¢(P, z,t,)) of ¢(P,x,t,) is given by
(5.12) (D(P,2,tp)) = Dpy,p(a,t,) (P) = Pro, (o) (P,
where

v(x,tp) = {01 (x,tp), ..., Ur_g(z,tp)},

E(xatp) = {ngapwgaﬂl(xatp)a cee 7/7“T75(x7tp)}~

That is, Py, 21(x,tp), ..., 0r—3(z,tp) are the r — 2 zeros of ¢(P,z,tp) and Peo,, Poc,,
Py, fin(z,tp), - fir—s(x,tp) its 7 — 2 poles.

Further properties of ¢(P, z,t,) are summarized as follows.

THEOREM 5.1. Assume (5.1), (5.6), and P = (2,y) € Kyr—a \ {Px,;, Po}, i =
1,2,3, and let (2,z,t,) € C3. Then

Gua(Pyx,ty) + 327 O(Pyx,t)) b0 (P, ty) + 2203 (P, 2, ty)

mr(%tp) ~—1mr($vt;n)

2
- m(x,tp) d)I(Paxatp) -z m(x,tp) d) (vavtp)
(2, Tp) -
(5.13) — O(P,x,ty) +m(x, t)E ! + %z -0,
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bo, (P, ty) = 531<M( —6u(Pasty) — $2(Poa,ty))
(xvtp)
(5.14) + Vaa(Z,2,tp) + ‘723(27x,tp)51¢(P,x,tp))a
~ FT Na 7t
(5.15) O(P,x,t,)p(P*, x, t,) (P, ,t,) = —23%,
~ET$ ~7 7t
(5.16) O(P,z,t,) + 6(P*,2,t,) + 6(P™, 2, t,) = z%
1 1 1 _ Fa(Z )

S(Paty) Py L SPat,)  EEG.aty)

(5.17) - om(z,tp)Jr (2,2, t)  2m(x,ty)Vas (2,2, tp)
. ZF.(%Z,x,tp) 23V (2,2, t,)

y(P)p(Pw,tp) +y(P7)p(P7, 2, ty) +y(PT)o(P™, w, 1)
BT (2)Var (2, x,tp) + 25, (2) A (2, 2, tp)
(5.18) =z Erp(é,x,tp) Ly

Proof. Equation (5.13) follows from (5.1) and (5.7). Relation (5.14) can be proved
as follows. Differentiating (5.6) with respect to ¢, and using (5.1), we have

Vo191 + Vaotho + Vagths
P2

(=222 + ¥2)Z2
m1/)2

(5.19) = 20, [Vm( Zhy — ¢2+z2)+%2+%32—1¢].

(¢)tp = 20,

= %0, {‘721 + Vo + ‘723%}

Moreover, (5.15)—(5.18) can be derived as in Theorem 3.2. O
Next, we consider the t,-dependence of E, and F:.
LEMMA 5.2. Assume (5.1) and (5.3) and let (Z,x,t,) € C*. Then

- W -V
(5.20) Ery (3, 2,t,) = By y(Z,,tp) <V23 - %V%) + E.(3,x, tp)B(ng - %ng)
21 21

Fra, (Z,2,t) = Fro(Z,2,tp) Vi — Jo (2,2, 6,) (22 Va1 +mVio)

itp

~ ~ 2mV- -
(5.21) +Fr(2,x,tp)<3‘/'22+3‘/237m - (z Vi +v32)>
Va1 m

Proof. From (5.1) and (5.6), we obtain

(5.22) 560 + % = %(—2_1114—‘/22 + 27 Wasg) +
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Hence, one can compute
Z¢. (P, x,tp) + Zd2(P*, x,tp) + 262 (P*", x,tp)
+ ¢2(P,$,tp) + ¢2(P*,$,tp) + ¢2(P**7x7tp)

" (5 Yy + Vag + 5 Wasd(P)) + 22

"V
m — ~ * ~
+ V—(—Z 13/1 + Vas + 2 1V23(15(1D )) + 32
21
m o ~ $k ~
5 (2F Ty + Voo 4 2 Vagg(P) + 22
21
mzZ N (yo +y1 + y2) mVaa 9
=— +3 +3z
Va1 Va1
m2~ Vs N -
+ o (6(P) + O(P7) + 6(P™)
21
NilV
(5.23) _gmVer | mE Vs by L G(pr) 1 g(PH) + 332
Var Va1
and

815;, (¢(P,$,tp) + ¢(P*7 €z, tp) + ¢(P**7 Z, tp))
o, (+Eaelont)

E.(%2,x,tp)
= 204,0;(InE,(2,2,1p))
(5.24) = 20,0:,(InE,(Z, 2,tp)).
On the other hand, from (5.14), we can see that

8tp(¢(Pﬂx7tp) +o(P*, 2, tp) + AP, 2,tp))
_ 0, <%(~2 26, (Pasty) — 2(P 1)
+ %2 + %32_1(;5(137 z, tp))

430, (%(2  26u (P a,t,) — 2P a0 t))

+ ‘722 + ‘7232_1¢(P*,$,tp))
~ %1 ~2 ~ Kk 2 *%
+ 20, F(z — 2y (P, x,t,) — &7 (P™, 2, tp))

(5.25) + Vag + Va2~ 1p(P™, tp)>-

1245
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Without loss of generality, we take the integration constants as zero and then obtain

3tp(1nET(2,x,tp)) VZl N((bw(P x,t )+¢w(P*vxvtp) +¢w(P**7$7tp))

V“ Bl (2 (P, 1) 4 (P 1) + (P 1)

+2z 1V23(¢(P7x7tp) + ¢(P*7x7tp) + ¢(P**7x7tp))
+3Vay +3@22

Va1

e V—vzg) (6(P) +6(P*) + 6(P™)

_ T
+3Vaz — 32‘/22

. ~ Vai E, . = Vai
_ — 2 — —_—
z- (V 2 V23)( )+3V22 3‘/21 Vaz

E,
= Va1 E; . Va1
.2 = _— J—
(5.26) < 23 V1V23)( E’r ) + 3Vay 3V L Vs,
which implies
(5.27) Eri,(Z,2,tp) = (V23 - —V23) +E 3(V22 - —V22>

Relation (5.21) can be proved as follows. Using (5.3), (5.13), (5.15), (5.17), and (5.23),

we have

3t(— za:t)
P zZ,x,t

= d,[6 <th> (P*,2,t,)9(P*" 2,1,

= 61, (PYO(P*)B(P™) + G(P)d, (P)G(P™) + (P)o(P* )y, (P*)

— $(P")$(P™) (a L z¢m<P>—¢2<P>+22>+%2+%32—1¢<P>D
Var

+o(P)p(P™) (Nﬁ [ (=2¢a(P7) - ¢2(P*)+22)+‘722+‘7232‘1¢(P*)D

Var

+6(P)o(P) (za B 20u(P) = P £ ) 4 T+ %azwp**)])

22
= ¢(P)$(P")¢(P™) | = — Va1 0 Ing(P)d(P*)$(P™)

- ) o) o) (T 0y 1 T

1 1 1 52‘721 ~
(¢<P> o T ¢><P**>) T3 Vs

V21 (wz( )+ ¢*(P) + 2¢,(P*) + ¢*(P*)
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= 6(P)O(P)6(P™) | = V10, Ing(P)d(P*)6(P"")

2‘/21’95 z ‘/21 T

(B(P) + 6(P*) + o(P™)) + (

1 1 1 z V21 =~
(¢<P>+¢<P*>+¢(P**>) ST Ve

Vi (3mVay 371V
+£<m22+z 23

+ ‘721 + ‘7221)

(B(P) + 6(P*) + 6(P™)) + 3)]

m Var Va1
F 2. [F E 2Vor . E Vay Voir .. By
~34'r T,z T, x Hr.x
- _ _ Ve
“E, 31( F L ) B e 2T, B,
22~ ~ nd Frz er 2m‘/33 7

5.28 Z Vgt Vg + Vg | [ =25 — 2 - 2 3Vas x|,
(5.28) + <m 210+ Va1 + Vaz, )( F, F.  22Vy ) 9V,

which implies that

Fr,tp - FrEr,tp
E, E2
Fr 22"’ Frz Erz 22‘721IE7’1 ‘/21 ‘F721
S e v e oz Ity 2ly; 32y
E.| m 31( F, E) m B, Va s Er o Vo

22"' = i Frz er 2m‘/33 17
— Vo1 + V5 Voo || — — — — = 3Va3.4
+ <m 21,0 + Vo1 + Vao, ) ( F, . 2V, ) + 3Vag,

Fof 2 AT T
= E’ (— —V31 + <—V21,z + Vo + VQ?@))
- m

E,.F, 2V .V
+ —— —Val—zi—f—ﬂ‘/%
E? m m

Voo =~ 2mVss 27 ~
ET<3V2 Va1 +3Vas.0 ~QVM( ‘/211"_‘/21"_‘/221))

mJ

(5.29) e

( ‘/21w+‘/21+‘/22w>
m

Then substituting (5.27) and the formulas
Vare = Va1 + 2 *mVas,
Vas,e = Vi — Va1 — Vag

into (5.29), we obtain (5.21). O
The properties of ¥2 (P, x, zo, tp, to,p) are summarized as follows.
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THEOREM 5.3. Assume (5.1), (5.6), and P = (2,y) € Kyr—2 \ {Px,;, Po}, i =
1,2,3, and let (Z,z,x0,tp,t0,p) € C°. Then
¢2,t,, (Paxax07tp7t0,p)

Vor(Z,2,p) o - Voo (2
- (B2 otz (Rt - 6P ty) + Tl
(5.30) +‘723(575C7tp)21¢(Paxatp))wZ(P7x7$0’tp’tO’p)’

¢2(P, x, o, tp, tO,P)

* b [271y(P) — Vao(2 N~
~—1 / / y( ) 22(Zax07t) ~ 12
=exp| 2 P ' t,)dx —|—/ [ — X Vo1(Z, xo, t
p( »/aco ¢( p) to,p VQl(va()at/) 21( 0 )

~ Vo1 (2, 20, t'
+< 21(2, 2o, 1t")

Vos (2, 2o, 1) — WV%(E, Zo, tl))

(531) 271¢(P, $0,t/) + ‘722(2,:%0,tl):| dt/>,

E.(%2,x,tp)
Er (27 Zo, t07p) ’

N - F.(z,x,t
1/)2,I(P7$7x03tpvtOJ?)wQ,m(P axaxﬂatp7t07p)w2,r(P 7$7$07tpat0,p) = _W7
(5.33)

(532)17/)2(P5 z,To, tpa tO,p)‘/&(P*v Z, o, tpa tO,p)‘/’Z(P**v Z, o, tpa tO,P) =

wZ(Paa:amOvtpatO,p)
_( E,,«(g,ﬁli,tp) >1/3
Er(éaantO,p)

{ /w (y(P)ZVm(,E’x',tp) - y(P)Ar(Zaxlvtp) + %ST(Z)V?l(va/vt:D)> ’
X exp dx

E.(Z,2',tp)
+/t” <y(P)2V21(2,x0,t’) —y(P)Ar(Z,20,t") + %Sr(f)‘él(f,xo,t/)>
tO,p

Er(éa Zo, tl)

%1(2’ X0, t/)

(Pt t) = AT o))

_ ‘721(5 xo,t")
.34 Ly(P) 222t 3.
(53 ) +Z y( )‘/21(271:0,1‘:/)

Proof. Relation (5.30) can be proved as follows. Using (5.1) and (5.6), we have
wQ,tp (Pa z,To, tpv to,p) = %11/)1 =+ %21/)2 =+ "723¢3
= Vo (%_Tm) 22+ Vaothy + VasZ ™ Lo

=Va (%)% + Vaotho + VagZ ™ tabo

_ [~ (z?—z%—af

(5.35) Va1 - ) + Voo + VasZ ' oo
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Then using (5.22), we obtain

1/)2(P7 €T, mOvt;Da tO,p)

:exp(/ (P ty)da
Zo

+/tp |:~ ~ ! (22—2¢1(P’x07tl)—¢2(P,{E0,tl))
t

‘/Ql(Z,xO,t ) X
0,p m

+ ‘722(27'1;07tl) + ‘,723(27 xOvtl)gilgb(Pv Zo, t/):| dt,)

:exp(/ Efld)(P,x',tp)dx’

bl FY(P) — Vas(Fy o, )\ |~
+/t |:‘/21(Zax07t/) X < y(Vg)l(é jj(t,) 0 )> + Voo (2, 20, 1")
0,p ) )

‘7le (27 Zo, tl)

.36 Vas (2, 20, ') —
(53) —|—<‘/23(Z,$0, ) ‘/21(2,$0,t/)

‘/23(2,$0,t/)) X zZ~ ¢(P $0, )] dt/>,

which is (5.31).
Hence

1/12(P7$7x07tpatO;P)wQ(P*axaantpatO;P)wQ(P**axax07tp7t0,p)

:exp< /¢th

» [27y(P) = Vaa(Z, 20, 1)
+ " Vo1(Z, xo, t
/to [ Va1(Z, o, 1) 21(%, 30,1

D

‘/21(2 an )

+ (%3(27x07t/) ‘/21(2 o t)‘/QB(Z ant ))2_1¢(P7 ant/)

+ Vas(Z, 2o, t’)] dt’)

xexp( / d(P*, 2’ tp)

+/t { y(P*) — Vaa(Z, w0, t') &

0,p ‘/Ql(zaxﬂat)

Va1(Z, zo,t")

‘7le (27 Zo, tl)

+ <%3(2,$0,t/) - ‘/21(2 o t,) %3(2,1’0,#))21¢(P*,{E0,t/)

+ ‘A}?Z (27 Zo, t/):| dt/>

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/22/14 to 155.33.120.209. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

1250 YU HOU, PENG ZHAO, ENGUI FAN, AND ZHIJUN QIAO

xexp( / (P x

+/tp [Ely(P**) Voo (Z, w0,1') ~
to,p ‘/Ql(zaxﬂat)

Va1 (2, 20, )

%1 (27 Zo, t/)

+ (%3(27x07tl) - ‘/21(2 o t,) ‘/23(27x07t/)>21¢(P**7x07tl)

+ %2 (27 Zo, t/):| dt/>

= exp < /z FHG(P, o' ty,) + G(P* ! ty,) + ¢(P*, 2 t,)]da’

0

t
? . Va1(Z, 0, t')
\% t — LV t
+/t {3< 22(Z, w0, 1) — Vot G 70,7 22(Z, 20, t')

0,p

V21(Z xo, ")

s=1( 1. (2 /
V- , xo, t 7 7 -
e (23(2 20:8) = G 0, 1)

Vas(Z, xo, ))

X [¢(P,x0,t") + ¢(P*, 0, t") + ¢(P**, xg, t’)]] dt/>

FE
= (/ Trzxt)da:
zxt

Var (2, o,
+/ [3(‘/22(2 xg, 1) — M%Z(gaxﬂat/)>
to,p

%1(2,$0,tl)
- Voi(Z, @0, ') . By (2, 20,t')
t/ _ Ll Ll t/ s ) Ll dt/
+ <‘/23(27x07 ) %1(27x07t,) ‘/23(27«/507 ) Er(é,xo,t/)
xT tp
:exp</ aw/(lnEr(é,x’,tp))dx’—i—/ at/(lnEr(é,xo,t’))dt’>
xo to,p

_ E’r(gv €, t;D)
Er (27 Zo, t07p) .
(5.37)

Then the relation (5.33) follows from (5.37) and (5.15), that is,

Vo0 (P, 2o, tp,top) X Y2 z(P* @, xo,tp,top) X Yo z(P*, x,x0,tp,top)
FEH(P, @yt )ha (P, o, tp, top) X 271 d(P* 1) (P*, @, w0, tp, to )
x 2L O(P* a1 (P** 2, 20, tp, to.p)

F.(Z,z,tp)

538) = ——F——71—""—""—.
( ) Er (27 Zo, t07p)
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Moreover, using (5.20), we arrive at

%(P, x, o, tp, t0710)

:exp(/ (P2’ ty)da’
xo
t:D
+ /
to

sP

[%3(27 Zo, t’)Z_l(b(P, Zo, t/)

~ 52 3 N2 ,
+Vzl(2,xo,t’)(z Z%(P,xm;) ¢(P,xo,t))

:exp</ 7 o(P 2’ ty)da’
zo
tP ~
+/ |:‘/21(27x07t/)<
to

D

+ %2 (27 Zo, t/):| dt/>

7'y (P) = Vaa(Z, o, t')
Vo1(Z, o, t')

V21(Z xo,t')
‘/21(2 ant/)

) + ‘722(271;07t/)

+ (Va6 - Vas(z.an. ) ) 7 0(P, . ﬂdt')

~ exp /w y(P)2‘/21(27$/7tp) — y(_PN)AT(27x/’tp) + BT(27$/,tp) dx,
x ET(va/atp)

0
tP

+ M (Z, o, t’)dt’) ,

t(),p

where

Z71y(P) — Vao(Z, xo, !

V21(Z xo,t")
‘/21(27'1;07t )

) + %2(2a$07t/)

+(‘723(5,$0775') Vas(Z, xoat)>51¢(P79€0,t/)-
(5.39)
From (5.20), it is easy to see that

~ - ‘721(2 Zo t/)
V t/ _ ) b
o lEr,t’ (27 Zo, tl)
3 E.(% 20,t)

‘/22(23 Zo, t/)>

V21(Z zo,t")

Enw (27 Zo, t/)
‘/21 (Z Zo, t/)

1/~
4 — = Vas(z, 2o, t .
(5.40) 3( 29(%, 20, 1) = B, (2, z0,t')

Vas(Z, xo,t ))

Inserting (5.40) into (5.39), we arrive at

~ = ~ V21(Z x()
M ! — ! I’
(2,20,t") (‘/23(2,330,t) Vi G 70,7 V23 Z,xo, )
1 E, (2, z0,1") 1Erv(Z,20,t)
P, Z
X( 9By a0, ) = 3E(zx0,)> 3 E.(2,z0,t)
Va1 (2, 2o, t
(5.41) 4z 1y(py 2t To )

‘/21(23 Zo, t/) '
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Substituting (5.41) into the above representation of 15, we have

wZ(Pamaa:OvtpatO,p)
(EGat)\?
B Er(gaxﬂatp)
C(y(P)PVar (2,2, ty) — y(P)AR (2,2 1) + Va1 (2,2, 4,) S, (2) , ,
X exp / — dx
%o E.(Z,2',tp)
X <_ET(27$OvtP) >1/3
Er (27 Zo, t07p)

< ox /tp Y(P)*Va1(Z, 2o, t') — y(P)Ar(Z, w0, t') + 25,(2)Va1(Z, 20, t')
P to,p Er(27$07t/)

V.. (3 /
Vanlan.t) ) + 5 (P 2 )dt/>,

‘/21 (Za Zo, tl)

i ~ / ‘/21 (25 Zo, t/)
X (‘/23(27360,15 ) — Vor G, 20, 7)
which implies (5.34). O

The stationary Dubrovin-type equations in Lemma 3.3 have analogues for each
DP, flow (indexed by the parameter ¢,), which govern the dynamics of u;(x,t,) and
vj(z,t,) with respect to variations of z and t,. In this context the stationary case
simply corresponds to the special case p = 0 as described in the following result.

LEMMA 5.4. Assume (5.1)—(5.7).

(i) Suppose the zeros {pj(x, tp)}j=1,...r—5 of Er(Z,2,t,) remain distinct for (z,tp)
€ Q,, where Q, C C? is open and connected. Then {u;(z,tp)}i=1, . r—5 satisfy the
system of differential equations,

[ST(Mj (z,tp)) + 3y(ﬂj (z, tp))z]V?l (Mj (z,tp), 2, 1p)
st Ty (s ) — (ot

(5.42) j=1,....,r—5,

)

g,z (SE, tp) =

Kjt, (33, tp) = _[‘/21 (:u] (ZIJ, tp)v xZ, t;l?)‘723(:uj (33, tp)a x, tp)
— Va1 (pj (2, tp), @, 1) Vas (115 (@, 1), 7, )]
. 19 (ug(ﬂc t p)) + 3y (z,p))?]
u(z, tp) (u (z,tp) — pr(z,tp))
(5.43) j=1...,7mr=5,
with initial conditions
(5.44) {i(zo,top)tj=1,...r—5 € Kr—2

for some fized (xo,%t0,p) € Qu. The initial value problem (5.43), (5.44) has a unique
solution satisfying

(545) ﬂj € COO(QN,’CT,Q), j=1,...,r—5.

(ii) Suppose the zeros {vj(x,tp)}j=1,...r—3 of Fy(Z, x,tp) remain distinct for (z,t,) €
Q,, where 0, C C? is open and connected. Then {vj(z,tp)}j=1,.. r—3 satisfy the sys-
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tem of differential equations,
Vi@, tp) = v, )? (IS0 (0 (2, 1)) + By @ (,£,)))

X V31(Vj (33, tp)v €T, tp) =+ m(xv t;D)JT(Vj(xv t;D)v z, tp))
1
s tp)u2 (@, t) [Ty (v (@, 1) — vi(2, 1))
k#j
(5.46) j=1...,r—=3,
Vit (@tp) = 13w, 1) (S0 (5w ) + 3y (2, 1,))?]
X Viil(yj(xvtp)vxvtp)%Z(’/j(xﬂtp)vxvtp)
(

—W@Jﬁ%'wmjﬁwjﬁ%ﬂwmjﬁwjﬁ)

X

)

1
>< — )
U(ZIJ, tp)u%(x, tp) Z;:sl (Vj (ZIJ, tp) — Vi (33, tp))
J
(5.47) j=1,...,r—3,

with initial conditions

(5.48) {Dj(zo,top)}j=1,...r—3 € Kr—2

for some fizved (zo,t0,p) € Q. The initial value problem (5.47), (5.48) has a unique
solution satisfying

(5.49) ;€ C®(0, Kosa), j=1,....r—3.

Proof. For obvious reasons it suffices to focus on (5.42) and (5.43). But the proof
of (5.42) is identical to that in Lemma 3.3. We now prove (5.43). From (5.8), we have
r—5

(5'50) Entp (27x7tp)|z~:#j(mvtp) = _u(x7tp)uj7tp (xvtp) (Mj(xﬂtp) - Mk(xﬂtp))'
k=1
k#j

On the other hand, using (5.20) and (5.42), one computes

) -V
Er, (Z,2,tp) 52 2.t) = Era(py(2,tp), 2, tp) (‘/23 B %V%)
r—5
= —u(@, tp) (@, ty) [ (i tp) — (e, 1)

k=1
o
~  Va
X <V23 Vo ‘/23)
) A ol ~ Vo
= Vau [0 (113 (1) + 3y (7 (1)) Vs = -~ Vas

=[S (5 (2, tp)) + 3yt (1)) (Var Vas — Vo Vag),
(5.51)

which together with (5.50) yields (5.43). O
The analog of Remark 3.4 directly extends to the current time-dependent setting.
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6. Time-dependent algebro-geometric solutions. In the final section, we
extend the results of section 4 from the stationary DP hierarchy to the time-dependent
case. In particular, we obtain Riemann theta function representations for the Baker—
Akhiezer function, the meromorphic function ¢, and the algebro-geometric solutions
for the DP hierarchy.

We start with the theta function representation of the meromorphic function
d(P,x,tp).

THEOREM 6.1. Assume that the curve IC,_g is nonsingular. Let P = (Z,y) €
Kr—o\{Psoy, Po} and let (z,tp), (z0,top) € Qp, where Q, C C? is open and connected.
Suppose that Dy(e.1,), or equivalently Dy, 4., is nonspecial for (z,t,) € Q. Then

(6.1)

Proof. The proof of (6.1) is analogous to the stationary case in Theorem 4.3. d
Motivated by (5.30), we define the meromorphic function I (P, z,t,) on K,_g x C?

by
L(P.aty) = ZLET) 0 2y p oy 62(Pat))) + Vas Gy ty)
m(z,tp)
(6.2) + Vas (3,2, t,) 2 1¢(P, z, t,).

The asymptotic properties of I5(P, s,t,) are summarized as follows.
THEOREM 6.2. Let s =4p+2, p € Ny, (z,t,) € C2. Then?

s—4

2 —s > ~ r—(s—25—
(6.3) L(Pasty) = ¢+ 3 ¢ 4y +0(C),
Jj=0
(=21 asP— Py,
(64) IZ(P7 x, tO) CiO U(ﬁ, to)m1/3 (CE, t0)472 + 0(4-2),

Czil/g, as P — Py,

where {&j}j:07...,%4 € C, and

u
Xo = —— (K2 + 2Kok2,2) — UKo,
m
s—2 s—2
2j—k+47 s+2—k s+2—k s—0] s—€ _[s—¢
XSsz :m—l E ﬁk‘/g(l[ y ]7 7 [ ]) 4 E F\:E‘/Q(g[ yy ]7 T [ P ])’ s> 2’
k=—2 (=0

the function [-] returns the value of a number rounded downward to the nearest inte-
ger.

Proof. Treating t, as a parameter, we note that the asymptotic expansions of
¢(P) near Py, and near Fy in (4.1) and (4.6) still apply in the present time-dependent

3Here sums with upper limits strictly less than their lower limits are interpreted as zero.
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context. In terms of local coordinate ( = 27! near P, , from (4.1), (5.2), and (6.2)
we easily get

17 Z,x,t ~ ) o
I(P,z,tg) = % (22 = 2¢ (P2, to) — ¢° (P, x,t0)) + Vaz (2, 7, o)
+ Vas(2,2,10)7 (P, o)
u(z,t - -
= m((:v t(;)) {(1 — Ko,z — KJ(Q)) ¢ 2 _ (Ko,z + 2/{05271)} _ gc 2

—u(z, to)ro + O(¢?)

o = 3 0 +0(E) PP

. =3 X0 , as P — Py,
where

u
Xo = —— (k2 + 2K0K2,2) — UKo,
m

and

Ug Ugz Ug | 2
ko = —, Koz = —\— -
u u u

Therefore (6.3) holds for s = 2. For s > 2, recall the definitions of 1721,1722, Vas in
(5.2); we may write

‘721 _ V2(10)1)24p + ‘/2(1170)2410—2 + ‘/2(11,1)24;)—4 IS {/2(11”0)22 + ‘/2({771)

_ Zp: ‘/2(1[%]7#1*[%])(—(4;;—23‘)

2

7=0
_ i ‘/2(1[%],341—[%})47(41772]')7
=0

‘722 — ‘/2(§x0)24p+2 + ‘/2(1170)2417*2 + ‘/2(22)0)24])76 I ‘/2(217,0)22

2p i1 A4
_ Z ‘/2(2[5]7J*[§])<7(4p+272j)

<
[}

‘/'2(2[%]>j_[%])<—(4p+2—2j) ’

I

Il
o

J

‘7’23 — ‘/'2(3071)2417 + ‘/'2(31>0)24p72 + ‘/2(3171)241)74 Lt ‘/'2(:{’70)22 + ‘/2%0;1)
2P J+1] s 1
_ Z ‘/2(3[T]>J+1—[T])<7(4p72j)7
j=0

where

Vi) — et — 0 for B >p+1, BB €N,

V' =0 for Bip+l or =1, BipreN
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Moreover, from (4.1), we find

2 2 _ 25
z Z¢w(P7$7tp) ¢ (P7$7tp) 50 j;l 792]4- )

oo

CjO Z (7.92j<2j + 192j+1<2j+1) s as P — Poola
j=—1

with
2 m(fvv tp)
Y 9=1—Koe— K= ;
u(z, t,
25+2
192j = —R2j4+2 — E RiK2j4+2—i,
i=0

Y2541 =0, j € No.

1

Therefore, in terms of local coordinate ( = 27" near P, , we obtain

Va1 (2, 2, ~
I(P,x,t,) = %( — 26, (P, x,t,) — ¢* (P2, t,)) + Vaa (3, 2, t,)
+ Vas (2,2, t,) 2 (P, m, 1)
+1 +1 o
Z‘/Z[J Li+1—[4 ])C (4p—27) <Z 1925<25>
s=—1
o 11,5—14 2p dtly J+1
+Z‘/Q(Z[E]xJ*[E])C—(4p+2—2j)_|_ Z‘/Q(BET]JJrl*[T])C—Mp—Zj)
J=0 j=0
1 & .
ez
=0
=m ! Z <Z ﬁkvmzj ), 2t (20 "*ﬂ)) <—4p+2j
j=—1 \k=—2
21)21 L=l
+ V22 ! ¢t
j=—1
> 2j— l+2 2j— e+2 2j— e+2 i
+Z <Z /igVZ[ b -l D) (A2
2p—1
(6.6) C GPF2) £ N " T oy Z X6,
Jj=0 j=2p+1
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where

(B Boph (B | (4= (1)

m~! Z ﬁkvm

k=—-2

+ Z /WVQ;;
m~! Z 191@‘/21

k=—2

2] ﬁ+2 ,20=t+2 7[2_7'—[-%—2])
1 1 P

for 0<j<2p—1, jeN,

(2= k+4 ,2izhtd(2j=hed)) (2= £+2 2j—£+2_[2j—£+2])
1 1 1 1 1

+ Z /WVQ;;

for j 2 2p, j € Np.
Then inserting (6.6) into (5.14) and comparing the coefficients of the same powers of
¢t (¢ < 0) yields
Xje=0 for 0<5<2p—1, jeN,.

Hence, we conclude that

X2p—1 = Y2p—1(tp),

where v;(tp) (j = 1,2,...) are integration constants. Next we note that the coeffi-
cients k; (j =0,1,...) of the power series for ¢(P, z,t,) in the coordinate ¢ near Px,
are the ratios of two functions closely related to u. Meanwhile, the coefficients of the
homogeneous polynomials V;; (i,7 = 1,2,3) are differential polynomials in u. From
these considerations it follows that v; = &; € C. Hence, we obtain (6.3). Finally,
(6.4) follows from (4.6) and (6.2). O

Let wg}lp )= 41 + 2, I € Ny, be the Abel differentials of the second kind
normalized by the vanishing of all their a-periods,

[ =0 k=t.r-2
ag

and holomorphic on K, _5 \ {Ps, }, with a pole of order j at Py,

(6.7) Wi (P) = (7O, as P Pu,.

Furthermore, define the normalized differential of the second kind by
=N

(6.8) ng)gszrl = gswgoll,erl + Z(S - 25— 2)&]'0‘)(;0)017372]’73
j=0

and

(6.9) ap = 2w,

where s = 4p + 2, p € Ny. Thus, one infers

/Q(2> 1 =0, /5530))3:0, k=1,...,r—2.
ag Qg
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In addition, we define the vector of b-periods of the differential of the second kind

le,s+17
(6.10)
~(2) ~(2) ~(2) ~(2) 1 52 ,
U =00 Udi,2), Ul ;= omi [, | Peorstl j=1Ll..r—2

with s = 4p + 2, p € Ny. Integrating (6.8) and (6.9) yields

4

e 2 [* o < o [C @
. Qle,s—',-l o3’ o Wp st1 T Z(S —2j —2)q, ; WPy s—2j—3
Jj=0 0

s—4

2 [C1 R ¢ 1
= =5 —d( + 8—2'—207‘/ ———d( + O(1
¢—=0 3 ~/CO Cerl C jgo( J ) J ‘o <372]73 C ( )

s—4
2 . = 1 A(2
A R I e%1(Q0) +0(0),
=
(611) as P — P0017
and
P 9 2
(6.12) / Uy =, 2+ (Q0) +0), asP— P,
Qo " (—0

where égl(Qo), égQ) (Qo) are constants that arise from evaluating all the integrals at
their lowers limits Qo, and summing accordingly. Combining (6.3), (6.4), (6.11), and
(6.12) yields

tp P
~(2 o2
| L@ = - to) (eiﬁl(w - /Q 0 ﬂﬁail,sH)

to,p

tp
(6.13) +/ Xssz(fE,T)dT +0(), as P — Py,

to,p

and

to to N P
/ L(Px,7)dr = / u(z, T)m* (z,7) 51(32)(690) - / ng)3 dr
to,0 (=0 to,0 Qo )

(6.14) +0(¢), as P — P.

Given these preparations, the theta function representation of (P, x,xo,tp, to,p)
reads as follows.

THEOREM 6.3. Assume that the curve K,_o is nonsingular. Let P = (Z,y) €
Kr—o\{Psoy, Po} and let (z,tp), (zo,top) € Qp, where Q, C C? is open and connected.
Suppose that Dy (¢.), or equivalently Dy s+, is nonspecial for (x,t,) € Q,. Then

»)’ p)?
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fors=2

(615) Q/JQ(P,x,xo,to,to)o)
_ 0 (Z(P, i(w,t0))) O(Z(Po, (w0, t0,0)))
0(2(Fo, (7, t0)))0(Z(P, fi(wo,t0,0)))

x P
X exp(/ 2m1/3(a:',to)dx'</ wgg)’g - 8?(@0)))
xo QO
2 P fo
+(fo—t0,0)<é§)(Qo)—/ Qg%Lﬁ) +/ XO(ﬂfoaT)dT>
Qo to.o0

to P
x/ u(xo,T)ml/B(a:o,T) ég)(QO)—/ 95320)3 dr,
to,0 Qo '

(616) 1/)2(P, T, To, tp, to’p)
_ ¢ (Z(P, (2, tp))) O(Z(Po, (o, to,p)))
0(2(Po, iz, tp)))0(Z(P, fzo,to,p)))

T P
X eXp(/ om!3 (2 t,)da’ (/ wgo)ﬁ - 65(32)(@0))>
xo Qo

P tp
+(tp —to,) (é%(@o) - Qﬁfil,m) + / x%z@cm)df).

and for s > 2

Qo to,p

Proof. We present only the proof of the time variation here, since the proof
of the space variation is analogous to the stationary case in Theorem 4.4. Let
Yo (P, z,x0,tp, to,p) be defined as in (5.31). For s > 2, we denote the right-hand
side of (6.16) by U(P, z, xo, tp,to,p). While s = 2, for our convenience, we also denote
the right-hand side of (6.15) by U(P, z, zo, tp, to ). Temporarily assume that

(6.17) wi(z,tp) # p(x,tp)  for j #k and (z,tp) € ﬁﬂ cQ,,

where ﬁﬂ is open and connected. In order to prove that ¢ = ¥, by using (5.20) and
(5.22), we compute

Voo o -
I,(P,x,t,) = %( 2 2¢, — ¢?) + Vag + Vaszz 1

o e -~V N
=V21iz Y 224—\/224—(\/23—%‘/23) EaR)

~ ~V21 1 ~ Va1 1 Vo
p— —_—— _ — —_—
<923 Vor V23>Z ¢+ Vaa Vo Vag + 2 yV21

<~ ‘721 ) <Z/2V21 - yAT’ + %Sr‘/Ql + %Er,r>
= | Vas —

—V
Var 0 E,
7 ‘721 ~—1 ‘721
Vog — — V& —
+ Vao Vo 22+ 2 yV21
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1B, <~ Vi )(y%l—yAwgerzl)H_l Vo

= Vag — — V&
3B\ Ve E, MVor
_1En, (s Var 2Va1 (392 +S,)  yVar(y+ {Zl) 1V
G18) =37, " (V “w)sT B BT Y
Hence,
1 pje 2 e
ISPa 7t ___N/p __.,)p Ol
(6.19) =it o), asE o pylanty).
Z—py
More concisely,
0. . N
(6.20) I;(Pyxo,7) = Eln(z — wj(xo, 7))+ O(1) for P near fij(xo,tp).
Therefore
tp 8
exp / dr <—1n(2 — (o, 7)) + O(l))
to.m or
Z— (330’ tp)

= 270 g¢
2= My (x07t0,p) ( )

(Z — pj(2o,tp))O(1) for P mear fi;(xo,tp) # ft;(xo,top),
(6.21) =4 0(1) for P mnear fi;(xo0,tp) = ft;(x0,to,p),

(2 — (o, t0,p))""O(1)  for P near fij(wo,to,p) # (o, tp),

where O(1) # 0 in (6.21). Consequently, all zeros and poles of ¥ and ¥ on K,_2 \
{P,, Py} are simple and coincident. It remains to identify the essential singularity
of 19 and ¥ at Py, and Py with respect to the time variation. By (6.13) and (6.14),
we see that the singularities in the exponential terms of ¥y and ¥ with respect to
the time variation coincide. The uniqueness result for Baker—Akhiezer functions [13],
[15], [16], [18] completes the proof that 1y = ¥ on €,. The extension of this result

from (z,tp) € Qy to (z,t,) € Q) then simply follows from the continuity of ag and
the hypothesis of Dy, ¢,) being nonspecial for (x,t,) € €. O

Remark 6.4. We provided two explicit representations for the Baker—Akhiezer
function v in terms of the Riemann theta function, corresponding to the case s = 2
and s > 2, respectively. By (6.4), I = O((™2), Py is an essential singularity of 1
for s = 2. However, for s > 2, I, = O((?) near Py, and there are no singularities
in this case. Thus, we investigated these two situations, respectively, in Theorem 6.2
and Theorem 6.3. What we want to emphasize is that these results will not take any
trouble for us to obtain the solution u(x,t,). We can deal with the two expressions
(6.15) and (6.16) uniformly. The more details will be given in Theorem 6.6.

The straightening out of the DP flows by the Abel map is contained in our next
result.
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THEOREM 6.5. Assume that the curve K,_o is nonsingular, and let (x,tp),
(wo,to,p) € C2. Then for s > 2,

x

1 ~(2)
[A7e (’Dﬁ(m,tp)) =Qg, (Dﬁ(wmto,p)) — </ 2m§ (33/, tp)dfl;/) QB

0

~(2)
(6.22) + U1 (tp — top),
* 1 ~(2)
Qo (Poa,t,)) = 2y (Do(ao,to,)) — </ 2m’ (x/’tp)dm/> Us
Zo
~(2)
(6.23) + U1 (tp — top),

and for s = 2,

¥ 1 ~(2)
(6.24) 2Q, (Dﬂ(zatﬂ)) =2, (Dﬂ(zmto,o)) N (/ 2ms3 (xlv tO)d$/> Us
To

~(2)
+ Ust1(to —to,0) (

+
Tl 7 (2)
(625) QQ, (,Dﬁ(zat())) =Qq, (,Dﬁ(mg,to,g)) - < 2ms3 (x/’ tO)dxl> Qg

~ tO A
+ szl(to — t070) + </ ZU(QIQ, T)m% (330, T)dT) QéQ)

to,0

Proof. As in the context of Theorem 4.7, it suffices to prove (6.22). Temporarily
assume that Dy, s,) is nonspecial for (x,tp) € Q, C C?, where Q,, is open and
connected. We introduce the meromorphic differential

0 ~
(6.26) Qx, x0,tp, top) = gln(wg(', Z,20,tp, to,p))dZ.

From the representation (6.16), one infers

Q(z, 2o, tpvtO,P) = (/ 2m§(x/,tp)dx/) Wgo),s - (tp - to;p)ﬁgo)c175+1

zo

r—>5
(3) ’
(627) _Zwﬂj(zo,to,p)>ﬂj(zatp) Tw,
j=1

where @ denotes a holomorphic differential on C,._s, that is, © = Z;;f ejw; for some
ej € Cand w; (j =1,...,7 —2) denote the normalized holomorphic differentials (see
(4.13)). Since ¥a(-, , xo, tp, to,p) is single-valued on KC,_o, all a- and b-periods of Q2
are integer multiples of 27¢ and hence

(6.28) 2mimy = / Oz, o, tp, top) = / w=eL, k=1,...,7—2,
ag Qg
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for some my, € Z. Similarly, for some ny € Z,

2ming —/ Qz, zo,tp, top)

(/ 2m% (' t )dx)/ wﬁf)g (tp_to,p)/ Q(i)cl 541
b

r—2

(3) ) j j
a /b Yhj (o to,p) s (2.tp) +2mi Z i ~/b I
1 k *

j=1
= 2mi (/ Zm%( tp)da’ ) ) —2mi(t, — t07p)(78(i)1)k
r—5 iy ($07t0,p) r—2

wk—|—2m'ij/ wj

j=1" i(@tp) j=1 bi

= 2mi (/ Zm%( tp)da’ ) ) —2mi(t, — t07p)(78(i)1)k
r—2
+ 27TiaQo,k(DE(m,tp)) - 27T7;O‘Q07/€(Dg(zo,to,p)) + 27 Z mjl"j,k,
j=1

(6.29)

where we have used the formula

Q1
(6.30) /wg‘f)%_m/ we,  k=1,...,r—2
2

By symmetry of I' this is equivalent to

g, (Diat,)) = Qo (Pp(wo,to,)) = < /

~(2)
(6.31) + Ugii(tp —top)

2ms (a', tp)dx’> QS)

0

for (z,t,) € Q,, which leads to (6.22). Since Dp,p and Dp_, ; are linearly equivalent,
that is, -

AQO (PO) + Qo (,Dﬁ(thp)) AQO( 001) + Qo (D [z, tp))

(6.23) holds. Similarly, one can prove (6.24) and (6.25). Finally, this result extends
from (x,t,) € Q, to (z,t,) € C* using the continuity of g and the fact that positive
nonspecial divisors are dense in the space of divisors. O

Our main result, the theta function representation of time-dependent algebro-
geometric solutions for the DP hierarchy, now quickly follows from the materials
prepared above.

THEOREM 6.6. Assume that u satisfies the pth DP equation (2.14), that is,
DP,(u) = my, — X, =0, and the curve K, _o is nonsingular. Let (x,t,) € Q,,, where
Q, C C? is open and connected. Suppose also that Di(z,t,)s or equivalently Dy(z ),
is nonspecial for (x,t,) € Qu. Then N

0(Z(Po, (0, t0,p)))0(Z(Poo, ,
0(Z(Pooy , (0, t0,p)))0(Z(Pos i, tp)))

(6.32) u(z,tp) = u(zo, to,p)
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Proof. In the time-dependent context, we will use the same strategy as was used
in Theorem 4.8 in the stationary case, treating ¢, as a parameter. Taking a closer

look at Theorem 6.3, we note that the two expressions of 1, in (6.15) (p = 0,s = 2)
and (6.16) (p > 0,s > 2) can be written uniformly as the following form near Py, :

(> So (00 + 01¢ + 026 + O(¢?))

X exp ((/w 2m (@, p)dx’) ( §2)(Qo)<2+0(<4))>

2 &1 K
X exp <(tp - t07p) <§<_S + Z Oljm + l XSEJ (370, t;)dt;) + O(CQ)> s
=0 0

(6.33) (=21 asP — P,

D

where the terms o; = 0;(z,tp) (i = 1,2, 3) come from the Taylor expansion about Pu,
of the ratios of the theta functions in (6.15) (p = 0) or (6.16) (p > 0) (see (4.45)).
That is,

0 (2(PAx.1,) 6 0.0, 3900y
24 _ 20 Y + =3 2—|—O 37 asP—>Pool,
0 (z(Po,g(x,tp))) ¢—0 6y 01 ¢ 01 ¢ ()
with

(EQ - AQO( Pooy) + O‘QO(D (z, tp)))

—Ag, (Po) + ag, (Dg(m,tp))) ,

r—2

2 0
Iy = Z Us”) 75

Similarly, we have

(z,tp)=(z0,t0,p)

0o 9,00 -t
=, (E <1— . <+o<<2>))

=, zl (140,160 ¢ +0(C2))

_ 01 ($0, tOJ’)
¢—0 Op(zo, to)p)

(z,tp)=(z0,t0,p)

(z,tp)=(z0,t0,p)

<1 + 0y Inbo(z,tp) (

+0(¢? ) ,
1atp):(107t0,p)< (C )

as P — P.,.

Then we will give the Taylor expansion about s,

_ 0Pz, 1)) 0(Z(Po, o, to.p)))
¢=0 0(Z(Po, f(w, tp)))0(Z(P, (0, t0,p)))

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/22/14 to 155.33.120.209. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

1264 YU HOU, PENG ZHAO, ENGUI FAN, AND ZHIJUN QIAO

<o ([ amd i) (£7@o)e? +01ch)

0

2 5g4 1 tp
x exp | (tp —top) gC_S + Z@jcs_ﬁ +/
3=0 to

_ {91(330,150,;;) Oo(z,ty) | O1(zo,t0,p) Oo(x,tp)
¢—0 6‘0($0,t07p) Hl(x,tp) 6‘0($0,t07p) Hl(x,tp)

X (&c In 8y (z,t,)

xs;zz(xo,t;)dt;> + 0(&))

— 0 Inbp(x,t +0 2]
oy~ 0o ol »))C+0(C?)

<o ([ amt ) (£7@o)c? + 01ch)

0

2 =t i 1 tp
X exp ((tp —top) (g( + Zajm +/t X?(xo’t;)dtg + O(<2)>’
§=0 0.p
(6.34) as P — Po,.

Hence, comparing the same powers of ¢ in (6.33) and (6.34) gives

01 (o, top) Oo(z,tp)
8o (o, tOm) 01(z, tl’)’
o1 (x’tp) = (8:E 1n90($,tp) (m,tp)=(z0,t0.p)

y 01(zo,t0,p) Oo(z,tp)
Oo(z0,to,p) O1(x,tp)

(6.35) oo(z,tp) =
— Oy In Oy (z, tp))

(6.36)

If we set
va =, (00 ty) + 01w 1,) + 02l 1,2 +0(¢?)) exp (&) exp (B)
as P — P,

with

exp (&) = exp ([ 2md @' )a’ ) (#7101 +0(c) )

and

exp(A):exp (( —top) ( ¢ +Z JCS 2] 2 Kp

sP

X522($07t;)dt;> - 0<<2>) ,

then we can show as (P — Puo,)

Y2z cio (Uo,x +01,.¢+ O(CQ)) exp (A) ,

(637) ¢2,rr CiO (UO,rr + Ul,zzc + O(<2 eXp ( ) 3
exXp

(3)

2/127a:xx CiO (00 zzz T 01, wwa + O
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By eliminating ¢; and 3 in (2.3), we arrive at
~ My Mgy
(6-38) 1/)2,111 =-mz > + _1/)2,11 — —a + ¢2,m-
m m

Substituting (6.37) into (6.38) and comparing the coefficients of (° yields

my
00,zxx = m (007xw - UO) + 00,z

that is,

(Uo,zz —00)z _ Ma (u(x,tp) - urr(xatp))r

00,z — 00 m U(CE, tp) - um(x, tp)

3

which together with (6.35) leads to (6.32). O
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