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Abstract 

We consider the problem of blood flow in an artery with or without a catheter and in the 
presence of single or multi stenosis whose shape is based on the available experimental data for 
the stenosis in a human’s artery. The presence of stenosis in the artery, which locally narrows 
portion of the artery, can be a result of fatty materials such as cholesterol in the blood. The use of 
catheter is important as a standard tool for diagnosis and treatment in patience whose blood flow 
passage in the artery is affected adversely by the presence of the stenosis within the artery. The 
blood flow in the arterial tube is represented by a two-phase model composing a suspension of 
red cells in plasma. The governing equations for both fluid (plasma) and particles (red cells) are 
solved subject to reasonable modeling and approximations. The important quantities such as 
blood velocity, blood pressure gradient, impedance (blood flow resistance), wall shear stress and 
its surface integrated force are computed in the presence or absence of the catheter, and, in 
particular, effects of the stenosis, size of the catheter’s radius and the hematocrit due to the red 
cells-plasma combination of the blood flow are determined.  
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AMS-MSC 2010 No.: 76Z, 92B 

 



AAM: Intern. J., Vol. 8, Issue 2 (December 2013)                                                                                                     507                              
          

   

 

1. Introduction 

Diseases in the blood vessels and in the heart, such as heart attack and stroke, are the major 
causes of mortality worldwide. The underlying cause for these health problems is the formation 
of lesions referred to here as stenosis.  These lesions and plaques can grow and occlude the artery 
and hence prevent blood supply to the distal bed. Plaques with calcium in them can also rupture 
and initiate the formation of blood clots (thrombus). The clots can form as emboli and occlude 
the smaller vessels that can also result in interruption of blood supply to distal bed. Plaques 
formed in coronary arteries can lead to heart attacks and clots in the cerebral circulation can 
result in the stroke. There are a number of risk factors in the presence of stenosis. The common 
sites for the formation and development of stenosis include the coronary arteries, the branching 
of the subclavian and common carotids in the aortic arch, the bifurcation of the common carotid 
to internal and external carotids especially in the carotid sinus region distal to the bifurcation, the 
renal arterial branching in the descending aorta and in the ileofemoral bifurcations of the 
descending aorta.  
 
The common feature in the location for the development of the lesion is the presence of 
curvature, branching, and bifurcation present in these sites. The fluid dynamics at these sites can 
be anticipated to be vastly different from other segments of the arteries that are relatively straight 
and devoid of any branching segments. Hence, several investigators have attempted to link the 
fluid dynamically induced stress with the formation of stenosis in the human circulation. By 
assuming the artery to be circularly cylindrical in shape, Mishra (2003) discussed characteristics 
of blood flow in stenosed artery and the stenosis was considered to be symmetric about the axis 
of artery. Mishra and Panda (2005) studied the flow of blood in the stenosed artery for the 
Casson type fluid. Young and Tsai (1973) discussed some characteristics of the flow of blood in 
stented arteries.   

The blood vessels carry blood from the heart to all the organs and tissues of the body including 
the brain, kidneys, gut, muscles, and the heart itself. Venkateswarlu and Rao (2004) studied an 
assumed oscillatory form of the blood flow through an indented tube in the presence of a steady 
single stenosis with a very simple shape. They used the so-called Einstein model for the viscosity 
of the blood but for variable volume flow rate and the prescribed value for the magnitude of the 
pressure gradient. Smali et al. (2006) did some modeling and computation of blood flow through 
multi-stenosis and used analytical model for the shape and structure of the multi stenosis. 
Srivastava et al. (2010) studied arterial blood flow through an overlapping stenosis (Mishra and 
Panda, 2005) by using a Casson type fluid flow. They calculated impedance and shear stress for 
different values of the stenosis height. Riahi et al. (2011) investigated arterial blood flow in the 
presence of an overlapping stenosis using a variable viscosity model due to Einstein for the 
blood flow.  

All the investigations described above were for the cases where no catheter was inserted into the 
artery, but there have also been a number of studies of the blood flow systems in catheterized 
arteries (Kanai et al., 1970; Back, 1994; Back et al., 1996; Srivastava and Rastogi, 2010). Use of 
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the catheter is important and has become a standard tool for the diagnostic and treatment of 
medical problems due to the presence of stenosis in arteries. Transducers attached to catheters 
are of greater use to measure blood pressure in arteries. To reduce the adverse effect of stenosis, 
a catheter with a tiny balloon attached at the end is inserted in the artery; the balloon is inflated 
to fracture fatty deposits and widen narrowed portions in the artery. A number of studies that 
have been carried out so far (Mishra and Pandra, 2005; Smali et al., 2006; Riahi et al., 2011) 
were based on a single-phase models of the blood flow in arteries which are known to be valid 
for flow in large arteries but fail to provide correctly the behavior of the blood flow in narrow 
arteries (Srivastave and Srivastava, 1983) whose corresponding blood flows can be investigated 
more realistically by the two-phase flow models.     

In a large number of studies that have been carried out so far by different authors for the arterial 
blood flow systems, some of which were listed in the previous paragraphs, the shape of the 
stenosis were assumed to be in the form of some mathematical functions, and a number of these 
studies also used the single-phase model approaches. In the present study we apply for the first 
time an experimentally based shape (Back et al., 1984) for the stenosis in a narrow artery (Figure 
1), where the blood flow is represented by a two-phase macroscopic model so that the effects of 
the presence of the red cells can be taken into account more realistically. It turns out that this can 
have notable effects on the expressions for important quantities such as the blood pressure 
gradient, plasma velocity, etc. In figure 1 we provide the dimensionless shape function R(z) of 
the multi stenosis versus the dimensionless axial variable of an artery based on the actual data 
determined from the experimental values of the cross-sectional area of the artery of a human in 
the presence of stenosis (Back et al., 1984). Here and as in the more realistic cases, the blood 
flow is composed of a suspension of red cells in plasma.  
 
2. Formulation and Analysis 

We consider the problem of axisymmetric flow of blood in a catheterized artery in the form of a 
circular cylindrical annulus with the outer radius R0 (radius of the normal artery) and the inner 
radius r1 (radius of the catheter) and in the presence of single or multiple stenosis (figure 1) 
whose shape is determined from the experimentally collected data (Back et al., 1984). The artery 
is assumed to be sufficiently long in comparison to its radius so that the end effects can be 
neglected. We also examined the arterial blood flow described above in the absence of the 
catheter (r1 =0) in order to be able to isolate the effects solely due to the presence of the catheter. 

The two-phase arterial blood flow system is based on the original governing equations for the 
mass conservation and momentum (Batchelor, 1970) for both fluid plasma and the suspended 
particles (red cells) as their steady axisymmetric form in cylindrical coordinate system with axial 
direction along the co-axial direction of the catheterized artery are given by (Srivastava and 
Rastogi, 2010) 

(1-C)f (uf uf/z+vf uf/r)=-(1-C)P/z+(1-C)s 2uf +CS’ (up-uf),                              (1a) 
       
(1-C)f (uf vf /z+ vf vf /r)=-(1-C)P/r+(1-C)s(2-1/r2)vf+ CS’(vp-vf),                        (1b) 
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(1/r)(/r)[(1-C)vf]+(/z)[(1-C)uf]=0,                                                        (1c) 
              
Cp[upup/z+ vpup/r]=-P/z+ CS’ (uf -up),                                            (1d) 
 
Cp[upvp/z+ vpvp/r]=-P/r+ CS’(vf -vp),                                            (1e) 
 
(1/r)(/r)(Cr vp)+(/z)(Cup)=0.                                              (1f) 
 

Here 2[(1/r)(/r)(r/r)+2/z2] is the Laplacian operator, r (r1 r R0) and z are the 
cylindrical coordinates with axial variable z along the tube axis and radial variable r along the 
direction perpendicular to the tube axis, subscripts “ f “ and “p” refer to fluid (plasma) and 
particle (erythrocyte) quantities, respectively, u and v are the axial and radial velocity 
components, respectively,  is density, P is pressure, C is the volume fraction density of the 
particles, referred to here as the hematocrit % (Srivastava and Rastogi, 2010), and the 
expressions for the viscosity of suspension s and the drag coefficient of interaction S  have 
been chosen to be (Srivastava, 1996; Srivastava and Srivastava, 2009) 

s= 0 /(1-mC), m=0.07exp[2.49C+(1107/T)exp(-1.69C)],                                                 (1g) 
                   
S =4.5(0 /a0

2){[4+3(8C-3C2)0.5 +3C]/(2-3C)2,                                  (1h) 
               

where 0 is the plasma viscosity, 2a0 is the length scale of a red cell (Srivastava and Rastogi, 
2010) and T is absolute temperature measured in Kelvin. Based on the reasonable suggestion by 
Charm and Kurland (1974), the expression for the plasma viscosity given by (1g) is accurate up 
to 60% hematocrit (C = 0.6), and the expression (1h) was derived first by Tam (1969) 
representing classical Stokes drag valid for small particle Reynolds number.  

We consider the governing equations (1a-h) for the blood flow in the axisymmetric form and use 
cylindrical coordinate system with r as the radial variable, z as the axial variable and with the z-
axis along the axis of cylindrical artery tube, where a catheter in the form of a tube with small 
radius and co-axial with the cylindrical artery is placed in the artery. We also consider the same 
blood flow system but in the absence of the catheter by setting the value of the catheter’s radius 
equal to zero. The inside boundary of the artery is partially structured within an axial distance L0 
due to the presence of each stenosis.  

Figure 1 presents a dimensionless view of the shape of the inside boundary of the arterial 
segment with multi-stenosis shown on (z, r)-plane in the absence of the catheter, where R is the 
radial coordinate of the inside boundary of the artery as function of the axial variable z. We made 
dimensionless all the involved axial distances by dividing them by the stenosis length L0, so that 
the artery segment and the geometry in figure 1 are shown over a dimensionless distance 
L/L0=(3d+2L0 )/L0 in the axial direction, and we set d = 0.5L0, where d is segment of the artery 
that does not contain the stenosis. We also designate  to be the maximum height of each 
stenosis into the lumen, which occurs at particular locations in the axial direction. In particular, 
we refer to a location corresponding to a value very close to the maximum height  of the 
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stenosis as the critical height such as the location at a dimensional distance about z = d+L0/2 or z 
= 2d+ L0/2 from the considered origin of the coordinate system. 

We now first non-dimensionalize the governing equations (1a-h) using U, L0, R0,  and 0U 
L0/2 as scales for velocity, axial length, radial length, rate of radial change and pressure, 
respectively, where U is the maximum velocity for the unidirectional flow in a cylindrical 
annulus (White, 1991). Next, we follow Srivastava and Rastogi (2010) and simplify the 
dimensionless form of the governing equations (1a-h) under the reasonable conditions for mild 
stenosis with small  as compared to R0, unidirectional flow assumption (White, 1991) where the 
axial velocity component dominates over the radial velocity component, and subjected to the 
assumptions that the inertial terms in the governing momentum equations (1a-b, d-e) are 
sufficiently small and Re (/L0)<<1, where Re =U L0 f /0 is the Reynolds number. Under these 
conditions and assumptions (Srivastava and Rastogi, 2010), the pressure is only a function of z 
and (1a-h) lead to simpler equations. The non-dimensional form of these simpler equations are 
given below using the same symbols for the variables as their dimensional ones for simplicity of 
notations  

 (1-C) dP/dz =[(1-C)/(1-mC)][(1/r)(/r)(ruf /r)]+CS 2(up –uf),                              (2a) 
                 
           dP/dz =S2(uf –up), S=4.5[4+3(8C-3 C2)0.5+3C]/(2-3C)2,                   (2b) 
                

where =/a0. The equations (2a-b) are subjected to the following no slip boundary conditions  
 

uf =0 on r=r1 and uf =0 on r = R(z),                                             (2c) 
 
which holds in the presence of the catheter, and 
  

uf /z =0 at r =0 and uf =0 on r =R(z)                                             (2d) 
 
in the absence of the catheter. 
 
Using (2b) for (uf –up) in (2a) and integrating twice with respect to r and making use of the 
boundary conditions given in (2c), we find that in the presence of catheter 
 

 uf =(-1/4)[(1-mC)/(1-C)](dP/dz){(R2-r2)+[(R2-r1
2) ln(r/R)]/ln(R/r1)},                               (3a)              

 
and the expression for the axial velocity for the red cells is then found from (2b) in terms of the 
axial velocity for the plasma in the form 
 

up =uf -[1/(S2)](dP/dz).                                                                                (3b)                 
 
In the absence of the catheter the results are found to be (3b) and 
 

uf =(1/4)[(1-mC)/(1-C)](dP/dz)(r2 –R2).                                                        (3c)  
 



AAM: Intern. J., Vol. 8, Issue 2 (December 2013)                                                                                                     511                              
          

   

Since both expressions for the axial velocity of plasma and red cells given by (3a-c) are in terms 
of the unknown pressure gradient (dP/dz), we obtain expressions for the pressure gradient for 
both cases with or without catheter by assuming a prescribed volume flow rate in the annulus 
given by 
 

Q=2Rr1 r[(1-C)uf+ C up]dr.                                                                       (4)     
 
Using (3a-c) in (4) and solving for the pressure gradient, we find 
 

dP/dz =-{Q/[(/16)(R2-r1
2)]}/{[16C/(S2)]+2[(R2-r1

2)/(1-C)] 
  (1-mC)[ (R2+r1

2)/(R2-r1
2)-1/ln(R/r1)]},                                                                    (5a) 

                                                   
which holds in the presence of the catheter, while in the absence of the catheter we have 
 

 dP/dz = -{Q/[(/16)R2]}/{[16 C/(S2)]+2 R2 [(1-mC)/(1-C)]}                   (5b) 
 
The flow resistance, referred to as the impedance λ, is given by 
 

       λ =ΔP/Q,                                                           (6a) 
 

where Δp is the pressure drop across the length L=1+2b for single stenosis case or L=2+3 b for 
multi stenosis given by 
 

ΔP= P(0)-P(L)=0L (dP/dz)dz                                                                    (6b)    
 
and 
 

b=d/L0. 
 
From (3a), we find the wall shear stress τw to be 
 

 τw=-uf/r|r=R(z)=-[R(1-mC)/(2-2C)](dP/dz)-[1/(4R)][ 
       (1-mC)/(1-C)] (dP/dz)[(r1

2-R2) /ln (R/r1)],                                                                    (7a) 
                                                                              

for the case where the catheter is present in the artery, while in the absence of catheter we find 
from (3c) the following result: 
 

w=-[R(1-mC)/(2-2 C)](dP/dz).                                                         (7b) 
            

The force F, referred to here as the integral of the shear stress over the surface of the artery from 
z = 0 to z = L = 1+2b for the single stenosis case or z = L = 2+3b for the multi stenosis case is 
then given by 
 

F=2π ∫0
L  τw dz.                                                                                                                     (7c)     
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The values of the wall shear stress at different location can then be found from (7a)-(7b) for 
specific z value, and the surface integrated stress force F can be evaluated from (7c) for different 
parameter values in the presence or absence of the catheter. 
 
 
3. Results and Discussion 
 
We first calculated the inside radius for each of a number of cross-sectional areas within 2 or 3 
mm intervals of a segment of about 26.7 mm along the axis of an actual human artery in the form 
of a circular cylindrical tube with mild stenosis, which were measured and recorded by Back et 
al. (1984). We then made these data of our calculated values for the inside radius of the artery 
dimensionless by dividing the value of each radius by the value of the radius R0 of the normal 
artery. Thus, we produced figure 1 for the shape R(z) of the artery versus the dimensionless z in 
the plane (r, z). We made use of our generated data for R to carry out numerical calculation of 
various quantities, which were analyzed in the previous section. We make use of Simpson’s Rule 
(Isaacson and Keller, 1966) to generate data for the integral quantities, such as impedance and 
the force due to the surface integrated stress, as well as numerical integration to generate data for 
the expressions of other quantities such as blood pressure gradient, plasma and red cell velocities 
and wall shear stress. For all the calculations, we set R0 (radius of normal artery) = 0.1 cm, L0 
(stenosis length)=2 .6 cm (Back et al., 1984), Q=1, b=0.5 and =/0.004, where =(1-minimum 
value of R) (Back, 1994; Srivastava, 1996). We generated data for C=0.0, 0.1, 0.3, 0.5; r1 =0.0, 
0.1, 0.3, 0.5; 0 z  2 for single stenosis case, 0 z  3.5 for multi stenosis case; r =0.0, 0.1, 0.3, 
0.5. 
 

Figures 2-5 present results for dP/dz (axial rate change of the blood pressure in the artery) versus 
the axial variable z in the presence or absence of the catheter. Figure 2 presents the pressure 
gradient versus z for the single stenosis case, hematocrit parameter=0.1 and for both in the 
absence or presence of the catheter with two different values of the catheter’s radius. It can be 
seen from this figure that the blood pressure gradient is negative implying that the blood pressure 
force is in the direction of the positive z-axis. The blood pressure force does not vary with 
respect to the axial variable for the axial locations outside the stenosis zone. However, the 
magnitude of the blood pressure force increases with the stenosis effect in the stenosis zone. The 
magnitude of the pressure force also increases with the radius of the catheter. For example, for C 
= 0.1 and at z = 1.04, which is at the critical height of the stenosis, this magnitude is a maximum 
and has the values of 22 .05 and 47.10, respectively, for r1 = 0.1 and 0.3. The effect due to the 
presence of the catheter is mainly to increase the magnitude of the axial rate of change of the 
blood pressure, which intensifies notably under the stenosis location. These results are physically 
reasonable since, for example, presence of both catheter and the stenosis zone, which reduces the 
cross sectional area for flow in the artery, can intensify the blood pressure force in the artery. 
This is due to the fact that the total volume flow rate is maintained at a fixed amount and, thus, 
smaller cross sectional area in the artery implies higher blood flow velocity, which can imply 
higher pressure driven force.  

Figure 3 presents the pressure gradient versus z for single stenosis case, C = 0.5 and several 
values of r1 =0, 0.1, 03 for cases with or without catheter. Comparing the results presented in 
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Figures 2-3, we find that the magnitude of the pressure gradient increases with the hematocrit 
parameter. For example, in the absence of the catheter and at the critical height with z = 1.04 the 
magnitude of the pressure gradient is a maximum and has the values of 11.24 and 12.33 for the 
corresponding values of C = 0.1 and 0.5, and in the presence of catheter for r1 =0.1 we have the 
values 22 .05 and 24.17, respectively, at C = 0.1 and 0.5. So, it appears that higher percentage of 
the red cells in the plasma can intensify the pressure driven force in the artery. 

Figures 4 and 5 present pressure gradient versus z for multi stenosis case, r1 =0, 0.1, 0.3 and C = 
0.1 and 0.5, respectively. It can be seen that the magnitude of the blood pressure forces in the 
artery have now higher variations and intensification than those presented in Figures 2 and 3 for 
the single stenosis case, which are due to the presence of the multi stenosis as compared to those 
seen in Figures 2-3 for the single stenosis case. 

Figures 6 and 7 present the impedance (flow resistance) versus the hematocrit in the presence or 
absence of the catheter and for single- and multi-stenosis cases, respectively. It can be seen from 
these figures that the impedance increases with the hematocrit, and the rate of increase of the 
impedance is higher either for very small hematocrit or relatively larger values of the hematocrit. 
The impedance also increases with the radius of the catheter. Thus, presence of the catheter 
increases the amount of flow resistance by the blood flow system. In addition, by comparing the 
results presented in these two figures, we find that presence of multi stenosis lead to notably 
higher values of the impedance for given values of the other parameters. These results indicate 
an inter-relationship between the amounts of blood flow resistance and the value of the radius of 
the catheter, which may only be present for a short period of time, for a given blood flow system 
with specific amounts of red cells in an artery and in the presence of single or multi stenosis.   

Figures 8-11 present the axial velocity uf of the blood plasma versus the axial variable or radial 
variable for the blood flow system with multi stenosis, for given value of the hematocrit 
parameter and in the presence or absence of the catheter. Our additional collected data for the 
corresponding red cell velocity up indicate that for  given values of the parameters, the values of 
the plasma velocity are equal to red cell velocity within an order accuracy of order (10- 4 ), and, 
thus, the results presented in this section for the plasma velocity are also applicable for red cell 
velocity. Our generated data indicated that maximum value of up is very slightly larger than 
maximum value of uf by a very small quantity of order about 0.0001 for both single and multi 
stenosis cases. We also calculated the corresponding results for the plasma velocity in the single 
stenosis case, and we found that values of the plasma velocity for the multi stenosis case are 
higher than the corresponding ones for the single stenosis case.  

Figures 8-9 present plasma velocity versus the axial variable for r = 0.5, C = 0.1 and 0.5, 
respectively, and for the cases with or without the catheter. It can be seen from these figures that 
the plasma velocity is positive, which makes sense since the blood pressure force is in the 
positive direction of the axis of the artery system. The plasma velocity is constant outside the 
stenosis zone, while it is variable in the stenosis zone and its magnitude increases with the 
stenosis effect. This result is reasonable since as we explained before, higher stenosis effect 
reduces the cross sectional area of inside artery leading to higher blood plasma velocity. The 
plasma velocity also increases with the catheter radius, which is reasonable since higher catheter 
radius decreases the annulus gap leading to higher axial velocity of the fluid. The plasma 
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velocity also increases with the hematocrit parameter. Presence of the catheter can be seen to 
increase the plasma velocity, while such velocity diminishes very close to the catheter boundary.  

Figures 10-11 present plasma velocity versus the radial variable for z =2 .5, C=0.5, and for cases 
without and with the catheter, respectively. The results shown in Figure 10 which presents the 
plasma velocity in the artery with on catheter, indicate that plasma velocity decreases with 
increasing the radial variable and its maximum value is at the center of the artery. The rate of 
decrease of the plasma speed is higher close to the upper values of r and close to the stenosis 
zone. It should also be noted from the parabolic shape of the plasma velocity in this figure, 
which is based on (3c), and the corresponding velocity profile in Hagen-Poiseuille flow (White, 
1991) that their expressions differ only by additional constant coefficient (1-mC)/(1-C) which is 
in (3c). Figure 11 presents results for the plasma velocity versus the radial variable and in the 
presence of the catheter. It can be seen from this figure that the plasma velocity satisfies its zero 
no-slip conditions at the two boundaries of the catheterized artery system, while it has a 
maximum value at some location in the annulus away from the boundaries. Comparing the 
results shown in Figures 10-11, we find that the presence of the catheter appears to decrease 
radially the magnitude of the plasma velocity.  

Figure 12 presents wall shear stress versus the axial variable for the multi stenosis and for two 
different values 0.1 and 0.5 of the hematocrit parameter in the absence or presence of the 
catheter. It can be seen from this figure that the wall shear stress is higher for the hematocrit 
parameter =0.5 in the presence of the catheter, while dependence of the shear stress on the 
hematocrit is negligible in the absence of the catheter. This result indicates that joint effects of 
the catheter and the presence of not too small percentage of red cells in the blood reinforce the 
effect on the wall shear stress since presence of catheter also increases the value of the wall shear 
stress. The wall shear stress is constant in the regions outside from the stenosis zones, while the 
shear stress has notable high values in the stenosis zones and its rate of increase becomes 
significantly higher with increase in the severity of the stenosis. The value of the shear stress is 
positive which indicates that such stress is acted by the blood flow on the artery.  

Figures 13 and 14 present the surface integrated wall shear stress on the artery versus the 
hematocrit parameter for the multi stenosis case and in the absence (Figure 13) or presence 
(Figure 14) of the catheter. It can be seen from these figures that for sufficiently small values of 
the hematocrit, this force decreases with increasing the hematocrit, while the surface integrated 
wall shear stress increases with the hematocrit if the volume fraction density of red cells in the 
plasma is not too small. In addition, the value of such force is higher in the presence of the 
catheter. These figures also show that the shear stress on the wall of the artery is very similar 
without red blood cells as with 100% presence of red blood cells, but the shear stress is lower 
with intermediate values of hematocrit. This result indicates that for intermediate values of the 
hematocrit, there is shear thinning near the wall which reduces viscosity and consequently the 
stress on the wall. 

About comparison of the present results to those of related studies by other authors, it should be 
noted that no other studies have been reported so far that take into account experimental data of 
the type due to Back et al. (1984) for the shape of the stenosis in an arterial blood flow system. 
However, Srivastava and Rastogi (2010) investigated two-phase blood flow in a catheterized 
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artery and in the presence of a single stenosis whose shape was assumed analytically in the form 
of a simple mathematical function. They calculated different quantities including impedance and 
wall shear stress. They found, in particular, that impedance increases with C, and this variation 
and its rate of increase with respect to C were qualitatively similar to those predicted in the 
present study for the single stenosis, but the quantitative values of the impedance were smaller 
than those of the present results. In addition, values of the impedance in the absence of the 
catheter were smaller than those in the presence of the catheter, which are consistent with the 
present results as well. Their results about wall shear stress versus z indicated that wall shear is 
non-constant throughout the investigated artery segment, first increases with z, reaches a 
maximum value at some intermediate value of the axial variable and then decreases with 
increasing z, while the present results indicated that the wall shear stress is a constant in the 
sections of the artery which are outside the stenosis zone. In addition, their results indicated that 
the wall shear stress increases with r1 or C, which generally agree with the present results.  

Riahi et al. (2011) studied single-phase arterial blood flow in the absence of a catheter but in the 
presence of an overlapping stenosis whose shape was based on an assumed analytical form. They 
calculated several quantities including the axial velocity, impedance and wall shear stress. Their 
results about axial blood velocity versus z indicated that axial velocity was non-constant only in 
the section of the stenosis zone, but the form of the variation of the axial velocity with respect to 
z in the stenosis zone was different from that in the present study. Their results about impedance 
versus the hematocrit parameter indicated a linear increase of impedance with respect to the 
hematocrit parameter, which is somewhat different from the present results that show a nonlinear 
increase. In summary, we should note that, aside from the general agreement, a few differences 
between the results of the other studies and those of the present one that were described above 
are expected due to the differences on at least the shape of the stenosis with either single or 
multiphase type flow that were existed between the present model and those investigated by 
other authors. In addition, we should also state that the present model also has its own 
limitations. It is valid only for mild stenosis cases, unidirectional flow approximation, 
sufficiently small Reynolds number flow with negligible inertial terms in the momentum 
equations.   

 
4. Conclusion 

We investigated the arterial two-phase blood flow with or without a catheter and in the presence 
of single or multiple stenosis. Our modeling for the stenosis was based on the available 
experimental data for a human’s artery with stenosis. We calculated important quantities, such as 
the pressure gradient force, the plasma velocity, the impedance, the wall shear stress and the 
force due to the surface integrated wall shear stress in the artery which contained either a single 
or multiple stenosis and in the presence or absence of a catheter. We found, in particular, that the 
magnitudes of all those stated quantities can increase with the hematocrit of the blood, with the 
exception of the result that the force due to the surface integrated wall shear stress decreases 
slightly with increasing the hematocrit if the percentage of the red cell in the plasma is too small. 
We also determined that the impedance and the force due to the surface integrated wall shear 
stress are stronger in the presence of multi stenosis, and the presence of the catheter can increase 
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the values of the blood velocity, magnitude of the pressure gradient, the wall shear stress, the 
force due to the surface integrated wall shear stress and the impedance. These results could be 
relevant and of interest for understanding the biomechanical conditions for the blood flow in 
narrow arteries, which contain either single or multi stenosis.  

The extension of the present paper to the cases of two-phase arterial flow with or without an 
inserted catheter with included effects of heat transfer and gravity and in the presence of multi 
stenosis will be investigated by the authors in near future. Another important extension of the 
present study can be for the medically more realistic finite systems with cases conforming to the 
medically generated data in order to identify the components of arterial blood flow diseases 
which could be used to improve the health conditions of the corresponding patients.  
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FIGURES 

 

 
Figure 1. Plane view of the shape R for boundary of arterial segment versus axial variable z 
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Figure 2. Pressure gradient versus z for single stenosis case, C =0.1 & 3 values of r1 

 
 

 
Figure 3. Pressure gradient versus z for single stenosis case, C =0.5 & 3 values of r1 

 

 
Figure 4. Pressure gradient versus z for multi stenosis case, C =0.1 & 3 values of r1 
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Figure 5. Pressure gradient versus z for multi stenosis case, C =0.5 & 3 values of r1 

 

 
Figure 6. Impedance  versus C for single stenosis case & 3 values of r1 

 
 

 
Figure 7. Impedance  versus C for multi stenosis case & 3 values of r1 
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Figure 8. Plasma velocity versus z for multi stenosis case, r =0.5, C =0.1 & two values of r1 

 

 
Figure 9. Plasma velocity versus z for multi stenosis case, r =0.5, C =0.5 & 2 values of r1 

 
 

 
Figure 10. Plasma velocity versus radial variable r for multi stenosis case, z =2.5, C =0.5, r1=0 
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Figure 11. Plasma velocity versus r for multi stenosis, z =2 .5, C =0.5, r1=0.3 

 

 

Figure 12. Wall shear stress versus z for two different values of C and r1 
 

 
Figure 13. Surface integrated shear stress F versus C for r1=0 
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Figure 14. Surface integrated shear stress F versus C for r1=0.3 
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