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Association Analyses of Variants in the DIO2 Gene
with Early-Onset Type 2 Diabetes Mellitus in Pima Indians

Saraswathy Nair,1,2 Yunhua Li Muller,1 Emilio Ortega,1,3 Sayuko Kobes,1

Clifton Bogardus,1 and Leslie J. Baier1

Background: The type 2 deiodinase gene (DIO2) encodes a deiodinase that converts the thyroid prohormone,
thyroxine, to the biologically active triiodothyronine. Thyroid hormones regulate energy balance and may also
influence glucose metabolism. Therefore, we hypothesized that variations in DIO2 could contribute to obesity or
type 2 diabetes mellitus (T2DM) in Pima Indians.
Methods: Sequencing of the DIO2 gene in DNA from 83 Pima Indians identified 12 single-nucleotide poly-
morphisms (SNPs). Several of these SNPs were in perfect genotypic concordance among the 83 samples that
were sequenced, and all 12 could be divided into five linkage disequilibrium groups. One representative SNP
from each group (Thr92Ala, rs225011, rs225015, rs6574549, and a rare 5¢ flanking SNP) was selected for further
genotyping for association analyses. In this study, the five selected variants in DIO2, as described above, were
genotyped in three groups of Pima Indians: (i) a case (n = 150)/control (n = 150) group for early-onset T2DM
(onset age < 25 years); (ii) a case (n = 362)/control (n = 127) group for obesity; (iii) a large (n = 1,311, cases n = 810/
controls n = 501) family-based group, of which 256 nondiabetic subjects had undergone detailed metabolic
phenotyping.
Results: The Thr92Ala variant common in Pima Indians, rs225011, and rs225015 were modestly associated with
early-onset T2DM ( p = 0.01–0.04) in the case–control study, but were not associated with obesity in the obesity
case–control study, nor associated with T2DM (at any age) or body–mass index (BMI; as a quantitative trait) in
the family-based analysis. Thr92Ala, rs225011, rs225015, and rs6574549 were also nominally associated with
hepatic glucose output ( p = 0.02). rs6574549 was associated with fasting insulin ( p = 0.02), insulin action
( p = 0.04), and energy expenditure ( p = 0.02). None of these nominal associations remained statistically signifi-
cant after corrections for multiple testing.
Conclusions: We propose that variation in DIO2 may have a subtle role in altering metabolic processes that lead
to early-onset T2DM, but this gene does not have a large impact on T2DM at older ages, nor does DIO2 influence
BMI in the Pima Indian population.

Introduction

Thyroid hormones play an important role in the regu-
lation of energy balance through their stimulatory effect

on basal metabolic rate and macronutrient metabolism (1–4).
Thyroid hormones not only increase ATP utilization, but also
reduce thermodynamic efficiency of ATP synthesis (5), this
effect being mediated mainly by inducing transcription of
uncoupling proteins (6) in metabolically active tissues such as

brown adipose (animals) and muscles (humans) (7). How-
ever, thyroid hormones can also stimulate energy expenditure
in skeletal muscle by upregulating gene expression of sarco-
plasmic reticulum Ca2 + ATPase or myosin heavy chains, thus
increasing ATP expenditure (7).

In addition, glucose homeostasis can be affected by thyroid
status (8,9). Experimental or spontaneous forms of thyroid
dysfunction are associated with impaired glucose tolerance
(10). Increase in both hepatic insulin resistance (11,12) and
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insulin-mediated glucose uptake is observed in hyperthy-
roidism as compared with euthyroid conditions (11). Thyroid
hormones influence insulin action in skeletal muscle and
adipose tissue in part by upregulating the expression of the
muscle/fat-specific glucose transporter 4 (13,14). In contrast,
studies in hypothyroid conditions show a decrease in both
hepatic insulin resistance (12) and insulin-mediated glucose
uptake in muscles (10,12). In humans, subclinical hypothy-
roidism is associated with hyperinsulinemia (15).

Deiodinases are selenoenzymes that convert the pro-
hormone thyroxine (T4) into active triiodothyronine (T3) or
inactive reverse triiodothyronine (rT3) (16). Type 1 deiodinase
(D1), which is predominantly expressed in liver, kidney, and
thyroid gland, can function as an outer- (T4 to T3) or inner-ring
(T4 to rT3) deiodinase (16,17). Type 2 deiodinase (D2), which is
an outer-ring deiodinase (T4 to T3), is found in thyroid gland,
cardiac and skeletal muscle, brown adipose tissue, placenta,
pituitary, central nervous system (CNS), and at low levels in
kidney and pancreas (16–18). Type 3 deiodinase, an inner-ring
deiodinase, converts active T3 to inactive rT3 and is typically
expressed in liver, skin, placenta, CNS, and fetal tissues (16,17).
Although it was thought that circulating T3 was mostly gen-
erated by D1, and that D2 was more important for intracellular
T3 generation (19), it has been recently suggested that D2 is the
main source of circulating levels of T3 in euthyroid subjects
(20). Differences in D2 activity might affect not only circulating
and peripheral T3 concentrations but also intracellular T3
availability to interact with thyroid hormone nuclear receptors.

A nonsynonymous amino acid substitution, Thr92Ala, in
D2 has previously been reported to be associated with insulin
resistance in obese Caucasian women (21). This study found
that the frequency of the ‘‘risk’’ (Ala) allele was 0.35 in Cau-
casians, but further noted that this risk allele was much more
common (AF = 0.75) among Pima Indians. This same study
provided evidence of an interaction between the Thr92Ala
variant in D2 and a Trp64Arg variant in the b-3-adrenergic
receptor (21). Nominal associations were reported between the
Thr92Ala variant and the serum insulin curve during oral
glucose tolerance test (OGTT) in a large Danish cohort (22).
The Thr92Ala was also reported to be associated with insulin
resistance in patients with type 2 diabetes in a Brazilian cohort
(23). A recent meta-analysis in *11,000 subjects confirmed the
association of Thr92Ala with increased risk for type 2 diabetes
(24). However, there are also studies suggesting that the as-
sociations with insulin resistance and/or type 2 diabetes are
inconsistent in some populations (25–27). In the current study,
we analyzed associations of other single-nucleotide polymor-
phisms (SNPs) in addition to the common Thr92Ala variant of
the type 2 deiodinase (DIO2) gene for association with type 2
diabetes and obesity in the Pima Indian population.

Materials and Methods

Subjects

All subjects are participants of our ongoing longitudinal
study of the etiology of type 2 diabetes among the Gila River
Indian Community in Arizona (28). DIO2 was sequenced in
DNA from 83 non–first-degree-related morbidly obese Pima
Indian subjects (mean body–mass index [BMI] = 60.0 kg/m2

ranging from 50.5 to 79.6 kg/m2). Genotyping was done in
three groups of subjects: (i) an independent case–control
group of full-heritage, non–first-degree-related Pima Indians

for analysis of early-onset diabetes (29); (ii) an independent
case–control group for analysis of obesity (30); (iii) a family-
based association study in which the subjects are participants
of the ongoing longitudinal study of the etiology of type 2
diabetes among the Gila River Indian Community in Arizona
(28,31). About 5% of Pima Indians aged 15–24 years have
earlier onset of type 2 diabetes (29,32). The case–control group
for early-onset type 2 diabetes consisted of 150 diabetic sub-
jects with an age of onset < 25 years and 150 nondiabetic
subjects who were determined to be nondiabetic at their last
examination, which was after the age of 45 years. The case–
control group for obesity consisted of 362 severely obese
subjects, as defined by a maximum BMI > 45 kg/m2, and 127
control nondiabetic, nonobese subjects selected for a BMI
<30 kg/m2 at an age > 35 years and not having diabetes. All of
these subjects were full-blooded Pima Indians and none were
first-degree relatives. The large family-based group consisted
of 1,311 subjects from 322 nuclear families, of which, 810
subjects had type 2 diabetes as determined by an OGTT that is
interpreted according to the criteria of the World Health Or-
ganization (33). Among the family-based group, 256 nondia-
betic, full-heritage Pima subjects had undergone metabolic
characterization as inpatients in our Clinical Research Center.
All subjects provided written informed consent prior to par-
ticipation. All studies were approved by the Tribal Council of
the Gila River Indian Community and the Institutional Re-
view Board of the National Institute of Diabetes and Digestive
and Kidney Diseases (NIDDK).

Metabolic characterization of nondiabetic subjects

Volunteers were admitted to the Clinical Research Unit
where they consumed a weight-maintaining diet (containing
50% of calories as carbohydrates, 30% as fat, and 20% as
protein) for 2–3 days prior to clinical testing. Body composi-
tion was measured by dual energy X-ray absorptiometry
(DXA) using a total body scanner (DPX-L; Lunar Radiation,
Madison, Wisconsin) as described previously (34). The
OGTT was performed, and blood for plasma glucose and
insulin measurements was drawn before ingesting glucose,
and at 30, 60, 120, and 180 minutes thereafter. Subjects un-
derwent a two-step (low and high insulin dose) euglycemic-
hyperinsulinemic clamp to assess insulin-mediated glucose
disposal as described previously (35). The rate of basal en-
dogenous glucose output was measured before insulin infu-
sion and during the last 40 minutes of the low-dose insulin
infusion using tritiated glucose and calculated from the Steele
equation (36). All measurements derived from the glucose
clamp were normalized to estimated metabolic body size
(EMBS, which equals fat-free mass + 17.7 kg). The measure-
ment of energy expenditure in the respiratory chamber
has previously been described (37). The rate of energy
expenditure was measured continuously, calculated for each
15-minute interval, and then averaged for a 24-hour interval
(24-EE). Sleeping metabolic rate (SMR) was defined as the
average energy expenditure of all 15-minute periods between
11:30 pm and 5:00 am during which spontaneous physical
activity (assessed by a motion radar) was < 1.5%.

Identification and genotyping of polymorphisms

DIO2 was sequenced in genomic DNA from 83 Pima Indi-
ans. All four exons, the exon-intron junctions, the 5¢ and 3¢
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untranslated regions, and *2.0 kb of the upstream (putative
promoter) region were sequenced using Big Dye Terminator
(Applied Biosystems), and the samples were analyzed on an
automated capillary sequencer (model 3730; Applied Biosys-
tems). Variants were genotyped by allelic discrimination using
TaqMan Assays on Demand (Applied Biosystems) for all the
SNPs except rs6574549, which was genotyped by SNPplex
following the manufacturer’s protocol (Applied Biosystems).

Statistical analysis

Statistical analyses were performed using the procedures of
the Statistical Analysis System software (SAS Institute). The
odds ratio was used to determine the strength of the associ-
ation between the prevalence of the at-risk genotype and af-
fection status. Associations were calculated under three
different models: one assuming that the common allele is
dominant to the less common allele, one assuming that it is
recessive, and one assuming an additive relation between
alleles and prevalence of disease. For continuous variables,
the general estimating equation procedure was used to adjust
for covariates that account for the correlation among family
members (i.e., siblings). In the case–control study for early-
onset type 2 diabetes, the association was assessed by logistic
regression and controlled for sex and heritage. p-Values
of < 0.05 were considered significant. These nominal p-values
were adjusted using the multiple-testing correction Sidak
formula. We conducted the multiple comparisons correction
assuming 5 SNPs and 5 trait domains (diabetes, BMI/
fat mass, insulin resistance, hepatic glucose output, and SMR)
for a correction factor of 25 total comparisons. We assumed 5
effective traits rather than 10 because many of these metabolic
traits are highly correlated.

For the early-onset diabetes case–control study, power is
52% to detect an odds ratio of 1.50 at p < 0.05 assuming a
minor allele frequency (MAF) = 0.2. For the obesity case–
control study, power is 62% to detect an OR = 1.50 at p < 0.05

assuming an MAF = 0.2. For the metabolic traits (n = 256),
power is 36% to detect an allele explaining 1% of variance at
p < 0.05. For the BMI linkage family-based study, we typically
analyzed siblings only (n = 1,085), rather than the full cohort of
n = 1311. With this assumption, power is 91% to detect an
allele explaining 1% of the variance at p < 0.05.

D¢ was calculated as a measure of allelic association and r2

as a measure of concordance. The analysis of interaction be-
tween Thr92Ala in DIO2 and Trp64Arg in b-3-adrenergic re-
ceptor (ADRB3) was performed as described previously (21).

Results

Sequencing of the DIO2 gene in DNA from 83 Pima Indians
identified 12 SNPs (Fig. 1). These SNPs included a novel rare
SNP (G/A) in the 5¢ flanking region ( - 2,035 bp upstream of
the translation start site), four intronic SNPs (rs225010,
rs225011, rs225012, and rs225013), one coding SNP (rs225014
predicting Thr92Ala), and 6 SNPs in the 3¢ untranslated region
(rs6574549, a novel T/C SNP, rs225015, rs225016, rs225017,
and rs225018). Several of these SNPs were in perfect genotypic
concordance among the 83 samples that were sequenced, and
all 12 could be divided into five linkage disequilibrium groups
(defined as r2 = 1 and D¢ = 1; Fig. 1, SNPs grouped A–E). One
representative SNP from each group (Thr92Ala, rs225011,
rs225015, 6574549, and the rare 5¢ flanking SNP) was selected
for further genotyping for association analyses.

Genotyping of the five representative SNPs in the early-
onset type 2 diabetes case–control subjects showed that three
of the representative SNPs were associated with early-onset
type 2 diabetes (Table 1). These included the Thr92Ala variant
( p = 0.01), as well as rs225011 and rs225015 ( p = 0.04 and 0.03,
respectively). However, after corrections for multiple testing,
none of the associations remained statistically significant.

None of the five representative SNPs were associated with
obesity based on analysis of genotypes in the obesity case–
control subjects (data not shown), and none of the SNPs were

FIG. 1. Gene structure of DIO2 and SNPs identified in Pima Indians. (A–E) SNPs grouped by perfect linkage disequilibrium
(D’ = 1; r2 = 1) among the 83 samples that were sequenced; *representative SNP from each group selected for additional
genotyping. Locations of SNPs are not shown to scale. SNP, single-nucleotide polymorphism.
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associated with BMI or type 2 diabetes (at any age) based on
genotypes from the family-based study (data not shown).

The D¢ and r2 values between these five representative
SNPs, based on genotypic information from the 1,311 family-
based subjects, are shown in Figure 2. All five SNPs were in
high linkage disequilibrium (D¢ ‡ 0.9). The concordance rates
(r2) were also high among the Thr92Ala variant, rs225011, and

rs225015 (MAF = 0.18–0.19), but the r2 differed for the less-
frequent variants rs6574549 and the novel 5¢ flanking SNP.
This is consistent with what was observed with the early-
onset type 2 diabetes association, where Thr92Ala, rs225011,
and rs225015 all showed similar significant levels of associa-
tion to this disease (before multiple testing correction).

Genotypic data from the five representative SNPs were
further analyzed for association with metabolic predictors of
type 2 diabetes among 256 nondiabetic subjects. Data from the
novel 5¢ flanking SNP were not analyzed because it was too
rare (among 256 subjects, only 2 heterozygotes were identi-
fied). Measures of insulin action from both an OGTT and
hyperinsulinemic-euglycemic clamp were analyzed in addi-
tion to measures of energy expenditure from a human respi-
ratory chamber. All four of the representative variants were
nominally associated with the rate of basal endogenous glu-
cose output (Table 2; only data for Thr92Ala and rs6574549
are shown since Thr92Ala provided similar results to rs225011
and rs225015). For the SNPs represented by Thr92Ala,
rs225011, and rs225015 variants, the risk allele for early-onset
type 2 diabetes is associated with a lower mean basal endo-
genous glucose output rate. For the SNPs represented by
rs6574549, the risk allele (A) was similarly associated with a
lower basal endogenous glucose output rate. Although indi-
viduals homozygous (AA) for the risk allele of rs6574549 had
lower basal endogenous glucose output rates and increased
rates of sleeping energy expenditure, they had higher fasting
insulin levels (37 vs. 30 lU/mL) and lower glucose disposal
rates (high dose) (8.2 vs. 9.2 mg/kg EMBS/min) compared
with the heterozygous individuals (AC) (Table 2). However,
after corrections for multiple testing, none of the associations
remained statistically significant.

We further looked for an interaction of the Thr92Ala
polymorphism in DIO2 with the Trp64Arg polymorphism in
the ADRB3 gene in determining BMI in case–control and
family-based datasets in the Pima Indians. No significant as-
sociation was identified (Table 3).

Discussion

In our study of Pima Indians, we found that several vari-
ants in DIO2, including the Thr92Ala, are weakly associated

Table 1. Association of Single-Nucleotide Polymorphisms with Young-Onset Diabetes

Genotype frequency (%)

P
Minor

allele (2)
Minor allele

frequency 1/1 1/2 2/2
p-Value

(additive model)
p-Value (corrected

for multiple testing)
Odds ratio
(95% CI)

rs225014
Thr92Ala

Thr 0.18 Control 61.1 32.6 6.3 0.01 0.27 1.7 (1.1–2.6)
Case 74.5 22.8 2.8

rs225011
(C/T)

T 0.18 Control 63.2 30.6 6.3 0.04 0.60 1.6 (1.0–2.4)
Case 73.9 23.2 2.8

rs225015
(A/G)

G 0.19 Control 60.7 32.1 7.1 0.03 0.58 1.6 (1.0–2.4)
Case 72.1 24.3 3.6

rs6574549
(A/C)

C 0.06 Control 91.5 8.5 0 0.93 1.00 1.04 (0.4–2.4)
Case 91.2 8.8 0

Promoter SNP
(G/A)

A 0.004 Control 99.2 0.8 0 0.996 1.00 1.01 (0.06–16.3)
Case 99.3 0.7 0

The major allele is represented as ‘‘1’’ and the minor allele as ‘‘2.’’ Significant p-values (before multiple testing corrections) and odds ratios
are shown in bold.

SNP, single-nucleotide polymorphism; CI, confidence interval.

FIG. 2. Pairwise linkage disequilibrium between geno-
typed SNPs. D’ values are represented by upper right half
and r2 values are represented by the lower left half of the
box. Genotypes of the five representative SNPs in DIO2 that
were typed in 1,311 subjects (family-based study) were used
to determine pairwise linkage disequilibrium.
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with early-onset type 2 diabetes with an onset age of less than
25 years, but this association is not significant for type 2 dia-
betes as defined by onset at any age. We have previously
shown that type 2 diabetes is more heritable at younger ages (38)
where there are fewer confounding long-term environmental
influences, and this could explain our ability to detect a subtle
association in the more powerful young-onset case–control
group but not in the large family-based study. Further, we did
not detect an association with these variants and either obesity
or BMI as a continuous trait, which was somewhat unexpected
since thyroid hormone action has a role in energy homeostasis.
Thyroid hormones interact synergistically with the adrenergic
system in adaptive thermogenesis, and variations in the b-3-
adrenergic receptor (ADRB3) are associated with body weight
gain (39) and time of onset of type 2 diabetes (40). It has previ-
ously been reported that there is an association with body
weight and BMI in subjects carrying both the DIO2 Thr92Ala
variant and the ADRB3 Trp64Arg variant (21). This interaction
was not replicated in our study of the Pima Indians or in another
large cohort of more than 7000 Danish white subjects (22).

It has also been shown that carriers of Ala/Ala genotype of
Thr92Ala have higher fasting insulin levels as well as esti-
mated HOMA-IR in other populations (21,23). Hence, we an-
alyzed associations of the Thr92Ala and other variations with
direct measurements of insulin-mediated glucose uptake that
may support the risk for young-onset diabetes. None of the
variations that were associated with young-onset diabetes
were significantly associated with either fasting insulin levels
or rates of insulin-mediated glucose uptake. However, the
representative SNP rs6574549 that was in high D¢ but lower r2

with these other variants had statistically significant (nominal,
but not corrected p-values) associations with these insulin-
related phenotypes. This SNP was also nominally associated
with sleeping energy expenditure. Surprisingly, rs6574549
was not itself associated with early-onset type 2 diabetes. The
low frequency of this variant (minor allele = 0.06) may account
for this inconsistency and the associations with measures of
insulin action and energy expenditure may be false positives,
or alternatively, the lack of association with this variant and
early-onset type 2 diabetes may be a false negative.

All the variants in DIO2 were weakly associated (statistically
significant nominal, but not corrected p-values) with endoge-
nous rates of hepatic glucose output with the carriers of the risk
alleles having lower rates. It has been demonstrated that ele-
vated levels of plasma T3 can stimulate hepatic gluconeogenesis
(41). There could be lower hepatic gluconeogenesis in subjects
carrying the diabetes risk alleles if they had lower physiologi-

cally active plasma or intracellular T3. In this study we did not
have measures of thyroid-stimulating hormone (TSH), T3, or T4
for the genotyped subjects. However, in a separate group of
nondiabetic Pima Indian subjects (n = 89), neither Thr92Ala nor
rs6574549 was significantly associated with measured plasma
levels of TSH, free T3, free T4, or T3/T4 ratio (42).

We cannot exclude the possibility that the weak associa-
tions we observed in this study may be due to linkage dis-
equilibrium with a functional SNP in the introns of DIO2,
another gene, or a regulatory element in the region. In sum-
mary, our data support a minor role of DIO2 in contributing to
insulin resistance, thereby increasing susceptibility to early-
onset type 2 diabetes, but we do not believe that this is a major
determinant for either type 2 diabetes or obesity among this
Native American population.
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