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ABSTRACT

Moore, S.; Heise, E.A.; Grove, M.; Reisinger, A., and Benavides, J.A., 2021. Evaluating the impacts of dam construction
and longshore transport upon modern sedimentation within the Rio Grande Delta (Texas, U.S.A.). Journal of Coastal
Research, 37(1), 26–40. Coconut Creek (Florida), ISSN 0749-0208.

The modern Rio Grande delta system has experienced a century of dam construction, water removal for irrigation and
municipal use, and land use modifications that have dramatically reduced its sediment load. This study examines whether
damming has sufficiently limited delivery of upstream sediment to permit locally eroded sources and/or littoral transport
along the coast to influence the provenance signal of the Rio Grande delta. Changes in sediment provenance within the Rio
Grande’s delta can be detected and quantified by measurement of detrital zircon Uranium–lead dating age distributions.
Previous provenance studies indicate that modern Rio Grande river sand upstream of Falcon Dam is enriched in zircon
derived from Oligocene volcanic fields within the southern Rocky Mountains and the Sierra Madre Occidental. Results
from this study indicate that the abundance of Oligocene zircon is depleted in the modern Rio Grande delta relative to river
sand sampled upstream of Falcon Dam. Mixing calculations performed with age distributions representative of Eocene–
Miocene fluvial sedimentary deposits that crop out downstream of the dam indicate that erosional reworking of these
materials has significantly altered sedimentary provenance within the delta. The importance of north-directed longshore
transport along the Mexican (Tamaulipas-Veracruz) Gulf Coast was also evaluated. The absence of distinctive zircon from
the Trans Mexican volcanic belt and the basement of southern Mexico within the barrier islands of the Rio Grande delta
support previous conclusions that sediment transport along the Tamaulipas-Veracruz shelf is highly compartmentalized
and restricted in lateral movement due to seasonal variation in littoral current polarity, topographic barriers along the
shelf, and other phenomena. Nevertheless, the results of this study demonstrate that construction of dams across rivers
such as the Rio Grande is capable of sufficiently limiting upstream sediment transport to permit otherwise unimportant
local sources to dominate sand provenance within their delta systems.

ADDITIONAL INDEX WORDS: Sediment starvation, longshore current, detrital zircon, U-Pb age.

INTRODUCTION
Dam construction and the sprawl of human civilization have

adversely affected the supply of river sediments to deltas in

ways that are difficult to predict (e.g., Nienhuis et al., 2020).

The Rio Grande delta is a prime example. Situated along the

coast of southernmost Texas, U.S.A. and northern Tamaulipas,

Mexico, the wave-dominated Rio Grande delta marks the

terminus of the 3000 km long Rio Grande system (Figure 1).

The modern Rio Grande delta formed primarily between 8000

and 3000 YBP as a result of a large sediment flux carried by the

Rio Grande during the Holocene Climatic Optimum (Rodri-

guez, Fassell, and Anderson, 2001). Prior to ca. 1850, the Rio

Grande River flowed naturally into the delta region as an

alluvial channel filled with pebbly sand (Jepsen et al., 2003). As

human population has increased, the need for flood control and

stable water storage for agriculture and human habitation

resulted in dam construction and a myriad of irrigation

projects. These modifications of the Rio Grande system have

reduced its flow and sediment flux to such an extent that it

currently delivers negligible sediment to the coast (Anderson et

al., 2014; Benke and Cushing, 2005; Jepsen et al., 2003).

The reduction in Rio Grande sediment flux described above

coupled with the Late Holocene highstand in sea level prompts

interesting questions. For example, do present-day conditions

result in the Rio Grande delta receiving a significant fraction of

its sediment from unexpected, and/or previously unimportant

sources? This paper investigate two possibilities: (1) locally-

derived sediment eroded downstream of Falcon and Marte R.

Gómez dams; and (2) longshore transport of extraregional

sediment transported northward along the Tamaulipas-Vera-

cruz Gulf Coast to the Rio Grande Delta’s barrier islands

(Figure 1). Provenance analysis based upon the measurement

of detrital zircon Uranium–lead dating (U-Pb) age distributions

provides the means to detect and quantify the contributions of

distinct sediment sources. In this study, detrital zircon U-Pb

age distributions were measured in modern Rio Grande delta

sediment and compared to previous relevant data (Blum et al.,

2017; Fan, Brown, and Li, 2019; Mackey, Horton, and Milliken,
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2012; Repasch et al., 2017; Xu, Stockli, and Snedden, 2017) to

evaluate these hypotheses.

Cenozoic Shoreline Strata of the Texas Margin
The Texas Gulf shoreline propagated southwards throughout

the Cenozoic (Galloway, Whiteaker, and Ganey-Curry, 2011)

(Figure 1). Paleocene, Eocene, Oligocene, and Miocene con-

glomerate, sandstone, and shale deposited during this south-

ward migration crop out in the south Texas–northern

Tamaulipas region (Page, VanSistine, and Turner, 2005)

(Figure 2). Provenance studies indicate that the rivers that

formed these deposits drained significant regions of the

continental interior throughout the Cenozoic (Blum et al.,

2017; Fan, Brown, and Li, 2019; Mackey, Horton, and Milliken,

2012; Repasch et al., 2017; Xu, Stockli, and Snedden, 2017). The

Early Cenozoic deposits are exposed due to deformation related

to the NW-SE trending, Laramide-related, Coahuila fold belt

(Ewing, 1997; Gray and Lawton, 2011; Page, VanSistine, and

Turner, 2005). A series of normal-slip growth faults down drop

the Eocene and the overlying Oligocene and Miocene strata to

the east (Ewing, 1986; Page, VanSistine, and Turner, 2005).

Late Quaternary–Holocene Sea Level Change
The last low stand of sea level occurred between ca. 27–19 Ka

and correlated with the maximum expansion of global ice

sheets (Clark et al., 2009). Subsequent warming resulted in

Figure 1. Location map for modern Rio Grande river catchment (light blue). Mississippi River catchment is included for reference (light green). Approximate

region of offshore delta sedimentation for these two rivers shown in gray (after Davis, 2017). Solid brown line represents drainage divide for rivers flowing into the

Gulf of Mexico. Abbreviations for other rivers mentioned in text shown in blue font with full names provided in lower left-hand corner of figure. Western Gulf

Coast segments discussed in text include Texas, Tamaupipas, and Veracruz. Black dashed line shows limit of continental shelf (130 meters) in western Gulf of

Mexico. Colored dashed lines indicate approximate location of ancient shorelines of Texas along Gulf of Mexico shown for the Paleocene (green), Eocene (red),

Oligocene (brown), and Miocene (purple) (adapted from Mackey, Horton, and Milliken, 2012). The Rio Grande River forms the boundary between the U.S.A. and

Mexico. Outcrop area of the Trans Mexican Volcanic Belt (TVMB) is indicated in orange. Cities of Laredo (L) and Brownsville (B) are located with red squares

while Falcon (F) and Marte E. Gomez (G) dams are located with bold line segments. Abbreviations of other locations mentioned in text include: Coastal Plain (CP),

Colorado Plateau (CP), Cabo Rojo (CR), Great Plains (GP), Rocky Mountains (RM), Rio Grande Rift (RR), Sierra Nevada Madre Occidental (SMOc), and Sierra

Madre Oriental (SMOr). Area of Figure 2 is outlined.
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dramatic coastal flooding within the northern Gulf of Mexico

over the past 10 ka. Age-depth relationships of estuary, marsh,

and swash-zone depositional environments for the northern

Gulf of Mexico indicate that sea level increased dramatically at

9 to 5 mm/year between 10–8 Ka (Milliken, Anderson, and

Rodriguez, 2008). Sea level rise decreased to 5 to 2 mm/year

between 8–5 Ka and has slowed to less than 0.6 mm/year over

the past 5 Ka. Comparison of regional and global sea-level

curves for the last 5000 years indicate that Late Holocene

relative sea-level rise across the northern Gulf of Mexico

cannot be explained by coastal subsidence (Milliken, Anderson,

and Rodriguez, 2008). Satellite altimetry and tide-gauge

records indicates that rates of sea level rise have increased by

an order of magnitude over the past century (Milliken,

Anderson, and Rodriguez, 2008).

Rio Grande Drainage System
The 2830 km long Rio Grande is the fifth longest river in

North America (Figure 1). It has a combined catchment of

472,000 km2 and defines a 1254 km segment of the U.S.-Mexico

border. Also referred to as the Rio Bravo in Mexico, the modern

Rio Grande has two hydrologic domains. The upper Rio Grande

of Colorado and New Mexico is fed by snow-melt from the

southern Rockies and is almost entirely depleted as it flows into

west Texas. The lower Rio Grande domain begins with the

confluence of the Rio Conchos (Figure 1). The Rio Conchos has a

68,386 km2 catchment that includes the Sierra Madre

Occidental in the Mexican state of Chihuahua. The water

carried by the Rio Conchos is supplied by the North American

Monsoon and accounts for ca. 50% of the water carried by the

lower Rio Grande. Further downstream, the Rio Grande

receives input from the Pecos River, Rio Salado, and smaller

streams (Figure 1). Its last major tributary, the Rio San Juan,

has a catchment of 33,538 km2 that includes the Sierra Madre

Oriental in the Mexican state of Nuevo León (Figure 1).

Rio Grande Delta
The Late Quaternary and Holocene sea level changes

described above created earlier lobes of the Rio Grande delta

(Banfield and Anderson, 2004; Hiatt, 2010; Rodriguez, Fassell,

and Anderson, 2001; Weight, Anderson, and Fernandez, 2011).

These offshore deltas are believed to have been the dominant

source of sands that nourished the central Texas barriers in the

past (Anderson et al., 2014) and may also have contributed to

the south Texas coast. Alternatively, more recently deposited

offshore sediment cored from the south Texas inner shelf and

shoreface is composed mostly of a thin veneer of sand resting on

red delta silt and clay (Rodriguez, Fassell, and Anderson,

2001). This implies that offshore sand sources are no longer

major sources of coastal sediment.

The modern Rio Grande delta straddles the international

U.S.-Mexico border and has an areal extent of 360,000 km2

(Ewing and Gonzalez, 2016) (Figure 2). The Holocene delta apex

is situated ca. 50 km west of the Gulf Coast (988 E) near Reynosa,

Mexico (Figure 2). A radiating array of precursor main channels

of the Rio Grande abandoned by avulsion extend eastward.

Figure 2. Geologic map of the Rio Grande Delta region. State of Texas (U.S.A.) occurs north of the Rio Grande while state of Tamaulipas (Mexico) lies south.

Bedrock geology simplified from Page, VanSistine, and Turner (2005). Holocene delta geology interpreted from data in Page, VanSistine, and Turner (2005) and

Ewing and Gonzalez (2016). The geometry of older Pleistocene delta deposits included within the Beaumont Formation are more approximately located,

particularly on the Mexican side of the Rio Grande where there is considerable agricultural development. Falcon Dam along Rio Grande and Marte E. Gomez on

Rio San Jose are shown. Locations of samples in Table 1 are shown. Locations mentioned in the text are abbreviated as follows: Brownsville (B), Harlingen (H),

Port Isabel (PI), Matamoros (Ma), McAllen (Mc), Reynosa (R), and Rio Grande City (RC). Area of Figure 4 is outlined.
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These successively developed channels have produced a 110 km

swath of Holocene delta plain deposits along the N-S trending

Gulf Coast (Ewing and Gonzalez, 2016) (Figure 2). The latter are

built upon clay, silt, sand, and gravel of the Pleistocene

Beaumont Formation that represent stream-channel, point-

bar, natural-levee, and backswamp deposits of a previously

developed delta (Page, VanSistine, and Turner, 2005) (Figure 2).

The Rio Grande delta can be divided into two topographic

domains: the upper and lower delta plain. In the upper plain,

meandering abandoned river channels, locally known as

resacas, are bound by sand-rich levees that rise 3–5 m higher

than the surrounding interchannel regions. Although the

topographically lower delta plain is morphologically similar,

the interchannel regions are inundated by large ephemeral

shallow brackish to saline lakes referred to as esteros (Ewing

and Gonzalez, 2016) (Figure 2).

Shoreline Environment
A nearly continuous shoreline and dune system marks the

interface between the delta and the Gulf of Mexico. North of the

U.S.-Mexico border, South Padre Island extends for hundreds

of km along the Texas coastline. This barrier island forms

lagoons that notably include Laguna Madre (Figure 2). Under

fair-weather conditions, 30 to 60 cm high waves with a 2 to 6

second period strike the shoreline. The shallowly inclined, fine

sand beaches generate spilling waves. The coast is affected by a

diurnal, microtidal (,1 m) range (Morton, 1994).

The long axes of sand dune fields in south Texas define a

bearing of 3188 for the prevailing winds (Figure 2). According

to the Texas Weather Atlas (Larkin and Bomar, 1983), 1961–

1980 weather records from Brownville wind conditions are

highly seasonal. During the winter (December–February),

winds alternate from blowing out of the N to NW as weather

fronts approach to S to SE during intervening periods. Wind

speeds vary between 8 to 15 knots. For the spring and

summer months (March to August), the prevailing winds

blow out of the SE to SSE at wind speeds generally between

10–20 knots. Hurricane season lasts from June through

November and peaks during August and September. During

the fall, winds again alternate from N to NW to S to SE but

tend to be light (6–12 knots).

The coastal winds interact with the curved shape of the

Texas coastline to cause longshore currents to flow north in

south Texas and west in east Texas. This results in a

convergence zone offshore of central Texas (Anderson et al.,

2014; Curray, 1960; Lohse, 1955; Rodriguez, Fassell, and

Anderson, 2001). Consequently, shoreface deposits from east

and south Texas are thinner and retrograding compared to

those from central Texas, which are thicker and prograding

(Rodriguez, Fassell, and Anderson, 2001). Hurricanes that

impact southern Texas periodically increase erosion rates by

up to an order of magnitude (e.g., Heise et al., 2009).

Human Impacts upon the Rio Grande Delta System
Burgeoning ranching and agriculture activity within the

Rio Grande Valley prompted the establishment of the

International Boundary and Water Commission in 1889.

Marte R. Gómez Reservoir was constructed across the Rio

San Juan, the last major tributary of the Rio Grande in 1936.

Subsequent construction of Falcon Dam along the Rio Grande

occurred in 1953 (Benke and Cushing, 2005) (Figure 1).

Additional irrigation projects have substantially reduced the

flow of the Rio Grande to the point where the mouth of the Rio

Grande River has been sealed by sand bars and silted over

(Benke and Cushing, 2005; Ewing and Gonzalez, 2016;

Jepsen et al., 2003).

The configuration of the Rio Grande delta was considerably

different in the early 1900s than it is today. Figure 3 depicts the

coastline morphology in 1930s prior to most dam construction

and flood control projects when the coastal interface and

barrier islands were less well developed. Dewatering and

dredging have significantly impacted the delta system over

time (Morton and Pieper, 1975) (Figure 3). In order to ensure

the viability of Brazos Santiago Pass as a navigable waterway,

jetties were constructed by the Army Corps of Engineers in the

Figure 3. Morphological change of the Rio Grande delta system related to

anthropogenic activity. Locations of samples #3–#8 and #11 shown: (A) Delta

wetland region in 1929 prior to most dam construction; (B) 1983 conditions

after creation of the Brownsville ship channel and construction of jetties and

dredging of Brazos Santiago Pass; (C) 2005 conditions after continued

dredging and draining of delta wetlands.
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late 1920s. The 27–km long deep-water Brownsville Ship

Channel was subsequently dredged inland from Brazos

Santiago Pass to Brownsville (Ewing and Gonzalez, 2016).

This channel has been steadily deepened throughout the years

and is now at 13 m navigation depth (Figure 3).

METHODS
A total of 11 samples were collected. A vibracorer was

employed to enable the properties of surface vs. deeply buried

sand to be contrasted at two separate locations. Sample

locations are shown in Figures 3 and 4 with map coordinates

Figure 4. Enlargement of the sample site location map from Figure 2 with a photograph of vibracore sample recovery from South Padre Island–Edwin King

County Beach (sample location 1 and 2).
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and additional details provided in Table 1. Samples #1 (surface)

and #2 (5 m depth) were collected from a vibracore extracted

from beach sand at Edwin King County Park, 25 km north of

the mouth of the Rio Grande River (Figure 4). A second South

Padre Island beach sand (#3) was collected 11 km to the south

at Isla Blanca Park near the Brazos Santiago Pass jetty. Three

additional beach sands (#4, #5, and #6) were collected along

Boca Chica beach between Brazos Santiago Pass and the active

mouth of the Rio Grande River. Surface sand (#7) and a 5 m

deep vibracore sample (#8) was collected from the active mouth

of the Rio Grande (Figure 4). The final sand sample was

collected from sediment dredged from the Brownsville ship

channel (#11) (Figure 4).

Sand samples were disaggregated, dried, and characterized

morphologically at San Diego State University using a

CAMSIZER instrument (Blott and Pye, 2001). The CAMSIZER

measures both particle size and shape and calculates textural

analysis parameters (Blott and Pye, 2001). Sand fed through

the CAMSIZER is photographed with two orthogonal high-

speed digital cameras. These allow measurement and shape

analysis of a wide range of particles from 30 lm to 30 mm.

Zircon (ZrSiO4) is a primary target phase for U-Pb geochro-

nology (e.g., Schoene, 2014). The abundance of detrital zircon in

clastic sedimentary rocks, combined with its resistance to

chemical and physical weathering, contributes to the popular-

ity and prolificacy of the U-Pb system for geochronology

performed with sedimentary rocks (Gehrels, 2012). Because

most zircon is igneous in origin, zircon U-Pb ages are generally

thought to represent the time at which zircon within a host

igneous rock crystallized from magma. Thus, in cases where

sediments are directly routed from igneous source regions to

the depositional basin, a distribution of detrital zircon ages

represents the distribution of crystallization of igneous rocks

within the source region (e.g., Gehrels, 2012). While reworking

of sediment from previously deposited rocks obscures primary

relationships with basement terranes, the detrital zircon age

distribution of a sample remains a distinctive property that can

be used to characterize sedimentary provenance (e.g., Fletcher

et al., 2007; Kimbrough et al., 2015; Malkowski et al., 2020).

Concentrates of detrital zircon were extracted from the suite

of Rio Grande delta sands using conventional hydrodynamic,

magnetic, and density methods. Zircons were hand-selected

with the aid of a binocular zoom microscope. Grains were

mounted, potted in epoxy, sectioned, and polished. Uranium-

lead isotopic ages were measured by laser ablation, inductively

coupled plasma mass spectrometry (LA-ICP-MS) at the

Arizona Laserchron Center. Standard Sri Lanka zircon

(standard zircon SL with a 564 Ma U-Pb age) (Kimbrough et

al., 2015) and secondary standard zircon R33 were added to the

mounts to standardize the U-Pb measurements. A total of 647

of the 1106 grains yielded 206Pb/238U ages ,750 Ma. Since

Mesoproterozoic and early Paleoproterozoic zircons have

higher and thus more readily measured 207Pb ion intensities,
207Pb/206Pb ages were used instead of 206Pb/238U ages because

the former are generally more accurate for ancient zircons.

Approximately 13% percent of the older (.750 Ma) zircons

were negatively impacted by U-Pb discordance at the 15% level.

Results discordant by greater than 15% were excluded from

further analysis.

The Kolmogorov-Smirnov (K-S) test was utilized to calculate

the probability that two measured detrital zircon age distribu-

tions were derived from the same population (Press et al.,

1992). The probability (P) yielded by the test is used to evaluate

the null hypothesis that two distributions (A, B) are drawn

from the same population. The value of P is calculated from the

maximum vertical separation (D) of cumulative age distribu-

tions of samples A and B. P also depends upon the sample size

(Ne) where Ne ¼ NA * NB/(NA þ NB). A value of Ne . 25 is

required for a valid test (Press et al., 1992). If P� 0.05, the null

hypothesis is upheld because the age distributions for the two

samples are not distinguished at 95% confidence. Alternative-

ly, if P , 0.05, the null hypothesis can be rejected. A P value ,

0.05 thus indicates that there is a statistically meaningful

difference between the age distributions associated with two

samples.

The K-S text results reported here were generated using a

program written by O.M. Lovera that implements calculations

presented in Press et al. (1992). Lovera’s algorithm calculates P

for the case in which experimental error is ignored. This is the

conventional K-S test that calculates D from cumulative age

distributions (i.e. the raw data) and P where experimental

error is taken into account. The later calculates D from two

cumulative probability density function (i.e. error-weighted

ages) and yields high values of P.

RESULTS
Table 2 reports the textural attributes of the sand samples

investigated (see Table 1). As indicated, most samples were

unimodal, well-sorted, fine-grained sand. The term ‘‘slightly

gravelly’’ generally refers to trace shell detritus. The detection

limit for textural analysis (30 micron) was reached with

sample 8.

Table 1. Sample locations and descriptions of the setting in which the samples were collected.

Sample Location Details Map Coordinates

1 South Padre Island (Edwin King County Park) top of core 26.18986 N, �97.177481 W

2 South Padre Island (Edwin King County Park) bottom of core 26.18986 N, �97.177481 W

3 South Padre Island (Isla Blanca Park) near jetty surface sand 26.07160 N, �97.155961 W

4 Boca Chica Beach (Brazo Santiago Pass) surface sand 26.06400 N, �97.150400 W

5 Boca Chica Beach (midpoint) surface sand 26.00180 N, �97.150800 W

6 Boca Chica Beach (near Rio Grande mouth) surface sand 25.95660 N, �97.147833 W

7 Boca Chica Beach (near Rio Grande mouth) top of core 25.95660 N, �97.147833 W

8 Boca Chica Beach (near Rio Grande mouth) bottom of core 25.95660 N, �97.147833 W

9 Mexico–Playa Bagdad surface sand 25.82382 N, �97.151983 W

10 Rio Grande river sand 25.84968 N, �97.4357667 W

11 Brownsville Ship Channel dredged sand 26.01210 N, �97.271050 W
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Figure 5 illustrates the cumulative U-Pb zircon age distri-

butions measured from the sample suite. Two samples (Playa

Bagdad and the Brownsville Ship Channel) yield age distribu-

tions that bracket the distributions yielded by all other

samples. The modern sand from the Rio Grande River is also

emphasized for reference. The modern sand from Playa Bagdad

may represent a less disturbed part of the delta system in

northeastern Mexico. Finally, the Brownsville Ship Channel

sample may expose older (i.e. pre-Holocene) sediments.

The U-Pb detrital zircon age distributions of the Rio Grande

River, Playa Bagdad, and Brownsville Ship Channel are shown

in Figure 6 as probability density functions. As indicated, all

three distributions reveal similar age maxima with abundant

Cenozoic and Mesozoic U-Pb ages and a broad distribution of

Neoproterozoic, Mesoproterozoic, and Paleoproterozoic zircon.

The largest age maxima occur between 40–20 Ma (Figure 6).

Because the age peaks for all three samples are rather similar,

the cumulative probability density functions (Figure 5) best

illustrate the overall differences between the samples. As

indicated, the Playa Bagdad sample has 70% , 250 Ma zircon

while the Rio Grande and Brownsville ship channel samples

have 52% and 42%, respectively, of grains ,250 Ma.

Age distributions measured from the eight beach sand

samples (#1–#8) including the two borehole samples (#2 and

#8) are dispersed around the age distribution for the Rio

Grande sample (#10) (Figure 5). Table 3 presents 2–sample K-S

test results from the eleven samples. As indicated, beach sand

samples #1–#8 are statistically indistinguishable from Rio

Grande river (#10) at 95% confidence. In contrast, comparison

of the Playa Bagdad, Mexico sample (#9) with the Rio Grande

River sample (#10) yields a value of P ¼ 0.03 (measurement

error neglected). This indicates that the Playa Bagdad sample

Figure 5. Cumulative plot of detrital zircon U-Pb age distributions for all Rio

Grande delta modern sand samples. Results from Playa Bagdad in Mexico

and the Brownsville ship channel bound all other results and serve as end

members for future analysis. Rio Grande modern river sand is also used as a

reference in future calculations.

Figure 6. Representative probability density functions of detrital zircon 0–

3000Ma U-Pb age distributions measured from modern sand end members:

(A) Playa Bagdad (Mexico); (B) Rio Grande; (C) Brownsville ship channel.

Insets provide finer detail for 0–300 Ma portion of distribution.

Table 2. Textural attributes of sand samples. Most samples were unimodal, well-sorted, fine-grained sand. In many instances, the term ‘‘slightly gravelly’’

refers to trace shell detritus. Note that the detection limit for analysis (35 micron) was reached with sample #8.

Sample Geometric Mean (lm) Logarithmic Mean (/) Sorting Skewness Kurtosis Sediment Mode/Texture

1 236 2.083 1.238 0.008 1.030 unimodal, very well sorted/sand

2 236 2.084 1.237 0.049 1.044 unimodal, very well sorted/slightly gravelly sand

3 232 2.017 1.314 0.139 1.056 unimodal, well sorted/slightly gravelly sand

4 232 2.017 1.314 0.139 1.056 unimodal, well sorted/slightly gravelly sand

5 235 2.089 1.29 0.096 1.094 unimodal, well sorted/sand

6 241 2.053 1.476 0.254 1.174 unimodal, moderately well sorted/sand

7 225 2.155 1.276 �0.013 1.178 unimodal, well sorted/slightly gravelly sand

8 ,40 - - - - silt

9 225 2.155 1.273 0.115 1.134 unimodal, very well sorted/slightly gravelly sand

10 219 2.192 1.369 �0.027 1.161 unimodal, well-sorted/slightly gravely sand

11 228 2.213 1.325 0.065 1.045 unimodal, well-sorted/sand
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is statistically resolved. Additional K-S tests performed

indicate that samples #2, #4, #5, #7, and #8 are statistically

indistinguishable at 95% confidence from the Playa Bagdad

sample (#9). Samples #2 (P¼ 0.37) and #8 (P¼ 0.30) are most

similar to the Playa Bagdad sample (#10). Comparisons made

between the Brownsville Ship Channel dredged sand (#11)

reveal that six of the eight samples overlap at 95% confidence.

DISCUSSION
The Rio Grande delta was a fluvial-dominated system that

carried coarse sand and gravel between ca. 8000 and 3000

years ago during the Holocene Climatic Optimum (Rodriguez,

Fassell, and Anderson, 2001). Today, dams, irrigation projects,

and other factors have water reduced flow within the Rio

Grande to the extent that the river carries only fine sand and no

longer consistently flows to the Gulf Coast (Anderson et al.,

2014; Benke and Cushing, 2005; Jepsen et al., 2003). This stark

contrast in conditions prompts the following questions: (1) Is

there a contrast in the provenance signature of Rio Grande

River sand that can be attributed to dam construction?; (2) Is

modern sand proximal to the mouth of the Rio Grande River

primarily being supplied by the Rio Grande River or from

northeast-directed longshore sediment along the modern

shoreline of the Gulf of Mexico?

How Have Dams Affected the Provenance of Sand
within the Delta?

Dams disrupt the continuity of sediment transport along

rivers. Over the past decade, sediment trapping caused by dam

construction has caused 85% of the deltas worldwide to

experience severe flooding, submergence, and other adverse

effects (Nienhuis et al., 2020; Syvitski et al., 2009). The

gravitational potential energy possessed by water released

downstream from newly constructed dams works to rapidly

remove pre-existing bedload (Kondolf, 1997). For example,

construction of Glen Canyon Dam along the Colorado River in

northern Arizona caused the downstream channel to incise,

armor, and narrow (Grams, Schmidt, and Topping, 2007). More

locally, construction of Livingston Dam along the Trinity River

in central Texas caused bed erosion 50–60 km downstream of

the dam (Smith and Mohrig, 2017). This included lowering of

the channel bed, reduction in the sediment volume of channel

bars, coarsening of sediment on bar tops, steepening of channel

banks, and reduction in lateral migration rates of river bends

(Smith and Mohrig, 2017).

Falcon Dam (volume of 3 3 109 m3) was completed in 1954

and represents the last major dam on the Rio Grande (Moya et

al., 2016). Further downstream, the last major tributary to the

Rio Grande, the Rio San Juan, is dammed 20 km upstream

from its confluence with the Rio Grande (Figures 1 and 2).

Marte R. Gómez Reservoir (surface area of 235 km2) has been

in place since 1936. Erosion of the riverbed has occurred

downstream of these two dams since their construction.

Moreover, additional sediment is contributed from the topo-

graphically elevated region surrounding the dams. Extensive

dissection of the landscape near the reservoirs has formed

arroyos that lead to the Rio Grande River (Figure 2). The area

of maximum relief near Falcon and Marte R. Gómez Dams is

underlain by Eocene, Oligocene, and Miocene strata (Page,

VanSistine, and Turner, 2005) (Figure 2). Up to ca. 125 meters

of relief occurs in the region adjacent to Falcon and Marte R.

Gómez Dams (Figure 2). Sandstones are characteristically

enriched in zircon (e.g., Garcon et al., 2014) and are generally

readily eroded when weakly cemented (Small et al., 2015).

Further downstream, near Rio Grande City and the furthest

downstream Miocene outcrops, the amount of local relief has

decreased to ca. 60 meters. By the time the Rio Grande River

reached Reynosa, topography is muted and the flood plain of

the Rio Grande delta expands radially (Figure 2). Further

south, the Rio Grande transitions to an aggregational form

with super-elevated levees relative to the floodplain.

To test whether post-1954 erosion of sedimentary rocks south

of Falcon Dam has altered the detrital zircon provenance

signature of the Rio Grande River sand within the delta region,

relevant data from past studies was evaluated. Figure 7

compares the results of previous detrital zircon studies

performed with Rio Grande river sand upstream of the

reservoir. Blum et al. (2017) and Fan, Brown, and Li (2019)

independently collected and measured modern Rio Grande

River detrital zircon U-Pb age distributions from near the city

of Laredo, Texas, about 115 upstream of Falcon Dam (Figure 1).

These are shown in Figures 7B and 7C, respectively. The

primary distinction between the two Laredo samples and

Brownsville (this study) is the much higher proportion of 40–20

Ma zircon in the former.

The cumulative age distributions for all three samples are

shown in Figure 7D. The two independently collected and

analyzed samples from Laredo (Blum et al., 2017; Fan, Brown,

and Li, 2019) are indistinguishable within 95% confidence (P¼
0.86). In contrast, comparisons of the Blum et al. (2017) and

Fan, Brown, and Li (2019) samples from above Falcon Dam

with the Rio Grande River sample from Brownsville (this

study) yield P values (4310�7 and 6310�5, respectively). These

results indicate that the downstream sample from Brownsville

is statistically distinguished from both upstream samples at

95% confidence. The cumulative age distributions of the Laredo

Rio Grande samples plot above the envelope defined by all

results from this study (compare Figures 5 and 7). The Playa

Table 3. Results of the two-sample, Kolmogorov-Smirnov (K-S) test. All

comparisons are made relative to sample #10 (Rio Grande sand). A

probability (P) of 0.05 or greater means that the two distributions cannot be

distinguished at 95% confidence. Calculations performed with the raw data

only compare the cumulative distribution functions of two samples. This is

the conventional K-S test. Error-weighted K-S results compare the

probability density functions (PDF) of the two samples. Because the

PDF’s are smoothed, calculated values of P are higher.

Sample
Error-Weighted Data Unweighted Data

N Draw Praw Dweighted Pweighted

1 94 0.075 0.937 0.084 0.873

2 105 0.107 0.573 0.109 0.552

3 97 0.097 0.727 0.107 0.603

4 92 0.043 1.000 0.053 0.999

5 103 0.087 0.823 0.096 0.722

6 108 0.103 0.614 0.116 0.464

7 98 0.070 0.961 0.077 0.923

8 110 0.081 0.868 0.081 0.869

9 95 0.196 0.041 0.203 0.031

10 100 0.000 1.000 0.000 1.000

11 104 0.128 0.347 0.131 0.326
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Bagdad sample (#9) and the two vibracore samples (#2, #8)

from the present study plot closest to the Laredo Rio Grande

river sand samples. While these three samples (#2, #8, and #9)

appear are likely to be the most pristine samples in the suite,

all are distinguishable at 95% confidence from Blum et al.’s

(2017) and Fan, Brown, and Li’s (2019) Rio Grande samples.

The similar sample preparation and laboratory procedures

were used to generate all three data sets argues against

analytical issues as a cause for the significant difference

between the Brownsville and Laredo river sands from the Rio

Grande (Figure 7E–G). Interruption of downstream sediment

transport as a result of dam construction provide a much more

likely explanation. In a systematic study of the impact of dams

upon downstream propagation of sediment and detrital zircon

U-Pb age distributions, Malkowski et al. (2020) argued that the

mass of sediment transported by California’s Sacramento-San

Joaquin River to the Sacramento Delta was sufficiently large

prior to dam construction to mitigate against bias caused by

sediment trapped in dams. However, this conclusion requires

that volumetrically significant new sources of sediment do not

appear downstream of the dam after the reservoir is filled.

Figure 7E–G displays representative detrital zircon age

distributions from Eocene, Oligocene, and Miocene strata from

southern Texas (Fan, Brown, and Li, 2019; Mackey, Horton,

and Milliken, 2012; Xu, Stockli, and Snedden, 2017). Each

distribution represents 4–6 pooled samples collected from

southwestern Texas (see compilation details in Fan, Brown,

and Li, 2019). The cumulative age distributions are shown in

Figure 7H. All are distinguished at 95% confidence from each

other and the modern Rio Grande River sand collected from the

delta area near Brownsville.

The Eocene distribution is indicated to most strongly

resemble the age distribution of the modern Rio Grande River

sand (Figure 7H). The Miocene cumulative age distribution

plots below both the Eocene distribution and modern Rio

Grande River sand, while the Oligocene age distribution plots

well above it (Figure 7H). Interestingly, the Oligocene age

distribution strongly resembles the age distributions of both

Figure 7. Detrital zircon U-Pb age distributions from modern sand and Cenozoic sedimentary rocks discussed in the text: (A) modern Rio Grande river sand

collected near Brownsville, Texas (this study); (B) modern Rio Grande river sand collected near Laredo, Texas reported by Blum et al. (2017); (C) modern Rio

Grande river sand collected near Laredo, Texas reported by Fan, Brown, and Li (2019); (D) Cumulative age distributions from samples A–C.; (E) Pooled age

distribution for Miocene strata constructed from Fan, Brown, and Li’s (2019 samples #5–#7, and Xu, Stockli, and Snedden’s (2017) samples GOM 2–4); (F) Pooled

age distribution for latest Eocene-Oligocene strata based upon Fan, Brown, and Li’s (2019) samples #1–#4, and Blum et al.’s 2017 GOM 58 sample; (G) Pooled age

distribution for south Texas late Paleocene–earliest Eocene upper Wilcox Group samples Z2, Z3, Z6, Z8 from Mackey, Horton, and Milliken (2012); and (H)

Cumulative age distributions from pooled sampled in E–G.
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modern Rio Grande River sand collected in Laredo, above

Falcon Dam (Figure 7). When the K-S test is applied using the

Oligocene age distribution as the comparison, P values of 0.15

and 0.26 are obtained for the Fan, Brown, and Li (2019) and

Blum et al. (2017) modern Rio Grande River sands from the

Laredo area.

Rigorous assessment of the ability of postdam sediment

eroded from Early Cenozoic bedrock downstream from Falcon

and Marte R. Gómez Dams to dilute the Oligocene zircon rich

sand provenance signature reported for the modern Rio Grande

near Laredo (Blum et al., 2017; Fan, Brown, and Li, 2019)

(Figure 7B,C) to that measured near Brownsville (this study;

Figure 7A) requires knowledge of both the mass and zircon

concentration of reworked predam and newly eroded postdam

sediment within the Rio Grande delta. While this mass balance

calculation is beyond the scope of the present study, a simpler

question can be posed: In the absence of any pre-existing river

sediment, is it possible to mix the detrital zircon age

distributions representing Eocene, Oligocene, and Miocene

strata below the two dams in a manner that reproduces the

modern Rio Grande river sand from Brownsville? To answer

this, three-component mixing calculations were performed.

The mixing calculations presented below employ an extended

form of the K-S statistic developed by O.M. Lovera that is

applicable to mixtures of age distributions (see Kimbrough et

al., 2015). The intersectional probability approach employed

assumes that each component to the mixture (i.e. each age

distribution) is independent from the other two. Ternary

mixtures were calculated with a resolution of 0.1%. Results of

these calculations are portrayed in Figure 8A. All mixtures that

are indistinguishable from modern Rio Grande River sand (i.e.

yield P . 0.05) are contoured. The ‘‘best fit’’ solution that

corresponds to the highest P value is 46.7% Miocene, 22.5%

Oligocene, and 30.8% Eocene. Note however, that 28% of all

ternary mixtures calculated were indistinguishable at 95%

confidence from the age distribution yielded by modern Rio

Grande River sand (Figure 8A). For example, any mixture

between 95% Miocene–5% Oligocene and 63% Miocene–37%

Oligocene on the Miocene–Oligocene binary join has a P value

above 0.05. A more restricted range of acceptable mixtures

centered on 80% Eocene–20% Oligocene occurs along the

Eocene–Oligocene ternary join. In ternary space, a wedge

shaped swath of acceptable mixtures trends parallel to, but

does not intersect, the Eocene-Miocene binary join.

The significance of these mixing calculations depends upon

how representative the input age distributions are for Cenozoic

strata that crop out below Falcon and Marte R. Gómez Dams.

Available data indicate that the age distributions used are

highly reproducible as a function of geologic time throughout

southern Texas (Blum et al., 2017; Fan, Brown, and Li, 2019;

Mackey, Horton, and Milliken, 2012; Xu, Stockli, and Snedden,

2017). Assuming that the age distributions used in the

calculations are representative, it can be concluded that the

present-day detrital zircon U-Pb age provenance signature of

the modern Rio Grande River can be accounted for by sand

locally eroded from Early Cenozoic strata.

Have Longshore Currents Transported Sand from
Southern Mexico to the Rio Grande Delta?

Sediment dispersal within marine delta systems is influ-

enced by geological setting, sediment flux, and particle size

distribution, and a host of hydrodynamic processes acting along

the river/ocean interface (Masselink and Hughes, 2003; Wood-

roffe, 2002). Long-term coastal subsidence/emergence as a

result of sea level variation has a major impact upon deltaic

systems (Allen, 1965). Fluvially dominated deltas form when

sediment input overwhelms wave energy and are more

prevalent during periods of low sea level (Komar, 1973;

Seybold, Andrade, Jr., and Herrmann, 2007). Alternatively,

wave-dominated delta configurations involving barrier island

formation occur when river sediment flux is reduced and/or

wave energy becomes sufficiently high to winnow away fine-

grained sediment and redistribute river sand along the

shoreline (Nienhuis, Ashton, and Giosan, 2015; Seybold,

Andrade, Jr., and Herrmann, 2007).

Figure 8. Results of ternary mixing calculations performed with Cenozoic

strata displayed in Figure 7 to replicate the Rio Grande modern sand from

the delta region (sample 10 from this study): (A) Ternary plot. Contours

represent constant values of probability calculated from an extended form of

the K-S statistic (see text for further details). Filled contours represent

regions of ternary space where P � 0.05. All mixtures above this threshold

are statistically indistinguishable Rio Grande age distribution from the delta

region. Best-fit composition is shown; (B) Cumulative probability plot

illustrating model fit to measured Rio Grande age distribution.
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A Late Holocene reduction in sediment supply caused the Rio

Grande delta to become a wave-dominated system ringed by

barrier islands (Rodriguez, Fassell, and Anderson, 2001)

(Figure 2). Depending upon the effectiveness of long-shore

transport, it is conceivable that sand within the barrier islands

of the Rio Grande could contain extraregional sand derived

from southern Mexico. The efficacy of long distance sand

transport by littoral currents during sea level highstands

depends upon the width of the continental shelf, the steepness

of the littoral zone, and whether or not topographic barriers

exist (Ribó et al., 2020). In cases where rising sea level broadens

the shelf, the possibility of far-traveled sediment transport via

long-shore drift is enhanced since less sand is diverted offshore.

For example, Garzanti et al. (2017) have employed detrital

zircon age distributions and other provenance data to trace an

1800 km long littoral zone sand highway that extends from the

Orange River of coastal Namibia to Angola along Africa’s

Atlantic coastline. Less laterally extensive (800–1000 km scale)

longshore transport has also been documented along southern

Brazil’s Atlantic coast (Calliari and Toldo, 2016) and along the

Pacific shore of Australia (Boyd et al., 2008).

Recognition of extraregional sediment requires distinctive

age components. There are two distinctive provenance signa-

tures represented along the Tamaulipas-Veracruz Gulf Coast

(Figure 1) that are potentially useful for detecting extrare-

gional sand in the Rio Grande barrier islands. Beach sand

directly sourced from the Trans Mexican volcanic belt (Figure

1) contains significant proportions of diagnostic Quaternary

detrital zircon (Armstrong-Altrin et al., 2018; Ramos-Vázquez

and Armstrong-Altrin, 2019) (Figure 9). For example, nearly

50% of the detrital zircon age population examined from beach

sand collected along the southern Veracruz coast near the

mouth of the Rio Papaloapan (Figure 1) are ,10 Ma with most

grains yielding Quaternary U-Pb ages (Alvarado Beach)

(Armstrong-Altrin et al., 2018) (Figure 9). The inset in Figure

9 documents the Quaternary-rich character of zircon present

within six samples from the southern Vera Cruz coast

(Armstrong-Altrin et al., 2018; Ramos-Vázquez and Arm-

strong-Altrin, 2019) (locations shown in Figure 1).

The basement of south-eastern Mexico is dominated by

Triassic-Permian, early Paleozoic–late Neoproterozoic, and

Grenville age zircon (Centano-Garcia, 2017) (Figure 1). The

magenta (200–300 Ma), cyan (400–700 Ma), and yellow bands

(900–1150 Ma) in Figure 9 demonstrate coastal samples

collected along the southern Vera Cruz coast are enriched in

zircon in these age ranges. For example, the combined Rio

Girijalva and Rio Usumacinta collectively drain the Chiapas

Massif and Oaxacan complexes of southern Mexico (Figure 1).

The Atasta beach sample of Armstrong-Altrin et al. (2018) is

highly enriched in early Paleozoic–late Neoproterozoic and

Grenville zircon (Figure 9). Additional detrital zircon samples

from the Bosque and Paseo del Mar coastal areas also contain

these age components (Ramos-Vázquez and Armstrong-Altrin,

2019) (Figures 1 and 9).

To test for southern Mexican (i.e. Vera Cruz coast) prove-

nance in the barrier island sand of the Rio Grande delta, a

composite age distribution was constructed by pooling all

barrier island samples (#1–#8) from the present study (Figure

9). This is justified because all are indistinguishable at 95%

confidence by the K-S test. Figure 9 indicates that while

Pliocene zircon is present in the composite sample, the details

of the youngest portion of the composite age distribution

(samples #1–#8) does not conform to the age distribution of the

Trans Mexican volcanic belt. The inset to Figure 9 shows the

youngest (0–50 Ma) detrital zircon present in the Alvarado

beach sands and the composite sample (#1–#8) from the Rio

Grande delta. Only 13 of the 807 analyses from the eight beach

sand samples yielded ages in the 10–0 Ma range. Moreover, the

10 of the 13 young analyses clustered at 4.8 6 0.5 Ma. Zircon

sampled from the Trans Mexican volcanic belt is expected to

yield abundant Quaternary zircon. The 1.6% levels of 10–0 Ma

zircon present in the composite Rio Grande beach sand (#1–#8)

are comparable to the background levels of this age zircon

within the Rio Grande system (Blum et al., 2017; Fan, Brown,

and Li, 2019) (Figure 7).

Similarly, the provenance signature of the composite (#1–#8)

age distribution also contrasts markedly with that from the

basement of southeastern Mexico (Figure 9). Specifically, the

proportions of early Paleozoic–Latest Neoproterozoic (400–700

Ma) and Grenville (900–1150 Ma) are much lower than is the

case for the coastal areas of southern Mexico (Figure 9). Hence,

no compelling evidence exists from the Rio Grande delta

samples investigated in this study for northward longshore

Figure 9. Results of model simulation of coastal currents along the Mexican

(Tamaulipas-Veracruz) Gulf Coast reported by Zavala-Hidalgo, Morey, and

O’Brien (2003) based upon seven years of model data. Calculations simulate

the entire Gulf of Mexico and are based upon the Navy Coastal Ocean Model

(Martin, 2000), and are forced with climatological monthly surface fluxes of

heat and momentum derived from the Comprehensive Ocean Atmosphere

Data Set (DaSilva, Young, and Levitus, 1994); (A) Model predictions each

month for 268 N (Rio Grande delta); (B) 248 N (Tamauilpas coast); (C) 228 N

(Ciudad Madero); (D) 208 N (Veracruz coast); (E) Map of predicted surface

current velocities for the western Gulf of Mexico for June; (F) Map of

predicted surface current velocities for the western Gulf of Mexico for

December.
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transfer of sediment from as far south as the Vera Cruz coast of

southern Mexico.

Tapia-Fernandez, Armstrong-Altrin, and Selvaraj (2017);

Hernandez-Hinojosa et al. (2018), Armstrong-Altrin et al.

(2018), and Ramos-Vázquez and Armstrong-Altrin (2019) have

all concluded on the basis of detrital zircon age systematics and

other compositional attributes of coastal sediment that river

supplied sediment to the coastal areas was much more

important in defining the provenance and composition of

coastal sediments than offshore factors such as longshore

currents.

Further north, the nature of longshore sediment transport

along the Mexican (Tamaulipas-Veracruz) Gulf Coast is less

well understood. The Mexican coastal shelf is considerably

narrower than the Texas shelf and is thus more vulnerable to

sediment diversion to deeper water (Figure 1). At the latitude of

Brownsville, prevailing SE winds intersect the nearly N-S

trending south Texas coastline at an acute angle and cause

coastal longshore transport to be predominately directed to the

north (Shideler, 1978). Numerical simulations performed by

Zavala-Hidalgo, Morey, and O’Brien (2003) are presented in

Figure 10. The calculations simulate the entire Gulf of Mexico,

are based upon the Navy Coastal Ocean Model (Martin, 2000),

and are forced with climatological monthly surface fluxes of

heat and momentum derived from the Comprehensive Ocean

Atmosphere Data Set (DaSilva, Young, and Levitus, 1994). The

results indicate that the Tamaulipas-Veracruz shelf experi-

ences a swift seasonal reversal of the along-shelf current

(Figure 10). Littoral currents run down the coast from

September to March and up the coast from May to August.

Coastal observations confirm that seasonal variation in the

direction of longshore current occurs along the Veracruz shelf

(Figure 1). For example, net sediment transport in the Rio

Nautla area of Veracruz, Mexico is indicated to occur from

south to north on the basis of northward prograding sand spits

and river-mouth bars (Self, 1977) (Figure 1). During the winter

however, winds out of the NE cause longshore current to flow in

the opposite direction. The Rio Tecolutla and the Rio Nautla

both drain the Late Miocene–Holocene Trans Mexican Volcanic

belt and carry abundant volcanic detritus and distinctive

limestone lithoclasts. Self (1977) reports that lithoclasts

supplied by the Rio Tecolutla and Rio Nautla derived are

transported as far as 60 km south of the Rio Nautla during the

winter reversals.

A significant barrier to longshore transport occurs at Cabo

Rojo (21.58 N) on the Veracruz coast, 150 km north of the Rio

Nautla (Figure 1). Stapor (1971) has described the impact of the

barrier reef complex at Cabo Rojo. Three reefs (Arrecife

Blanquila, Arrecife Medio, and Isla De Lobos) occur along

1008 south bearing that extends 5 to 12 km off the coast. These

reefs have facilitated development of a lagoon (Laguna de

Tamiahua) in their lee that deflects the coastline up to 25 km

east of the regional trend. The overall geometry of the cape

barrier is that of an asymmetric tombolo with a 60 km northern

leg and a 35 km southern leg developed landward of the

Blanquilla-Lobos coral reef tract (Stapor, 1971). This pertur-

bation of the coastline serves to direct either north- or south-

flowing shelf sand into deeper water (Stapor, 1971).

Sediment transport off of the shelf in this region may be

further amplified by periodic collisions of anticyclonic loop

current rings against the 21.58 to 238 N segment of the Mexican

continental margin (e.g., Vidal, Vidal, and Perez-Molero, 1992).

These interactions are thought to occur with a high enough

frequency to serve as the most effective mechanism to transfer

continental shelf water (and presumably shelf sediment) into

the deeper gulf (Vidal, Vidal, and Perez-Molero, 1992). Further

north Stapor (1971) concluded that the morphology of barrier

islands along the southern (Tamaulipas) part of the Rio Grande

delta indicate net southward longshore transport. This implies

that south-directed flow in the seasonal variation in littoral

Figure 10. Cumulative probability plot of detrital zircon U-Pb age

distributions discussed in the text. Data from the Alvarado and Atasta

Beach areas of the Veracruz coast of Mexico is from Armstrong-Altrin et al.

(2018). The Alvarado beach sample represents sediment carried by the

Papaloapan River which drains the adjacent Trans Mexican volcanic belt

(see Figure 1). Note that 50% of the age distribution is defined by 10–0.25 Ma

volcanic zircon. The Atasta Beach sample represents sediment delivered

from the Rio Girijalva and Rio Usumacinta that collectively drain the

Chiapas Massif and Oaxacan complexes of southern Mexico. A pooled age

distribution constructed from samples #1–#8 (this study) is shown for

comparison. Note that the cumulative age distributions of the Atasta and Rio

Grande samples differ dramatically. The inset shows that Rio Grande delta

sands do not contain any resolvable volcanic zircon from the Trans Mexican

volcanic belt.
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currents shown in Figure 10 prevails over north-direct

transport.

In summary, available evidence indicates that factors

including the narrow Veracruz-Tamaulipas continental shelf,

geomorphic features (e.g., Cabo Rojo), oceanographic phenom-

ena (e.g., ring current collisions with the shelf), and seasonal

variation in the direction of wind-driven littoral currents

(Figure 10) all support Stapor’s (1971) conclusion that coast-

parallel sediment transport is presently highly compartmen-

talized along the Veracruz-Tamaulipas Gulf Coast. This

conclusion agrees with that of Armstrong-Altrin et al. (2018)

that sediment supplied by major rivers is far more important

than longshore currents in determining the provenance and

composition of Late Holocene coastal sediments along the

Veracruz-Tamaulipas Gulf Coast.

CONCLUSIONS
Detrital zircon U-Pb age distributions were measured from a

variety of modern sediments from the Rio Grande delta of

southern Texas, U.S.A. and northern Tamaulipas, Mexico in

order to detect and quantify the potential impacts of dam

construction and longshore transport.

Modern Rio Grande River sand yields a detrital zircon U-Pb

age distribution that is statistically indistinguishable from six

surface beach sands collected along the barrier islands of the

Rio Grande delta. The Playa Bagdad, Mexico sample appears

distinct from the Rio Grande River sample in that it is enriched

in Oligocene (notably 40–20 Ma) zircon. Similarly, two 5 meter

deep vibracore samples of beach sand are similarly enriched in

this component. These three samples may represent the most

pristine delta deposits in the suite.

A statistically meaningful contrast in detrital zircon prove-

nance signature exists between two independently reported

Rio Grande modern sand samples collected upstream from

Falcon Dam near Laredo, Texas and the sample collected in

this study near Brownsville, Texas in the delta region. The

former is highly enriched in Oligocene zircon and indistin-

guishable from one another at 95% confidence. The samples

upstream from Falcon Reservoir most strongly resemble the

Playa Bagdad and 5 meter vibracore samples from this study.

Ternary mixing calculations of age distribution representa-

tive of Eocene, Oligocene, and Miocene sandstones that crop

out below Falcon dam demonstrate that locally eroded material

can reproduce the provenance signature of Rio Grande modern

sand in the delta. While more rigorous mass balance calcula-

tions are required, it is tentatively concluded that the Rio

Grande delta sediment that was analyzed contains a large

proportion of locally eroded material.

The late Holocene highstand of sea level makes it possible for

the wave dominated delta to receive extraregional input via

longshore transport. Analysis of available data bearing upon

longshore currents along the Tamaulipas Gulf Coast of Mexico

indicated the possibility that extraregional sediment could be

transported northwards from as far south as the Cabo Rojo

area, 420 km to the south. However, analysis of Rio Grande

delta beach sands failed to detect meaningful concentrations of

distinctive Trans Mexican volcanic belt–derived zircon that

would confirm longshore transport on such a scale. This may

imply that seasonally variable sand movement along the

Mexican (Tamaulipas) Gulf coast is dominated by south-

directed littoral currents.
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Brakenridge, G.R.; Day, J.; Vörösmarty, C.; Saito, Y.; Giosan, L.,
and Nicholls, R.J., 2009. Sinking deltas due to human activities.
Nature Geosciences, 2, 681–686.

Tapia-Fernandez, H.J.; Armstrong-Altrin, J.S., and Selvaraj, K.,
2017, Geochemistry and U–Pb geochronology of detrital zircons
in the Brujas beach sands, Campeche, Southwestern Gulf of
Mexico, Mexico. Journal of South American Earth Sciences, 76,
346–361.

USACE, 1994. Shore Protection Manual. Vicksburg, Mississippi:
Coastal Engineering Research Center, 316p.

Vidal, V.M.V.; Vidal, F.V., and Perez-Molero, J.M., 1994. Collision of a
loop current anticyclonic ring against the continental shelf slope of
the western Gulf of Mexico. Journal of Geophysical Research,
97(C2), 2155–2172.

Weight, R.W.R.; Anderson, J.B., and Fernandez, R., 2011. Rapid mud
accumulation on the central Texas shelf linked to climate change
and sea-level rise. Journal of Sedimentary Research, 81, 743–764.

Woodroffe, C., 2002, Deltas and estuaries. In: Coasts: Form, Process
and Evolution. New York: Cambridge University Press, pp. 321–
377.

Xu, J.; Stockli, D., and Snedden, J., 2017. Enhanced provenance
interpretation using combined U–Pb and (U–Th)/He double dating
of detrital zircon grains from lower Miocene strata, proximal Gulf
of Mexico basin, North America. Earth and Planetary Science
Letters. 475, 44–57.

Zavala-Hidalgo, J.; Morey, S.L., and O’Brien, J.J., 2003. Seasonal
circulation on the western shelf of the Gulf of Mexico using a high-
resolution numerical model. Journal of Geophysical Research,
108(C12). doi:10.1029/2003JC001879

Journal of Coastal Research, Vol. 37, No. 1, 2021

40 Moore et al.

This content downloaded from 
������������68.201.179.176 on Tue, 16 Feb 2021 18:38:50 UTC������������� 

All use subject to https://about.jstor.org/terms


	Evaluating the Impacts of Dam Construction and Longshore Transport upon Modern Sedimentation within the Rio Grande Delta (Texas, U.S.A.)
	Recommended Citation

	Evaluating the Impacts of Dam Construction and Longshore Transport upon Modern Sedimentation within the Rio Grande Delta (Texas, U.S.A.)

