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Abstract 
 
In this paper mathematical modeling and computation of channel flow over small discrete 
structures are carried out under some reasonable conditions. A mathematical model for such a 
flow problem, which is based on a relevant system of partial differential equations and Fourier 
analysis, is studied using perturbation and nonlinear stability methods, and the resulting flow 
solutions over two types of discrete structures are computed under both stable and unstable 
conditions.  It was found, in particular, that for a subcritical domain with the Reynolds number R 
slightly less than its critical value Rc, which is defined as the value below which no disturbances 
are linearly unstable, the structure leads to a stable steady flow whose modal representations 
have horizontal scale(s) that are due to those of the structure. On the limiting boundary between 
the stable and unstable flow, the flow is oscillatory with length scales due to the structure and the 
critical flow. Larger height of the structure affects the flow more significantly by reducing the 
subcritical domain for the induced steady flow. 
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1.  Introduction 

This paper considers a relatively simple mathematical model of channel flows over two types of 
small discrete structure, analyzes the problem, provides the method of solution to the associated 
system of partial differential equations and presents the results. 
 
It was known for over several decades that surface corrugations and roughness elements can 
affect flow stabilities and transition to turbulence (Schlichting, 1979; Morkovin, 1983).  Other 
experimental studies (Muller and Bippes, 1988; Rodeztsky et al., 1994) indicated that stationary 
shear flow modes can be caused or manipulated by the roughness and waviness of the surface 
and that shear flow modes can be enhanced by selected boundary perturbations. There have been 
a number of experiments and numerical simulation studies in the past three decades or so 
(Krettenauer and Schumann, 1992; Hudson et al., 1996; Angelis et al., 1997; Tomkin, 2000) that 
have suggested significant affects of roughness element or surface waviness on the near wall of 
turbulent shear flow structures. Tomkins (2000) investigated experimentally turbulent flow in the 
presence of hemispheres on the wall. The increase in wall friction over the rough surface was 
found to cause a decrease in the turbulence fluctuations.  The roughness elements with larger 
height affected the flow more significantly than those with smaller height.  Vortices generated by 
the roughness elements were found to take on the scale of the roughness elements. Also 
streamwise length-scales were found to be reduced due to the presence of roughness elements. 
 
Some related research studies, which were carried out by the second author in the past, are 
briefly described as follows. Riahi (1997) investigated theoretically the stability of rotating disk 
boundary layer flow over a simple rough surface using weakly nonlinear method (Drazin and 
Reid, 1981).  It was found, in particular, that certain new types of solutions can become preferred 
only for particular forms of the amplitude and length scale of the surface roughness.  Riahi 
(2001) investigated the qualitative effect of a corrugated boundary on the laminar shear flow. He 
found, in particular, that a resonance condition can lead to preference of a flow solution, 
provided the wave number vector of the solution is the same as the wave number vector of one of 
the mode generating the shape of the corrugated boundary. Application of Riahi’s theory (2001) 
to wind flow was given in Riahi (2007).  
 
In the present study, we consider a different type of resonance condition where the wavelength of 
a mode, which is generated either by a particular discrete structure in the form of a hump or 
entirely due to another discrete structure in the form of a segment of a discrete wave, is equal to 
half of the wavelength of the critical mode for the channel flow. We carry out both qualitative 
and quantitative studies for the resulting flow systems and find some interesting results. In 
particular, we find that such resonance condition leads to the existence of a steady flow in same 
subcritical domain. This steady flow has the same horizontal scale as either of the wave structure 
or as one of the Fourier mode of the hump structure. 
  
2.  Governing System  

We consider the governing partial differential equation for momentum and mass conservation 
(Batchelor, 1970) for a horizontal channel flow of depth d between two flat boundaries. We 
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assume that over the lower boundary of the channel, there is a small stationary discrete structure. 
We regard the layer of fluid as incompressible with constant density . 
 
We consider a Cartesian system of coordinate x*, y*, z*, with z*=0 being the location of the 
bottom boundary of the channel. We non-dimensionalize the governing partial differential 
equations by using d, U, d/U and U2 as scales for length, velocity, time and modified pressure, 
respectively.  Here, U is the appropriate velocity scale which is chosen here to be the maximum 
mean values of flow speed across the fluid layer.  The non-dimensional form of the governing 
equations [Batchelor (1970)] can then be written in the form  

 

( 


t

u.) u= -P+ (
R

1
)2u,                                                                                              (1a) 

 
and 

 
.u=0.                                                                                                                                  (1b) 

 
Here, u= (u, v, w) is the velocity vector, P is the modified pressure, t is the non-dimensional time 
variable and R=Ud/ is the Reynolds number, where  is the kinematic viscosity.  In general the 
non-dimensional dependent variables u and P are functions of the non-dimensional independent 
variables x, y, z and t. 
 
We shall measure the strength of the flow in terms of its maximum speed U only, so that the 
layer thickness d is assumed to be fixed. We designate the original basic state velocity vector and 
the modified pressure gradient for the channel flow, which exist initially in the absence of any 
perturbation, by u b and P b , respectively. The basic state velocity vector is that due to the 

unidirectional channel flow driven by a constant pressure gradient in the horizontal direction 
(Batchelor, 1970). Hence, both the basic state velocity vector and the basic state pressure 
gradient are in the horizontal direction. The basic state solutions are derived from (1a-b) by 
assuming that the basic state velocity vector and pressure are, respectively, only functions of z 
and x.  Their expressions are known to be [Drazin and Reid (1981)] 
 

u b = )(4 2zz  x, ob Px
R

P  )
8

( ,                                                                                      (2a-b) 

 
where x is a unit vector in the direction of horizontal x-axis, x is the horizontal variable and P o  is 

a constant. Figure 1 presents the horizontal basic state velocity profile. 
   
We assume that the height  in the z-direction of the surface structure is small (<<1).  We now 
write u=ub+u and P=Pb+P, where u and P are, respectively, the velocity vector and the 
modified pressure for the perturbations superimposed on the basic flow.  The governing partial 
differential equations for the perturbation variables can then be obtained by using the above 
expressions for u and P in the equations (1a-b) and subtracting from the resulting equations the 
corresponding equations for the basic flow.  The resulting equations for the perturbation 
variables are 
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


t

( ub. ) u+u.ub+P-(
R

1
)2u= -u.u,                                                                  (3a)  

     
and 
        

.u=0.                                                                                  (3b) 
 

The boundary conditions for (3a-b) are 
             

u= )](
!

)(
[

1 m

mm

m zm

h




 


(ub+ u) at z =0,                                                                          (3c) 

 
u=0 at z =1,                                                                                                       (3d) 

 
where h(r) is the shape function for the discrete structure, which is, in general, a function of the 
horizontal variable vector r =(x, y), and h is the structure height.  Here  represents the order of 
magnitude of the height of the structure, which is assumed to be small (<<1). We have assumed 
that the boundary conditions for the total velocity vector u are prescribed constants equal to the 
corresponding basic state values.  Conditions (3c-d) are obtained by the consideration that the 
imposed structure on the lower boundary introduce simply surface perturbations which 
contribute to the disturbance system only [Riahi (2001)], and such contribution is of main 
interest in the present study. The terms in the right-hand side of (3c) arise simply by the 
contributions of the higher-order terms in a Taylor-series expansion about z = 0 of the total 
velocity vector, which are due to the surface structure. 
 
 
3.  Analysis and Results 

3.1. Analysis and General Results 
 
We assume that the shape function for the surface structure can be represented by 
  

h(r)= n=-M
M AnEn  n=-M

M An exp(ijn.r),                                              (4)  
 
where i = -1, M is a positive integer, which may be sufficiently large for particular structures, 
and the horizontal wave number vectors jn=(n ,  n) of the structure satisfy the properties 
 

j-n= -jn.                                                                                                                                    (5) 
 
The amplitude coefficients An satisfy the condition 
 

An
* =A-n,                                                                                    (6) 
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where “asterisk” indicates complex conjugate.  Conditions (5)-(6) ensure that expression (4) for 
h is real. The expression (4) for h, which is referred to here as the modal representation for the 
shape function of the discrete structure, is assumed in this paper.   
 
We consider the so-called critical regime where the domain of the flow corresponds to the values 
of the Reynolds number (sufficiently close to its critical value) below which no disturbances are 
linearly unstable (RRc). We also take note of the qualitative cases of modulated boundary 
temperature in thermal convection [Riahi (1995)] and surface corrugation in shear flows [Riahi 
(2001)], where certain domain in the order of magnitude of the disturbances relative to the size 
of the magnitude of the modulated boundary temperature or corrugated surface was detected 
under which new type of flow resonance can be explored. We then find that the corresponding 
regime for the present qualitative and quantitative study is  
 

O() <  < O(1/2 ),                                                            (7)  
 
where  is the magnitude of the amplitude of the perturbation motion. As will be seen later, 
under (7) we detected, in particular, a resonance condition where a wave number vector of the 
perturbation can balance superposition of two wave number vectors of the discrete boundary 
structure. 
 
Applying the weakly nonlinear theory [Drazin and Reid (1981)], we define a slowly varying time 
 
 

 =  t,                                                                                (8) 
 
and pose double expansions in powers of  and  for u, P and R  
  

(u, P, R)= m,n m n(umn, Pmn, Rmn),    u00=P00=0.                                        (9a-b) 
 
We use (2) and (8)-(9) in (3). In the order 10, we find the linear system for u10 and P10. This 
system admits solution of the form 
 

(u10, P10)= n=-N
N [u10n(z), P10n(z)]BnFn, Fnexp[i(kn.r-nt)],                                     (10a-b) 

  
where N is a positive integer, and the amplitude function Bn() satisfies condition of the form (6) 
that was satisfied by An. The real frequency n and the horizontal wave number vectors kn= (n, 
n) of the perturbation satisfy the condition of the form (5) that was satisfied by jn. The 
coefficient functions u10n and P10n satisfy the condition of the form (6) and are obeyed by a 
system with zero boundary conditions, which can be derived by using (10) in the linear system in 
the order . This system of ordinary differential equations and similar types of systems, which 
are involved in the present study, will not be given here but will be reported elsewhere. 
  
The weakly nonlinear method requires us to consider the adjoint linear system whose solution 
can be written in the form 
 

(u10
^, P10

^)= n=
N

-N [u10n
^(z), P10n

^(z)]BnFn
^, Fn

^exp[i(kn.r+nt)],                                (11a-b) 
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where the above z-dependent coefficients satisfy the condition of the form (6) and are obeyed by 
a linear system with zero boundary conditions, which will not be given here but will be reported 
elsewhere. In the order 01, the governing equations and the upper boundary conditions are of 
the same form as the corresponding ones in the order , provided (u10, P10) is replaced by (u01, 
P01). The lower boundary conditions are, however, of the order  version of (3c), provided u is 
replaced by u01. This system admits solution of the form 
 

(u01, P01)=n=
M

-M [u01n(z), P01n(z)]AnEn,                                                      (12a) 
 
where the equations and the upper boundary conditions for the coefficient functions (u01n, P01n) 
are of the same form as the corresponding ones for (u10n, P10n) described before, provided kn is 
replaced by jn and n by 0. However, the lower boundary condition is now 
 

u01n=dub/dz   at z =0.                                                                                                        (12b) 
  
Forming the solvability condition, which states that non-homogeneities must be orthogonal to the 
solution of the adjoint linear system [Drazin and Reid (1981)] for the order 2 system, we find 
R10=0. Using (7), we find that R01 is the leading coefficient beyond R00 in the expansion (9a) for 
R, and it is found that it can be non-zero and appears in the solvability condition for the -
system. This condition can then be reduced to the following system of ordinary differential 
equations for Bn  
  

(



-R01 an)Bn=m, p bnmp BpAm<Fn
^*FpEm>, (n=-N, …, -1, 1, …, N),                               (13a)  

 
where the angular bracket <  > denotes an average over the fluid layer defined by 
 

< f >lim L [1/(2L)]-LL dx01 f dz.                                                                                   (13b) 
                                                                

The expressions for the constant coefficients an and bnmp in (13a), which are in terms of integrals 
involving solutions of the perturbation systems at the orders 10 and 0 1 and solution of the 
adjoint system, are generally lengthy and will not be given here, but they will be reported 
elsewhere. 
 
To distinguish the physically realizable solutions(s) among all the solutions of (13a), the stability 
of Bn (n=-N, …, -1, 1, …, N) with respect to the amplitude functions Cn() for new disturbances 
superimposed on Bn and subjected to (13a) are investigated. To find the equations for the 
amplitude functions Cn(), we assume that the functions (Bn +Cn) satisfy (13a). Subtracting the 
equations (13a) from the corresponding equations for these functions, we find the system of the 
ordinary differential equations for the time-dependent disturbances in the form 
  

(



-R01 an)Cn= m, p bnmpAmCp <Fn
^*

 Em Fp>,   (n=-N, …, -1, 1, …, N),                  (14)  
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where Cn also satisfies the condition of the form (6). 
 
It can be seen from (13a) and (14) that the height of the surface structure affects the channel flow 
solution and the disturbances through the terms containing R01, while the shape of the surface 
structure affects the channel flow solution and the disturbances through Fourier coefficients 
AmEm (m=-N, …, -1, 1, …, N), which enter as the source term in the right-hand-side in (13a) and 
(14), respectively.  It is seen from (13a) that the height of the structure is effective only if R010, 
while the shape of the structure can be effective only if the source term in the right-hand-side in 
(13a) is non-zero. The integral expression <Fn

^*EmFp> in (13a) or in <14> is non-zero only if 
 

kn=jm+kp  and  n=-p,                                                       (15a) 
 
or, in particular, if 
 

 j-m=2 kp and n=-p,                                                        (15b) 
 

for at least some m and p. For a significant surface structure, it is possible to choose Am 
appropriately to achieve either oscillatory (in time) solutions Bn for (13a) where a time 
dependence of the form exp() is assumed for Bn or steady solutions Bn for (13a). For such 
types of solutions for (13a), the NN determinant of the coefficients for Bn (n=1, …, N) in (13a) 
must vanish. It is also found from (13a) and (14) that if Bn decreases indefinitely with 
increasing, then the order- solution decays to zero and the stable solution is that due to the 
induced flow system at order , while the induced flow is unstable if Bn increases indefinitely 
with .  
 
3.2. Specific Results  
 
In the present paper, we studied two types of two-dimensional surface structures and two-
dimensional flow solution in (x, z)-plane for (13a) for the simplest case where N = 1. Thus, 
J1=2k1, 1=21, 1=1=0, and (15a) reduces to (15b). It should also be noted that the two-
dimensional flows and structures that are studied in this paper can be considered as the 
corresponding ones in the realistic three-dimensional domain, provided no variation for such 
flows and structure can exist in the third dimension. We consider a particular hump type 
structure (Figure 2) whose shape function can be in the following form: 
 

h(x)=
)5cosh(

1

x
, -2L x 2L, L= 

14


.                                                   (16a-c) 

 
The Fourier coefficient A12 given in (4) for h(x) is then obtained from [Greenberg (1998)]  
 

A12 = [1/(4L)]-2L
2L h(x)cos[2x/(2L)]dx                                    (17a)  

 
giving the value of  
 

A12 =0.014.                                                          (17b) 
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This particular coefficient for n = 12 was needed since it enters in the right-hand-side of (14) and 
only in the term that is non-zero because of our specific case here and the results given in (15). 
Thus, in the modal representation (4) for the shape function of such hump type structure, only 
one Fourier mode corresponding to n = 12 in (4) can have non-zero contribution in the present 
study. We also consider another type of surface structure in the form of a wave segment (Figure 
3) whose horizontal wavelength is the same as the one due to this particular Fourier mode of the 
hump structure with coefficient A12 given by (17b). We have chosen this second surface structure 
because of particular resonance condition (15b) and the domain (16b-c) which will be seen in 
this section to lead to preference of a steady flow due to such structure.  
  
From the careful and notable work by Hocking and Stewartson (1972), we have 
 

Rc=11548, 1=1.0202, 1=0, 1=0.2641.                                       (18a-d) 
 

We carried out numerical computation using an efficient fourth order Runge-Kutta algorithm 
[Ascher et al. (1995); Cheney and Kincaid (2008)] to generate data for the eigenfunctions u101 (z) 
and P101(z) with the given values in (18) for the corresponding eigenvalue problem, which were 
already obtained by Hocking and Stewartson (1972). Because of known eigenvalue and the 
corresponding data given in (18) that we used, our numerical problem was relatively simpler 
than the full eigenvalue problem with unknown eigenvalues computed by Davey (1973) who 
used orthonormalization to solve Orr-Sommerfeld problems [Drazin and Reid (1981)] even 
though the method of approach was turned out to be a simple parallel shooting type procedure 
[Ascher et al. (1995)].  We implemented the Runge-Kutta algorithm by first converting the 
equations for u101 and P101 into a system of four ordinary order differential equations and then 
following a numerical shooting approach [Ascher et al. (1995)] and using the eigenvalue data 
(18), we carried out computation and generated data for the corresponding eigenfunctions. 
Similarly, we generated numerical data for the solutions u101

^(z), P101
^(z), u011(z) and P011(z) as 

the z-dependent coefficients in (11)-(12) for n = 1. We used these data and Simpson’s rule 
[Atkinson (1989)] to compute the values of the coefficients a1 and b1m,-1 in (14) for n = 1 and p = 
-1 since the expressions for these coefficients were given in terms of integrals involving the 
eigenfunctions and the solutions referred to above. We found the following values for these 
coefficients: 
 

a1=0.0313-0.1786i, b1m,-1=-0.0019-0.0122i.                                       (19a-b) 
 

Using (17) and (19) in (13) for n = 1 and p = -1, we find the equation for B1 in the form 
 

(



-a1R01)B1=b1m,-1A12 B1
*,                                              (20) 

and together with a corresponding equation for B1
* lead to a solution for B1 in the form 

B1=B10 exp(s),                                                                    (21a) 

where B10 is a constant and the growth rate s is given by 
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s2 -2 R01 a1r s+(|a1|

2R01
2 –A12

2|b1m,-1|
2) = 0,                               (21b) 

 
where a1r is the real part of a1.  Using (17b) and (19) in (21b), we find that 

 
sr <0 if R<Rc-0.001,                                                                   (22a) 
 
sr=0 if R=Rc-0.001,                                                        (22b)  

 
and 

 
sr>0 if R>Rc -0.001,                                                        (22c) 

 
where sr is the real part of s.  
 
Following the results presented in the sub-section 3.1 and (22a-b) it follows that the perturbation 
grows in time and unstable if (22c) holds, the total induced oscillatory flow, as the sum of the 
solutions at the orders  and , is marginally stable if (22b) holds, while the induced steady flow 
at order  is stable in the subcritical domain given in (22a). The subcritical domain (22a) and its 
upper boundary (22b) are predicted based on the particular Fourier mode of the solution at order 
 whose wave number vector satisfies the resonance condition (15b). As we have shown, this 
Fourier mode, which is referred to here as an effective mode, is due to either only one of the 
mode of the hump structure or entirely due to the wave-segment structure. Figures 4a and 4b 
present, respectively, the horizontal component u01 of the velocity vector for the induced steady 
flow due to the wave-segment structure, but they also due to this effective Fourier mode versus 
the horizontal variable and for several values of the vertical level z.  
 
We have rescaled x with respect to the wavelength, so that the rescaled X is given by x/(1/). 
Thus, as can be seen from the Figure 4a, the horizontal length scale exhibited by such flow is the 
same as that due to the wave-segment structure and is half of (2/1), which was due to the 
critical flow at R = Rc and in the absence of the structure. The result shown from the figure 4b 
indicates that variation of u01 is essentially linear with respect to z with rate of variation 
depending on the value of X. Figures 5a and 5b are the same as the Figures 4a-b, respectively, 
but for the vertical component w01 of the velocity vector for the same flow and with results 
analog to those shown in the Figure 5a. Since the actual values of w01 were quite small, the 
associated figures are shown for rescaled values of w01 equal 104 of those actual values.  
 
It can be seen from these figures that the X-dependence results for w01 are analog those for u01 
which were provided for the figure 4a, but the z-variation results are not linear in general. 
Figures 6a and 6b present, respectively, three-dimensional surfaces for u01 and w0 as functions of 
X and z. Both X and z dependence of these quantities that appear clearly in single figures, are the 
accumulated results we explained before from Figures 4-5.  
 
In regard to roles played by the hump type structure in the flow solution, it should be noted that 
the present study is restricted to the case N = 1, where in the right-hand-side of equation (10a) 
only one term plus its complex conjugate term are retained. Under such case, we found that the 
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flow solution subjected the whole shape function of the wave-segment structure is the same as 
the one due to only one mode, which we referred to earlier as the effective mode, of the hump 
structure.  
 
Other modes in the expression (4) for the hump structure have no contribution to the flow 
solution. This is due to the method of solution for the present study where the modal 
representation for both structure and flow solution are considered. Thus, a flow solution due to 
the entire form of the shape function for the hump structure given by (16a), which in the modal 
representation can involve infinite number of modes [M =  in (4)] is not possible based on the 
present approach and is beyond the scope of the present study.  
 
4.  Concluding Remarks 
 
The results of the present qualitative and quantitative investigation of the effect of discrete 
surface structures on the channel flow, which was based on particular mathematical model, 
indicate that the surface structure can have significant influence on the amplitude, scales, pattern 
and secondary mode excitation of the channel flow. Under certain resonance condition, where 
the wavelength of either an entire wave-segment structure or a particular Fourier mode of a 
hump type structure equal to half that of the critical mode of the channel flow in the absence of 
the structure, we found that an induced steady flow can be developed for R slightly less than its 
critical value. 
 
The main results of the present study are that the channel flow can be manipulated by a 
structured surface, shear flow modes can be enhanced by a structure surface, larger height of the 
structure can affect the flow more significantly, the generated flow takes on the scale of the 
structured surface mode and length scale is reduced due to the structured surface. These results 
are all in good agreement with the available experimental results [Muller and Bippes (1988); 
Rodeztsky (1994); Tomkin (2000)]. 
    
The results presented in this paper indicate significance of the presence of the surface structure 
on the development of stable flow and the roles played by a given discrete structure in 
developing a stable flow regime. It is hoped that such results can be stimulated for future 
research studies for constructing structures that can predict outcome of certain induced shear 
flows over such structures. 
      
Stationary surface structures, such as those considered here, can likely to affect the spatial 
features of the channel flow.  It should be noted that even though the induced flow solutions, can, 
in general, be due to both steady and time-dependent modes, the stationary surface structures can 
be effective only on the steady modes of the channel flow. 
     
The present study was restricted to stationary surface structures, discrete stationary modes and 
certain resonant mode excitation.  Further extensions of the present study, might in the future 
studies, include both qualitative and quantitative studies for cases of specific moving discrete or 
non-discrete surface structures and non-discrete [Riahi (1996)] stationary or non-stationary 
modal cases. 
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 Figure 1. Base flow velocity component in the horizontal direction versus z 

  
Figure 2. The shape of a hump type surface structure in the (x, z)-plane 
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Figure 3.The shape of a wave-segment type surface structure in the (x, z)-plane  
 
 

 
 
Figure 4a.  Horizontal component of the induced steady flow versus scaled horizontal variable X 

for several values of z. 
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Figure 4b. The same as in the figure 4a but versus z for several values of X 
 
 

 
Figure 5a. Vertical component of the induced steady flow versus X for several values of z 
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Figure 5b. The same as in the figure 5a but versus z for several values of X 
 
 

 
 
Figure 6a.Three-dimensional view of the horizontal component of the induced steady flow 

versus X and z 
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Figure 6b. The same as in the figure 6a but for the vertical component of the induced steady 

flow 
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