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Abstract: Chemotherapy is one of the major therapeutic options for cancer treatment. Chemotherapy is
often associated with a low therapeutic window due to its poor specificity towards tumor cells/tissues.
Antibody-drug conjugate (ADC) technology may provide a potentially new therapeutic solution for
cancer treatment. ADC technology uses an antibody-mediated delivery of cytotoxic drugs to the
tumors in a targeted manner, while sparing normal cells. Such a targeted approach can improve the
tumor-to-normal tissue selectivity and specificity in chemotherapy. Considering its importance in
cancer treatment, we aim to review recent efforts for the design and development of ADCs. ADCs are
mainly composed of an antibody, a cytotoxic payload, and a linker, which can offer selectivity against
tumors, anti-cancer activity, and stability in systemic circulation. Therefore, we have reviewed
recent updates and principal considerations behind ADC designs, which are not only based on the
identification of target antigen, cytotoxic drug, and linker, but also on the drug-linker chemistry
and conjugation site at the antibody. Our review focuses on site-specific conjugation methods for
producing homogenous ADCs with constant drug-antibody ratio (DAR) in order to tackle several
drawbacks that exists in conventional conjugation methods.

Keywords: antibody; drug conjugation; chemical linker; drug delivery; and cancer therapy

1. Introduction

Cancer, responsible for about 8.2 million deaths per year globally, is the second most common
deadly disease which severely affects the human health worldwide [1]. Current treatment options
for cancer include surgery, chemotherapy, radiation, and immunotherapy. Modern approaches to
combat cancer include stem cell therapy, hyperthermia, photodynamic therapy, laser treatment,
etc. Among these therapeutic interventions, chemotherapy, either alone or in combination with
surgery or radiation therapy, is the most widely used therapeutic option. Neoadjuvant chemotherapy
is used to shrink tumors before surgery or radiation. Adjuvant chemotherapy is employed
after surgery or radiation to kill remaining cancer cells. Conventional chemotherapy is often
associated with a low therapeutic window due to poor pharmacokinetic properties of the drugs
used. Additionally, chemotherapeutic agents are not specific to tumor cells and they can affect
normal cells with high mitotic rates. This can lead to life-threatening side effects in cancer patients.
The severity of such uninvited side effects can be reduced by conjugating different types of highly
potent un-targeted drugs such as tubulin polymerization inhibitors, DNA damaging agents conjugated
to a monoclonal antibody (mAb). Another proven approach to minimize chemotherapy side effects
is nanotechnology. This approach gives the ability to load drug molecules in polymer/metal
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nanoparticles, liposomes, micelles, self-assemblies, and nanogels. Nanotechnolgy enhances passive
delivery of chemotherapeutics to malignant cells (due to leaky vasculature) [2]. However, the existence
of abundant stromal/fibrosis (desmoplasia) in tumors, leads to inefficient drug delivery and emergence
of drug resistance [3]. All these unmet needs imply the importance to consider alternative approaches
for successful therapeutic intervention in cancer.

A site-specific targeted delivery of cytotoxic drugs is proving to be a better option for efficient
drug delivery. This can be achieved by conjugating cytotoxic drugs to a suitable and validated
mAb. ADC strategy not only enhances the therapeutic window of potent cytotoxic drugs, but also
minimizes chemo-associated side effects. ADCs attain the idea of a “magic bullet” conceptualized
by Paul Ehrlich [4]. The concept of ADC in drug development was well recognized following the
Food and Drug Administration (FDA) approval for Adcetris® (brentuximab vedotin) in 2011 and
Kadcyla® (trastuzumab emtansine) in 2013. These successes prompted enormous interest among
antibody guided therapeutic researchers from both academia and industry. This is evident from a
sharp increase in related publication in PubMed (Figure 1a) and registered clinical trials in different
phases of various types of ADCs (Figure 1b).

Figure 1. (a) Yearly peer-reviewed articles on ADCs based on PubMed search; (b) Registered clinical
trials of ADCs based on Clinicaltrials.gov database; (c) Key components of an ADC.

ADCs are typically comprised of a fully humanized mAb targeting an antigen
specifically/preferentially expressed on tumor cells, a cytotoxic payload, and a suitable linker
(Figure 1c). This composition mainstay preserves cytotoxicity of drugs, targeting characteristics,
and stability of ADCs in systemic circulation. The right combination of selection is key in developing
a succeessful ADC. To acheive specific delivery of a cytotoxic payload, the target antigen must
be highly expressed on the surface of the tumor cells rather than the normal cells. Conjugating a
mAb to highly potent cytotoxic payloads facilitates site-specific delivery of the payload to the
target cells, thus minimizing the chances of off target cytotoxicity. Upon binding to the specific
antigen, the antibody gets absorbed through rapid internalization followed by lysosomal degradation,
and subsequently releasing the cytotoxic drug inside the cell (Figure 2a). This way, ADCs can be used
to deliver cytotoxic drugs to cancer cells [5].

Clinicaltrials.gov
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Figure 2. (a) Schematic representation of ADC uptake in cells expressing target antigen followed by
release of the payload; (b) Key considerations while choosing target and antibody isotype for ADC
developments; and (c) subclasses of IgG.

Over the past 30 years of ADC research, several new linkers, and conjugation strategies have
been discovered. However, very few of them have reached to the clinic. This shows the degree of
difficulty in optimizing key parameters of ADC such as choosing a potent cytotoxic payload, a suitable
target, a stable linker, the conjugation site to the mAb, and the conjugation technology. Therefore, in
this review, we attempt to discuss various advancements and challenges in ADC technologies with a
special focus on linkers and conjugation methods.

2. Composition of ADCs

2.1. Target and Antibody

The conjugation of potent cytotoxic drug molecules to mAbs demonstrates a promising approach
for the development of targeted cancer therapy. The selection of mAbs for specific targeting and
harnessing the therapeutic drug molecule(s) with mAbs represents ADCs precision acting only on
cancer cells, increasing the therapeutic index while minimizing the off-target effects (Figure 2b).
Therefore, determining which antigen to target is the first major step in ADC development. The target
antigen should be overexpressed on tumor cells surface homogenously with relatively low to
no expression on healthy cells to ensure site-specific targeting delivery of cytotoxic payloads [6].
Immunohistochemistry, flow cytometry, tissue microarrays, reverse transcription polymerase chain
reaction (RT-PCR), messenger RNA (mRNA) profiling are commonly used to anlyze tumor expression
of the target antigen in patient tissue samples [7]. Upon confirming antigen overexpression,
mAbs against this particular antigen are generated through Hybridoma Technology (a method
for producing monoclonal antibodies). The hybridoma cells are immortalized by fusing antibody
producing B cells from mice and mouse myeloma cells, then they are further cultured to generate
monoclonal antibodies of interest [8]. Selection of mAbs for generation of ADCs is based on their
tumor penetrating ability and binding affinity (Kd < 10 nM) [5]. MAbs with strong binding on
antigens were found to be confined in perivascular spaces, whereas as low binding affinity mAbs
can internalize well inside the tumor [9]. Thus, a balance between internaliztion and disassociation
rates of the antigen-antibody (Ab-Ag) complexes governs effective delivery of the payload to the
tumor space. Sometimes shedding of a target antigen from tumor tissues or the presence of a
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circulating antigen in systemic circulation, in a considerable amount, can alter the potency and
pharmacokinetics of the ADCs. In these circumstances a significant amount of the payload on ADCs
will be lost in systemic circulation and cleared by the liver [10,11]. Studies on drug conjugates with
shedding antigens, like tumor-associated carbohydrate antigen CanAg (a glycoform of mucin 1) and
carcinoma antigen 125 (CA-125), showed no decrease in therapeutic efficacy [11,12]. The mAbs used
for drug cross-linking are of the IgG isotype (Figure 2c) specifically IgG1, because of their inherent
ability to trigger immune-mediated effector functions. This includes antibody-dependent cellular
cytoxicity (ADCC) and complement-dependent cytotoxicity (CDC) by binding to Fcγ receptors and
complement C1q protein complex, respectively [13]. Independent functions of mAbs can be an added
advantage over the cell killing potency of the ADC warhead but they can contribute to toxicity
sometimes [14]. For instance, anti-HER2 trastuzumab, in trastuzumab-emtansine (DM1) contributes
to the antitumor efficacy of the ADC by mediating antibody-dependent cell-mediated cytotoxicity
(ADCC) [15]. IgG2 and IgG4 isotypes can be used in ADCs but are less efficient in modulating effector
functions and delivery in comparison to IgG1 [7,13]. IgG3 isotypes have a lower half-life, exteneded
hinge region compraed to other isotypes and they are prone to polymorphisms and immunogenic
reactions. Immunogenicity caused by previouly used murine and chimeric mAbs is countered by
converting them to humanized mAbs. In humanized mAbs, the Fc region is from the human source
and complementarity determining region are from non-human (rat/mouse) sources [16].

2.2. Linker

One of main challenges in developing ADCs is to incorporate a linker that will maintain the
stability of the ADC in systemic circulation for a prolonged period and release the payload after
internalization at the target site. The site of conjugation and choice of linker play a critical role in
the stability, the pharmacokinetic properties of ADCs. Attachment sites in antibody mAb can also
be engineered via several ways for incorporation of a linker and subsequently the drug. Based on
release mechanism, linkers are generally divided as cleavable (Figure 3a) and non-cleavable linkers
(Figure 3b).

Figure 3. Chemical structures of linkers used in ADCs development. (a) Key cleavable linkers:
(i) Lysosomal protease sensitive Val-Cit dipeptide linker; (ii) Glutathione sensitive SPDB linker;
(iii) Acid Sensitive AcBut linker; and (iv) β-Glucuronidase sensitive linker; and (b) non-cleavable
linkers: (i) SMCC linker; and (ii) PEG4Mal linkers.
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2.2.1. Cleavable Linkers

• Acid-sensitive linkers: Acid-sensitive hydrazone groups in acid-labile linkers remains stable in
systemic circulation (pH 7.5) and gets hydrolyzed in lysosomal (pH 4.8) and endosomal (pH 5–6)
acidic tumor micro-environment upon internalization in the targeted cells [17]. Withdrawal of
gemtuzumab ozogamicin (Mylotarg®) in 2010, an anti-CD33 ADC for treatment of acute myeloid
lymphoma, raises concern over the stability of this linker [18]. The heterogeneous nature of the
drug conjugate contributed to premature release of payload, which in turn may have contributed
to its remarkable toxicity compared to conventional chemotherapy. Currently, inotuzumab
ozogamicin and milatuzumab doxorubicin, that are developed with a hydrazone linker.

• Glutathione-sensitive disulfide linkers: Another common example of cleavable linkers is glutathione-sensitive
disulfide linkers. Glutathione is a low molecular weight thiol which is present in the cytoplasm
(0.5–10 mmol/L) and extracellular environment (2–20 µmol/L in plasma) [19]. In tumor cells
elevated levels of thiols are found during stress conditions such as hypoxia [20]. The difference in
glutathione concentration in cytoplasm and extracellular environment can be implemented as
a selective delivery of the drug payload to target tumor via breakdown of disulfide linkers [21].
Besides glutathione, intercellular protein disulfide isomerase (PDI) is also capable to reduce
disulfide bonds. Two cysteine residues in the active site of this enzyme governs the thiol-disulfide
exchange reactions with or within substrates [22]. Maytansinoid drug conjugates have been
widely employed for disulfide bonds with an average DAR of 3–4 [23].

• Lysosomal protease-sensitive peptide linkers: Tumor cells have higher expression of lysosomal
proteases like cathepsin B than normal cells. Cathepsin B-sensitive peptide linker conjugated
ADCs selectively binds to and get internalized into tumor cells via receptor mediated
endocytosis [24]. Proteases are inactivated in serum in presence of a high pH and different serum
protease inhibitors [24]. This makes the peptide linker stable in systemic circulation and only to
be cleaved upon internalization in tumors. In case of the FDA approved Adecetris®, cathepsin B-
sensitive valine-citruline linker is found to be superior to hydrazone linker. The valine-citruline
linker connects the bridge between p-aminobenzylcarbamate-monomethyl auristatin E (MMAE)
and anti-CD30-mAb [5].

• β-glucuronide linker: β-Glucuronidase-sensitive linkers have been successfully used in a handful
of glucuronide prodrugs [25]. Lysosomes and tumor necrotic areas are rich in β-glucuronidase
which is active at lysosomal pH and inactive at physiological pH [26]. This selective site of
action allows for a selective release of cytotoxic payloads through cleavage of the glycosidic
bond of β-glucuronidase-sensitive β-glucuronide linkers. Further, the hydrophilic nature of
this linker provides aqueous solubility for hydrophobic payloads and decreases aggregation
of ADCs [27]. A highly hydrophobic CBI payload was conjugated to h1F6 and cAC10 mAbs
utilizing β-glucuronide linker with an average DAR ~4–5 [27]. Such ADC compositions were
found to be mostly monomeric in nature compared to extremely aggregated PABC-dipeptide
based CBI conjugates [27]. Psymberin/irciniastatin A, a phenolic cytotoxic payload-based ADC
was developed with N,N′-dimethylethylene diamine self-immolative spacers and a β-glucuronide
linker for targeting CD-30-positive and CD-70-positive malignancies [28]. This development led
to the possibility of developing phenolic warhead-based ADCs as many anti-cancer drugs have
phenol functional groups. Another β-glucuronidase-sensitive linker based ADC has recently been
developed utilizing tertiary amine functional group of payloads (tubulysins and auristatin E) as
the conjugation site to the linker [29]. Tertiary-ammonium based linkers provide an excellent
strategy for conjugating payloads without affecting their activity [29].

2.2.2. Non-Cleavable Linkers

ADCs with non-cleavable thioether linkers have better plasma stability. Higher plasma stability
decreases the non-specific drug release of ADCs as compared to cleavable linkers [30]. The linker
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is attached to the amino acid residues of the mAb through a nonreducible bond, accounting for
high plasma stability. Following internalization, the drug is released from these conjugates due
to lysosomal proteolytic degradation of the mAb. The drug-linker-amino acid residue itself must
retain the activity of the drug [31]. FDA approved trastuzumab emtansine (Kadcyla®/T-DM1) uses
a non-cleavable SMCC (N-succinimidyl-4-(maleimidomethyl) cyclohexane-1-carboxylate) linker to
crosslink the warhead DM1 to lysine residues of anti-HER2 mAb trastuzumab. The intercellular
metabolite lysine-MCC-DM1 complex was found to be as active as the parent drug, DM1, after
lysosomal degradation of trastuzumab [32]. The hydrophobic nature of lysine-MCC-DM1 metabolites
restricted the bystander effect and caused aggregation leading to immunogenicity. Polarity of the
DM1 conjugates was increased with a tetramer PEG4Mal linker. Lysine-PEGMal-DM1 metabolites
were found to be more potent, effectively retaining in MDR1 expressing cancer cells compared to
lysine-MCC-DM1 metabolites [33]. Monomethyl auristatin F (MMAF) conjugates with non-reducible
thioether linker were found to be highly stable with equal potency as compared to valine-citrulline
conjugates [34].

2.2.3. Rational Linker Design to Overcome Resistance

Increasing occurrence of resistance in cancer patients, is a major challenge in anti-cancer drug
discovery. Resistance to ADCs can be inherent or acquired and can be caused by several reasons
including overexpression of efflux transporter proteins, downregulation or altered expression of
target antigen, activation of different signaling pathways, blocked binding site at the target antigen
etc. [35]. Commonly used cytotoxic payloads in ADC, such as calicheamicin, auristatins, maytansines,
taxnes, and doxorubicin are well-known substrates of efflux transporter of P-gp, which pumps out the
drug from intracellular space. This commonly observed phenomenon is key to the development
of multi drug resistance (MDR), where patients fail to respond to several chemotherapies [36].
Clinically approved gemtuzumab ozogamicin was found to be less effective in acute myeloid
leukemia patients with high expression of MDR proteins [37]. However, effective linker design
can help to overcome multidrug resistance. Hydrophobic compounds are found to be more sensitive
towards MDR1 efflux transporter. In a study with the hydrophilic DM1 payload, incorporation of a
hydrophobic PEG4Mal linker enhanced potency of the ADC in MDR1 containing xenograft models [33].
When compared to SMCC linker, lysine-PEG4Mal-DM1 metabolites were more accumulated in
MDR expressing COLO 205 cells than lysine-SMCC-DM1 metabolites [33]. In cleavable linkers,
the payload gets more sensitive after it is released from the linker whereas, payloads with non-cleavable
linkers are found to be less susceptible towards efflux proteins, where the mAb is digested but the
linker-payload metabolite remains active [38]. Further, Zhao and co-workers showed that incorporation
of a non-charged PEG group or negative charged α-sulphonic acid group increased hydrophilicity of
commonly available hydrophobic SPDP, SMCC linkers as well as provided better therapeutic window
for maytansine conjugates against MDR1 expressing cell lines in vitro and in vivo [39].

2.3. Payloads

Clinically approved chemotherapeutics with known clinical profiles like doxorubicin,
methotrexate, and 5-flurouracil (Figure 4a) were commonly used as payloads in ADCs [40].
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Figure 4. Chemical structures of first and second generation payloads used in ADCs. (a) 1st generation
ADC payloads: (i) doxorubicin; (ii) 5-fluorouracil; and (iii) methotrexate; (b) DNA damaging agents:
(i) calicheamicin γ1; (ii) duocarmycin A; and (iii) SJG-136 PDB dimer; and (c) tubulin polymerization
inhibitors: (i) monomethyl auristatin E (MMAE); (ii) mertansine (DM1), monomethylauristatin F
(MMAF), and ravtansine (DM4).

The clinically approved topoisomerase II inhibitor doxorubicin conjugated is to the hinge region
cysteine residues of BR96 humanized mAb through an acid sensitive hydrazone linker is one of
the 1st generation ADCs targeting the Lewis Y antigen, found to be overexpressed in different
cancers [41]. The effective dose of BR96-doxorubicin in in vivo studies was found to be very high due
to low potency of the payload (IC50 0.1–0.2 µM) although with a high DAR value of 8. Despite such
promising preclinical data, the BR96-doxorubicin conjugates failed to show enough efficacy in clinical
trials, while patients experienced significant gastrointestinal toxicity due to the presence of Lewis
Y in the gut [42]. Lessons from the story of BR96-doxorubicin established the use of more potent
cytotoxic payloads, preferably with IC50 values in the sub-nanomolar range, as there is only a certain
amount of payload that can be delivered via ADCs. Antibody conjugated delivery of highly potent
chemotherapeutic drugs can increase tumor specificity, therapeutic index as well as decrease systemic
toxicity. The cytotoxic payloads used in ADCs development can be divided in two classes based on
their mechanism of action, DNA damaging agents (Figure 4b) and tubulin inhibitors (Figure 4c).

2.3.1. DNA Damaging Agents

Calicheamicins are naturally occurring highly potent DNA damaging agents isolated from
the fermentation broth of a soil microorganism Micromonospora echinospora ssp. Calichensis [43].
Upon binding at the minor grove of the DNA they are reduced by cellular thiols to form a
1,4-dehydrobenzene radical intermediate, which then removes hydrogen from the deoxyribose ring
and breaks the DNA strand [44] through a reaction commonly known as Bergman cyclization [45].
Calicheamicin was found to alter the expression of different key cell elements at the transcriptional
level such as ribosomal proteins, nuclear proteins, and proteins accountable for stress response,
different genes involved in DNA repair/synthesis, as well as metabolic and biosynthetic genes [46].
Calicheamicin is being investigated as payload in several ADCs; gemtuzumab ozogamicin and
inotuzumab ozogamicin are noteworthy among them. Gemtuzumab ozogamicin incorporates a
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hydrazide derivative of calicheamicin, N-acetyl-γ-calicheamicin dimethyl hydrazide. CD-22 selective
inotuzumab ozogamicin also incorporates N-acetyl-γ-calicheamicin dimethyl hydrazide as a
payload [47]. Duocarmycins and pyrrolobenzodiazepines (PBD) are other notable chemotherapeutics
in this class which are now in early stages of clinical development for payloads in ADCs [44].
Duocarmycins (DNA minor groove binders) exerts their cytotoxicity by alkylating adenine residues
at the N3 position of DNA strands. SYD983, a duocarmycin-trastuzumab ADC was recently
developed [48]. Of note, potent PBDs are naturally produced by actinomycetes. They covalently
bind to a particular sequence in DNA minor groove and form an amine bond in-between C11 of PBD
and N2 of guanine bases [49]. Although they do not disrupt the DNA structure considerably, formation
of DNA-PBD adduct impedes key DNA functions like transcription and translation [50]. Several ADCs
currently under clinical trial (SGN-CD70A, SGN-CD 33A and SGN-CD123A from Seattle Genetics)
employ a PBD dimer SGD-1882 as their payload [51]. ADCs with PDB dimers are also found to be
involved in bystander killing [50].

2.3.2. Tubulin Polymerization Inhibitors

Tubulin polymerization inhibitors (auristatins and maytansinoids) are widely employed as
cytotoxic payloads [44]. Auristatins are water-soluble synthetic analogs of a marine natural product
(dolastatin 10) isolated form the extract of a sea hare, Dolabella auricularia. The parent compound
was also found in cyanobacteria Symploca hydnoides and Lyngbya majuscula, which are nourishment
to the sea hare [52,53]. Dolastatin 10, a series of linear peptides comprised of dolavaline, valine,
dolaisoleuine, dolaproine amino acid residues and a complex primary amine (dolaphenine) is found
to be active against a wide range of cancer cell lines and solid tumors at very low concentrations
(average IC50 value is in sub nanomolar range) [52,54]. It shares the same tubulin-binding site as
vinca alkaloids and inhibits tubulin polymerization and tubulin-dependent GTP hydrolysis that
causes cell cycle arrest in the G2/M phase, eventually leading to cell death [55]. Seattle Genetics
has developed two auristatin derivatives (MMAE and MMAF), which are currently being used as
payloads in several ADCs by linking to the cysteine residues of the mAb [56–58]. Bentuximab vedotin,
a FDA approved ADC, incorporates MMAE which is linked to the cysteine residues of anti-CD30
antibody by a protease sensitive valine-citrulline dipeptide linker with an average 4 drug molecules
per antibody [56]. Bentuximab vedotin is taken up in-to cytosol via cell-mediated endocytosis, where
the linker is selectively cleaved in the presence of elevated lysosomal protease cathepsin B [59].
MMAE can penetrate the cell membrane, and as a result it can prompt bystander killing where it
diffuses through nearby cells independent of antigen expression; by contrast, MMAF is impermeable
to cell membrane [60]. This is because MMAF is more hydrophilic, less potent, and less toxic than
MMAE. The presence of a charged phenylalanine moiety at the C-terminus of MMAF structure
perturbs its cell membrane permeability [34]. Maytansiniod derivatives DM1 and DM4 are another
type of microtubule polymerization inhibitors that are developed by Immunogen. Maytansine, an ansa
antimitotic isolated from the bark of Ethiopian shrubs Maytenus ovatus and Maytenus serrata shares the
same tubulin binding site and mechanism of action as vinca alkaloids and destabilizes microtubule
assembly resulting cell cycle arrest in G2/M phase [61–63]. DM1 and DM4 are maytansinoids with
methyl disulfide substitutions at the C3 N-acyl-N-methyl-L-alanyl ester side chain of maytansine [64].
Clinically approved Kadcyla® uses DM1 as a payload with an average DAR of 3.5 for treatment of
HER2+ metastatic breast cancers [32]. SAR3419, a CD-19 targeted ADC with DM4 payload is in phase
II clinical trial for the treatment of B-cell malignancies. DM4 is linked to the lysine residues of the
mAbs with a thiol sensitive N-succinimidyl-4-(2-pyridyldithio) butyrate (SPDB) linker yielding an
average DAR of 3.5 [65].

α-Amanitin, a RNA polymerase II inhibitor, is a highly water-soluble mushroom derived
octapeptide, which is currently being investigated as a payload in pre-clinical ADCs [66]. In proof of
concept studies α-amanitin was efficiently delivered to the target cells through an anti-HER2 mAb
and the IC50 values were found to be in pico molar range [67]. An anti-EpCAM ADC conjugated
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with α-Amanitin payload via a protease/esterase sensitive glutamate linker was also found to be
highly effective in EpCAM expressing tumor models [68]. Recently, anti-PSMA-α-amanitin ADCs
were successfully employed to reduce tumor growth in preclinical prostate cancer model with stable
and cleavable linker [69].

3. Conjugation

Mylotarg™ was the first ADC to be approved by the FDA, first marketed in 2000 until it’s voluntary
withdrawal in 2010 due to lack of significantly improved clinical benefits. The heterogeneous nature
of drug conjugates and hydrazine linker instability were thought be accountable for the failure of
this ADC. Thus, there was an urgent need for developing new strategies for producing homogenous
drug antibody conjugation methods. Several strategies have been employed for cross-linking the
antibody to drug by a linker using solvent reachable reactive amino acids with nucleophilic groups in
antibody side chains. Side chain cysteine (SH group) and lysine (NH2 group) have been extensively
used for conjugation (Table 1). The main problem with these conventional conjugation methods is the
heterogeneous nature of the end products with different DAR values [70]. The conjugation strategy
must not alter any key blocks of an antibody that are responsible for its binding to the target antigens.

Table 1. Comparison between different side chain conjugation methods.

Conjugation Reactive Groups Advantages

Cysteine Residues Maleimides, haloacetyls, other
Michael acceptors

Simple and reproducible method
Used in FDA approved Adcetris, widely employed in
pipeline candidates, DAR ~0–8
Comparatively less heterogeneous by products than
lysine conjugation
Easier to characterize pharmacokinetically

Lysine Residues Activated ester functional groups
like N-hydroxysuccinimide esters

Though highly heterogeneous, this method is
employed in FDA approved Kadcyla®, Mylotarg™,
DAR ~3.5 (Kadcyla®), ~2.5 (Mylotarg™)
Mostly used to crosslink via non-reducible linkers.

3.1. Via Side Chain Cystine Residues

Conjugation via side chain cysteines is a widely utilized and accepted technology in conjugation
chemistry of ADCs. Seattle Genetics’ ADC brentuximab vedotin utilizes this method to conjugate
MMAE with the anti-CD30 mAb (cAC10) via an enzymatically cleavable dipeptide linker [71].
Cysteines are engaged in interchain and intrachain disulfide bridges in an antibody, which did
not contribute to the building blocks of an antibody. In an IgG1 antibody, there are four interchain
disulfide bonds [72,73]. It was also found that interchain disulfide bonds are more susceptible to
reduction than intrachain disulfide bonds, which allow for a controlled reduction of the four interchain
disulfide bonds with dithiothreitol (DTT) or tris(2-carboxyethyl)phosphine (TCEP) while keeping
intrachain disulfide bond intact. This can yield up to eight reactive sulfhydryl groups, facilitating drug
conjugation with DAR values of 0–8 [70,74]. These reactive sulfhydryl groups which are nucleophilic
in nature, can be reacted with electrophiles like maleimides, haloacetyls for crosslinking proteins [75].
Conjugation via cysteine produces more uniform products than lysine conjugation that are easier
to purify and characterize pharmacokinetically. Previously mentioned problems with non-specific
conjugation methods established a need for more specific methods for conjugation.

3.2. Via Side Chain Lysine Residues

Mylotarg™ had utilized side-chain reactive lysine residues of a humanized anti-CD33 mAb
for conjugating the drug calicheamicin by a bifunctional acid sensitive hydrazone linker [76].
However, Pfizer voluntarily withdrew this product in 2010 [77]. Ado-trastuzumab-emtansine
(Kadcyla®), one of four approved ADCs in the market utilizing side chain lysines for conjugating



Pharmaceuticals 2018, 11, 32 10 of 22

the potent tubulin inhibitor emtansine to mAb trastuzumab (Herceptin®) [32]. An ESI-TOF MS
method confirms that 40 out of 86 lysine residues of humanized monoclonal IgG1 huN901-antibody
are available for conjugation to DM1 molecules. Peptide mapping further showed conjugation sites
present in both the heavy and light chain [78].

3.3. Drug Antibody Ratio (DAR)

DAR is defined as the number of drug molecules per mAb. DAR plays a definitive role in
developing ADCs, as it determines the dose needed to produce the desired effect in patients. There is
a limited number of drug molecules that can be efficiently delivered to the target site and drug loading
significantly contributes to the pharmacokinetic profile of ADC. Hamblett and co-workers showed that
the effect of drug distribution on the different properties like therapeutic window, pharmacokinetic
properties, and maximum tolerated dose of cAC10-MMAE conjugates. Decreasing the DAR resulted
in a superior therapeutic window of cAC10-MMAE conjugates, proving that drug loading as a
decisive parameter for designing ADCs. Although cAC10-MMAE conjugates with DAR ~2–4 were
less active in in vitro studies, but their results in in vivo studies were found to be equivalently potent
(DAR~4) and better tolerated than the conjugate with higher DAR ~8. Similar observations were
found with regards to pharmacokinetic properties [70]. If fewer drug molecules are conjugated per
mAb, the ADC system will not be effective clinically. On the other hand, conjugating too many drug
molecules per mAb will make the ADC unstable, toxic and may lead to aggregation and immunogenic
reactions [79,80]. Hydrophobic MMAE conjugates using interchain cysteines with higher DAR are
found to be physically unstable [79]. Normally ADCs contain different species with differing DAR
values and every species has its own distinct pharmacokinetics. ADCs with heavily loaded drugs are
more rapidly cleared from the system. In general, an average DAR of 3–4 is used to achieve optimum
effect in ADCs, depending upon potency of the payload [70,81]. However, a recently developed
poly-1-hydroxymethylethylene hydroxymethylformal (PHF) polymer-based ADC with a higher DAR
of ~20 challenged this conventional concept. With vinca alkaloid as the payload and trastuzumab as the
targeting mAb, the newly developed platform not only showed promising activity in xenograft tumor
models, but also demonstrated good pharmacokinetic properties [82]. Conjugations through side-chain
lysine residues are highly heterogeneous leading to inconsistent DAR values and different conjugation
sites in the antibody. In case of Kadcyla® where the drug DM1 was conjugated with the trastuzumab
through the side chain lysine residues, an average DAR was found to be ~3.5 [83]. Side chain cysteine
conjugation employs a controlled reduction of four intrachain disulfide bonds that allows conjugation
of 0–8 drug molecules per antibody [84]. Common analytical methods for determining DAR are UV-Vis
spectroscopy, hydrophobic interaction chromatography (HIC), LC-ESI-MS and rpHPLC. UV visible
spectroscopy exploits the dissimilarities in maximum wave length absorbance of payload and mAb
for determining respective concentrations [85]. UV-Vis spectroscopic method is widely employed to
characterize huN901-DM1, 791T/36-methotrexate and cAC10-MMAE conjugates [70,86,87]. HIC uses
a column consisting of a hydrophobic stationary phase and a mobile phase with gradient salt
concentration to separate ADC species based on hydrophobic interactions. Mostly the ADC payloads
are hydrophobic in nature, and hydrophobic conjugated species are retained in the column, whereas
unconjugated species elute first in neutral pH and non-denaturizing conditions [88]. This method is
more compatible with ADCs with cysteine conjugation sites on mAb, while LC-ESI-MS method was
developed for characterizing lysine-conjugated ADCs [89,90]. LC-MS is advantageous over HIC or
UV-Vis spectroscopic characterization as it not only gives information on DAR or drug distribution
but also gives crucial structural insights of ADCs at the molecular level [91]. Wagner-Rousset and
co-workers designed a simple and fast method of DAR determination based on antibody-fluorophore
conjugates (AFCs) with the same linker and conjugation chemistry as ADCs. Instead of toxic payloads,
a non-toxic dansyl sulfonamide ethyl amine payload was used. AFCs were subjected to digestion by
Streptococcus pyogenes (IdeS) accompanied by DTT reduction, which generated seven easily ionizable
fragments (Fd0, Fd1, Fd2, Fd3. L0, L1, Fc/2) of ~25 kDa. These resultant fragments were analyzed by
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LC-ESI-TOF-MS method. This method is advantageous over single step reduction as it not only gives
routine information like DAR and drug distribution but also provides crucial structural details like
N-glycosylation profiling, C-terminal lysine truncation, pyroglutamylation, oxidation and degradation
products [92].

3.4. Site Specific Conjugation

The most common problems with conventional conjugation technologies are heterogeneous
byproducts with different drug distributions per mAb, un-conjugated and overly conjugated mAbs.
These phenomena are attributed to poor pharmacokinetic properties and instability of ADCs in
systemic circulation [70]. Un-conjugated antibodies occupy the site of attachment, competing with
drug-conjugated antibodies and block the site for internalization for the targeting mAb. On the other
hand, overly conjugated mAbs are more rapidly cleared as well as can cause immunogenic reactions
and toxicity. Engineering of the conjugation site may lead to a more homogenous product with defined
and uniform drug stoichiometry (Table 2).

Table 2. Comparison between different site-specific conjugation technologies.

Method of Conjugation Reactive Groups Advantages Developer

Engineered side chain cysteine
residues (ThioMAb) [93] Maleimides

Improved clinical safety, tolerability and
therapeutic index over conventional conjugates.
Controlled and reproducible DAR 2.
Compatible for producing in large scale.

Genentech

Incorporation of un-natural
amino acids (unAA) [94] Alkoxy-amine

Highly stable and extended half-life in systemic
circulation. Improved pharmacological profile
compared to conventional ADCs. Ketone group
present in unAA provided conjugation site for
different alternative payloads like kinase
inhibitors, proteasome inhibitors.

Ambrx

Enzymatic Site-Specific
Conjugation Process [95] Amine, Indole

DAR 2-4, More stable conjugates than yielded by
ThioMAb and oxime ligation. Controlled
conjugation site of the payload on the mAb.
Better pharmacokinetic profile over
conventional conjugates.

Innate
Pharma,
Glycos,

Pfizer. Inc.

3.4.1. Engineering of Side Chain Cysteine Residues

The first site-specific conjugation method for cysteine residues was developed at Genentech [93].
In this method, potential sites, which do not contribute to pivotal functions of the mAb like
antigen folding or binding were identified and mutated with cysteine residues to generate a novel
platform, called Thiomab™. A phage display-based biochemical assay (Phage ELISA for Selection
of Reactive Thiols, PHESELECTOR) was employed to identify tolerated reactive cysteine residues
from fab region of the mAb [96]. Resultant Thiomabs are subjected to controlled reduction in
presence of DTT or TCEP to produce free thiols from cysteines. Previously reduced interchain
disulfides are reinstated by an oxidation process with copper sulfate or dehydroascorbic acid,
while the engineered cysteines are kept in a reduced form. Thus, only the reduced cysteines
were available for site-specific conjugation. In the proof of concept study, nearly homogenous
(92%) anti-MUC16-Thiomab™-MC-vc-PAB-MMAE conjugates with a DAR ~2 retained activity,
improved therapeutic window and were better tolerated in preclinical studies on Sprague-Dawley
rats and cynomolgus monkeys when compared to conventional ADCs with higher average DAR [93].
In a different study, Thiomab™-trastuzumab-BMPEO-DM1 conjugates were also found to be
better tolerated at the same dose than the conventional trastuzumab-MCC-DM1 conjugates [97].
Engineered cysteine residues at the A114C position were used for conjugation and thus site-specific
conjugation at those sites lead to better linker stability, therapeutic window, and more homogenous
Thiomab™ ADCs. Another site-specific conjugation approach via modifying cysteine is disulfide
rebridging, where interchain disulfide bonds were reduced first and then reinstated by a bis-alkylation
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process to form a three carbon bridge. Resulting conjugates were found to be more stable than the
maleamide conjugates in serum and high albumin concentrations [98].

3.4.2. Incorporation of Unnatural Amino Acids (unAA)

Another powerful approach to the site-specific conjugation was developed via incorporation of
unnatural amino acids (unAA) as the 21st amino acid with a reactive handle on different side chains of
the mAb. It allowed selective conjugation of different classes of payloads that have not been able to be
conjugated because of the limitations of conventional conjugation methods. This method also allowed
conjugation ofcombination of payloads with different mechanism of action [99]. The most common
method for unAA insertion employs t-RNA/amino-acyl t-RNA synthetase pair which incorporates the
un-natural amino acid at the place of the amber stop codon (TAG) encoded in the gene of interest [100].
Nearly homogenous trastuzumab-MMAF conjugates with an average DAR ~2 were synthesized
utilizing a site specifically introduced p-acetylphenylalanie unAA. The ketone group present in the
p-acetylphenylalanie unAA formed a stable oxime linkage with the alkoxy-amine-MMAF payloads.
Resulting conjugates were found to be highly stable and with a similar pharmacokinetic profile of the
naked mAb [94]. In a similar study hydroxylamine-MMAD payloads conjugated to the site-specifically
incorporated p-acetylphenylalanine residue of the 5-T4/anti-HER2 mAb via a non-cleavable linker
were found to be superior to the corresponding ADCs with interchain cysteine or engineered cysteine
residues as conjugation site [101].

3.4.3. Enzymatic Site-Specific Conjugation Processes

Reactive functional groups for site-specific conjugation of the drug payloads were also
introduced to the antibodies by several enzymes like transglutaminase and glycotransferase.
Bacterial transglutamiase from Streptoverticillium mobaraense forms a stable isopeptide bond in-between
an amine group and g-carboxamide moiety from a glutamine tag engineered in the flexible region of the
deglycosylated mAbs but not from the naturally available glutamines [95,102]. Strop and co-workers
introduced a short glutamine tag LLQG into 90 different regions of an anti-EGFR antibody, among them
12 were fit for drug crosslinking. Then two (LLQGA in heavy chain and GGLLQGA in light chain) out
of the 12 glutamine tags were chosen for conjugating amine containing MMAD derivatives with both
the cleavable and non-cleavable linker in presence of transglutaminase. Resulting ADCs were found
to be highly stable, monomeric and with an average DAR ~1.9 and better pharmacokinetic profile
compared to the conventional ADCs [103]. Similar conjugates were synthesized by this method using
anti-M1S1-C16 (Clone 16) mAb and an anti-Her2 mAb. A recently developed anti-Trop2 ADC, with a
LLQGA glutamine tag for site-specific conjugation with an undisclosed microtubule inhibitor showed
promising efficacy in preclinical studies [104]. Another additional approach for enzyme-mediated
conjugation is SmartTags (Specific Modifiable Aldehyde Recombinant Tag) technology using CxPxR
recognizing formyl glycine generating enzyme, which converts cysteines to formylglycine with a
reactive aldehyde group [105]. Pictet−Spengler ligation chemistry allowed bio conjugation of indole
based payloads to the aldehyde group of the modified mAb [106]. A modified version of Pictet-Spengler
reaction is Hydrazino-Pictet-Spengler Ligation, which not only provides an effective, quick and one
step conjugation as well as found to be advantageous over oxime ligation conjugation [107].

4. Clinical Trials

The number of ADCs in clinical trial is rapidly increasing with two of the recently approved
ADCs (Besponsa®, re-approved Mylotarg™). Currently there are more than 50 ADCs, which are in
different phases of clinical trial as monotherapy as well as in combination with other chemotherapeutic
drugs for treatment of different types of cancer and showing promising results. Most of the ADCs
under clinical trial uses common type of payload-linker motifs although they differ in the mAb to
target different types of malignancies (Figure 5).
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Figure 5. (a) Status of clinical trials on ADCs; (b) Different ADC payloads in clinical trials; (c) Different
ADC linkers in clinical trials; (d) Clinical trials of ADCs for different type of oncologic indications
based on clinicaltrials.gov database search.

Among them three candidates are in phase III of clinical trials. Several ADCs are in preclinical
development. In this section, we discuss about development of sacituzumab govitecan (IMMU-132),
mirvetuximab soravtansine (IMGN-853), and inotuzumab ozogamicin (CMC-544), which are now
investigated in phase III clinical trial.

Sacituzumab Govitecan (IMMU-132): This is a moderately toxic topoisomerase I inhibitor SN38,
metabolite of prodrug irinotecan conjugated to a humanized anti-Trop2 mAb by a pH sensitive CL2A
linker [108]. The average DAR (7.6) of this ADC is comparatively high because of the moderately
toxic payload. A short PEG spacer incorporated in-between the linker and the payload enhances
the aqueous solubility of the payload. However, IMMU-132 delivers more SN-38 (active metabolite
of irinotecan) to the tumor tissue than the prodrug formulation irinotecan [109]. The target trop-2
(trophoblast cell surface antigen) is over expressed in different types of cancer like breast, lung,
pancreatic, colorectal, prostate and cervical [109]. Trop2 is an attractive target for triple negative breast
cancer (TNBC). In phase II clinical trial, 8–10 mg/kg dose of IMMU-132 showed promising activity with
manageable grade 3–4 side effects like diarrhea, neutropenia, fatigue, and anemia. No occurrence of
immunogenicity was reported [110], thus a phase III trial for this drug has been initiated (NCT02574455)
for refractory/relapsed TNBC patients. IMMU-132 earned Breakthrough Therapy designation from
the FDA for the treatment of TNBC, small cell lung cancer, and non-small cell lung cancer.

Mirvetuximab Soravtansine (IMGN-853): It uses a humanized anti-folate receptor-α (FR-α)
mAb conjugated to the maytansine payload DM-4 through a cleavable sulpho-SPDB linker.
FR-α comes under class of glycoproteins that govern endocytosis mediated uptake of folates [111].
FR-α has limited expression in healthy tissues, whereas it is elevated in several malignancies [112].
A hydrophilic sulpho-SPDB linker established the bridge between the lysine residues of the mAb
and the microtubule-disrupting payload DM4. After lysosomal degradation, one of the metabolites
S-methyl-DM4, which is lipophilic in nature induced bystander killing in neighboring cells irrespective
of the antigen expression [112,113]. Mirvetuximab soravtansine is reported to be upregulating effects
of conventional chemo drugs like carboplatin in ovarian cancer [114]. In phase I dose escalation
study, patients received doses from 0.15 to 7.0 mg/kg once in a three week. From the phase I study,
the encouraging potency of IGMN-853 was noted for epithelial ovarian cancer with a favorable
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toxicity profile. From the phase I, trial results a dose of 6 mg/kg once in a three weeks was chosen
for phase II clinical studies [115]. In the phase II study on patients with platinum-resistant ovarian
cancer, IMGN-853 was found to be active mostly in less heavily treated individuals with a reasonable
toxicity profile. Grade 2 side effects like diarrhea, nausea, blurred vision were reported [116]. Phase III
clinical trial (NCT02631876) of this drug is started in patients with FR-α expressing epithelial ovarian
cancer, primary peritoneal cancer or fallopian tube cancer along with a choice of chemotherapy of
the investigator.

Inotuzumab Ozogamicin (Besponsa™): Pfizer, Wyeth and University of California, Berkeley jointly
developed this ADC. It entered phase III clinical trial with frontline chemotherapy in young adult
patients with B Acute Lymphoblastic Leukemia (NCT03150693). It is consisted of an humanized
anti-CD22 mAb G5/44 (IgG4 isotype) with a DNA damaging N-acetyl-γ-calicheamicin dimethyl
hydrazide derivative as payload connected through an acid-sensitive 4-(4-acetylphenoxy) butanoic
acid (AcBut) linker [47]. The target CD22 is a B-acute lymphoblastic leukemia (B-ALL) specific antigen
with restricted expression in the surface of full-grown B cells [117]. An investigation on adult acute
lymphoid leukemia patients confirmed abundance of CD22 expression [118]. Inotuzumab ozogamicin
in preclinical models established it’s superiority over non-targeted conventional combination
chemotherapy comprised of cyclophosphamide, vincristine and prednisone (CVP) or doxorubicin
(CHOP) in in vitro studies as well as in vivo human B-cell lymphoma xenograft mice models. When it
is used together with CVP, it exerted more potency but with CHOP resulted in toxicity in mice models.
However, dose-dense study with 2 dosages of inotuzumab ozogamicin and CHOP found to be potent
with no toxicities [119]. From the phase I study, of inotuzumab ozogamicin, MTD was found to be
1.8 mg/m2 with side effects like thrombocytopenia (major), asthenia, nausea and neutropenia B-cell
non-hodgkin’s lymphoma [120]. Phase II clinical trial (NCT01134575) of this drug was conducted at
MD Anderson Cancer Center with an adult I.V. dose 1.8 mg/m2 and a pediatrics I.V. dose 1.3 mg/m2.
This drug was administered in 49 refractory and relapsed B-ALL patients with a median age of
36 years. The complete response rate from this study was 57% with an overall median survival rate
of 7.9 months in responders [121]. Clinical trials (NCT01564784) of inotuzumab ozogamicin with
investigator’s choice of chemotherapy further proved its superiority over standard chemotherapy
and was approved by FDA to treat adult patients with relapsed/refractory B-cell precursor acute
lymphoblastic leukemia in August 2017.

5. Future Directions

Conventional chemotherapy accounted for consequential toxicities and low therapeutic window
for the treatment of malignancies. In the era of personalized medicines, pharmacogenetic testing
of the patients followed by ADC treatment can be an excellent alternative over the conventional
chemotherapies (Figure 6). For patient selection, a threshold expression of the target antigen must be
defined during preclinical development. ADCs also serve as a target-guided tool for the delivery for
highly potent cytotoxic drug(s) that cannot be administered as a monotherapy.

A considerable rise in this field has been observed following the success and FDA approval for
Adcetris® in 2011, Kadcyla® in 2013, Besponsa™ in 2017 and reapproval of Mylotarg™. These recent
successes have bolstered ADC developments and presently ~50 ADCs are in pipeline for the
treatment of hematologic and solid tumor malignancies. The choice of target, mAb isotype, the linker,
the conjugation site and the cytotoxic payload plays crucial part in ADC design. Better understanding
of all ADC components may lead to successful generation of an effective ADC. Conventionally, ADC
employs a heavily cytotoxic drug as payload (such as calicheamicins, duocarmycins, auristatins, and
maytansinoids) however, site specific conjugated ADCs like milatuzumab-Dox, IMMU132, IMMU-130
with moderately cytotoxic payloads like doxorubicin, camptothecin analog SN-38 were also found
to be promising, thus redefining the conventional ADC concept. The main challenge remains to
optimize the bio-conjugation process to produce homogenous antibody drug conjugates. A better
understanding of the role of linker and method of conjugation to the clinical profile of the ADC have
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led to development of several state of art site-specific conjugation methods for homogenous antibody
conjugate production. Table 3 incorporates noteworthy overview(s) on ADCs development through
review articles.

Figure 6. Schematic diagram showing transition of ADCs from laboratory to clinic.

Table 3. List of some of the key review articles on ADCs.

Name of the Review Article Focus of the Review Year of Publication

Antibody-Drug Conjugates for Cancer
Therapy [7]

This article is focused on different key issues
like choosing an appropriate target, expression
of the target, selecting right mAb isotype.

2008

Antibody Conjugate Therapeutics: Challenges
and Potential [122]

The key consideration behind choosing an
appropriate target for ADC developments. 2011

Pharmacokinetic Considerations for Antibody
Drug Conjugates [10]

Different pharmacokinetic considerations to
characterize ADCs as well as PK-PD
modellings for development of ADCs

2012

Site-Specific Antibody−Drug Conjugates:
The Nexus of Biorthogonal Chemistry, Protein
Engineering, and Drug Development [75]

Focuses on methods to synthesize site-specific
homogenous ADCs with details of
bio-orthogonal chemistries.

2014

Antibody-Drug Conjugates: Design, Formulation
and Physicochemical Stability [123]

Physiochemical characterization, formulation
considerations, and factors involved in
process control.

2015

Methods to Design and Synthesize
Antibody-Drug Conjugates (ADCs) [98]

Accounts for different conjugation methods
and the chemistry behind in the field of ADCs. 2016

Mechanisms of Resistance to Antibody–Drug
Conjugates [35]

Resistance of various ADCs and possible
mechanism. 2016

Antibodies and associates: Partners in targeted
drug delivery [124]

Engineering antibodies and their subsequent
use in different targeted drug delivery systems. 2017

Site conjugation processes like Thiomab®, enzymatic conjugation, incorporation of unnatural
amino acid (unAA) has been used to install reactive handle on the mAb for facilitating a homogenous
conjugation process without disrupting the mAb functions. The most common mechanism reported
regarding resistances of ADC therapy is attributed to the MDR protein. However, this problem
is countered with replacing P-gp substrate drugs with several new naturally occurring toxins,
ADC prodrugs as well structural altercations in the drug-linker [38]. A significant effort is also
directed towards developing suitable preclinical model to evaluate ADCs therapeutic efficacy.
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Xenograft bearing mice models does not replicate human conditions genetically in proper way, but
genetically engineered mice models are more reliable for evaluating ADCs as they can bear relevant
target oncogenes. Another important challenge is to produce cost effective and affordable ADC
medications. At present ADCs are quite expansive, for example yearly brentuximab vedotin treatment
regimen costs ~$100,000 [125]. In our review, we have put together up-to-date advances in the
field of payload discovery, their mechanism of action as well as linker and conjugation technologies.
However, regardless of different challenges, recent success in this field can shift the paradigm of cancer
therapy to personalized ADCs treatments.

Acknowledgments: This work was supported by the National Institutes of Health Research Project Grant Program
(R01 CA210192, R01 CA206069, and CA204552) to SCC. This research was supported by National Institute of
Health/National Cancer Center’s Career Development Award (K22CA174841) and AREA grant (CA213232) to
MMY. UTHSC-CORNET, NEW GRANT and College of Pharmacy-Dean’s Seed Grant to S.C.C., M.J., M.M.Y is
also acknowledged. Authors acknowledge Sonam Kumari, Andrew Massey, and Kyle Doxtater for proof reading
this manuscript.

Author Contributions: N.D., M.M.Y., S.C.C. conceived the idea, reviewed literature/data, and crucially involved
throughout the writing of this manuscript. N.D., M.M.Y., S.C.C., M.J., S.S., V.K.K., S.K., have participated in
discussion, edited and reviewed the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. WHO: Cancer World Health Organization. Available online: http://www.who.int/mediacentre/factsheets/
fs297/en/ (accessed on 5 April 2018).

2. Peer, D.; Karp, J.M.; Hong, S.; Farokhzad, O.C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform
for cancer therapy. Nat. Nanotechnol. 2007, 2, 751–760. [CrossRef] [PubMed]

3. Gottesman, M.M.; Fojo, T.; Bates, S.E. Multidrug resistance in cancer: Role of atp-dependent transporters.
Nat. Rev. Cancer 2002, 2, 48–58. [CrossRef] [PubMed]

4. Strebhardt, K.; Ullrich, A. Paul ehrlich’s magic bullet concept: 100 years of progress. Nat. Rev. Cancer 2008, 8,
473–480. [CrossRef] [PubMed]

5. Panowski, S.; Bhakta, S.; Raab, H.; Polakis, P.; Junutula, J.R. Site-specific antibody drug conjugates for cancer
therapy. mAbs 2014, 6, 34–45. [CrossRef] [PubMed]

6. Chari, R.V.J.; Miller, M.L.; Widdison, W.C. Antibody–drug conjugates: An emerging concept in cancer
therapy. Angew. Chem. Int. Ed. 2014, 53, 3796–3827. [CrossRef] [PubMed]

7. Carter, P.J.; Senter, P.D. Antibody-drug conjugates for cancer therapy. Cancer J. 2008, 14, 154–169. [CrossRef]
[PubMed]

8. Milstein, G.K.C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 1975,
256, 495–497.

9. Rudnick, S.I.; Lou, J.; Shaller, C.C.; Tang, Y.; Klein-Szanto, A.J.P.; Weiner, L.M.; Marks, J.D.; Adams, G.P.
Influence of affinity and antigen internalization on the uptake and penetration of anti-her2 antibodies in
solid tumors. Cancer Res. 2011, 71, 2250–2259. [CrossRef] [PubMed]

10. Lin, K.; Tibbitts, J. Pharmacokinetic considerations for antibody drug conjugates. Pharm. Res. 2012, 29,
2354–2366. [CrossRef] [PubMed]

11. Tolcher, A.W.; Ochoa, L.; Hammond, L.A.; Patnaik, A.; Edwards, T.; Takimoto, C.; Smith, L.; de Bono, J.;
Schwartz, G.; Mays, T.; et al. Cantuzumab mertansine, a maytansinoid immunoconjugate directed to the
canag antigen: A phase I, pharmacokinetic, and biologic correlative study. J. Clin. Oncol. 2003, 21, 211–222.
[CrossRef] [PubMed]

12. Pastuskovas, C.V.; Mallet, W.; Clark, S.; Kenrick, M.; Majidy, M.; Schweiger, M.; Van Hoy, M.; Tsai, S.P.;
Bennett, G.; Shen, B.-Q. Effect of immune complex formation on the distribution of a novel antibody to the
ovarian tumor antigen CA125. Drug Metab. Dispos. 2010, 38, 2309–2319. [CrossRef] [PubMed]

13. Jiang, X.-R.; Song, A.; Bergelson, S.; Arroll, T.; Parekh, B.; May, K.; Chung, S.; Strouse, R.; Mire-Sluis, A.;
Schenerman, M. Advances in the assessment and control of the effector functions of therapeutic antibodies.
Nat. Rev. Drug Discov. 2011, 10, 101–111. [CrossRef] [PubMed]

http://www.who.int/mediacentre/factsheets/fs297/en/
http://www.who.int/mediacentre/factsheets/fs297/en/
http://dx.doi.org/10.1038/nnano.2007.387
http://www.ncbi.nlm.nih.gov/pubmed/18654426
http://dx.doi.org/10.1038/nrc706
http://www.ncbi.nlm.nih.gov/pubmed/11902585
http://dx.doi.org/10.1038/nrc2394
http://www.ncbi.nlm.nih.gov/pubmed/18469827
http://dx.doi.org/10.4161/mabs.27022
http://www.ncbi.nlm.nih.gov/pubmed/24423619
http://dx.doi.org/10.1002/anie.201307628
http://www.ncbi.nlm.nih.gov/pubmed/24677743
http://dx.doi.org/10.1097/PPO.0b013e318172d704
http://www.ncbi.nlm.nih.gov/pubmed/18536555
http://dx.doi.org/10.1158/0008-5472.CAN-10-2277
http://www.ncbi.nlm.nih.gov/pubmed/21406401
http://dx.doi.org/10.1007/s11095-012-0800-y
http://www.ncbi.nlm.nih.gov/pubmed/22740180
http://dx.doi.org/10.1200/JCO.2003.05.137
http://www.ncbi.nlm.nih.gov/pubmed/12525512
http://dx.doi.org/10.1124/dmd.110.034330
http://www.ncbi.nlm.nih.gov/pubmed/20823292
http://dx.doi.org/10.1038/nrd3365
http://www.ncbi.nlm.nih.gov/pubmed/21283105


Pharmaceuticals 2018, 11, 32 17 of 22

14. Sapra, P.; Hooper, A.T.; O’Donnell, C.J.; Gerber, H.P. Investigational antibody drug conjugates for solid
tumors. Expert Opin. Investig. Drugs 2011, 20, 1131–1149. [CrossRef] [PubMed]

15. Junttila, T.T.; Li, G.; Parsons, K.; Phillips, G.L.; Sliwkowski, M.X. Trastuzumab-DM1 (T-DM1) retains all the
mechanisms of action of trastuzumab and efficiently inhibits growth of lapatinib insensitive breast cancer.
Breast Cancer Res. Treat. 2011, 128, 347–356. [CrossRef] [PubMed]

16. Sharkey, R.M.; Goldenberg, D.M. Targeted therapy of cancer: New prospects for antibodies and
immunoconjugates. CA-A Cancer J. Clin. 2006, 56, 226–243. [CrossRef]

17. Pillay, C.S.; Elliott, E.; Dennison, C. Endolysosomal proteolysis and its regulation. Biochem. J. 2002, 363,
417–429. [CrossRef] [PubMed]

18. Alley, S.C.; Okeley, N.M.; Senter, P.D. Antibody-drug conjugates: Targeted drug delivery for cancer.
Curr. Opin. Chem. Biol. 2010, 14, 529–537. [CrossRef] [PubMed]

19. Griffith, O.W. Biologic and pharmacologic regulation of mammalian glutathione synthesis. Free Radic.
Biol. Med. 1999, 27, 922–935. [CrossRef]

20. Balendiran, G.K.; Dabur, R.; Fraser, D. The role of glutathione in cancer. Cell Biochem. Funct. 2004, 22, 343–352.
[CrossRef] [PubMed]

21. Wu, G.; Fang, Y.-Z.; Yang, S.; Lupton, J.R.; Turner, N.D. Glutathione metabolism and its implications for
health. J. Nutr. 2004, 134, 489–492. [CrossRef] [PubMed]

22. Appenzeller-Herzog, C.; Ellgaard, L. The human pdi family: Versatility packed into a single fold.
BBA-Mol. Cell. Res. 2008, 1783, 535–548. [CrossRef] [PubMed]

23. Chari, R.V.J. Targeted cancer therapy: Conferring specificity to cytotoxic drugs. Acc. Chem. Res. 2008, 41,
98–107. [CrossRef] [PubMed]

24. Dubowchik, G.M.; Firestone, R.A. Cathepsin b-sensitive dipeptide prodrugs. 1. A model study of structural
requirements for efficient release of doxorubicin. Bioorg. Med. Chem. Lett. 1998, 8, 3341–3346. [CrossRef]

25. Tranoy-Opalinski, I.; Legigan, T.; Barat, R.; Clarhaut, J.; Thomas, M.; Renoux, B.; Papot, S.
Beta-glucuronidase-responsive prodrugs for selective cancer chemotherapy: An update. Eur. J. Med. Chem.
2014, 74, 302–313. [CrossRef] [PubMed]

26. Michelle de, G.; Epie, B.; Hans, W.S.; Hidde, J.H.; Herbert, M.P. Beta-glucuronidase-mediated drug release.
Curr. Pharm. Des. 2002, 8, 1391–1403.

27. Jeffrey, S.C.; Andreyka, J.B.; Bernhardt, S.X.; Kissler, K.M.; Kline, T.; Lenox, J.S.; Moser, R.F.; Nguyen, M.T.;
Okeley, N.M.; Stone, I.J.; et al. Development and properties of β-glucuronide linkers for monoclonal
antibody−drug conjugates. Bioconj. Chem. 2006, 17, 831–840. [CrossRef] [PubMed]

28. Jeffrey, S.C.; De Brabander, J.; Miyamoto, J.; Senter, P.D. Expanded utility of the β-glucuronide linker: ADCs
that deliver phenolic cytotoxic agents. ACS Med. Chem. Lett. 2010, 1, 277–280. [CrossRef] [PubMed]

29. Burke, P.J.; Hamilton, J.Z.; Pires, T.A.; Setter, J.R.; Hunter, J.H.; Cochran, J.H.; Waight, A.B.; Gordon, K.A.;
Toki, B.E.; Emmerton, K.K.; et al. Development of novel quaternary ammonium linkers for antibody–drug
conjugates. Mol. Cancer Ther. 2016, 15, 938–945. [CrossRef] [PubMed]

30. Senter, P.D.; Sievers, E.L. The discovery and development of brentuximab vedotin for use in relapsed hodgkin
lymphoma and systemic anaplastic large cell lymphoma. Nat. Biotechnol. 2012, 30, 631–637. [CrossRef] [PubMed]

31. Diamantis, N.; Banerji, U. Antibody-drug conjugates—An emerging class of cancer treatment. Br. J. Cancer
2016, 114, 362–367. [CrossRef] [PubMed]

32. LoRusso, P.M.; Weiss, D.; Guardino, E.; Girish, S.; Sliwkowski, M.X. Trastuzumab emtansine: A unique
antibody-drug conjugate in development for human epidermal growth factor receptor 2–positive cancer.
Clin. Cancer Res. 2011, 17, 6437–6447. [CrossRef] [PubMed]

33. Kovtun, Y.V.; Audette, C.A.; Mayo, M.F.; Jones, G.E.; Doherty, H.; Maloney, E.K.; Erickson, H.K.; Sun, X.;
Wilhelm, S.; Ab, O.; et al. Antibody-maytansinoid conjugates designed to bypass multidrug resistance.
Cancer Res. 2010, 70, 2528–2537. [CrossRef] [PubMed]

34. Doronina, S.O.; Mendelsohn, B.A.; Bovee, T.D.; Cerveny, C.G.; Alley, S.C.; Meyer, D.L.; Oflazoglu, E.;
Toki, B.E.; Sanderson, R.J.; Zabinski, R.F.; et al. Enhanced activity of monomethylauristatin f through
monoclonal antibody delivery: Effects of linker technology on efficacy and toxicity. Bioconj. Chem. 2006, 17,
114–124. [CrossRef] [PubMed]

35. Loganzo, F.; Sung, M.; Gerber, H.-P. Mechanisms of resistance to antibody–drug conjugates. Mol. Cancer Ther.
2016, 15, 2825–2834. [CrossRef] [PubMed]

http://dx.doi.org/10.1517/13543784.2011.582866
http://www.ncbi.nlm.nih.gov/pubmed/21599617
http://dx.doi.org/10.1007/s10549-010-1090-x
http://www.ncbi.nlm.nih.gov/pubmed/20730488
http://dx.doi.org/10.3322/canjclin.56.4.226
http://dx.doi.org/10.1042/bj3630417
http://www.ncbi.nlm.nih.gov/pubmed/11964142
http://dx.doi.org/10.1016/j.cbpa.2010.06.170
http://www.ncbi.nlm.nih.gov/pubmed/20643572
http://dx.doi.org/10.1016/S0891-5849(99)00176-8
http://dx.doi.org/10.1002/cbf.1149
http://www.ncbi.nlm.nih.gov/pubmed/15386533
http://dx.doi.org/10.1093/jn/134.3.489
http://www.ncbi.nlm.nih.gov/pubmed/14988435
http://dx.doi.org/10.1016/j.bbamcr.2007.11.010
http://www.ncbi.nlm.nih.gov/pubmed/18093543
http://dx.doi.org/10.1021/ar700108g
http://www.ncbi.nlm.nih.gov/pubmed/17705444
http://dx.doi.org/10.1016/S0960-894X(98)00609-X
http://dx.doi.org/10.1016/j.ejmech.2013.12.045
http://www.ncbi.nlm.nih.gov/pubmed/24480360
http://dx.doi.org/10.1021/bc0600214
http://www.ncbi.nlm.nih.gov/pubmed/16704224
http://dx.doi.org/10.1021/ml100039h
http://www.ncbi.nlm.nih.gov/pubmed/24900208
http://dx.doi.org/10.1158/1535-7163.MCT-16-0038
http://www.ncbi.nlm.nih.gov/pubmed/26944920
http://dx.doi.org/10.1038/nbt.2289
http://www.ncbi.nlm.nih.gov/pubmed/22781692
http://dx.doi.org/10.1038/bjc.2015.435
http://www.ncbi.nlm.nih.gov/pubmed/26742008
http://dx.doi.org/10.1158/1078-0432.CCR-11-0762
http://www.ncbi.nlm.nih.gov/pubmed/22003071
http://dx.doi.org/10.1158/0008-5472.CAN-09-3546
http://www.ncbi.nlm.nih.gov/pubmed/20197459
http://dx.doi.org/10.1021/bc0502917
http://www.ncbi.nlm.nih.gov/pubmed/16417259
http://dx.doi.org/10.1158/1535-7163.MCT-16-0408
http://www.ncbi.nlm.nih.gov/pubmed/27780876


Pharmaceuticals 2018, 11, 32 18 of 22

36. Parslow, A.; Parakh, S.; Lee, F.-T.; Gan, H.; Scott, A. Antibody–drug conjugates for cancer therapy.
Biomedicines 2016, 4, 14. [CrossRef] [PubMed]

37. Linenberger, M.L.; Hong, T.; Flowers, D.; Sievers, E.L.; Gooley, T.A.; Bennett, J.M.; Berger, M.S.; Leopold, L.H.;
Appelbaum, F.R.; Bernstein, I.D. Multidrug-resistance phenotype and clinical responses to gemtuzumab
ozogamicin. Blood 2001, 98, 988–994. [CrossRef] [PubMed]

38. Shefet-Carasso, L.; Benhar, I. Antibody-targeted drugs and drug resistance–challenges and solutions.
Drug Resist. Updates 2015, 18, 36–46. [CrossRef] [PubMed]

39. Zhao, R.Y.; Wilhelm, S.D.; Audette, C.; Jones, G.; Leece, B.A.; Lazar, A.C.; Goldmacher, V.S.; Singh, R.;
Kovtun, Y.; Widdison, W.C.; et al. Synthesis and evaluation of hydrophilic linkers for antibody-maytansinoid
conjugates. J. Med. Chem. 2011, 54, 3606–3623. [CrossRef] [PubMed]

40. Ducry, L.; Stump, B. Antibody−drug conjugates: Linking cytotoxic payloads to monoclonal antibodies.
Bioconj. Chem. 2010, 21, 5–13. [CrossRef] [PubMed]

41. Trail, P.; Willner, D.; Lasch, S.; Henderson, A.; Hofstead, S.; Casazza, A.; Firestone, R.; Hellstrom, I.;
Hellstrom, K. Cure of xenografted human carcinomas by Br96-doxorubicin immunoconjugates. Science 1993,
261, 212–215. [CrossRef] [PubMed]

42. Tolcher, A.W.; Sugarman, S.; Gelmon, K.A.; Cohen, R.; Saleh, M.; Isaacs, C.; Young, L.; Healey, D.; Onetto, N.;
Slichenmyer, W. Randomized phase ii study of br96-doxorubicin conjugate in patients with metastatic breast
cancer. J. Clin. Oncol. 1999, 17, 478–484. [CrossRef] [PubMed]

43. Maiese, W.M.; Lechevalier, M.P.; Lechevalier, H.A.; Korshalla, J.; Kuck, N.; Fantini, A.; Wildey, M.J.;
Thomas, J.; Greenstein, M. Calicheamicins, a novel family of antitumor antibiotics: Taxonomy, fermentation
and biological properties. J. Antibiot. 1989, 42, 558–563. [CrossRef] [PubMed]

44. Polakis, P. Antibody drug conjugates for cancer therapy. Pharmacol. Rev. 2016, 68, 3–19. [CrossRef] [PubMed]
45. Jones, R.R.; Bergman, R.G. P-benzyne. Generation as an intermediate in a thermal isomerization reaction

and trapping evidence for the 1,4-benzenediyl structure. J. Am. Chem. Soc. 1972, 94, 660–661. [CrossRef]
46. Watanabe, C.M.; Supekova, L.; Schultz, P.G. Transcriptional effects of the potent enediyne anti-cancer agent

calicheamicin gamma(i)(1). Chem. Biol. 2002, 9, 245–251. [CrossRef]
47. De Vries, J.F.; Zwaan, C.M.; De Bie, M.; Voerman, J.S.; den Boer, M.L.; van Dongen, J.J.; van der Velden, V.H.

The novel calicheamicin-conjugated CD22 antibody inotuzumab ozogamicin (CMC-544) effectively kills
primary pediatric acute lymphoblastic leukemia cells. Leukemia 2012, 26, 255–264. [CrossRef] [PubMed]

48. Elgersma, R.C.; Coumans, R.G.; Huijbregts, T.; Menge, W.M.; Joosten, J.A.; Spijker, H.J.; de Groot, F.M.;
van der Lee, M.M.; Ubink, R.; van den Dobbelsteen, D.J.; et al. Design, synthesis, and evaluation of
linker-duocarmycin payloads: Toward selection of HER2-targeting antibody-drug conjugate SYD985.
Mol. Pharm. 2015, 12, 1813–1835. [CrossRef] [PubMed]

49. Li, W.; Khullar, A.; Chou, S.; Sacramo, A.; Gerratana, B. Biosynthesis of sibiromycin, a potent antitumor
antibiotic. Appl. Environ. Microbiol. 2009, 75, 2869–2878. [CrossRef] [PubMed]

50. Bouchard, H.; Viskov, C.; Garcia-Echeverria, C. Antibody-drug conjugates—A new wave of cancer drugs.
Bioorg. Med. Chem. Lett. 2014, 24, 5357–5363. [CrossRef] [PubMed]

51. Mantaj, J.; Jackson, P.J.; Rahman, K.M.; Thurston, D.E. From anthramycin to pyrrolobenzodiazepine
(PBD)-containing antibody-drug conjugates (ADCs). Angew. Chem. Int. Ed. Engl. 2017, 56, 462–488.
[CrossRef] [PubMed]

52. Amador, M.L.; Jimeno, J.; Paz-Ares, L.; Cortes-Funes, H.; Hidalgo, M. Progress in the development and
acquisition of anticancer agents from marine sources. Ann. Oncol. 2003, 14, 1607–1615. [CrossRef] [PubMed]

53. Pettit, G.R.; Srirangam, J.K.; Barkoczy, J.; Williams, M.D.; Boyd, M.R.; Hamel, E.; Pettit, R.K.; Hogan, F.;
Bai, R.; Chapuis, J.C.; et al. Antineoplastic agents 365. Dolastatin 10 sar probes. Anticancer Drug Des. 1998,
13, 243–277. [PubMed]

54. Pettit, R.K.; Pettit, G.R.; Hazen, K.C. Specific activities of dolastatin 10 and peptide derivatives against
cryptococcus neoformans. Antimicrob. Agents Chemother. 1998, 42, 2961–2965. [PubMed]

55. Bai, R.L.; Pettit, G.R.; Hamel, E. Binding of dolastatin 10 to tubulin at a distinct site for peptide antimitotic
agents near the exchangeable nucleotide and vinca alkaloid sites. J. Biol. Chem. 1990, 265, 17141–17149.
[PubMed]

56. Katz, J.; Janik, J.E.; Younes, A. Brentuximab vedotin (SGN-35). Clin. Cancer Res. 2011, 17, 6428–6436.
[CrossRef] [PubMed]

http://dx.doi.org/10.3390/biomedicines4030014
http://www.ncbi.nlm.nih.gov/pubmed/28536381
http://dx.doi.org/10.1182/blood.V98.4.988
http://www.ncbi.nlm.nih.gov/pubmed/11493443
http://dx.doi.org/10.1016/j.drup.2014.11.001
http://www.ncbi.nlm.nih.gov/pubmed/25476546
http://dx.doi.org/10.1021/jm2002958
http://www.ncbi.nlm.nih.gov/pubmed/21517041
http://dx.doi.org/10.1021/bc9002019
http://www.ncbi.nlm.nih.gov/pubmed/19769391
http://dx.doi.org/10.1126/science.8327892
http://www.ncbi.nlm.nih.gov/pubmed/8327892
http://dx.doi.org/10.1200/JCO.1999.17.2.478
http://www.ncbi.nlm.nih.gov/pubmed/10080588
http://dx.doi.org/10.7164/antibiotics.42.558
http://www.ncbi.nlm.nih.gov/pubmed/2722671
http://dx.doi.org/10.1124/pr.114.009373
http://www.ncbi.nlm.nih.gov/pubmed/26589413
http://dx.doi.org/10.1021/ja00757a071
http://dx.doi.org/10.1016/S1074-5521(02)00103-5
http://dx.doi.org/10.1038/leu.2011.206
http://www.ncbi.nlm.nih.gov/pubmed/21869836
http://dx.doi.org/10.1021/mp500781a
http://www.ncbi.nlm.nih.gov/pubmed/25635711
http://dx.doi.org/10.1128/AEM.02326-08
http://www.ncbi.nlm.nih.gov/pubmed/19270142
http://dx.doi.org/10.1016/j.bmcl.2014.10.021
http://www.ncbi.nlm.nih.gov/pubmed/25455482
http://dx.doi.org/10.1002/anie.201510610
http://www.ncbi.nlm.nih.gov/pubmed/27862776
http://dx.doi.org/10.1093/annonc/mdg443
http://www.ncbi.nlm.nih.gov/pubmed/14581267
http://www.ncbi.nlm.nih.gov/pubmed/9627667
http://www.ncbi.nlm.nih.gov/pubmed/9797233
http://www.ncbi.nlm.nih.gov/pubmed/2211617
http://dx.doi.org/10.1158/1078-0432.CCR-11-0488
http://www.ncbi.nlm.nih.gov/pubmed/22003070


Pharmaceuticals 2018, 11, 32 19 of 22

57. Liu, J.F.; Moore, K.N.; Birrer, M.J.; Berlin, S.; Matulonis, U.A.; Infante, J.R.; Wolpin, B.; Poon, K.A.;
Firestein, R.; Xu, J.; et al. Phase I study of safety and pharmacokinetics of the anti-MUC16 antibody-drug
conjugate DMUC5754A in patients with platinum-resistant ovarian cancer or unresectable pancreatic cancer.
Ann. Oncol. 2016, 27, 2124–2130. [CrossRef] [PubMed]

58. Tai, Y.T.; Mayes, P.A.; Acharya, C.; Zhong, M.Y.; Cea, M.; Cagnetta, A.; Craigen, J.; Yates, J.; Gliddon, L.;
Fieles, W.; et al. Novel anti-b-cell maturation antigen antibody-drug conjugate (GSK2857916) selectively
induces killing of multiple myeloma. Blood 2014, 123, 3128–3138. [CrossRef] [PubMed]

59. Francisco, J.A.; Cerveny, C.G.; Meyer, D.L.; Mixan, B.J.; Klussman, K.; Chace, D.F.; Rejniak, S.X.; Gordon, K.A.;
DeBlanc, R.; Toki, B.E.; et al. cAC10-vcMMAE, an anti-CD30-monomethyl auristatin E conjugate with potent
and selective antitumor activity. Blood 2003, 102, 1458–1465. [CrossRef] [PubMed]

60. Li, F.; Emmerton, K.K.; Jonas, M.; Zhang, X.; Miyamoto, J.B.; Setter, J.R.; Nicholas, N.D.; Okeley, N.M.;
Lyon, R.P.; Benjamin, D.R.; et al. Intracellular released payload influences potency and bystander-killing
effects of antibody-drug conjugates in preclinical models. Cancer Res. 2016, 76, 2710–2719. [CrossRef]
[PubMed]

61. Kupchan, S.M.; Komoda, Y.; Court, W.A.; Thomas, G.J.; Smith, R.M.; Karim, A.; Gilmore, C.J.;
Haltiwanger, R.C.; Bryan, R.F. Maytansine, a novel antileukemic ansa macrolide from maytenus ovatus.
J. Am. Chem. Soc. 1972, 94, 1354–1356. [CrossRef] [PubMed]

62. Kupchan, S.M.; Komoda, Y.; Branfman, A.R.; Sneden, A.T.; Court, W.A.; Thomas, G.J.; Hintz, H.P.;
Smith, R.M.; Karim, A.; Howie, G.A.; et al. The maytansinoids. Isolation, structural elucidation, and
chemical interrelation of novel ansa macrolides. J. Org. Chem. 1977, 42, 2349–2357. [CrossRef] [PubMed]

63. Mandelbaum-Shavit, F.; Wolpert-DeFilippes, M.K.; Johns, D.G. Binding of maytansine to rat brain tubulin.
Biochem. Biophys. Res. Commun. 1976, 72, 47–54. [CrossRef]

64. Widdison, W.C.; Wilhelm, S.D.; Cavanagh, E.E.; Whiteman, K.R.; Leece, B.A.; Kovtun, Y.; Goldmacher, V.S.;
Xie, H.; Steeves, R.M.; Lutz, R.J.; et al. Semisynthetic maytansine analogues for the targeted treatment of
cancer. J. Med. Chem. 2006, 49, 4392–4408. [CrossRef] [PubMed]

65. Blanc, V.; Bousseau, A.; Caron, A.; Carrez, C.; Lutz, R.J.; Lambert, J.M. Sar3419: An anti-CD19-maytansinoid
immunoconjugate for the treatment of B-cell malignancies. Clin. Cancer Res. 2011, 17, 6448–6458. [CrossRef]
[PubMed]

66. Lindell, T.J.; Weinberg, F.; Morris, P.W.; Roeder, R.G.; Rutter, W.J. Specific inhibition of nuclear RNA
polymerase II by alpha-amanitin. Science 1970, 170, 447–449. [CrossRef] [PubMed]

67. Anderl, J.; Müller, C.; Heckl-Östreicher, B.; Wehr, R. Abstract 3616: Highly potent antibody-amanitin
conjugates cause tumor-selective apoptosis. Cancer Res. 2011, 71, 3616. [CrossRef]

68. Moldenhauer, G.; Salnikov, A.V.; Luttgau, S.; Herr, I.; Anderl, J.; Faulstich, H. Therapeutic potential
of amanitin-conjugated anti-epithelial cell adhesion molecule monoclonal antibody against pancreatic
carcinoma. J. Natl. Cancer Inst. 2012, 104, 622–634. [CrossRef] [PubMed]

69. Hechler, T.; Kulke, M.; Mueller, C.; Pahl, A.; Anderl, J. Abstract 664: Amanitin-based antibody-drug
conjugates targeting the prostate-specific membrane antigen. Cancer Res. 2014, 74. [CrossRef]

70. Hamblett, K.J.; Senter, P.D.; Chace, D.F.; Sun, M.M.; Lenox, J.; Cerveny, C.G.; Kissler, K.M.; Bernhardt, S.X.;
Kopcha, A.K.; Zabinski, R.F.; et al. Effects of drug loading on the antitumor activity of a monoclonal antibody
drug conjugate. Clin. Cancer Res. 2004, 10, 7063–7070. [CrossRef] [PubMed]

71. Doronina, S.O.; Toki, B.E.; Torgov, M.Y.; Mendelsohn, B.A.; Cerveny, C.G.; Chace, D.F.; DeBlanc, R.L.;
Gearing, R.P.; Bovee, T.D.; Siegall, C.B.; et al. Development of potent monoclonal antibody auristatin
conjugates for cancer therapy. Nat. Biotechnol. 2003, 21, 778–784. [CrossRef] [PubMed]

72. McAuley, A.; Jacob, J.; Kolvenbach, C.G.; Westland, K.; Lee, H.J.; Brych, S.R.; Rehder, D.; Kleemann, G.R.;
Brems, D.N.; Matsumura, M. Contributions of a disulfide bond to the structure, stability, and dimerization
of human igg1 antibody ch3 domain. Protein Sci. 2008, 17, 95–106. [CrossRef] [PubMed]

73. Sun, M.M.; Beam, K.S.; Cerveny, C.G.; Hamblett, K.J.; Blackmore, R.S.; Torgov, M.Y.; Handley, F.G.; Ihle, N.C.;
Senter, P.D.; Alley, S.C. Reduction-alkylation strategies for the modification of specific monoclonal antibody
disulfides. Bioconj. Chem. 2005, 16, 1282–1290. [CrossRef] [PubMed]

74. Schroeder, D.D.; Tankersley, D.L.; Lundblad, J.L. A new preparation of modified immune serum globulin
(human) suitable for intravenous administration. I. Standardization of the reduction and alkylation reaction.
Vox Sang. 1981, 40, 373–382. [CrossRef] [PubMed]

http://dx.doi.org/10.1093/annonc/mdw401
http://www.ncbi.nlm.nih.gov/pubmed/27793850
http://dx.doi.org/10.1182/blood-2013-10-535088
http://www.ncbi.nlm.nih.gov/pubmed/24569262
http://dx.doi.org/10.1182/blood-2003-01-0039
http://www.ncbi.nlm.nih.gov/pubmed/12714494
http://dx.doi.org/10.1158/0008-5472.CAN-15-1795
http://www.ncbi.nlm.nih.gov/pubmed/26921341
http://dx.doi.org/10.1021/ja00759a054
http://www.ncbi.nlm.nih.gov/pubmed/5062169
http://dx.doi.org/10.1021/jo00434a001
http://www.ncbi.nlm.nih.gov/pubmed/874612
http://dx.doi.org/10.1016/0006-291X(76)90958-X
http://dx.doi.org/10.1021/jm060319f
http://www.ncbi.nlm.nih.gov/pubmed/16821799
http://dx.doi.org/10.1158/1078-0432.CCR-11-0485
http://www.ncbi.nlm.nih.gov/pubmed/22003072
http://dx.doi.org/10.1126/science.170.3956.447
http://www.ncbi.nlm.nih.gov/pubmed/4918258
http://dx.doi.org/10.1158/1538-7445.AM2011-3616
http://dx.doi.org/10.1093/jnci/djs140
http://www.ncbi.nlm.nih.gov/pubmed/22457476
http://dx.doi.org/10.1158/1538-7445.AM2014-664
http://dx.doi.org/10.1158/1078-0432.CCR-04-0789
http://www.ncbi.nlm.nih.gov/pubmed/15501986
http://dx.doi.org/10.1038/nbt832
http://www.ncbi.nlm.nih.gov/pubmed/12778055
http://dx.doi.org/10.1110/ps.073134408
http://www.ncbi.nlm.nih.gov/pubmed/18156469
http://dx.doi.org/10.1021/bc050201y
http://www.ncbi.nlm.nih.gov/pubmed/16173809
http://dx.doi.org/10.1111/j.1423-0410.1981.tb00725.x
http://www.ncbi.nlm.nih.gov/pubmed/7293114


Pharmaceuticals 2018, 11, 32 20 of 22

75. Agarwal, P.; Bertozzi, C.R. Site-specific antibody–drug conjugates: The nexus of bioorthogonal chemistry,
protein engineering, and drug development. Bioconj. Chem. 2015, 26, 176–192. [CrossRef] [PubMed]

76. Hamann, P.R.; Hinman, L.M.; Hollander, I.; Beyer, C.F.; Lindh, D.; Holcomb, R.; Hallett, W.;
Tsou, H.R.; Upeslacis, J.; Shochat, D.; et al. Gemtuzumab ozogamicin, a potent and selective anti-CD33
antibody-calicheamicin conjugate for treatment of acute myeloid leukemia. Bioconjug. Chem. 2002, 13, 47–58.
[CrossRef] [PubMed]

77. Burnett, A.K.; Hills, R.K.; Milligan, D.; Kjeldsen, L.; Kell, J.; Russell, N.H.; Yin, J.A.; Hunter, A.;
Goldstone, A.H.; Wheatley, K. Identification of patients with acute myeloblastic leukemia who benefit
from the addition of gemtuzumab ozogamicin: Results of the mrc aml15 trial. J. Clin. Oncol. 2011, 29,
369–377. [CrossRef] [PubMed]

78. Luo, Q.; Chung, H.H.; Borths, C.; Janson, M.; Wen, J.; Joubert, M.K.; Wypych, J. Structural characterization
of a monoclonal antibody-maytansinoid immunoconjugate. Anal. Chem. 2016, 88, 695–702. [CrossRef]
[PubMed]

79. Adem, Y.T.; Schwarz, K.A.; Duenas, E.; Patapoff, T.W.; Galush, W.J.; Esue, O. Auristatin antibody drug
conjugate physical instability and the role of drug payload. Bioconj. Chem. 2014, 25, 656–664. [CrossRef]
[PubMed]

80. Moussa, E.M.; Panchal, J.P.; Moorthy, B.S.; Blum, J.S.; Joubert, M.K.; Narhi, L.O.; Topp, E.M. Immunogenicity
of therapeutic protein aggregates. J. Pharm. Sci. 2016, 105, 417–430. [CrossRef] [PubMed]

81. McDonagh, C.F.; Turcott, E.; Westendorf, L.; Webster, J.B.; Alley, S.C.; Kim, K.; Andreyka, J.; Stone, I.;
Hamblett, K.J.; Francisco, J.A.; et al. Engineered antibody-drug conjugates with defined sites and
stoichiometries of drug attachment. Protein Eng. Des. Sel. 2006, 19, 299–307. [CrossRef] [PubMed]

82. Yurkovetskiy, A.V.; Yin, M.; Bodyak, N.; Stevenson, C.A.; Thomas, J.D.; Hammond, C.E.; Qin, L.; Zhu, B.;
Gumerov, D.R.; Ter-Ovanesyan, E.; et al. A polymer-based antibody–vinca drug conjugate platform:
Characterization and preclinical efficacy. Cancer Res. 2015, 75, 3365–3372. [CrossRef] [PubMed]

83. Krop, I.; Winer, E.P. Trastuzumab emtansine: A novel antibody-drug conjugate for HER2-positive breast
cancer. Clin. Cancer Res. 2014, 20, 15–20. [CrossRef] [PubMed]

84. Tsuchikama, K.; An, Z. Antibody-drug conjugates: Recent advances in conjugation and linker chemistries.
Protein Cell 2018, 9, 33–46. [CrossRef] [PubMed]

85. Chen, Y. Drug-to-antibody ratio (DAR) by UV/vis spectroscopy. Methods Mol. Med. 2013, 1045, 267–273.
86. Wang, L.; Amphlett, G.; Blättler, W.A.; Lambert, J.M.; Zhang, W. Structural characterization of the

maytansinoid–monoclonal antibody immunoconjugate, HUN901–DM1, by mass spectrometry. Protein Sci.
2005, 14, 2436–2446. [CrossRef] [PubMed]

87. Hudecz, F.; Garnett, M.C.; Khan, T.; Baldwin, R.W. The influence of synthetic conditions on the stability
of methotrexate-monoclonal antibody conjugates determined by reversed phase high performance liquid
chromatography. Biomed. Chromatogr. 1992, 6, 128–132. [CrossRef] [PubMed]

88. Ouyang, J. Drug-to-antibody ratio (DAR) and drug load distribution by hydrophobic interaction
chromatography and reversed phase high-performance liquid chromatography. Methods Mol. Biol. 2013,
1045, 275–283. [PubMed]

89. Chen, T.; Zhang, K.; Gruenhagen, J.; Medley, C.D.; Hydrophobic interaction chromatography for
antibody drug conjugate drug distribution analysis. Am. Pharm. Rev. 2015. Available online:
https://www.americanpharmaceuticalreview.com/Featured-Articles/177927-Hydrophobic-Interaction-
Chromatography-for-Antibody-Drug-Conjugate-Drug-Distribution-Analysis/ (accessed on 3 April 2018).

90. Basa, L. Drug-to-antibody ratio (DAR) and drug load distribution by lc-esi-ms. Methods Mol. Biol. 2013, 1045,
285–293. [PubMed]

91. Huang, R.Y.C.; Chen, G. Characterization of antibody–drug conjugates by mass spectrometry: Advances
and future trends. Drug Discov. Today 2016, 21, 850–855. [CrossRef] [PubMed]

92. Wagner-Rousset, E.; Janin-Bussat, M.C.; Colas, O.; Excoffier, M.; Ayoub, D.; Haeuw, J.F.; Rilatt, I.; Perez, M.;
Corvaia, N.; Beck, A. Antibody-drug conjugate model fast characterization by lc-ms following ides proteolytic
digestion. mAbs 2014, 6, 273–285. [CrossRef] [PubMed]

93. Junutula, J.R.; Raab, H.; Clark, S.; Bhakta, S.; Leipold, D.D.; Weir, S.; Chen, Y.; Simpson, M.; Tsai, S.P.;
Dennis, M.S.; et al. Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic
index. Nat. Biotechnol. 2008, 26, 925–932. [CrossRef] [PubMed]

http://dx.doi.org/10.1021/bc5004982
http://www.ncbi.nlm.nih.gov/pubmed/25494884
http://dx.doi.org/10.1021/bc010021y
http://www.ncbi.nlm.nih.gov/pubmed/11792178
http://dx.doi.org/10.1200/JCO.2010.31.4310
http://www.ncbi.nlm.nih.gov/pubmed/21172891
http://dx.doi.org/10.1021/acs.analchem.5b03709
http://www.ncbi.nlm.nih.gov/pubmed/26629796
http://dx.doi.org/10.1021/bc400439x
http://www.ncbi.nlm.nih.gov/pubmed/24559399
http://dx.doi.org/10.1016/j.xphs.2015.11.002
http://www.ncbi.nlm.nih.gov/pubmed/26869409
http://dx.doi.org/10.1093/protein/gzl013
http://www.ncbi.nlm.nih.gov/pubmed/16644914
http://dx.doi.org/10.1158/0008-5472.CAN-15-0129
http://www.ncbi.nlm.nih.gov/pubmed/26113086
http://dx.doi.org/10.1158/1078-0432.CCR-13-0541
http://www.ncbi.nlm.nih.gov/pubmed/24135146
http://dx.doi.org/10.1007/s13238-016-0323-0
http://www.ncbi.nlm.nih.gov/pubmed/27743348
http://dx.doi.org/10.1110/ps.051478705
http://www.ncbi.nlm.nih.gov/pubmed/16081651
http://dx.doi.org/10.1002/bmc.1130060306
http://www.ncbi.nlm.nih.gov/pubmed/1525486
http://www.ncbi.nlm.nih.gov/pubmed/23913154
https://www.americanpharmaceuticalreview.com/Featured-Articles/177927-Hydrophobic-Interaction-Chromatography-for-Antibody-Drug-Conjugate-Drug-Distribution-Analysis/
https://www.americanpharmaceuticalreview.com/Featured-Articles/177927-Hydrophobic-Interaction-Chromatography-for-Antibody-Drug-Conjugate-Drug-Distribution-Analysis/
http://www.ncbi.nlm.nih.gov/pubmed/23913155
http://dx.doi.org/10.1016/j.drudis.2016.04.004
http://www.ncbi.nlm.nih.gov/pubmed/27080148
http://dx.doi.org/10.4161/mabs.26773
http://www.ncbi.nlm.nih.gov/pubmed/24135617
http://dx.doi.org/10.1038/nbt.1480
http://www.ncbi.nlm.nih.gov/pubmed/18641636


Pharmaceuticals 2018, 11, 32 21 of 22

94. Axup, J.Y.; Bajjuri, K.M.; Ritland, M.; Hutchins, B.M.; Kim, C.H.; Kazane, S.A.; Halder, R.; Forsyth, J.S.;
Santidrian, A.F.; Stafin, K.; et al. Synthesis of site-specific antibody-drug conjugates using unnatural amino
acids. Proc. Natl. Acad. Sci. USA 2012, 109, 16101–16106. [CrossRef] [PubMed]

95. Jeger, S.; Zimmermann, K.; Blanc, A.; Grunberg, J.; Honer, M.; Hunziker, P.; Struthers, H.; Schibli, R.
Site-specific and stoichiometric modification of antibodies by bacterial transglutaminase. Angew. Chem. Int.
Ed. Engl. 2010, 49, 9995–9997. [CrossRef] [PubMed]

96. Junutula, J.R.; Bhakta, S.; Raab, H.; Ervin, K.E.; Eigenbrot, C.; Vandlen, R.; Scheller, R.H.; Lowman, H.B. Rapid
identification of reactive cysteine residues for site-specific labeling of antibody-fabs. J. Immunol. Methods
2008, 332, 41–52. [CrossRef] [PubMed]

97. Junutula, J.R.; Flagella, K.M.; Graham, R.A.; Parsons, K.L.; Ha, E.; Raab, H.; Bhakta, S.; Nguyen, T.;
Dugger, D.L.; Li, G.; et al. Engineered thio-trastuzumab-dm1 conjugate with an improved therapeutic
index to target human epidermal growth factor receptor 2-positive breast cancer. Clin. Cancer Res. 2010, 16,
4769–4778. [CrossRef] [PubMed]

98. Yao, H.; Jiang, F.; Lu, A.; Zhang, G. Methods to design and synthesize antibody-drug conjugates (adcs). Int. J.
Mol. Sci. 2016, 17, 194. [CrossRef] [PubMed]

99. Hallam, T.J.; Smider, V.V. Unnatural amino acids in novel antibody conjugates. Future Med. Chem. 2014, 6,
1309–1324. [CrossRef] [PubMed]

100. Liu, C.C.; Schultz, P.G. Adding new chemistries to the genetic code. Annu. Rev. Biochem. 2010, 79, 413–444.
[CrossRef] [PubMed]

101. Tian, F.; Lu, Y.; Manibusan, A.; Sellers, A.; Tran, H.; Sun, Y.; Phuong, T.; Barnett, R.; Hehli, B.; Song, F.; et al.
A general approach to site-specific antibody drug conjugates. Proc. Natl. Acad. Sci. USA 2014, 111, 1766–1771.
[CrossRef] [PubMed]

102. Yokoyama, K.; Nio, N.; Kikuchi, Y. Properties and applications of microbial transglutaminase.
Appl. Microbiol. Biotechnol. 2004, 64, 447–454. [CrossRef] [PubMed]

103. Strop, P.; Liu, S.H.; Dorywalska, M.; Delaria, K.; Dushin, R.G.; Tran, T.T.; Ho, W.H.; Farias, S.; Casas, M.G.;
Abdiche, Y.; et al. Location matters: Site of conjugation modulates stability and pharmacokinetics of antibody
drug conjugates. Chem. Biol. 2013, 20, 161–167. [CrossRef] [PubMed]

104. Strop, P.; Tran, T.T.; Dorywalska, M.; Delaria, K.; Dushin, R.; Wong, O.K.; Ho, W.H.; Zhou, D.; Wu, A.;
Kraynov, E.; et al. RN927C, a site-specific trop-2 antibody-drug conjugate (ADC) with enhanced stability,
is highly efficacious in preclinical solid tumor models. Mol. Cancer Ther. 2016, 15, 2698–2708. [CrossRef]
[PubMed]

105. Carrico, I.S.; Carlson, B.L.; Bertozzi, C.R. Introducing genetically encoded aldehydes into proteins.
Nat. Chem. Biol. 2007, 3, 321–322. [CrossRef] [PubMed]

106. Agarwal, P.; van der Weijden, J.; Sletten, E.M.; Rabuka, D.; Bertozzi, C.R. A pictet-spengler ligation for
protein chemical modification. Proc. Natl. Acad. Sci. USA 2013, 110, 46–51. [CrossRef] [PubMed]

107. Agarwal, P.; Kudirka, R.; Albers, A.E.; Barfield, R.M.; de Hart, G.W.; Drake, P.M.; Jones, L.C.; Rabuka, D.
Hydrazino-pictet-spengler ligation as a biocompatible method for the generation of stable protein conjugates.
Bioconj. Chem. 2013, 24, 846–851. [CrossRef] [PubMed]

108. Starodub, A.N.; Ocean, A.J.; Shah, M.A.; Vahdat, L.T.; Chuang, E.; Guarino, M.J.; Picozzi, V.J.; Thomas, S.S.;
Maliakal, P.P.; Govindan, S.V.; et al. Abstract CT206: SN-38 antibody-drug conjugate (ADC) targeting Trop-2,
IMMU-132, as a novel platform for the therapy of diverse metastatic solid cancers: Initial clinical results.
Cancer Res. 2014, 74, CT206. [CrossRef]

109. Goldenberg, D.M.; Cardillo, T.M.; Govindan, S.V.; Rossi, E.A.; Sharkey, R.M. Trop-2 is a novel target for solid
cancer therapy with sacituzumab govitecan (immu-132), an antibody-drug conjugate (ADC). Oncotarget
2015, 6, 22496–22512. [CrossRef] [PubMed]

110. Bardia, A.; Vahdat, L.T.; Diamond, J.R.; Starodub, A.; Moroose, R.L.; Isakoff, S.J.; Ocean, A.J.; Berlin, J.;
Messersmith, W.A.; Thomas, S.S.; et al. Therapy of refractory/relapsed metastatic triple-negative
breast cancer (TNBC) with an anti-Trop-2-SN-38 antibody-drug conjugate (ADC), sacituzumab govitecan
(IMMU-132): Phase I/II clinical experience. J. Clin. Oncol. 2015, 33, 1016. [CrossRef]

111. Elnakat, H.; Ratnam, M. Distribution, functionality and gene regulation of folate receptor isoforms:
Implications in targeted therapy. Adv. Drug Deliv. Rev. 2004, 56, 1067–1084. [CrossRef] [PubMed]

112. Ab, O.; Whiteman, K.R.; Bartle, L.M.; Sun, X.; Singh, R.; Tavares, D.; LaBelle, A.; Payne, G.; Lutz, R.J.;
Pinkas, J.; et al. Imgn853, a folate receptor-α (FRα)-targeting antibody-drug conjugate, exhibits potent

http://dx.doi.org/10.1073/pnas.1211023109
http://www.ncbi.nlm.nih.gov/pubmed/22988081
http://dx.doi.org/10.1002/anie.201004243
http://www.ncbi.nlm.nih.gov/pubmed/21110357
http://dx.doi.org/10.1016/j.jim.2007.12.011
http://www.ncbi.nlm.nih.gov/pubmed/18230399
http://dx.doi.org/10.1158/1078-0432.CCR-10-0987
http://www.ncbi.nlm.nih.gov/pubmed/20805300
http://dx.doi.org/10.3390/ijms17020194
http://www.ncbi.nlm.nih.gov/pubmed/26848651
http://dx.doi.org/10.4155/fmc.14.79
http://www.ncbi.nlm.nih.gov/pubmed/25163001
http://dx.doi.org/10.1146/annurev.biochem.052308.105824
http://www.ncbi.nlm.nih.gov/pubmed/20307192
http://dx.doi.org/10.1073/pnas.1321237111
http://www.ncbi.nlm.nih.gov/pubmed/24443552
http://dx.doi.org/10.1007/s00253-003-1539-5
http://www.ncbi.nlm.nih.gov/pubmed/14740191
http://dx.doi.org/10.1016/j.chembiol.2013.01.010
http://www.ncbi.nlm.nih.gov/pubmed/23438745
http://dx.doi.org/10.1158/1535-7163.MCT-16-0431
http://www.ncbi.nlm.nih.gov/pubmed/27582525
http://dx.doi.org/10.1038/nchembio878
http://www.ncbi.nlm.nih.gov/pubmed/17450134
http://dx.doi.org/10.1073/pnas.1213186110
http://www.ncbi.nlm.nih.gov/pubmed/23237853
http://dx.doi.org/10.1021/bc400042a
http://www.ncbi.nlm.nih.gov/pubmed/23731037
http://dx.doi.org/10.1158/1538-7445.AM2014-CT206
http://dx.doi.org/10.18632/oncotarget.4318
http://www.ncbi.nlm.nih.gov/pubmed/26101915
http://dx.doi.org/10.1200/jco.2015.33.15_suppl.1016
http://dx.doi.org/10.1016/j.addr.2004.01.001
http://www.ncbi.nlm.nih.gov/pubmed/15094207


Pharmaceuticals 2018, 11, 32 22 of 22

targeted antitumor activity against fralpha-expressing tumors. Mol. Cancer Ther. 2015, 14, 1605–1613.
[CrossRef] [PubMed]

113. Erickson, H.K.; Park, P.U.; Widdison, W.C.; Kovtun, Y.V.; Garrett, L.M.; Hoffman, K.; Lutz, R.J.;
Goldmacher, V.S.; Blattler, W.A. Antibody-maytansinoid conjugates are activated in targeted cancer cells
by lysosomal degradation and linker-dependent intracellular processing. Cancer Res. 2006, 66, 4426–4433.
[CrossRef] [PubMed]

114. Ponte, J.F.; Ab, O.; Lanieri, L.; Lee, J.; Coccia, J.; Bartle, L.M.; Themeles, M.; Zhou, Y.; Pinkas, J.;
Ruiz-Soto, R. Mirvetuximab soravtansine (IMGN853), a folate receptor alpha-targeting antibody-drug
conjugate, potentiates the activity of standard of care therapeutics in ovarian cancer models. Neoplasia 2016,
18, 775–784. [CrossRef] [PubMed]

115. Moore, K.N.; Borghaei, H.; O’Malley, D.M.; Jeong, W.; Seward, S.M.; Bauer, T.M.; Perez, R.P.; Matulonis, U.A.;
Running, K.L.; Zhang, X.; et al. Phase 1 dose-escalation study of mirvetuximab soravtansine (IMGN853),
a folate receptor alpha-targeting antibody-drug conjugate, in patients with solid tumors. Cancer 2017, 123,
3080–3087. [CrossRef] [PubMed]

116. Moore, K.N.; Martin, L.P.; O’Malley, D.M.; Matulonis, U.A.; Konner, J.A.; Perez, R.P.; Bauer, T.M.;
Ruiz-Soto, R.; Birrer, M.J. Safety and activity of mirvetuximab soravtansine (IMGN853), a folate receptor
alpha-targeting antibody-drug conjugate, in platinum-resistant ovarian, fallopian tube, or primary peritoneal
cancer: A phase i expansion study. J. Clin. Oncol. 2017, 35, 1112–1118. [CrossRef] [PubMed]

117. Tedder, T.F.; Tuscano, J.; Sato, S.; Kehrl, J.H. Cd22, a B lymphocyte-specific adhesion molecule that regulates
antigen receptor signaling. Annu. Rev. Immunol. 1997, 15, 481–504. [CrossRef] [PubMed]

118. Piccaluga, P.P.; Arpinati, M.; Candoni, A.; Laterza, C.; Paolini, S.; Gazzola, A.; Sabattini, E.; Visani, G.;
Pileri, S.A. Surface antigens analysis reveals significant expression of candidate targets for immunotherapy
in adult acute lymphoid leukemia. Leuk. lymphoma 2011, 52, 325–327. [CrossRef] [PubMed]

119. DiJoseph, J.F.; Dougher, M.M.; Evans, D.Y.; Zhou, B.-B.; Damle, N.K. Preclinical anti-tumor
activity of antibody-targeted chemotherapy with CMC-544 (inotuzumab ozogamicin), a CD22-specific
immunoconjugate of calicheamicin, compared with non-targeted combination chemotherapy with cvp or
chop. Cancer Chemother. Pharmacol. 2011, 67, 741–749. [CrossRef] [PubMed]

120. Advani, A.; Coiffier, B.; Czuczman, M.S.; Dreyling, M.; Foran, J.; Gine, E.; Gisselbrecht, C.; Ketterer, N.;
Nasta, S.; Rohatiner, A.; et al. Safety, pharmacokinetics, and preliminary clinical activity of inotuzumab
ozogamicin, a novel immunoconjugate for the treatment of B-cell non-hodgkin’s lymphoma: Results of a
phase i study. J. Clin. Oncol. 2010, 28, 2085–2093. [CrossRef] [PubMed]

121. Goy, A.; Forero, A.; Wagner-Johnston, N.; Christopher Ehmann, W.; Tsai, M.; Hatake, K.; Ananthakrishnan, R.;
Volkert, A.; Vandendries, E.; Ogura, M. A phase 2 study of inotuzumab ozogamicin in patients with
indolent b-cell non-hodgkin lymphoma refractory to rituximab alone, rituximab and chemotherapy,
or radioimmunotherapy. Br. J. Haematol. 2016, 174, 571–581. [CrossRef] [PubMed]

122. Teicher, B.A.; Chari, R.V. Antibody conjugate therapeutics: Challenges and potential. Clin. Cancer Res. 2011,
17, 6389–6397. [CrossRef] [PubMed]

123. Singh, S.K.; Luisi, D.L.; Pak, R.H. Antibody-drug conjugates: Design, formulation and physicochemical
stability. Pharm. Res. 2015, 32, 3541–3571. [CrossRef] [PubMed]

124. Kennedy, P.J.; Oliveira, C.; Granja, P.L.; Sarmento, B. Antibodies and associates: Partners in targeted drug
delivery. Pharmacol. Ther. 2017, 177, 129–145. [CrossRef] [PubMed]

125. Zolot, R.S.; Basu, S.; Million, R.P. Antibody-drug conjugates. Nat. Rev. Drug Discov. 2013, 12, 259–260.
[CrossRef] [PubMed]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1158/1535-7163.MCT-14-1095
http://www.ncbi.nlm.nih.gov/pubmed/25904506
http://dx.doi.org/10.1158/0008-5472.CAN-05-4489
http://www.ncbi.nlm.nih.gov/pubmed/16618769
http://dx.doi.org/10.1016/j.neo.2016.11.002
http://www.ncbi.nlm.nih.gov/pubmed/27889646
http://dx.doi.org/10.1002/cncr.30736
http://www.ncbi.nlm.nih.gov/pubmed/28440955
http://dx.doi.org/10.1200/JCO.2016.69.9538
http://www.ncbi.nlm.nih.gov/pubmed/28029313
http://dx.doi.org/10.1146/annurev.immunol.15.1.481
http://www.ncbi.nlm.nih.gov/pubmed/9143697
http://dx.doi.org/10.3109/10428194.2010.529206
http://www.ncbi.nlm.nih.gov/pubmed/21077738
http://dx.doi.org/10.1007/s00280-010-1342-9
http://www.ncbi.nlm.nih.gov/pubmed/20521053
http://dx.doi.org/10.1200/JCO.2009.25.1900
http://www.ncbi.nlm.nih.gov/pubmed/20308665
http://dx.doi.org/10.1111/bjh.14094
http://www.ncbi.nlm.nih.gov/pubmed/27101934
http://dx.doi.org/10.1158/1078-0432.CCR-11-1417
http://www.ncbi.nlm.nih.gov/pubmed/22003066
http://dx.doi.org/10.1007/s11095-015-1704-4
http://www.ncbi.nlm.nih.gov/pubmed/25986175
http://dx.doi.org/10.1016/j.pharmthera.2017.03.004
http://www.ncbi.nlm.nih.gov/pubmed/28315359
http://dx.doi.org/10.1038/nrd3980
http://www.ncbi.nlm.nih.gov/pubmed/23535930
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Antibody-Drug Conjugates for Cancer Therapy: Chemistry to Clinical Implications
	Recommended Citation
	Authors

	Introduction 
	Composition of ADCs 
	Target and Antibody 
	Linker 
	Cleavable Linkers 
	Non-Cleavable Linkers 
	Rational Linker Design to Overcome Resistance 

	Payloads 
	DNA Damaging Agents 
	Tubulin Polymerization Inhibitors 


	Conjugation 
	Via Side Chain Cystine Residues 
	Via Side Chain Lysine Residues 
	Drug Antibody Ratio (DAR) 
	Site Specific Conjugation 
	Engineering of Side Chain Cysteine Residues 
	Incorporation of Unnatural Amino Acids (unAA) 
	Enzymatic Site-Specific Conjugation Processes 


	Clinical Trials 
	Future Directions 
	References

