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Abstract: Greenhouse gas emissions have increased rapidly since the industrial revolution. This has
led to an unnatural increase in the global surface temperature, and to other changes in our environment.
Acknowledging this observation, the United Nations Framework Convention on Climate Change
started an international environmental treaty. This treaty was extended by Kyoto protocol, which was
adopted on 11 December 1997. Using the stochastic frontier analysis, we analyze the efficiencies of
countries in terms of achieving the lowest greenhouse gas emission levels per GDP output in the years
between 1990–2015. We find that the average greenhouse gas emission efficiencies of world countries
for the time periods 1990–1997, 1998–2007, 2008–2012, and 2013–2015 are 82.40%, 90.37%, 89.54%, and
84.81%, respectively. Moreover, compared to the 1990–1997 period, 92.50%, 79.51%, and 59.84% of
the countries improved their greenhouse gas emission efficiencies in the 1998–2007, 2008–2012, and
2013–2015 periods, respectively. Hence, the Kyoto protocol helped in increasing greenhouse emission
efficiency. However, this efficiency-boosting effect faded away over time.

Keywords: eco-efficiency; greenhouse gas; Kyoto protocol; stochastic frontier analysis; pollution

1. Introduction

Greenhouse gases (GHG) have important environmental and health consequences. For example,
they impede upon the process of infrared radiation leaving the earth’s atmosphere, which warms
the surface of the planet. This can disturb the delicate balance in nature. In particular, warmer
weather would worsen a variety of disasters and lead to disturbances including: reduced access to
clean drinking water, more acidic oceans, droughts, floods, heat waves, storms, dust storms, etc. The
increase in the intensity of rains may lead to the contamination of drinking water and increase in mold
infestation, which in turn may lead to a variety of relate diseases. Moreover, greenhouse gases may
directly contribute to respiratory diseases due to air pollution.

Related to these concerns, in 1992, the United Nations Framework Convention on Climate Change
(UNFCCC) opened for signatures for an international environmental treaty, which entered in force in
1994. The UNFCCC aimed at stabilizing greenhouse gas emissions to avoid their dangerous effects.
Although the treaty does not have any enforcement mechanism, it describes how international protocols
may be negotiated between relevant parties. On 11 December 1997, the Kyoto protocol established
legally binding responsibilities for developed countries regarding their greenhouse gas emissions.
The protocol consisted of two commitment periods, 2008–2012 and 2013–2020. Late in 2015, the Paris
agreement was adopted, which effectively replaced the Kyoto protocol and aimed to control global
greenhouse emissions toward the objective of lowering global warming to below 2 ◦C above the
pre-industrial levels of 1750, and pursued efforts to limit it to 1.5 ◦C.

Despite these global attempts to slowdown greenhouse gas emissions, the amount of greenhouse
gas emissions increased about 41.1% between 1990–2016. In line with this, the average global
surface temperature increased about 0.57 ◦C in this time period. To put some of the consequences
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of global climate change in numbers, we note that relative to 1981–2010 averages, the Arctic sea ice
is declining at a rate of 12.85% per decade; and based on 1993–2020 satellite data, the sea levels are
increasing 3.3 mm per year. We obtained the climate data from https://climate.nasa.gov/vital-signs and
https://www.climatewatchdata.org.

The GHG emission levels are closely related to the production of countries, which may be measured
by their (real) gross domestic products (GDP). Hence, it is essential to understand the production
technologies of countries that represent the production process of good (e.g., GDP) and bad (e.g.,
pollutants) outputs. There is a reasonably large literature on modeling production technologies and
performance benchmarking in the presence of undesirable (bad) outputs. Two paradigms are prevalent
in the literature, one involving parametric models that would be estimated using econometrics (e.g.,
stochastic frontier models); and one using mathematical programming methods (e.g., data envelopment
analysis (DEA)). We utilize the parametric approach, i.e., stochastic frontier analysis.

The literature has myriads of papers that use variations of DEA approach. Some examples to such
studies that are related GHG emissions include [1–6]. Mukherjee [1] applied a directional distance
function approach to measure energy efficiency of the manufacturing sector in India; and concludes that
the states may increase output while reducing energy inputs through technical efficiency improvements.
Molinos-Senante et al. [2] use DEA to measure the potential of reducing GHG emission in Spanish
wastewater treatment plants. Using a DEA approach, Sueyoshi and Wang [3] examine the operational
and environmental efficiencies of petroleum firms in the US. In their analysis, they assume that GHG
produced by these companies is an undesirable output. They find that the integrated companies
outperformed the independent companies. Vlontzos et al. [4] use DEA and directional distance
function approaches to determine efficiency with both GHG emissions and without such emissions.
Emrouznejad et al. [5] suggest an inverse DEA model for optimally allocating CO2 emissions quota
in the Chinese manufacturing industries. Using an inverse DEA approach, Wegener and Amin [6]
examine GHG emission efficiency in the oil and gas sector. They argue that there is a room for efficiency
improvement. Among others, see also [7–24] for studies that model production technology with
desirable (good) and undesirable (bad) outputs. Moreover, Dakpo et al. [25] provide an excellent
literature review on modeling pollution-generating technologies.

Examples to the studies that estimate GHG emission efficiency (with different definitions) for
the world countries include [15,16,18,21]. In line with these studies, we estimate the greenhouse gas
emission efficiencies of 122 countries between 1990–2015. The GHG emission efficiency is a measure of
how successful the countries are in terms of keeping their GHG emission levels low relative to their
production levels. In particular, we assume that the countries try to minimize GHG emission to real
gross domestic product (GDP) ratio given their inputs; and using stochastic frontier analysis techniques,
we estimate the radial distance of observed value and frontier (minimum) value of this ratio.

We find that the GHG emission efficiencies of countries mostly increased after the Kyoto protocol
adopted. However, this positive effect on efficiency decayed especially in the second commitment
period. The average and median GHG emission efficiencies are 87.22% and 87.81%, respectively.
The pre-Kyoto (1990–1997), pre-first commitment (1998–2007), first commitment (2008–2012), and
second commitment (2013–2015) average GHG emission efficiencies are 82.40%, 90.37%, 89.54%, and
84.81%, respectively (although the second commitment period is 2013–2020, our data ends in 2015).
The reduction of efficiency in the second commitment period suggests that countries may not be as
enthusiastic as in earlier days of the protocol.

2. Changes in Temperature, CO2 Equivalent Emission, Population, and Real GDP

Figure 1 shows the changes in the global land-ocean temperature index (NASA’s Goddard Institute
for Space Studies) relative to 1990 and growths of the total global GHG emission, global population,
and global real (2010 dollars) GDP relative to 1990. Between 1990–2016, the global surface temperature
increased 0.57 ◦C (between 1970–2016 the increase is 1 ◦C); the global GHG emission increased 41.1%;
the global population increased 40.6%; and the global real GDP increased 105.4%. Therefore, the

https://climate.nasa.gov/vital-signs
https://www.climatewatchdata.org
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global GHG emission increased at similar rates with the global population and the global real GDP
increased at a much faster rate. Based on this, we can either measure the GHG emission efficiencies of
countries for given output (real GDP) levels or population. Since GDP is related to production, we
prefer measuring efficiency relative to real GDP.

Figure 1. Historical World Data for Population, GHG Emission, Real GDP, and Temperature.

3. Materials and Methods

The GHG emission efficiency measure assumes that a country minimizes GHG emission to output
(real GDP) given input levels. Then, the GHG emission efficiency is measured by the radial distance
of observed GHG/GDP to the GHG/GDP possibility frontier, which represents the lowest amount of
GHG/GDP possible for given input levels. The country specific GHG emission efficiency estimates are
based on a benchmarking method—the so-called stochastic frontier analysis—which assumes that the
inefficiency is an unobserved random variable that represents the radial distance from the relevant
frontier. In this section, we first describe our dataset; then we describe our estimation methodology;
and finally, we present the estimation results.

3.1. Data

The GDP data is obtained from the International Monetary Fund (IMF) website (https://www.imf.
org/), which is measured in billions of constant 2011 international dollars. The pollution output is the
total greenhouse gas emissions including land use change and forestry (LUCF) measured in tonnes of
CO2 equivalents based on 100-year global warming potential factors for non-CO2 gases. This dataset
is obtained from climatewatchdata.org. (http://cait.wri.org and https://www.climatewatchdata.org)
We dropped countries with average GHG emission levels that are smaller than 10,000 tonnes, as
these countries are probably very different from the rest of the countries in terms of their production
structures and scales. The input variables are labor (L), capital (K), and energy (E). The labor input is the
total labor force, which is obtained from the World bank website; the capital input (sum of government,
private, and public-private capital stocks) is measured in billions of constant 2011 dollars, which is
obtained from the IMF website; and the energy input is the energy use in tonnes of oil equivalent,
which is obtained from the World bank website. The population (POP) data is obtained from the World
Bank website. (https://data.worldbank.org) The final dataset includes 122 countries and covers the
years between 1990–2015. In Table 1, we provide descriptive statistics of our data set.

https://www.imf.org/
https://www.imf.org/
http://cait.wri.org
https://www.climatewatchdata.org
https://data.worldbank.org
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Table 1. Descriptive statistics.

Variable Unit Mean Std. Dev. 5th Perc. Median 95th Perc.

GHG Million tonnes 315.86 903.79 7.31 69.02 1266.66
GDP Billion dollars 578.10 1611.86 11.08 110.66 2397.32

L Million 22.09 77.10 0.49 4.79 67.37
K Billion dollars 1264.48 3544.88 19.69 195.31 5692.87

E Million kg oil
equivalent 85.42 271.69 1.69 15.89 305.71

POP Million 48.70 154.07 1.11 10.55 148.52

# of Obs. 3048

3.2. Econometric Model

In the efficiency analysis literature, there are two widely used methods: data envelopment analysis
and stochastic frontier analysis. In this study, we use the latter. Stochastic frontier models were
introduced by Aigner et al. [26] and Meeusen andvan den Broeck [27]. Jondrow et al. [28] presented a
way to estimate firm specific technical efficiency. However, these models do not assume time-varying
efficiency. Among others, [29–35] exemplify stochastic frontier models that allow time-varying
efficiency (see Kumbhakar and Lovell [36] for an excellent literature review on earlier stochastic
frontier models). In the panel data context, Greene [37,38] criticizes these models for not disentangling
heterogeneity and efficiency, and argues that if the productive unit heterogeneity is not controlled in
the estimation, it can be confused with inefficiency. He suggests controlling heterogeneity by panel
unit specific fixed effects or random effects; and presents computationally feasible ways to obtain
parameter estimates. He calls these models true fixed effects (TFE) and true random effects (TRE),
respectively (see also [39–41] for studies that disentangle heterogeneity and efficiency; see [42] for more
details about heterogeneity in stochastic frontier models). In this study, we use the true fixed effects
model of Greene. McCarthy and Kutlu [43] illustrate negative consequences of ignoring heterogeneity
via an empirical example in the airport efficiency context. Since in our setting GHG to real GDP ratio is
minimized, our model is akin to a stochastic cost frontier model. Hence, below, we summarize the
true fixed effects model in the context of GHG emission efficiency, which is similar to a stochastic cost
frontier model.

Consider the following stochastic frontier function:

yit = αi + x′itβ+ vit + uit, (1)

where yit = ln(GHGit/GDPit) is the logarithm of ratio of GHG and GDP for country i at time t; αi
is the country fixed effects; xit is a vector of exogenous frontier variables; vit ∼ N(0, σ2

v) is the usual
error term; and uit = exp(z′itγ)u

∗

it so that u∗it ∼ N+(0, 1) and zit is a vector of exogenous variables that
explain GHG emission efficiency. Here, N(., .) and N+(., .) are normal and half-normal distributions,
respectively. In line with Greene [19,20], we assume that vit and u∗it are independently and identically
distributed. We estimate the efficiency by:

Effit = E[exp(−uit)
∣∣∣εit], (2)

where εit = vit + uit is the composed error term. An alternative and widely used estimator of efficiency
is given by:

Effit = exp(−E[uit
∣∣∣εit]) (3)

In practice, when estimating efficiency εit is replaced by
ˆ
εit = yit − α̂i − x′itβ̂ where α̂i and β̂ are the

corresponding parameter estimates.
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3.3. Empirical Model

In line with a conventional production function, we assume that the GHG to GDP ratio is a
function of inputs: labor, capital, and energy. Moreover, we include (logarithm of) population as a
control variable. Among others, the population variable would control for non-labor force factors
that can contribute to the production. Additionally, population controls for size of a country. As
described in the econometric model section, we also control for the country fixed effects in order to
control heterogeneity so that our efficiency measure does not confuse country specific fixed factors
(technological or other time-invariant differences) with inefficiency.

When modeling the distribution of inefficiency, we considered three different models. In the first
model, the distribution of the inefficiency term is modeled via the trend term. In the second model, the
distribution is modeled via two dummy variables each corresponding to an important time period:
D1998_2007 and D2008_2015. The first dummy variable represents the time period between adoption
date (11 December 1997) and the first commitment period (1998–2007) (since 11 December 1997 is close
to 1998, we start the first commitment period from 1998); and the second (2008–2015) dummy variable
represents the first and second commitment periods (note that our dataset ends in 2015). In the third
model, D2008_2012 and D2013_2015 dummy variables represent the first and second commitment
periods, respectively.

4. Results

The estimation results are given in Table 2. For all three models, most of the frontier parameters
are statistically significant at 0.01 or 0.001 levels. Frontier parameter estimates are similar. In particular,
the pairwise correlations of frontier parameters are above 0.99. The signs of inefficiency parameters are
not conflicting with each other. For all models, we find that the GHG emission efficiency increased
after Kyoto protocol. Model 2 and Model 3 estimates suggest that although there is efficiency gain after
Kyoto protocol, in the second commitment period the efficiency gain is smaller relative to earlier years
of Kyoto protocol. Hence, it seems that initial efficiency gain effect of Kyoto protocol has faded away
over time. In what follows, we will use Model 3 as our benchmark model. However, this positive
effect on efficiency decayed especially in the second commitment period. The average and median
GHG emission efficiencies are 87.22% and 87.81%, respectively. Moreover, the average GHG emission
efficiencies for the time periods 1990–1997, 1998–2007, 2008–2012, and 2013–2015 are 82.40, 90.37%,
89.54%, and 84.81%, respectively. In line with this, compared to the 1990–1997 period, 92.50%, 79.51%,
and 59.84% of the countries improved their GHG emission efficiency levels in the 1998–2007, 2008–2012,
and 2013–2015 periods, respectively. Finally, compared to the 1990–1997 period, 61.67%, 59.07%, and
45.90% of the countries improved their GHG emission efficiency levels at least 5 percentage points in
the 1998–2007, 2008–2012, and 2013–2015 periods, respectively.
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Table 2. Estimation results for greenhouse gases (GHG) emission efficiency model.

Model 1 Model 2 Model 3

ln(GHG/GDP) Coeff. S.E. Coeff. S.E. Coeff. S.E.
ln(L) 0.0315 0.1039 0.0353 0.1050 0.0293 0.1063
ln(K) −0.1436 0.0302 *** –0.1439 0.0301 *** –0.1440 0.0302 ***
ln(E) 0.3628 0.0324 *** 0.3642 0.0325 *** 0.3634 0.0325 ***

T −0.0191 0.0014 *** –0.0259 0.0013 *** –0.0264 0.0016 ***
0.5 × ln(L)2 −0.1485 0.0404 *** –0.1547 0.0407 *** –0.1549 0.0408 ***
0.5 × ln(K)2 0.0893 0.0278 *** 0.0967 0.0274 *** 0.0970 0.0274 ***
0.5 × ln(E)2 −0.1413 0.0452 ** –0.1422 0.0451 ** –0.1424 0.0453 ***

0.5 × T2 −0.0019 0.0002 *** –0.0022 0.0002 *** –0.0023 0.0003 ***
ln(L) × ln(K) 0.0133 0.0187 0.0143 0.0186 0.0146 0.0187
ln(L) × ln(E) 0.1898 0.0302 *** 0.2006 0.0305 *** 0.2014 0.0307 ***

ln(L) × T −0.0061 0.0011 *** –0.0060 0.0011 *** –0.0060 0.0011 ***
ln(K) × ln(E) −0.0423 0.0312 –0.0535 0.0308 –0.0542 0.0308

ln(K) × T 0.0045 0.0010 *** 0.0041 0.0010 *** 0.0041 0.0010 ***
ln(E) × T −0.0007 0.0012 –0.0002 0.0012 –0.0002 0.0012
ln(POP) −0.0377 0.1204 –0.0319 0.1214 –0.0227 0.1234

σv
Constant −3.4049 0.0412 *** –3.4925 0.0662 *** –3.5034 0.0803 ***

σu
T −0.2251 0.0277 *** - - - - - -

D1998_2007 − - - - - - –1.3956 0.1948 ***
D2008_2012 − - - - - - –1.2147 0.3915 **
D1998_2012 − - - –1.3935 0.1931 *** - - -
D2013_2015 − - - –0.5455 0.2335 * –0.4154 0.3355

Constant −4.5389 0.2840 *** –2.6561 0.1588 *** –2.6648 0.1606 ***
Ave. Efficiency 90.19 87.41 87.23
Log-likelihood 495.9877 489.8614 490.0955

Note: standard errors are given in parenthesis. * p < 0.05, ** p < 0.01, *** p < 0.001.

While the mean and median efficiency information are useful, to have a better idea about the
distribution of the GHG emission efficiencies, we provide the histogram of GHG emission efficiency
estimates in Figure 2. As it can be seen from the histogram, for a large number of observations the
efficiency is at least 80%. In particular, 43.80% of the observations would have at least 90% efficiency;
88.02% of the observations would have at least 80% efficiency; and 97.24% of the observations would
have at least 70% efficiency.

Figure 2. Histogram of GHG Emission Efficiency Estimates.

In order to give a better idea about country-specific nature of GHG emission efficiencies, in Table 3,
we present the average GHG emission efficiency levels of countries for different time periods. In the
table, we show the European Union countries in bold font. At the beginning of 2005, the European
Union member countries launched a CO2 emissions trading scheme [5]. Out of 22 European Union
countries in our sample, 7 of the countries (Austria, Croatia, Finland, Greece, Italy, Portugal, and
Spain) had lower (average) GHG emission efficiency levels in 2005–2015 period compared to 1990–2004
period. Croatia showed the most dramatic efficiency change (from 90.74–83.25%). For other countries,
the decrease in efficiency ranged from 0.67–2.61 percentage points. Compared to the pre-Kyoto period
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(1990–1997), in the pre-first commitment period (1998–2007), all European Union countries in our
sample improved their average GHG emission efficiencies. In the first commitment period (2008–2012),
only Croatia performed worse. This is partially due to the fact that Croatia was already somewhat
efficient to begin with. For the full sample time period, on average, Spain is the most GHG emission
efficient European Union country.

Table 3. Average GHG emission efficiency estimates.

COUNTRY 1990–1997 1998–2007 2008–2012 2013–2015 1990–2015 COUNTRY 1990–1997 1998–2007 2008–2012 2013–2015 1990–2015

Albania 80.42 90.84 91.48 87.26 87.34 Lithuania 74.60 91.02 91.89 90.00 85.86
Algeria 88.24 90.99 88.05 79.67 88.62 Luxembourg 74.57 91.57 90.28 89.54 85.86
Angola 73.29 88.76 93.79 93.16 85.17 Malaysia 68.62 86.09 94.00 95.65 82.85

Argentina 86.81 90.12 89.54 86.13 88.62 Malta 84.81 91.53 88.49 83.99 88.17
Armenia 66.70 91.76 91.86 87.49 83.42 Mauritius 90.87 90.04 86.85 78.33 88.73
Australia 84.05 90.17 90.68 89.78 88.34 Mexico 88.11 91.32 87.47 81.38 88.44
Austria 86.69 90.86 89.26 84.18 88.50 Moldova 81.73 90.16 91.29 89.75 87.65

Azerbaijan 79.66 87.99 92.41 88.22 86.23 Mongolia 77.37 89.08 92.78 93.57 86.43
Bahrain 88.21 90.83 88.48 80.12 88.67 Morocco 90.02 90.79 85.86 77.79 88.52

Bangladesh 80.54 90.81 91.45 88.99 87.50 Mozambique 77.78 91.17 91.64 86.23 86.58
Belarus 71.78 91.11 92.22 82.26 84.44 Myanmar 72.96 90.40 92.47 91.18 85.29

Belgium 81.77 90.86 91.17 87.74 87.76 Namibia 82.73 91.18 89.00 89.21 88.10
Benin 78.75 91.12 91.14 88.37 86.95 Nepal 77.73 89.64 92.86 89.46 86.46

Bolivia 83.06 90.90 89.24 89.50 87.95 Netherlands 80.06 91.58 90.76 85.48 87.18

Botswana 73.28 85.12 94.75 91.03 83.73 New
Zealand 86.93 90.85 89.22 83.76 88.51

Brazil 80.33 88.85 93.07 91.92 87.21 Nicaragua 77.38 88.39 89.86 95.77 85.75
Bulgaria 85.20 91.29 88.96 84.47 88.33 Niger - 91.82 88.08 84.41 89.59

Cambodia 83.08 89.82 91.49 90.42 89.29 Nigeria 69.50 90.17 93.22 90.93 84.23

Cameroon 87.59 90.81 87.37 81.83 88.38 North
Macedonia 88.32 90.09 89.32 84.64 88.93

Canada 87.43 90.35 89.93 83.97 88.63 Norway 76.27 90.97 91.53 88.51 86.27
China 80.99 90.80 91.16 89.60 87.63 Oman 92.26 90.15 81.54 65.56 87.13

Colombia 84.07 88.41 90.91 94.01 87.97 Pakistan 88.37 91.17 87.46 78.71 88.53
Congo, Dem.

Rep. 89.76 87.94 89.48 90.08 89.00 Panama 80.37 90.65 91.56 89.68 87.46

Congo, Rep. 80.92 89.72 89.61 89.49 86.87 Paraguay 89.70 91.02 84.08 76.27 88.03
Costa Rica 38.17 85.65 94.28 95.74 72.99 Peru 86.35 90.50 89.38 87.88 88.74

Cote d’Ivoire 82.56 89.33 87.28 86.59 86.53 Philippines 88.06 88.86 88.40 92.09 88.77
Croatia 89.85 91.19 84.33 70.55 87.74 Poland 75.08 90.97 92.31 86.79 85.86
Cyprus 84.78 91.20 89.92 82.82 88.22 Portugal 88.29 90.71 89.19 80.23 88.47
Czech

Republic 82.38 90.90 90.78 87.96 87.92 Qatar 83.60 90.05 91.57 89.14 88.22

Denmark 80.19 90.99 90.87 89.44 87.46 Russian
Federation 84.58 90.19 90.89 86.75 88.26

Dominican
Republic 91.46 89.50 86.13 78.45 88.57 Saudi

Arabia 90.28 90.84 85.55 76.93 88.49

Ecuador 83.19 90.92 90.48 88.00 88.13 Senegal 85.66 90.72 90.31 84.27 88.50
Egypt, Arab

Rep. 87.70 90.93 88.74 80.50 88.62 Singapore 77.05 90.19 92.55 90.89 86.51

El Salvador 88.27 91.29 86.88 79.05 88.46 Slovak
Republic 73.19 90.87 92.25 90.34 85.63

Estonia 80.36 91.52 89.62 82.16 86.64 Slovenia 81.60 91.98 88.36 83.27 87.09

Ethiopia 83.51 89.96 91.31 89.84 88.15 South
Africa 88.24 91.10 87.69 79.08 88.54

Finland 86.35 91.35 88.44 76.24 87.51 Spain 87.74 90.47 89.68 83.97 88.73
France 81.65 91.10 90.54 87.98 87.72 Sri Lanka 70.06 91.32 92.32 90.55 84.66

Georgia 73.17 91.74 90.73 81.95 84.81 Sudan 91.13 89.75 85.74 81.75 88.75
Germany 84.62 91.35 89.68 83.93 88.10 Suriname - 90.20 90.23 84.16 89.40

Ghana 82.74 85.14 93.61 87.15 86.23 Sweden 68.31 90.94 82.60 76.70 80.73
Greece 86.73 91.42 88.85 79.33 88.09 Switzerland 84.76 90.91 90.24 86.05 88.33

Guatemala 84.50 90.26 90.40 90.13 88.44
Syrian
Arab

Republic
85.66 91.73 88.73 69.47 87.41

Haiti 91.80 89.75 84.94 73.43 88.14 Tajikistan 83.48 90.28 89.98 85.70 87.68
Honduras 77.65 90.85 91.81 88.06 86.60 Tanzania 74.48 90.12 92.68 92.76 85.84
Hungary 83.88 90.96 90.47 86.29 88.15 Thailand 86.33 90.95 89.36 83.11 88.53
Iceland 80.54 90.85 91.18 88.87 87.51 Togo 87.84 90.96 87.61 81.48 88.53

India 79.91 91.03 91.29 88.40 87.31 Trinidad
and Tobago 78.53 92.07 89.77 83.48 86.59

Indonesia 82.66 90.40 90.53 86.97 87.67 Tunisia 85.57 90.99 89.88 83.68 88.45
Iran, Islamic

Rep. 89.39 91.04 86.95 73.24 88.27 Turkey 86.67 91.01 89.14 84.15 88.53

Iraq 64.08 92.91 90.16 82.14 82.27 Ukraine 85.46 90.13 90.45 83.36 88.16

Ireland 71.29 91.30 91.93 89.15 85.02
United
Arab

Emirates
82.70 91.41 89.98 84.85 87.81

Israel 86.92 90.84 89.19 84.93 88.64 United
Kingdom 80.09 91.20 90.82 88.39 87.38

Italy 88.12 90.94 88.42 82.22 88.58 United
States 83.79 91.37 90.03 84.49 87.99

Japan 89.37 91.33 87.04 71.36 87.60 Uruguay 94.83 82.96 78.80 63.24 84.35
Jordan 77.58 91.71 91.21 83.44 86.43 Uzbekistan 85.92 89.38 91.29 91.11 88.70

Kazakhstan 76.82 91.61 90.67 87.81 86.38 Venezuela,
RB 83.73 89.44 91.97 84.63 87.86

Korea, Rep. 84.68 91.42 89.53 83.75 88.10 Vietnam 94.28 86.79 79.41 69.37 87.03

Kuwait 81.23 91.41 88.07 79.28 87.23 Yemen,
Rep. 89.17 91.42 84.41 69.58 88.30

Kyrgyz
Republic 89.16 89.87 76.44 81.51 86.29 Zambia 74.39 89.78 93.54 93.34 85.58

Lebanon 89.42 89.80 89.09 80.77 88.82 Zimbabwe 91.75 87.99 85.68 87.70 88.75
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5. Discussion

In this section, we compare our model and findings with some of the related studies’ models
and findings.

Herrala and Goel [15] examine global CO2 efficiency by employing a stochastic frontier analysis
of 170 countries in 1997 and 2007. In contrast to our model, the dependent variable of their stochastic
frontier models is the logarithm of CO2 emission. Note that we consider total CO2 equivalent GHG
emissions rather than CO2. Hence, their model ignores other greenhouse gas pollutants. The frontiers
of their models include the logarithm of GDP and some control variables such as logarithms population
and area. However, unlike our model, their model does not include input variables for production.
Hence, their measure of efficiency ignores input variables. Their findings suggest that relative to 1997
the average CO2 emission efficiencies of countries increased in 2007. This is in line with our findings.
However, their average efficiency estimates are much lower than ours. In particular, the average of their
efficiency estimates range between 40–64% depending on year and the variation of their model. These
average efficiency values seem to be somewhat low compared to conventional efficiency studies. This
may be due to the fact that the authors do not control for heterogeneity of countries as suggested by
Greene [19,20]. Greene argues that when heterogeneity is ignored it may be confused with inefficiency.

Robaina-Alves et al. [18] examine GHG emission efficiency of 26 countries between 2000–2011.
The dependent variable in their model is the ratio of real GDP and GHG emissions, which is similar to
ours. Hence, in their scenario they assume that the countries try to maximize this ratio. They estimated
their model using a variety of different estimation methods (i.e., maximum likelihood estimation
method, generalized maximum entropy, generalized cross-entropy). In contrast to our model, their
model has four input variables and assumes the Cobb-Douglas functional form, which is not commonly
used in the stochastic frontier literature due to the fact that this is not a flexible functional form. In line
with our paper, this paper also examines the effects of the Kyoto protocol by comparing 2000–2004
and 2005–2011 periods. They argue that Hungary, Slovenia, Portugal, and Ireland had significant
improvements in terms of their efficiency rankings compared to first time period (i.e., 2000–2004).
Additionally, within their sample countries, they state that Sweden, Latvia, UK, Portugal, and Cyprus
are the six most efficient countries.

Valadkhani et al. [21] examine environmental and economic efficiencies of world’s major polluters
for 2002, 2007, and 2011. In contrast to us, they use a multiplicative environmental data envelopment
analysis approach to measure efficiency, which is a non-parametric method. They find that for most of
the countries the overall efficiency scores increased between 2002–2011. However, they do not provide
a clear answer in terms of overall environmental efficiency. In contrast to our study, which considers
122 countries over 26-year period, Valadkhani et al. [21] consider 46 countries for a three-year period.
Their method and concentration are different; and so, our study complements theirs.

Another related study is Jin and Kim [16], which study the carbon emission efficiency of 21
emerging countries between 1995–2016. Similar to us, they estimate a true fixed effects stochastic
frontier model where the dependent variable is carbon emission amount and frontier variables are
energy consumption, capital, labor force, and economic complexity index. Hence, their efficiency
measure purely concentrates on carbon emission rather than ratio of GHG to real GDP. Unlike us, they
use the Cobb-Douglas functional form for estimations, which is not a flexible functional form. Since
the frontier of their production function is missing the second order terms from a Translog functional
form, if these second order terms are relevant, dropping them may have contaminated the inefficiency
estimates. Their efficiency estimates for 21 countries range between 70.9–91.8%, which seems to be
a reasonable.

6. Conclusions

We examined the GHG emission efficiencies of world countries between 1990–2015. This is a
particularly interesting time period because of increased global awareness about consequences of GHG
emissions. Adoption of the Kyoto protocol is one of the evidences of such awareness. We showed
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that the adoption and implementation of the Kyoto protocol helped the environment in terms of
keeping their GHG emission relative to their (real) GDP. However, over time the extend of efficiency
improvement decreased. This indicates that world countries must find ways to keep their enthusiasm
for greenhouse emission reduction at high levels.

Finally, note that in this paper we concentrated on GHG emission efficiency rather than the total
GHG emission amounts. Hence, for given input levels, as long as the GHG emission grows slower
than real GDP, the efficiency would improve. Therefore, although, in general, the GHG emission levels
increased over time, we still observed some increase in efficiency levels. One potential way to improve
the GHG emission efficiency levels is investing in environment friendly production technologies, which
can shift the GHG emission to the real GDP frontier. That is, this way they can produce the same amount
of good output while lowering the bad output amount. The governments may set environmental
taxes. This would introduce incentives for companies to research and invest in environmentally
friendly technologies. Collected environmental taxes may be redistributed as subsidies in the form of
grants, loans with low interest, procurement mandates, better tax treatments, etc. Caruso et al. [44]
argue that individual well-being and public awareness may stimulate a greater demand for energy
obtained from renewable sources [45], which in turn may improve GHG emission efficiency. Therefore,
policymakers should not only use incentive/disincentive tools (e.g., subsidy and tax) but also promote
public awareness about renewable-energy economies.
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