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We introduce a new two-side approximation method for the channel scheduling problem, which controls the accuracy of
approximation in two sides by a pair of parameters (f, g). We present a series of simple and practical-for-implementation greedy
algorithms which give constant factor approximation in both sides. First, we propose four approximation algorithms for the
weighted channel allocation problem: 1. a greedy algorithm for the multichannel with fixed interference radius scheduling
problem is proposed and an one side O(1)-IS-approximation is obtained; 2. a greedy (O(1), O(1))-approximation algorithm for
single channel with fixed interference radius scheduling problem is presented; 3. we improve the existing algorithm for the
multichannel scheduling and show an |E|O(d/ε) time (1 − ϵ)-approximation algorithm; 4. we speed up the polynomial time
approximation scheme for single-channel scheduling through merging two algorithms and show a (1 − ϵ, O(1))-approximation
algorithm. Next, we study two polynomial time constant factor greedy approximation algorithms for the unweighted channel
allocation with variate interference radius. A greedy O(1)-approximation algorithm for the multichannel scheduling problem and
an (O(1), O(1))-approximation algorithm for single-channel scheduling problem are developed. At last, we do some experiments
to verify the effectiveness of our proposed methods.

1. Introduction

An important problem in wireless network is to develop
efficient algorithms for maximum throughput by scheduling
channels among many nodes. Based on the Shannon ca-
pacity formula, we can know that there is a minimum SINR
required for each user in the network of wireless commu-
nication, as the existence of signal propagation loss during
the process of data transmission; when the distance of a
communication user pair is larger than the threshold, the
effect of the received power in the receiver can be neglected
because the receiver’s SINR is less than the threshold. +ere
is an interference between two users in the same channel
when their distance is less than a certain distance. Given a set
of users, we find a way which schedules a maximal number

of them without introducing interference between any two
of them. +e weighted version of this problem is to achieve
the sum of maximal weights for the users assigned channels
for communication. +e channel scheduling problem is NP-
hard even in the single-channel model [1] and has been
studied in a series of papers (for example, [2–4]). According
to IEEE standard 802.11a, there are 13 orthogonal channels
provided for wireless network [5]. +e multichannel or
multi-radio scheduling problem is essential to guarantee the
performance of wireless networks.

A channel scheduling problem for a given graph G(V, E)

is to select an edge subset E′ ∈ E and assign a channel to each
edge in E′ under the restriction so that all edges in E′ are
interference-free. +e node exclusive interference model has
been studied in many articles (for example, [6–12]). +e
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algorithms for the single-channel or single-radio scheduling
are reported in [13, 14]. For the model not allowing two
communication edges to share the same node, the optimal
scheduling problem is converted into matching problem
[15–17] which has a polynomial time solution. Some ap-
proximation algorithms for single channel were reported in
[18] which show the existence of a theoretical polynomial
time approximation scheme for the single-channel assign-
ment. A simple greedy algorithm which is easy to implement
is shown to have a constant factor approximation [18] for the
single-channel assignment.

+e theoretical research about the multichannel
scheduling has been reported in [19–23]. In [4], they for-
mulate the channel allocation problem as an NP-hard non-
linear integer programming problem and then propose a
probabilistic polynomial time (1 − (1/e))-approximation
algorithm based on linear programming. A joint approach
between routing and channel scheduling is shown in [24].
Some constant factor approximation algorithms are shown
in [25] for assigning a minimum number of channels for a
conflict-free communication, which are also NP-hard
[26, 27].

A polynomial time approximation scheme was devel-
oped in [28] for multi-radio and multichannel wireless
network with very high computational complexity |E|O(d/∈2)

for (1 − ϵ)-approximation, where d is the number of
channels. +is theoretical result is not practical for
implementation.

A maximal independent set problem based on joint
scheduling and routing optimization is studied in [2], which
is a mixed integer non-linear programming NP-hard
problem. It developed a column generation based ϵ-ap-
proximation-bounded approximation algorithm, which can
find tight ϵ-bounded approximate solutions and the optimal
solutions.

We introduce the notion of two-side approximation for
the channel scheduling problem. A pair of parameters (f, g)

controls the accuracy of approximation in this paper. A
(f, g)-approximation satisfies e∈E′W(e)≥
e∈Opt(W(e)/f) and e∈E− E′W(e)≤ ge∈E− Opt∗W(e),
where Opt∗ is the set of edges assigned channels in an
optimal solution and W(e) is the weight of edge e. A
f-approximation satisfies e∈E′W(e)≥ (e∈OptW(e)/f).
Our two-side approximation approach combines two
complementary problems. +e first one is to maximize the
total weights of communication edges that have been
assigned channels, and the second one is to minimize the
total weight of edges that do not receive channel for com-
munication. It brings a more accurate tool for the ap-
proximation algorithms for the channel scheduling problem.

As the approximation scheme developed by Cheng et al.
[28] has very high computational complexity, it is impossible
to implement with software. Finding simple and efficient
algorithm for the multichannel scheduling problem is still a
challenging research topic. We show that a simple greedy
algorithm can obtain an (O(1), O(1))-approximation for
the single-channel scheduling problem. In many cases, the
greedy algorithms give much more accurate results than the
worst ratio. Furthermore, we develop an |E|O(1/ϵ) time

(1 − ϵ, O(1))-approximation algorithm for the single-
channel scheduling problem. We also show that a simple
greedy algorithm satisfies e∈E′W(e)≥ (e∈OptW(e)/Ω(1)),
which can obtain an O(1)-approximation for the single-
channel scheduling problem. We also develop a |E|O(1/ϵ)

time (1 − ϵ)-approximation algorithm for the multi-channel
scheduling problem.

Our proposed multi-channel scheduling algorithm can
be used in many wireless systems in which the number of
users is larger than the number of subchannels; this case is
considered in [29] where they study the channel assignment
problem in uplink wireless communication system. It also
can be used in the distributed data transmission system with
limited communication resources, which is shown in [30].
+e proposed methods are also suitable for channel as-
signment problem in the cellular-VANET heterogeneous
wireless networks, which is studied in [25]. Our proposed
channel scheduling approach has a wide range of applica-
tions and can be applied to different wireless resource al-
location scenarios.

We also develop a polynomial time constant factor
greedy approximation algorithm for the multi-channel
scheduling that allows variate interference radius among
those nodes. +e paper is organized as follows: in Section 2,
we present approximation algorithms for the weighted
scheduling problems. +e interference range is determined
by a uniform parameter t, but the edges of communication
have different weights. In Section 2.2, we show that a greedy
algorithm for multi-channel assignment has a constant
factor approximation. In Section 2.3, we show a two-side
approximation algorithm for the single-channel assignment
problem and show that there does not exist such an ap-
proximation for the multi-channel assignment problem. In
Section 2.4, we give improved approximation schemes for
both single-channel and multi-channel assignment prob-
lems. In Section 3, we develop the approximation for the
unweighted channel assignment problem. +is is the case
that all the edges have weight 1, but the interference radius is
not fixed. Some simulation results for the greedy approxi-
mation algorithm for the multi-channel assignment are
given in Section 4. We draw conclusion in Section 5.

2. Weighted Channel Assignment

We develop approximation algorithms for the weighted
channel assignment. +e interference range is controlled by
a fixed parameter t. +e polynomial time approximation
scheme for multi-channel scheduling problem is based on
this model [28].

2.1. Definitions and Models. +e network is modeled as an
edge-weighted graph G(V, E), where V is the set of nodes
and E is the set of edges for traffic flow. +e weight of each
edge is often represented by the rate of network traffic. For
each e ∈ E, let W(e) be the weight of e.

Definition 1. Given an edge-weighted network graph
G(V, E), let d(u, v) denote the distance between nodes u and
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v. +e function d(u, v) can be either the geometric distance
between u and v in Euclidean space if V is a set of points in
Euclidean space or the hop distance between u and v in the
graph G. +e edge distance between two edges e1 � (u1, u2)

and e2 � (v1, v2) is defined by E D(e1, e2) �

mini,j∈ 1,2{ } d(ui, vj) . Note that the graph G(V, E) only
considers those edges E that need to do communication over
a wireless network. No silent edge is included in E.

A set E′ of edges is t-interference-free matching if
E D(e1, e2)> t for any two edges e and e′ in E′, where t is
distance threshold for interference.

A (multiple) channel assignment problem has a demand
graph G � (V, E) that requests communication for
(u, v) ∈ E. A wireless network may not have the resource to
satisfy the communications for all edges. A channel as-
signment algorithm selects a subset E′⊆E and assigns a
channel to each edge in E′ so that the edges in the same
channel form a t-interference-free matching, where t is
distance threshold for interference. When there is only one
channel available for the entire demand graph, the channel
assignment problem is called single-channel assignment
problem. Otherwise, it is called multi-channel assignment
problem.

A channel assignment for an edge e � (u, v) is repre-
sented by (e, K), where K is a channel. Assume that M is a
set of channel assignments. A channel assignment (e, K) is
interfered by M if there is a channel assignment (e′, K) ∈M

such that E D(e, e′)≤ t. Define M∗ to be the set of all edges e

with (e, K) ∈M for some channel K. If W(.) is the weight
function for the edges in G, define W(M∗) � e∈M∗W(e).
An optimal solution for a channel assignment problem G �

(V, E) with weight function W(.) is a set Opt of channel
assignments for edges such that W(Opt∗) is the maximum.

Definition 2. Assume that A is a set of channel assignments
for G.

Let τA(e) � maxK| e′: (e′, K) ∈ A andE D(e, e′)≤ t |.
Define τA(G) � maxe∈GτA(e).
Define τ(G) � maxAτA(G),

where τA(e) is the interference degree of an edge e ∈ E,
τA(G) is the interference degree of the graph G � (V, E),
and t is distance threshold for interference.

If the distance is the Euclidean distance and all nodes are
on the plane, then τ(G)≤ 11, which is shown in Lemma 1. If
the distance is the hop distance and all nodes are on the
plane, then τ(G)≤ 49, which was proved in [18]. +erefore,
τ(G) does not depend on the threshold.

Definition 3. Assume that G is a channel scheduling
problem. We define some measures for approximations.

(i) An f-IS-approximation App for the channel
scheduling problem satisfies the condition
W(App∗)≥ (W(Opt∗)/f).

(ii) A g-VC-approximation App for the channel
scheduling problem satisfies the condition
W(E − App∗)≤gW(E − Opt∗).

(iii) A (f, g)-approximation for the channel scheduling
problem satisfies the conditions W(App∗)≥
(W(Opt∗)/f) and W(E − App∗)≤gW(E − Opt∗).

Lemma 1. Assume that all nodes in the demand graph G �

(V, E) are points on a plane. 8en, τ(G)≤ 11 for the Eu-
clidean distance t as the threshold for the interference.

Proof. Let e � (u, v) be an edge in the graph G. +e distance
between u and v is at most t (otherwise, they cannot
communicate). Edge e and another edge e′ � (u′, v′) have
interference if one of u and v and one of u′ and v′ have
distance at most t. Let each node be a center of a circle of
diameter t/2 on a plane. Let C(p, r) represent a circle with
center at p and radius r. Let A be a channel assignment for G,
which gives a list of disjoint circles C1, · · ·, Cm such that each
node in those edges with channel assigned is a circle center.
Circle C(u, t/2) touches at most 6 circles among C1, · · ·, Cm,
and so does C(v, t/2). If both C(u, t/2) and C(v, t/2) touch 6
circles, there must exist at least one of them touched by both
C(u, t/2) and C(v, t/2) because the distance between u and v

is at most t.

2.2. Multiple Channel with Fixed Interference Radius
Scheduling. In this section, we present a greedy approxi-
mation algorithm for the multi-channel scheduling problem
shown in Algorithm 1. We can only show a one-side
O(1)-approximation for the multi-channel scheduling
problem.

In the multi-channel scheduling problem, we assume
that each node has d channels available for allocation. Two
nodes u and v can communicate if their corresponding edge
e � (u, v) is assigned a channel (the distance between u and v

is at most the threshold t) and has no interference with other
edges in the same channel.

We note that when there is a set F of edges that have been
assigned channels, it is straightforward to check if a new edge
e will be interfered at certain channel K. +is can be done by
checking E D(e, ei)≤ t for all ei ∈ FK, where FK is the subset
of edges in F assigned channel K.

For the case that all nodes are on a plane, and the
distance is either Euclidean distance or hop distance, the
following theorem gives a constant factor approximation for
the multiple channel assignment problem as τ(G) is
bounded by constants in both distances.

Theorem 1. 8e Algorithm 1 greedy-multi-channel (.) is a
g(α)-IS-approximation algorithm for the multi-radio multi-
channel scheduling problem and has the computational
complexity O(|E|2), where g(α) � (1 + (τ(G)/α) +

(2α/(1 − α))) and α �
����
τ(G)


/(

�
2

√
+

����
τ(G)


).

Proof. Assume that Opt is an optimal solution for the
channel scheduling problem. Let App be an approximate
solution derived by greedy-multi-channel (.).

For each edge g in Opt∗, assign an edge e, denoted by
H(g), in App∗ such that R(e) is the least among all edges
with interference with g. When the algorithm greedy-multi-
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channel (.) processes an edge e � (u, v), the available
channels for e are those which are not allocated to the edges
with end points at either u or v.

Claim 1. For each edge g in Opt, W(g)≤W(g′) for each g′
that is already processed before g.

Proof. It follows from the greedy algorithm which processes
the edges according the decreasing order of their weights.

Let d be the total number of channels. For each edge
e � (u, v) ∈ Opt∗ − App∗, we consider two cases. +e con-
stant α used in the two cases will be assigned later.

Case 1. +ere are at least αd channels available for the edge
e when e is processed. Such an edge e is of type 1.

In this case, since e is not assigned for a channel, there
must be at least α d edges e′ that are already assigned
channels and have E D(e, e′)≤ t. For such an edge e′ with
E D(e, e′)≤ t, let b(e, e′) � W(e)/α d. Since e′ is processed
before e in the algorithm, we have W(e)≤W(e′). +us,
b(e, e′)≤W(e′)/α d. Let b(e, e′) � 0 for all the other edges e′.
For each edge e of type 1, we have inequality



e′

b e, e′( ≥W(e). (1)

For each edge e′ in App∗, we have


e is of type 1

b e, e′( ≤d · τ(G) ·
W e′( 

α d
�
τ(G)W e′( 

α
� b1W e′( ,

(2)

where b1 � τ(G)/α.

Case 2. +ere are fewer than α d channels available for the
edge e � (u, v) when e is processed in greedy-multi-channel
(.). Such an edge e is of type 2.

For at least one of u and v, say u, there are at least ((1 −

α)d)/2 channels that are already assigned. For each edge e′
with an end point in u already assigned channels, let
b(e, e′) � (W(e)/ ((1 − α)d)/2) � (2W(e)/(1 − α)d)≤
(2W(e′)/(1 − α)d). Let b(e, e′) � 0 for all the other edges e′.
For each edge e′ ∈ App∗, we have


e is of type 2

b e, e′( ≤ (α d) ·
2W e′( 

(1 − α)d
�
2W e′( 

(1 − α)
� b2W e′( ,

(3)

where b2 � 2α/(1 − α). For each edge e of type 2,



e′

b e, e′( ≥W(e). (4)

Each edge in Opt∗ − App∗ is of either type 1 or type 2.
We have

W Opt∗ − App∗(  � 
e is of type 1

W(e) + 
e is of type 2

W(e)

≤ 
e is of type 1



e′∈App∗
b e, e′( 

+ 
e is of type 2



e′∈App∗
b e, e′( (by (1) and (1))

≤ 

e′∈App∗


e is of type 1
b e, e′( 

+ 

e′∈App∗


e is of type 2
b e, e′( 

≤ 

e′∈App∗
b1W e′( 

+ 

e′∈App∗
b2W e′( (by (1) and (1))

≤ b1 + b2( W App∗( .

(5)

We have

W Opt∗(  � W Opt∗ ∩App∗(  + W Opt∗ − App∗( 

≤W App∗(  + W Opt∗ − App∗( 

≤W App∗(  + b1 + b2( W App∗( (by(1))

≤ 1 + b1 + b2( W App∗( 

≤ 1 +
τ(G)

α
+

2α
(1 − α)

 W App∗( .

(6)

Input: a weighted graph G, and a distance parameter t for the largest distance of interference.
Output: L′
(1) Sort all edges by the increasing order of their weights and put those edges in a list L;
(2) Let L′ � ∅;
(3) Repeat;
(4) Select an edge e � (u, v) with the largest weight from L;
(5) If there is a channel K for e not being interfered by L′
(6) +en, assign the channel K to e and put (e, K) into L′;
(7) Remove e from L;
(8) Until L is empty;
(9) Return L′;

ALGORITHM 1: Greedy-multi-channel with fixed interference radius.
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Select the constant α so that (1 + (τ(G)/α)+

(2α/(1 − α))) is minimal. Let g(α) � (1 + (τ(G)/ α)+

(2α/(1 − α))) � (− 1 + (τ(G)/α) + (2/(1 − α))). Let g(α)′ �
(2/(1 − α)2) − (τ(G)/α2) � 0. We have α �

����
τ(G)


/(

�
2

√
+����

τ(G)


). +us, the ratio of approximation is g(α).

2.3. Single Channel with Fixed Interference Radius Scheduling.
In this section, we present a greedy (O(1), O(1)) approxi-
mation algorithm for the channel scheduling problem
shown in Algorithm 2. Our two-side approximation bound
for the greedy algorithm improves the one-side approxi-
mation bound in [18].

We note that when there is a set F of edges that have been
assigned channels, it is straightforward to check if a new edge
e will be interfered at certain channel K. +is can be done by
checking E D(e, ei)≤ t for all ei ∈ FK, where FK is the subset
of edges in F in channel K.

Theorem 2. 8e Algorithm 2 greedy-single-channel (.) is a
(τ(G), τ(G))-approximation algorithm for the single-channel
scheduling problem and has the computational complexity
O(|E|2).

Proof. Assume that Opt is an optimal solution for the
channel scheduling problem. Let App is an approximate
solution derived by greedy-single-channel (.).

For each edge g in Opt∗, assign a edge e, denoted by
H(g), in App∗ such that e has the largest weight among all
edges with interference with g.

Consider an edge e � (u, v) selected in App∗. Let A(e) �

e1, · · ·, em be the list of edges with H(ei) � e.

Claim 2. For each edge g in Opt, W(g)≤W(H(g)).

Proof. If g is in App∗, we consider an edge has interference
with itself. +us, it is trivial. By the definition of H(g), H(g)

has the largest of weight among all edges in Opt∗ with
interference with g.

Assume that g′ is the first edge in App∗ and has the same
channel with g ∈ Opt∗. Before selecting g′ for assigning a
channel, there is no interference between g and other edges
in App. +erefore, W(g′)≥W(g) (otherwise, g′ should not
be selected for channel assignment). Since H(g) has the
largest weight among all edges with interference with g in
App, we have W(H(g)) ≥W(g′)≥W(g).

Assume that App contains channel assignments for
edges e1, · · ·, em. Partition Opt∗ into A(e1), · · · , A(em). By
Claim 2, we have that

τ(G)W ei( ≥ τ ei( W ei( ≥ 

e′∈A ei( )

W e′( .
(7)

+erefore, we have τ(G)W(App∗)≥W(Opt∗). +us,
App is a τ(G)-IS approximation for G.

On the other hand, for each ei ∈ (E − Opt∗)∩App∗, we
always have τ(ei)W(ei)≥e′∈A(ei)

W(e′) (by Claim 2). For
each edge e′ in (E − App∗)∩Opt∗, there is an edge e ∈ App∗
such that e and e′ have the interference at the same channel
(otherwise, e′ would be assigned some channel by Greed1

(.)). Furthermore, e ∉ Opt∗ since e has interference with e′.
+erefore, there is an edge e∗ ∈ (E − Opt∗)∩App∗ such that
e′ ∈ A(e∗). By inequality (1), we have

W E − App∗( ∩Opt∗( ≤ τ(G)W E − Opt∗( ∩App∗( .

(8)

We have the inequalities:

W E − App∗(  � W E − App∗( ∩ E − Opt∗( ( 

+ W E − App∗( ∩Opt∗( 

≤W E − Opt∗( ∩ E − App∗( ( 

+ τ(G)W E − Opt∗( ∩App∗( (by(1))

≤ τ(G)W E − Opt∗( ∩ E − App∗( ( 

+ W E − Opt∗( ∩App∗( 

� τ(G)W E − Opt∗( .

(9)

+is gives W(E − App∗)≤ τ(G)W(E − Opt∗). +ere-
fore, greedy-single-channel (.) gives a (τ(G),

τ(G))-approximation.

Theorem 3. Let d(u, v) be the Euclidean distance and the
input has the geometric position of all nodes in a Euclidean
plane. 8e Algorithm 2 greedy-single-channel (.) gives a
(11, 11)-approximation for the single-channel scheduling
problem and runs in O(|E|) time.

Proof. For the implementation, we partition the plane into
grid of size t × t. When an edge is assigned a channel, put the
assignment into the corresponding grid for one of its two
nodes in the edge. When assigning a channel a new edge,
check the assigned edges in the nearby O(1) grids. +us,
each edge only costs an O(1) time.

If d(u, v) is defined to be the hop distance, then τ(G) is at
most 49, which is shown in [18]. If d(u, v) is the Euclidean
distance, we show that τ(G) is at most 11.

Theorem 4. Let d(u, v) be the hop distance in network graph
G(V, E). 8e Algorithm 2 greedy-single-channel (.) gives a
(49, 49)-approximation for the single-channel scheduling
problem and runs in O(|E|2) time.

Proof. It follows from +eorem 2 and the fact τ(G)≤ 49,
which is shown in [18]. A brute force implementation takes
O(|E|2) time.

For the multi-channel scheduling problem, we show that
it does not have two-side approximation unless P�NP.

Theorem 5. Assume that f(n) is a function from N to N

with f(n)> 0. 8en, there is no polynomial time f(n)-VC-
approximation for the multiple channel scheduling problem
unless P�NP.

Proof. Let G be the input graph of the multi-channel as-
signment problem. Assume that there exists a polynomial
time f(n)-VC-approximation algorithm, the multiple

Mobile Information Systems 5



channel scheduling problem. Let k be the least number of
channels that can support the communications of all edges
in G. When the number of total available channels is equal to
k, an optimal solution Opt assigns channels to all edges in G.
+is makes W(E − Opt∗) � 0. When the approximate so-
lution App satisfies W(E − App∗ )≤f (n)

W(E − Opt∗) � 0, it becomes an optimal solution. +us, we
can search the least number of channels from 1 to k to
support all edges in G. +is brings a polynomial time so-
lution for the conflict-free channel assignment problem,
which was proved to be NP-hard [26]. +erefore, P�NP.

We have the following corollary that shows we cannot
have a two-side approximation for the multi-channel
scheduling problem.

Corollary 1. Assume that f(n) is a function from N to N

with f(n)> 0. 8en, there is no polynomial time
(f(n), f(n))-approximation for the multiple channel
scheduling problem unless P�NP.

In Section 2.4, we show a faster approximation for
(1 − ϵ)-IS-approximation than that in [28]. Part of the al-
gorithm is based on the shifting technology which has
originated from [31] and has been widely used in developing
approximation for networking problem (for example,
[18, 28]).

In Section 3.1, we present a greedy O(1)-approximation
algorithm for the unweighted multi-channel scheduling
problem with variate interference radii.

In Section 3.2, we present a greedy (O(1), O(1)) ap-
proximation algorithm for the unweighted single channel
with variate interference radii scheduling problem.

In Section 4, we did some simulation for the multi-
channel assignment problems for the greedy algorithm.
Greedy algorithm is easy to implement and fast to output the
result. Its experimental results show much better perfor-
mance than the theoretical approximation ratio, which is
derived under the worst case analysis.

2.4. Improving the Existing Algorithm for the Multichannel
Scheduling. We show a faster approximation for (1 − ϵ)-IS-
approximation than that in [28]. Let PTAS (.) (polynomial-
time approximation scheme) represent the algorithm de-
scribed below. Part of the algorithm is based on the shifting
technology which has originated from [31] and has been

widely used in developing approximation for networking
problem (for example, [18, 28]).

Assume that the maximal distance of two nodes for
communication is one. Let t be the distance of interference.
+e grid size is D � t + 2. +e plane is partitioned into grids
of size D × D.

Let ϵ be a constant in (0, 1). Definem� 1/(1 −
����
1 − ϵ

√
).

For two integers a, b ∈ [0, m − 1], define Pa,b to be a
partition such that the plane is partitioned into the disjoint
union of squares of size m D × m D, and the left bottom
point of each square of size m D × m D in Pa,b has coor-
dinates (im D + a, im D + b) for some integers i and j.

Lemma 2. 8ere is a mO(dm) time algorithm to find an
optimal solution for the multi-channel scheduling problem in
a m × m square with at most d channels in each node.

Proof. We apply a division and conquest method to find an
optimal solution. Partition a m × m square into four squares
by one strip in the vertical middle and one strip in the
horizontal middle. +e width of the two stripes is equal to
the width of the grid (t + 2). We can only select at most
O(m) edges in the two strips.+e number of cases of choices
is |E|O(m) for a single channel. +e number of cases of
choices is |E|O(dm) for d channels. +e four sub-problems in
the four sub-squares can be solved independently.

Let T(m) be the computational time for solving the
channel scheduling problem in a m × m square. We have the
recursive equation: T(m) � |E|O(dm)4T(m/2). Select a con-
stant c0 so that T(m) � |E|c0m4T(m/2). Expanding the re-
cursion, we have

T(m) � |E|
c0 dm4T

m

2
  � 4O(logm)

|E|
c0 d

m

2
+ c0 d

m

22
+ c0 d

m

23
+ ...

�|E|
O(dm)

m
O(1)

.

(10)

Theorem 6. Assume that ϵ is an arbitrary constant in (0, 1).
8en, there is an |E|O(d/ϵ) time algorithm to give a (1 − ϵ)-IS-
approximation for the multi-channel scheduling with d

channels.

Require: a weighted graph G, and a distance parameter t for the largest distance of interference.
Ensure: L′;
(1) Sort all edges by the decreasing order of their weights and put those edges in a list L;
(2) Let L′ � ∅;
(3) Repeat;
(4) Select an edge e � (u, v) with the largest weight from L;
(5) If e is not being interfered by L′;
(6) +en, assign the channel K to e and put (e, K) into L′;
(7) Remove e from L;
(8) Until L is empty;
(9) Return L′;

ALGORITHM 2: Greedy-single-channel with fixed interference radius (G, t).
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Proof. A point is in the boundary of Gi,j if it is in a D × D

grid in the boundary of a m D × m D big grid of Pi,j. Let EB,O
i,j

be the set of all edges that connect the points in the boundary
of Gi,j in an optimal solution.

Assume Pi,j is the disjoint union of m D × m D grids
Q1 ∪Q2 ∪ , . . . , Qt. Let O(Qi) be the optimal solution for the
set of edges connecting at least one node not in any D × D

boundary grid of Qi. Let EI
i,j � O(Q1)∪O(Q2)∪

, . . . , ∪O(Qt). We have

W E
B,O
i,j  + W E

I
i,j ≥W Opt∗( . (11)

Each boundary grid is in at most (2m − 1) Pi,j. We also have
i,jW(EB,O

i,j )≤ (2m − 1)W(Opt∗). +erefore, there are i0
and j0 such that

W E
B,O
i0 ,j0

 ≤
(2m − 1)

m
2 W Opt∗( . (12)

By inequalities (11) and (12), we have

W E
I
i0 ,j0

 ≥W Opt∗(  − W E
B,O
i0 ,j0

 

≥W Opt∗(  −
(2m − 1)

m
2 W Opt∗( 

≥
(m − 1)

2

m
2 W Opt∗( 

≥ (1 − ϵ)W Opt∗( .

(13)

+e computational time is reduced to |E|O(1)T(m),
where T(m) is the time for finding the optimal solution in a
m × m area. By Lemma 2, the algorithm runs in |E|O(d/ϵ) time
and gives an (1 − ϵ)-approximation.

2.5. Merging Two Algorithms in Single-Channel Scheduling.
In this section, we show that merging Algorithm 1 and PTAS
(.) can speed up the polynomial time approximation scheme
inmany cases for the single-channel scheduling.We propose
Algorithm 3 which shows a polynomial time
(1 − ϵ, O(1))-approximation scheme for the single-channel
scheduling problem.

Lemma 3. Assume that a channel scheduling problem G

satisfies the condition W(Opt)≥ cW(E). 8en, a g-VC-ap-
proximation for the channel scheduling implies a
(1 − g(1 − c))-IS-approximation.

Proof. Assume an approximation App satisfies
W(E − App∗)≤gW(E − Opt∗).

W App∗(  � W(E) − W E − App∗( 

≥W(E) − gW E − Opt∗( 

≥W(E) − g(1 − c)W(E)

≥ (1 − g(1 − c))W(E)

≥ (1 − g(1 − c))W Opt∗( .

(14)

Theorem 7. Assume that ϵ is an arbitrary constant in (0, 1).
8en, there is an |E|O(1/ϵ) time algorithm to give a
(1 − ϵ, O(1))-approximation for the single-channel schedul-
ing. Furthermore, Algorithm 3 runs in O(|E|2) time if
τ(G)(1 − (W(Opt∗)/W(E))) ≤ ϵ, where G is the graph of
wireless network.

Proof. By +eorem 2, we have that App1 is a
(τ(G), τ(G))-approximation for the single-channel sched-
uling problem with W(E − App∗1 )≤ τ(G)W(E − Opt∗) and
W(App∗1 )≤ τ(G)W(Opt∗). By Lemma 3, if
g(1 − (W(Opt∗)/W(E)))≤ ϵ, then App1 is a (1 − ϵ)-IS-
approximation, where g � τ(G).

Since App2 is a (1 − ϵ)-IS-approximation for the channel
scheduling problem and App2 is also an approximation for
the channeling problem, we have W(App∗i ) with
W(App∗i ) � max(W(App∗1 ), W(App∗2 )) being at most
W(Opt∗) and at least W(Opt∗)/(1 − ϵ). +erefore, Appi is a
(1 − ϵ)-IS-approximation for the channel scheduling
problem.

Since W(E − App∗i )≤W(E − App∗1 )≤O(1)W(E−

Opt∗), we have that Appi is a (1 − ϵ, O(1))-approximation
for the channel scheduling problem.

3. Unweighted Channel Assignment

In this section, we develop the approximations for the
unweighted channel assignment problem. +is is the case
that all the edges have weight 1. +e radii of interference are
not fixed.

In the unweighted model, each node u has a radius r(u)

for the range that u has the interference. Any node v with
distance at most r(u) to u is interfered by u when u is active.
To an edge e � (u, v) in an active communication, we as-
sume dist(u, v)≤min(r(u), r(v)).

For edges e � (u1, u2) and e′ � (v1, vi), there is an in-
terference between them if dist(ui, vj)≤max(r(ui), r(vj))

for some ui and vj in the nodes of the two edges.

Definition 4. Assume that G is a channel scheduling
problem. We define some measures for approximations.

An optimal solution for G is a set Opt∗ of edges without
interference with largest |Opt∗|.
A f-IS-approximation App for the channel scheduling
problem satisfies the condition |App∗|≥ (|Opt∗|/f).
A g-VC-approximation App for the channel sched-
uling problem satisfies the condition
|E − App∗|≤g|E − Opt∗|.
A (f, g)-approximation for the channel scheduling
problem satisfies the conditions |App∗|≥ (|Opt∗|/f)

and |E − App∗|≤g|E − Opt∗|.

By Definition 3, a (f, g)-approximation for the channel
scheduling problem is both f-IS-approximation and g-VC-
approximation for it. Many existing papers used the f-IS-
approximation to measure the accuracy.
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Definition 5. Assume that A is a set of channel assignments
for G.

For each edge e � (u, v), define R(e) � max(r(u), r(

v)), where r(u) is the distance of interference from u.
Let d∗A(e) � maxK| e′ � (s, t): (e′, K) ∈ A ; there is an
interference between e and e′}|.
Define d∗A(G) � maxe∈Gd∗A(e).

Lemma 4. Assume that all nodes in the demand graph G �

(V, E) are points on a plane. 8en, d∗A(G)≤ 98 for the Eu-
clidean distance for the interference.

Proof. Let e � (u, v) be an edge in the graph G. We only
consider a fixed channel K. Let C(p, r) represent a circle
with center at p and radius r. Define I(u) to be the set of
edges e′ � (u′, v′) ∈ A assigned with channel K such that u

has interference with u′ or v′ (in other words,
dist(u, u′)≤min(r(u), r(u′)) or dist(u, v′)≤min(r(u),

r(v′)). Define J≤(u) � x{ : x is a node in e′ ∈ I(u) with
r(u)≤ r(x)}. Define J>(u) � x{ : x is a node in e′ ∈ I(u) with
r(u)> r(x)}.

Assume that d∗A(G) is large. Consider the case that node
u has interference with other edges. For the case of v, we have
similar conclusions.

Case 1. J≤(u)> 24. Let h � 12. Using u as the center,
evenly partition the plane into the h fan areas with angle
(2π/h) each. By the pigeon hole principle, there is a fan
area Fi that has at least (d∗A(G)/4h)≥ 2. In this case, the
node xL with the largest radius interferes all other nodes of
Fi. +is is a contradiction since all nodes Fi are from the
solution A and have no interference each other.
J≤(u)≤ 24.

Case 2. J>(u)> 25. We have more than 25 nodes y within
the distance at most 2r(u) to u, and r(y)≥ r(u). +e number
of circles of radius at least r(u)/2 without overlap inside a big
circle (with center at u) of radius 2r(u) + r(u)/2 is at most
((π × 2.52)/(π × 0.52))≤ 25.+is gives a contradiction.+us,
we have J>(u)≤ 25.

Similarly, we also have J≤(v)≤ 24 and J>(v)≤ 25.
+erefore, d∗A ≤ J≤(u) + J>(u) + J≤ (v) + J>(v)≤ 24 + 25+

24 + 25 � 98.

3.1.MultipleChannelswithVariate InterferenceRadii. In this
section, we present a greedy O(1)-approximation algorithm
for the unweighted multi-channel scheduling problem with
variate interference radii, which is shown in Algorithm 4.

We note that when there is a set F of edges that have been
assigned channels, it is straightforward to check if a new edge
e will be interfered at certain channel K. +is can be done by
checking E D(e, ei)≤ t for all ei ∈ FK, where FK is the subset
of edges in F in channel K.

Theorem 8. 8e Algorithm 4 greedy (.) is a g(α)-IS-ap-
proximation algorithm for the multi-radio multi-channel
scheduling problem and has the computational complexity
O(|E|2), where g(α) � (1 + (d∗A(G)/α) + (2α/(1 − α))) and
α �

������
d∗A(G)


/(

�
2

√
+

������
d∗A(G)


).

Proof. Assume that Opt is an optimal solution for the
channel scheduling problem. Let App be an approximate
solution derived by greedy (.).

For each edge g in Opt∗, assign an edge e, denoted by
H(g), in App∗ such that R(e) is the least among all edges
with interference with g.

Claim 3. For each edge g in Opt, R(g)≥R(H(g)).

Proof. If g is in App∗, we consider an edge has interference
with itself. +us, it is trivial. By the definition of H(g),
R(H(g)) is the least among all edges in Opt∗ with inter-
ference with g.

Assume that g′ is the first edge in App∗ and has the same
channel with g ∈ Opt∗ and has interference with g. Before
selecting g′ for assigning a channel, there is no interference
between g and other edges in App. +erefore, R(g′)≤R(g)

(otherwise, g′ should not be selected for channel assign-
ment). Since H(g) has the least R(H(g)) among all edges
with interference with g in App, we have
R(H(g)) ≤R(g′)≤R(g).

Let d be the total number of channels. For each edge
e � (u, v) ∈ (Opt∗ − App∗), we consider two cases.

Case 1. +ere are at least α d channels available for the edge
e when e is processed. Each of such an edge is called type A.

In this case, since e is not assigned for a channel, e must
have interference with at least αd edges already assigned
channels. For each edge e′ with interference with e, let

Require: constant ϵ ∈ (0, 1) and graph G(V, E).
Ensure: Appi

(1) Let App1 � App2 � ∅;
(2) Run greedy-single-channel (.) to find an (O(1), O(1))-approximation App1;
(3) Let c � W(Opt)/W(E);
(4) If (1 − τ(G)(1 − c))≥ 1 − ϵ;
(5) +en, run PTAS (.) to find an (1 − ϵ)-IS-approximation App2;
(6) ReturnAppi with W(App∗i ) � max(W(App∗1 ), W(App∗2 ));

ALGORITHM 3: Optimized algorithm in single-channel M(G, ϵ).
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b(e, e′) � 1/α d, and let b(e, e′) � 0 otherwise. For each e of
type A, we have

 b e, e′( ≥ 1. (15)

Let b1 � d∗A(G)/α. For each edge in e′ ∈ App∗, let
h1(e′) � e is of typeAb(e, e′). We have

h1(e) � 
e is of typeA

b e, e′( ≤d.d
∗
A(G) ·

1
α d

�
d
∗
A(G)

α
. (16)

Case 2. +ere are less than αd channels available for the
edge e when e is processed. Each of such an edge is called
type B.

For at least one of u and v, say u, there are at least (1 −

α)d/2 channels that are already assigned. For each edge e′
with an end point in u already assigned channels, let
b(e, e′) � 1/(1 − α)d/2 � 2/(1 − α)d. For each edge in
e ∈ App∗, let h2(e′) � e is of typeBb(e, e′). For each e of type
B, we have

 b e, e′( ≥ 1. (17)

Let b2 � 2α/(1 − α).

h2 e′(  � 
e is of typeB

b e, e′( ≤ (α d) ·
2

(1 − α)d
�

2
(1 − α)

� b2.

(18)

We have

e: e ∈ Opt∗ − App∗ 


≤ 
e1∈Opt∗− App∗,e2∈App∗

b e1, e2( 

≤ b1 + b2(  App∗


.

(19)
+us, we have

Opt∗


 � Opt∗ ∩App∗


 + Opt∗ − App∗




≤ App∗


 + Opt∗ − App∗




≤ App∗


 + b1 + b2(  App∗




≤ 1 + b1 + b2(  App∗




≤ 1 +
d
∗
A(G)

α
+

2α
(1 − α)

  App∗


.

(20)

We select the constant α so that
(1 + d∗A(G)/α + 2α/(1 − α)) to be minimal. Let g(α) � (1 +

d∗A(G)/α + 2α/ (1 − α)) � (− 1 + d∗A(G)/α + 2/(1 − α)). Let
g(α)′ � 2/(1 − α)2 − d∗A(G)/α2 � 0. We have α �������

d∗A(G)


/(
�
2

√
+

������
d∗A(G)


). +us, the ratio of approximation

is g(α).

3.2. Single Channel with Variate Interference Radii. In this
section, we present a greedy (O(1), O(1)) approximation
algorithm for the unweighted single channel with variate
interference radii scheduling problem; the pseudocode is
shown in Algorithm 5 as follows.

We note that when there is a set F of edges that have been
assigned channels, it is straightforward to check if a new edge
e will be interfered at certain channel K. +is can be done by
checking if e has interference with any ei ∈ FK, where FK is
the subset of edges in F in channel K.

Theorem 9. 8e Algorithm 5 greedy (.) is an
(d∗A(G), d∗A(G))-approximation algorithm for the multi-ra-
dio multi-channel scheduling problem and has the compu-
tational complexity O(|E|2).

Proof. Assume that Opt is an optimal solution for the
channel scheduling problem. Let App be an approximate
solution derived by greedy (.).

For each edge g in Opt∗∞, assign a edge e, denoted by
H(g), in App∗ such that R(e) is the least among all edges
with interference with g.

Consider an edge e � (u, v) selected in App∗. Let A(e) �

e1, . . . , em be the list of edges with H(ei) � e.

Claim 4. For each edge g in Opt, R(g)≥R(H(g)).

Proof. If g is in App∗, we consider an edge has interference
with itself. +us, it is trivial. By the definition of H(g),
R(H(g)) is the least among all edges in Opt∗ with inter-
ference with g.

Assume g′ is the first edge in App∗ and has the same
channel with g ∈ Opt∗ and has interference with g. Before
selecting g′ for assigning a channel, there is no interference
between g and other edges in App. +erefore, R(g′)≤R(g)

(otherwise, g′ should not be selected for channel assign-
ment). Since H(g) has the least R(H(g)) among all edges

Require: a weighted graph G, and a distance parameter t for the largest distance of interference.
Ensure: L′
(1) Sort all edges by the increasing order of their sum of radii and put those edges in a list L.
(2) Let L′ � ∅;
(3) Repeat;
(4) Select an edge e � (u, v) with the least R(e) from L;
(5) If there is a channel K for e not being interfered by L′
(6) +en, assign the channel K to e and put (e, K) into L′;
(7) Remove e from L;
(8) Until L is empty;
(9) Return L′;

ALGORITHM 4: Greedy-multi-channel with variate interference radii (G, t).
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with interference with g in App, we have
R(H(g)) ≤R(g′)≤R(g).

Assume that App contains channel assignments for
edges e1, . . . , em. Partition Opt∗ into A(e1), . . . , A(em). By
Claim 1, we have that

d
∗
A(G)≥d

∗
A ei( ≥ A ei( 


. (21)

+erefore, we have d∗A(G)|App∗|≥ |Opt∗|. +us, App is a
d∗A(G)-IS approximation for G.

On the other hand, for each ei ∈ (E − Opt∗)∩App∗, we
always have d∗A(ei)≥ |A(ei)| (by Claim 1). For each edge e′ in
(E − App∗)∩Opt∗, there is an edge e ∈ App∗ such that e

and e′ have the interference at the same channel (otherwise,
e′ would be assigned some channel by Greed (.)). Fur-
thermore, e′ ∉ Opt∗ since it has interference with e.
+erefore, there is an edge e∗ ∈ (E − Opt∗)∩App∗ such that
e′ ∈ A(e∗). By inequality (1), we have

E − App∗( ∩Opt∗


≤ d
∗
A(G) E − Opt∗( ∩App∗


. (22)

We have the inequalities

W E − App∗(  � W E − App∗( ∩ E − Opt∗( ( 

+ W E − App∗( ∩ Opt∗( ( 

≤W E − Opt∗( ∩ E − App∗( ( 

+ τ(G)W E − Opt∗( ∩App∗( (by(2))

≤ τ(G)W E − Opt∗( ∩ E − App∗( ( 

+ τW E − Opt∗( ∩App∗( 

� τ(G)W E − Opt∗( .

(23)

+is gives |E − App∗|≤ d∗A(G)|E − Opt∗|. +erefore,
greedy (.) gives a (d∗A(G), d∗A(G))-approximation.

4. Experimental Results

Greedy algorithm is easy to implement and fast to output the
result. We did some simulation for the multi-channel as-
signment problems for the greedy algorithm. +e parameter
T represents a distance, which is either Euclidean distance or
hop distance. In a tuple (a, b), the first item a is the total
weight of an optimal solution (W(Opt∗)), and the second

item b is the total weight of the approximation solution
(W(App∗)).

We also evaluate the effectiveness of the proposed greedy
algorithm; the algorithm performance is compared with the
baseline random assignment algorithm, the greedy coloring
algorithm which is proposed in [32], and the conventional
graph coloring algorithm (GC) in [33]. +ese three methods
are briefly described as follows:

Random: we allocate channels randomly for each node.
Greedy coloring: we allocate the best channel to each
node greedily and then transfer it to robust graph
coloring problem which aims at minimizing the in-
terference of system.
GC: we use an interference negligible distance to find
which pairs of users can share channels with the cellular
users.

4.1. Multichannel with Hop Distance. Our experimental
results for the hop distance show that the results from
simulation are much better than the theoretical analysis for
the greedy algorithm. In this experiment, we randomly
generate a network with 30 nodes and 50 edges. For each
edge, we generate a random number as a weight. Replacing
with the optimal solution of total weight, we get the fol-
lowing simulation.

T � 1: (560, 438), (575, 428), (606, 486), (598, 460),

(576, 457), (590, 437), (545, 431), (501, 394),

(589, 424), (556, 411).

T � 2: (570, 443), (586, 421), (607, 456), (605, 446),

(582, 453), (558, 413), (579, 443), (607, 464),

(666, 546), (538, 426).

T � 3: (525, 407), (580, 441), (569, 423), (566, 434),

(558, 409), (537, 370), (486, 389), (658, 485),

(486, 389), (485, 347).

+e performance of the algorithm is shown in Figure 1.
We note that the performance of the greedy algorithm goes
down as the threshold of the distance parameter T goes up.
We can also observe that the performance of our greedy
algorithm is superior to the greedy coloring, GC, and
random algorithms.

Input: a weighted graph G, and a distance parameter t for the largest distance of interference.
Output: L′
(1) Sort all edges by the increasing order of their sum of radii and put those edges in a list L.
(2) Let L′ � ∅;
(3) Repeat;
(4) Select an edge e � (u, v) with the least sum of radii from L;
(5) If there is a channel K for e not being interfered by L′
(6) +en, assign the channel K to e and put (e, K) into L′;
(7) Remove e from L;
(8) Until L is empty;
(9) Return L′;

ALGORITHM 5: Greedy-signal-channel with variate interference radii (G, t).
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4.2. Multichannel with Euclidean Distance. Our experi-
mental results for the Euclidean distance show that the
results from simulation are much better than the theoretical
analysis for the greedy algorithm. In this experiment, we
randomly generate a network with 30 nodes and 50 edges in
the space of 500 × 500. For each edge, we generate a random
number as a weight. Replaced with the optimal solution of
total weight, the following simulation has been achieved.

T � 10: (411, 300), (467, 372), (443, 336), (463, 379),

(475, 377), (407, 317), (471, 385), (416, 339),

(494, 330), (456, 354).

T � 30: (421, 321), (445, 349), (466, 356), (436, 333),

(436, 325), (425, 302), (418, 341), (418, 355),

(486, 375), (454, 359).

T � 50: (467, 352), (499, 315), (459, 301), (488, 309),

(502, 399), (484, 313), (403, 314), (481, 348),

(466, 325), (390, 282).

T � 70: (426, 260), (476, 253), (415, 232), (432, 259),

(459, 302), (449, 284), (454, 241), (488, 296),

(507, 319), (445, 210)..
T � 100: (444, 190), (459, 197), (531, 195), (435, 173),

(478, 228), (441, 216), (442, 208), (488, 257),

(458, 265), (490, 198).

+e performance of the algorithm is shown in Figure 2.
From Figure 2, we can also know that the performance of the
greedy algorithm degrades as the threshold of the distance
parameter T increases from 10 to 100. +e performance of
the proposed greedy algorithm is better than the other three
comparison algorithms.

5. Conclusion

We develop a new measure, which controls the ratios in two
sides, for the approximation algorithms for channel
scheduling problem. We first study the weighted multi-
channel and single-channel assignment with fixed inter-
ference range problems and propose corresponding
algorithms for these two problems; furthermore, we improve
the existing algorithms for the multi-channel scheduling and
propose a faster and more accurate (1 − ϵ, O(1))-approxi-
mation algorithm for signal channel scheduling problem.
Next, we study the unweighted channel assignment with
variate interference radius problem and present a multi-
channel and a single-channel allocation algorithm, respec-
tively, for this situation. All of the algorithms are given detail
theoretical proofs and got constant approximation guar-
antees. Finally, we verified our algorithms with simulations.
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