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Given a pair T=(T,, T,) of commuting subnormal Hilbert space operators, the Lifting Problem for Commuting Subnormals
(LPCS) asks for necessary and sufficient conditions for the existence of a commuting pair N= (N}, N,) of normal extensions of
T, and T,; in other words, T is a subnormal pair. The LPCS is a longstanding open problem in the operator theory. In this
paper, we consider the LPCS of a class of powers of 2-variable weighted shifts. Our main theorem states that if a “corner” of a 2-
variable weighted shift T= W,z = (T}, T,) is subnormal, then T is subnormal if and only if a power T = (T, T7) is
subnormal for some m, n > 1. As a corollary, we have that if T is a 2-variable weighted shift having a tensor core or a diagonal
core, then T is subnormal if and only if a power of T is subnormal.

1. Introduction

For a Hilbert space operator, a subnormal operator means an
operator admitting a normal extension, i.e., an extension
which is a normal operator. As a lifting problem of operators,
many researchers of operator theory have considered neces-
sary and sufficient conditions for a pair of subnormal opera-
tors on a Hilbert space to admit commuting normal
extensions: more concretely, given a pair T=(T,;, T,) of
commuting subnormal operators T, T, on a Hilbert space,
find a necessary and sufficient condition for the existence of
commuting normal extensions N; and N, of T, and T,,
respectively. This problem is referred to as the Lifting Prob-
lem for Commuting Subnormals (LPCS). A pair of subnor-
mal operators admitting commuting normal extensions is
called a subnormal pair.

For a bounded linear operator T on a complex Hilbert
space &, it is well known that the subnormality of T implies
the subnormality of powers T™(m >2). However, its con-
verse is not true in general; in fact, Stampfli [1, p. 378]
showed that the subnormality of all powers T (m > 2) does
not necessarily imply the subnormality of T, even if T= W,
is a unilateral weighted shift. It is also well known that the
hyponormality (i.e., [T*, T] = T*T - TT" is positive semide-

finite) of T does not imply the hyponormality of T? [2].
However, for a unilateral weighted shift W, the hyponorm-
ality of W, (detected by the condition a; <ay,, for all k>0
when a={a,},) clearly implies the hyponormality of all
powers W (m >1).

On the other hand, Franks [3] showed that given a pair
T=(T,,T,) of commuting subnormal operators, if p(T) is
subnormal for all 2-variable polynomials p € C|z,, z,] with
deg p <5, then T is a subnormal pair. Clearly, if T = (T},
T,) is a subnormal pair and if m, n> 1, then T = (T,
T%) is also a subnormal pair. Motivated by Stampfli’s work
[1], it is natural to ask whether the subnormality of i)
= (T7, T) for each (m, n) > (1, 1) implies the subnormality
of T. For the 2-variable weighted shifts, we may consider
these analogous results. The standard assumption on a pair
T=(T,,T,) is that each component T; is subnormal (i=1,
2). With this in mind, these analogous results are highly non-
trivial. In the works [4-8], it was considered whether there is
a 2-variable weighted shift T =W 4 = (T}, T,) such that

T is subnormal for some (m,n)> (1,1), but T is not
subnormal.
For a={a,},’,, a bounded sequence of positive real

numbers (called weights), a weighted shift W, : ¢*(Z.,) —
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¢*(Z,) is defined by W e, = a,e,,,, (all n > 0), where {e, } 2,
is the canonical orthonormal basis in £*(Z., ). In this case, we
write

W, = shift(ay, a;, a,, ). (1)
Now, for 0 < x < y < 1, consider the weighted shift
W, =shift(x, y, 1, 1,-++). (2)

Then, W, is hyponormal (detected by the condition a,,
<a,,, for all n) but not subnormal. However, all powers
W"(m=>=2) are subnormal. If y=1 in W, =shift
(x,,1,1,--+), then the following statements are equivalent:

(a) W, is subnormal
(b) W' is subnormal for all m > 1

(c) W7 is subnormal for some m > 1

In [5, 6], we have examined the above results for the class
of 2-variable weighted shifts T = W, 5). More concretely, for
the class of 2-variable weighted shifts T = W, g) with a core
of tensor form, denoted 5 € [5], or with a core of diagonal
form, denoted 2% [6], we have shown that if T = Wiap) €
T € U DG, then the following statements are equivalent:

(a) T is subnormal
(b) T is subnormal for all m, n>1
(c) T is subnormal for some m, n > 1

In spite of the above facts for 1 or 2-variable weighted
shifts and consideration of the recent works ([4-8]), we have
guessed that there exists a class of 2-variable weighted shifts
W (,p) such that W, 5 is not subnormal but WEZ};’)) is sub-
normal for all (m, n) > (1, 1), under a more general condition
that a “corner” of W, 4) is subnormal. In this paper, we show
that this guess is not right and that the above three statements
are equivalent whenever a corner of W/, 4 is subnormal. In
the below, we will notice that 7€ U D€ is a very special cor-
ner of W, ).

On the other hand, the reason why we take 2-variable
weighted shifts for examining the subnormality of powers
for pairs of operators is that 2-variable weighted shifts play
an important role in detecting properties such as subnormal-
ity, via the Lambert-Lubin Criterion ([9, 10]): a commuting
pair (T, T,) of injective operators acting on a Hilbert space
Z admits a commuting normal extension if and only if for
every nonzero vector x € #, the 2-variable weighted shift
with weights

e
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has a normal extension.
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The organization of this paper is as follows. In Section 2,
we give preliminary notions and state the main theorem. In
Section 3, we provide a proof of the main theorem.

2. Preliminaries and the Main Theorem

Let # be a complex Hilbert space and let (%) denote the
algebra of bounded linear operators on #. For S, T € B(¥)
let [S, T) := ST — TS. We say that an n-tuple T = (T,,---,T,,) of
operators on # is (jointly) hyponormal if the operator matrix

LT [TT) e ([T
TS, T, [T5,T T, T

S L B O R
LT [T e (1T

is positive semidefinite on the direct sum of n copies of #
(cf. [11, 12]). The n-tuple T is said to be normal if T is com-
muting and each T, is normal, and T is subnormal if T is the
restriction of a normal n-tuple to a common invariant sub-
space. For k>1, a commuting pair T = (T, T,) is said to
be k -hyponormal ([13]) if

T(k) = (Tl’ Ty, T?) I,T,, T;”"T’f’ Tlelc_l"")lec)’ (5)

is hyponormal, or equivalently

1<n+m<k

T(k)*, T(k)] = ([(TgTq)*, T;"T';D >0.  (6)

1<p+q<k

Clearly, normal = subnormal = k-hyponormal for
n-tuples of operators. The Bram-Halmos criterion states
that an operator T € B(Z’) is subnormal if and only if the
k-tuple (T, T2,---,T¥) is hyponormal for all k> 1.

Let W, be a weighted shift with weights a = {a, } . The
moments of a are given as

1, if k=0
Ye=ve(@) =4

ag - a_,, ifk>1 )

It is easy to see that W, is never normal and that it is
hyponormal if and only if ay <a; <---. Similarly, consider
double-indexed positive bounded sequences a={a}, 3=
{B.} €2°(Z%) and k = (k;, k,) € Z2 and let ¢*(Z?2) be the
Hilbert space of square-summable complex sequences
indexed by Z2. Recall that ¢%(Z?2) is canonically isometrically
isomorphic to €*(Z,) ® €*(Z,). We define the 2-variable
weighted shift W, g = (T, T,) by a pair of operators acting
on the Hilbert space % = ¢2(Z?2) given by

Tl e(kvkz) = ‘x(kvkz)e(kl*l)kz)’ (8)

Tze(kl)kz) = ﬂ(kpkz)e(kl’kz*l)"

for each (k;,k,) € Z2. For all k= (k;,k,) € Z2,
have

we clearly
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nn=nTe ﬁ(kﬁhkz)“(kl’kz) = a(kvkz“)/j(kl’kz)'

2
%00) """ %k, -1,0)°

Y =Yk (W(w,ﬁ)) = ﬁz
(0.k,-1)

We remark that, due to the commutativity condition (9),
¥y can be computed using any nondecreasing path from (0,
0) to (k;,k,). For a detailed discussion of the 2-variable
weighted shifts, the reader may refer to ([4, 13, 14] [8]).

We now recall a well-known characterization of subnor-
mality for multivariable weighted shifts [15], due to C. Berger
(cf. [2,111.8.16]) and independently established by Gellar and
Wallen [16]) in the single variable case: Wiap) admits a com-
muting normal extension if and only if there is a probability
measure , called the Berger measure of W, s, defined on

the 2-dimensional rectangle R =0, ¢;| x 0, ¢,| (where ¢; =
| T;||*) such that

2 du(t,, t,), forallk € Z2.
R

ne= | eduto) = | (1)

Observe that U, =shift(1,1,1,---) and S, = shift(c, 1,
1,---)(¢<1) are subnormal, with Berger measuresd; and
(1-¢)8, +c*8,, respectively, where 8, denotes the point-
mass probability measure with support from the singleton

set {p}.
Throughout this paper, we write # =¢*(Z2)=vVv

{ek}kezi and

9, = the set of all commuting pairs of (12)

subnormal operators on %,

ML (F) = Ve, k= (ky, ky) withk; > 0,k, > p},

(13)

Ny (%)=V{e, : k= (k k) withk, >q.k, 20}.  (14)

for p, g > 0. For a 2-variable weighted shift W( o) @ corner of
W 4p) is defined by

(15)

W, for some p, g >0,
(@F) M (TN ()

%0,0) " “?qu,o)ﬁ?kl,()) ﬁ%kl,kz—l)’

For a commuting 2-variable weighted shift W, g, the
moment of W, 5 of order k € Z is

ifk,=0andk, =0
ifk; >landk, =0
if k;, =0andk, >1

ifk; >landk,>1.

which is a restriction of W, to the invariant subspace
M(F) NN (T ). The core of W, g), denoted by c(W . 5)),
is defined by a corner with p=g=1, i.e,

W, )::Wa ‘ . 16
C( (8) @B 4 rr ) (16)

Thus, for 2-variable weighted shifts, the core is a special
form of a corner. A 2-variable weighted shift W, g is said
to be of tensor form if it is of the form (I® W,, W, ®I).Ifa
tensor form W/, ) is subnormal, then the corresponding Ber-
ger measure is given by a Cartesian product & x 7 where & and
n are the Berger measure of W, and W, respectively (cf. [5]).
Also, for strictly increasing weight sequences a = {a,,}_,, con-
sider a 2-variable weighted shift W, 5 on € (Z?%) given by the
double-indexed weight sequences

o = By = ag i fork = (k;, ky) with k;, k;, > 0. (17)

This 2-variable weighted shift W/, 5 induced by a 1-var-
iable weighted shift W, is said to be of the diagonal form. If
a diagonal form W, g) is subnormal, then the corresponding
Berger measure is given by a measure supported in the diago-

nal {(s,s) € R* : s >0} (cf. [6]). The class of all 2-variable
weighted shifts W, g) € §, whose core is of the tensor form
will be denoted by  %; in symbols,

TEC={Wp € Do : c(Wp)isof tensor form }
Figure 1(i)).

Also, the class of all 2-variable weighted shifts W,z €
9, whose core is of the diagonal form will be denoted by &
€; in symbols,

DE ={W,p) € Do : c(W,p)isof diagonal form} (see
Figure 1(ii)).

In [5, 6], it was shown that if T = Wiap) € TECUDE,
then T is subnormal for some my, n, > 1 if and only if
T is subnormal. Now, it is natural to consider that given a
2-variable weighted shift T =W,z € $,, whether or not

T(™" is subnormal if and only if T is subnormal. In other
words, we ask the following:

(see
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¥ 4By B B Y2 a4 ) o
0,2) N1 x % N % )
1 B B N 9] %
T, ©.1) a a a, T, a a; a,
5, aYo aYo* y aYo ayox;
0 X0 XX 0 Xo XoXo
X0 X4 Xy Xo X1 X
(0,0) (1,0) (2,0) (0,0) (1,0) (2,0)
B —— _—
T, T,

®

(i)

F1GURE 1: Weight diagram of the 2-variable weighted shift T € % and weight diagram of the 2-variable weighted shift T € 2%, respectively.

Problem 1 ([6, 8]). Given a 2-variable weighted shift T =

W (o) € D> assume that T is subnormal for all (m, n)
> (1,1). Does it follow that T is subnormal?

For the class of 2-variable weighted shifts W, g, it is
often the case that the powers are less complex than the initial
pair; thus, it becomes especially significant to unravel the
invariance of subnormality under the action W, g —
WEZZ’))(m, n>1). The aim of this paper is to shed new light
on some of the intricacies associated with LPCS and powers
of commuting subnormals in §,.

Our main theorem now states:

Theorem 2. Let T= W, 5 € 9. If a corner of T is subnor-
mal, i.e., T|/”p(7f>”/‘/ () is subnormal for some p, q € Z.,, then
q

the following are equivalent:

(a) T is subnormal
(b) T s subnormal for all m,n > 1

(c) T s subnormal for some m, n > 1

As we observed before, 7€ UD€ is a special cor-
ner of Wp. Indeed, if T=W,pz €TEUDE, then
T| 4, (7)o, () is subnormal, so that T satisfies the condition
of Theorem 2. Therefore, if T=W gz € T€UDE, then

three conditions of Theorem 2 are equivalent. Thus, as
immediate corollaries of Theorem 2, we can recapture the
both main results of [5, Theorem 7.1] and [6, Theorem 3.2].

Briefly stated, our key idea to prove the main results is as
follows: (i) we split the ambient space 7 =¢*(Z2) as an

orthogonal direct sum 7 = @;":’01 692;57/ E:’q'?; (ii) when
m,1)

T| ., (%) is subnormal, we show that for some m > 1,1
is subnormal if and only if T is subnormal by using the back-
ward extension of subnormality; (iii) when T| ,, (4, is sub-

normal, we show that for some m,nzl(T(l’”))(m’1> is

subnormal if and only if TV is subnormal by using (i)

and the backward extension of subnormality; and (iv) by

combining (ii) and (iii), we have that if T| () () is sub-
q

normal for some p, g € Z,, then T("") = (T(””l))(l’n) is sub-
normal for some m, n > 1 if and only if T is subnormal.

3. The Proof of the Main Theorem

We will first establish several auxiliary lemmas and then
prove the main theorem (Theorem 2).

To study subnormality for powers of multivariable
weighted shifts, we recall that, in one variable, the m-th
power of a weighted shift is unitarily equivalent to the direct
sum of m weighted shifts. First, we need some terminology.
Let ¢*(Z,) = V% 1{e;}. Given integers i and m(m>1,0<i<
m—1), define 7,,; =V {e,;,}; clearly, e(z,)=eom!
# ;- Following the notation in [17], for a weight sequence
a={a,},’,, welet

Wa(m:i) = Shiﬁ(H;nz_OlaijM);:O’ (18)

that is, W, denotes the shift with the weight sequence
given by the products of weights in adjacent packets of size
m, beginning with g; --- a;,,,_,. For example, given a weight
sequence a = {a, },”), we have W, = shift(aya,, a,a;,---),
W (1) = shift(a;a,, asay, ), Wi, = shift(a,asay, asaqa;,
~++), etc. For m>1and 0 <i<m -1, we note that W,,,,..; is
unitarily equivalent to W'| ;" Therefore, W' is unitarily
equivalent to & 7! W a(m:i)- Thus, we have (cf. [17]) that if
W, is subnormal with the Berger measure y, then W, is
subnormal with the Berger measure 4, ;. where

ilm
S—dy(s”’”) for0<i<m-—1, (19)

i

d.”(m,i) (s)=

and furthermore,
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W' is subnormal & W, is subnormalfor 0 <i<m— 1.

(20)

For h> 1, welet & :=V{e, : n > h} denote the invariant
subspace obtained by removing the first i vectors in the
canonical orthonormal basis of €2(Z, ). Thus, if W, = shift(
Ay> 4y, dy,e++) is subnormal with Berger measure o, then
W,|, is subnormal for each h > 1, and the Berger measure

(0),, of W,|g, is given by

h
> do(s). (21)

d(0),,(s) = v

Something similar happens in two variables, as we will
see it below. For a 2-variable weighted shift T =W,z = (
T,,T,) €, on I =0*(Z>), we observe a new direct sum
decomposition for powers of 2-variable weighted shifts
which parallels the decomposition used in [17] to analyze
the subnormality for powers of (one-variable) weighted
shifts. Specially, we split the ambient space # = ¢*(Z*) =V

{ek}kgzz as an orthogonal direct sum # = @) @

o' ),whereforp 0,1,-

(b) sn-l

-,m—-1,and ¢=0,1, -
%E‘;nqy;) (T) = V{e(mi+p,nj+‘1) 1i=0,1, 2"">j: 0,1, 2"">}>
(22)

where T =W, is a 2-variable weighted shift on 7 = e(
Z?%). Then, each of % EZ(’;;) (T) reduces T} and T}. Also,

T is subnormal if and only if each T"™" is sub-

)
|%E q)) (T)

normal. Similarly, for h,1>0, consider T] (7t () OD
M ()N MN(F) and let

()
# (pa) (T%(%)n/ﬂl(%))

(23)
= V{e(mi+p+h,nj+q+l) i=

0,1,2,+-,j=0, 1)2,...},
In a similar fashion to (13) and (14), we can define

M, (7/(;7;;)@)) = V{ek e (T):i=0andj>h }

™ (T): izlandjzo}.
(24)

We thus have:

Lemma 3. Let T = W, g) be a 2-variable weighted shift. Then,
for a fixed m> 1 and0<p,q<m—1 we have

(m.1)
2 (0.0) (Tl.,ﬂmq(%’))

and form,n>1,0<p<m—1,0<g<n-1, we have

(m,n)
(Twl(%)nm}(%))

=~ <T(m,n)%(m’n)(T>> .
w0 Lo o) (7 (1)

(p0)
(T| (m.n)
y (%)) (mon)
g %(010) Tvﬂq ()

(m,n)
H ey (Tatyoyry o))

>

= T(m’”)

>

(m.n)
7 oa) (T)

7/%) (T) (26)

(m,n)
(TW%))
= (T >' ;
( %(00 (T> /%1 <%(m,n)<T))

(0.0)
()
(Tl

= T(m,n) - ,
( %EP'”))(TJ '/V, (,%’(""”) T))

(p0) (

%E;nnnf)n (Tvﬂx(?/))

x (Z'n")z (Tryim)

where = means a unitary equivalence of two operators.

Lemma 4. Let T = W, 5) be a 2-variable weighted shift in £,

If T is subnormal with Berger measure y, then T is sub-
normal for all m,n> 1. Furthermore,(for each 0<p<m-—1,

0<q<n~— 1, the Berger measure of T"™" \%E;n is given by
mn Sp/mtq/n - Y
du )( t) = dp (s, £1). (27)
Yoo

Proof. Observe first that if T=W s is subnormal then

T(mn) ~ @;":—01 @Z;éT(m” | , where each direct sum-

)
(T)
(Pq)
mand is a subnormal 2-variable weighted shift.



For the second assertion, observe

)}(mi+p,nj+q) ([’l)

forp,q=0. (28
Y(p.q) (1)

~—

V(i) (P‘gf’q';)) =

Thus, for i, j> 0,

g () (mn)) _ Yomispnjra)
Js tdpg, o (58) =Y (“(m) ) T
(pq)
S dy(s, 1) (29)

Sit,jSp/m tq/nd” (Sl/m’ tl/n) ,

Il
=
—— —
=2
— —

so that

Sp/m tq/n

Yipa)

d[/l(sllm, tl/n)’ (30)

which gives the result.

To detect the subnormality of 2-variable weighted shifts,
we introduce some definitions.

(i) For a regular Borel measure y on R, we say that p is
positive if u(E) >0 for all Borel subset ECR,, or
equivalently, 4> 0 if and only if [ fdu >0 for all f
€ C(R,) such that f>0 on R,. Similarly, we say
that du(s) is positive (denoted by du(s) > 0) if [ f(s)
du(s) >0 for all f e C(R,) such that f >0 on R,.
For positive two measures ¢ and v on R, we say that
p=vonR, if u—vis positive

(ii) Let 4 be a probability measure on X x Y, and assume
that 1/t € L' (). The extremal measure y, (which is
also a probability measure) on X x Y is given by

1

Ao (s, 1) = (1 = T

5(1)) du(s ). (31)

(iii) Given a measure y on X x Y, the marginal measure
pX is given by uX == pomy!, where my : X x Y —
X is the canonical projection onto X. Thus, u*(E)

=u(Ex Y) for every E C X, or equivalently, du*(s)
= [ydu(s, t).

Lemma 5 [14, Proposition 3.10] (subnormal backward
extension). Let T=W gz be a 2-variable weighted shift,

and assume that T| ;; 5 is subnormal with associated Berger

measure 1 and that W, == shift(ay,, a;g. ) is subnormal
associated with Berger measure &, . Then, T is subnormal if

and only if

Journal of Function Spaces

1
i L'(n),
2 1 B
Bioo) < i, J (32)
()
1
ﬁfo,O) P (M)ae < §a,-
Li(n)

Moreover, zfﬁ(2)0||1/t||L1<,7) = 1, then ()X, = &4, In the case

ext
when T is subnormal, the Berger measure u of T is given by

5 1
du(s, t) = Bo) P o )d(ﬂ)ext(5> t)
n
2 1
+ <dfa0(5) ~Poo |7 " )d(ﬂ)i«(s)> d(t).
1

(33)
We also recall:

Lemma 6 [18]. For a positive measure ypon Z=X xY =R,
x R,, let 1/t € L'(u). Then, 1/t € L'(u") and

!

where u¥ == pony! and my : Z — Y is the canonical projec-
tion onto Y.

, (34)
Li(u¥)

-
v I

Given a 2-variable weighted shift T =W,z € $,, and
given ki, k, >0, we let

sz = Shlft (“(O,kz)’ a<1’k2),"'), (35)

be the k,-th horizontal slice of T, with associated Berger
measure &, ; similarly, we let
2

Vkl = shift(ﬁ(kl,O)’ /3(](1,1),"‘), (36)

be the k,-th vertical slice of T, with associated Berger mea-
sure 775 . Clearly, W, and V|, are the unilateral weighted

shifts associated with the Oth row and 0-column in the weight
diagram for T, respectively.
Then, we have:

Lemma 7. Let T = W, 5) € 9. If T|///P(%)rw (5) is subnor-
: (7
mal for somep,q € Z, then T| 4, 3\, () IS also subnormal.

Proof. Tt is enough to show that if T| 500 (3) OF
T|/%1(%)WV2(%’) is subnormal, then T‘/ﬂl(%)ﬂﬂl(%’) is subnor-
mal. Without loss of generality, assume that T| M (TN ()
is subnormal. Since W,z € ), we have that V; = shift
(ﬁ(k10)>ﬁ(k11)"") is subnormal for all k; >0. By Lemma 5,
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we have ﬁ%kpl)'ll/t”Ll(ﬂpk y=1(k; 20). Let { be the Berger

measure of T| ,

= Ut and By 1178 gy

(), (). By Lemma 6, since ||1/tHL1<m; )

=1, it follows from Lemma

5 that (4”)ext §,,» that is,
1
Okt =Bz OLst @)
L'@Q)
Moreover, 1/t € L'({) and ﬁ(u (/8]0 ! Thus, by

Lemma 5 again, we have that T| ()0 () is subnormal, as

desired.
Next, we have:

Lemma 8. Assume T =W , g € ) and T| ;; (4 is subnormal
with Berger measure 1. Assume 1/t e Ll (n). Let E% be the Ber-
ger measure of subnormal shift W = (g ), (1,9 *) which is

in the zero level of T. We also let

(M)t (38)
L' (n)

1
2
_E% _ﬁoo n

1)
P lm
Moreover, sz( 1>|

is subnormal for some m > 1, then y > 0.

o m) is subnormal, then its Berger mea-
0o (D

sure is

)d(r]ext) (s”m, t) +d1p(51/m)d60(t). (39)
Li(n

1
2
Bl

Proof. We first claim that
dy(s) =0 & dy(s"") > 0forany m € N. (40)

To see (40), we note that the positivity of v depends on
the densities of (17)*

consider.

o and &, . There are three cases to

(i) If (q )ext and &, are finite atomic measures, then it is
clear

(i) If (y )eXt and &, are continuous measures, then by a

change of varlables, letting u = s"™, which goes in

both directions because s/ is an invertible function
on the positive axis. That is, one can change the
name of the variable from s'” to u and then relabel
uass

(iii) If ()X, and €a,
by the above arguments, we have the claim (40).

are any probability measures, then

Now, suppose that T | 2 (1) is subnormal with
©0)

the Berger measure @. Since T™ and

(T are subnormal, we thus recon-

(m,1)
o (T ))|/%1<%§;",;3<T))

struct the subnormality of T as a backward

(m,1)
‘%’(00) (T)

extension of

(m,1) 1 . . .
(T s (T)> ' . (inthet direction),  (41)
a1y (70 (T) )

Since 77 is the Berger measure of T| ;; 5, by Lemma 4, we

have

1

B
1 m
= Js o da(s, t) = Jskl tkzdﬂgo,él)) (1)

00

- Jskl o (ﬁiz da(s, t)) (forall(k,, k,)).

(k) (6) = Yk 1) (@) = JSkl tdg(s, )

(43)
Thus, we obtain
™ (s, ) = - da(s, ¢ 44
Mooy (1) = —5-da(s,1). (44)
00
Also, by Lemma 4 and (44), we have
t
dn (s, t) = —da(s, t). (45)

00

Since ¢ is the Berger measure of

<T(m’1)?/(m’l)(T)> ’ . > (46)
(0.0) M, (7/(3'0 ) (T))

and @ is the Berger measure of T(™

(44) and (45), we have

D] )y by Lemma 4,

t m, "
do(s,t) = ——da(s,t) =dnyn (s, £) =dn (s, 1), (47)
00

Welet#, be the Berger measure of the following subnor-
mal shift:

shift (/3(0,0)> ﬁ(o,l)’ :8(0,2)" ) ) : (48)
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Since S is the Berger measure of
T , by Lemma 6, we have
( %EO»J)(T)N/%(%’W T)) Y
|/ _w
Hloey M ((ry,),) WG (49)

(G (5 1))

If shift (e g )> (1,
with the Berger measure ¢, ,

= d (e (575 1))

)>-*) in the zero level of T is subnormal
then

shift (“(o 0) " Xm-1,00 ¥(m0) " X2am-10)"" ) (50)

is subnormal with the Berger measure d(&, ) <mo>(s)=

dE, (') by (19)
Since T = W, 5 € §, and TOm | %(00)>(T)

follows from Lemma 5, (22), (44), (47), and (49) that

is subnormal, it

MMm: 1
(™) ‘ on) . 15 subnormal remmy 33 ooll= A(Gexe (5 1))
T () (T) ')
o (318) 1 X
< dgao (Sl/ ) = /330 ? . d(next (Sl/ > t))
L)

I/\

3.14
d&, (s ”m) :>d1//(s”m) 20(4:>)d1//(u)
>0 (bylettingu =s"") & y > 0.
(51)
This proves the first assertion. The second assertion is
clear from Lemma 4 and analyzing the moments of
%wm-

The following corollary is an immediate result of Lemma
8.

Corollary 9. Assume T =W, 3) € D, and T| 4, (5, is subnor-
mal with Berger measure 1. Let 1/t € L'()). Then
(a) T is subnormal &y >0
(b) For any m,n > 1, T" is subnormal &T™V is sub-
normal. Hence, in particular
T is subnormal for some m > 1 & T is subnormal. ~ (52)

Proof. (a) This follows from Lemma 5. (b) If TV is subnor-

mal for some m > 1, then T|_, ) is subnormal. By

Lemma 8, we have y >0 and hence T is subnormal by (a).

Clearly, if T is subnormal then TV is subnormal for all
nx1.

Journal of Function Spaces

Remark 10. We remark that if T = W , 5 € 5 and T| 4 5 is

subnormal with Berger measure 7, then 1/t € L' (1) because
Vo = shift(B g )» Bg1)>+*) is subnormal.

We next have:

Corollary 11. Let T = W, ) € . If there exists p € Z, such
that T|ﬂp(%)
m > 1 if and only if T is subnormal.

is subnormal, then T is subnormal for some

Proof. Tt suffices to consider the case of p =2. In the case, if

T is subnormal for some m > 1, then (T|/%1(7[>)(””1) is
subnormal. Thus, by Corollary 9, T|, 4) is subnormal,

and therefore, T is subnormal. The converse is clear.
We now have:

Lemma 12. Let T=W .3 € $ and let T| ;, (5 be subnor-

mal. Then,
IT! is subnormal for somen > 1 & Tis subnormal.  (53)

Proof. (=
pose that T is subnormal for fixed n>1. Then,
(Ttm 0 is subnormal. Let 7 be its Berger

1)
e, M55 ()

measure. By Lemma 3, we have

(1)
@%WQ

) Let 17 be the Berger measure of T| ;5 and sup-

o = T(l)n)%(l,n),r
(o,n—l)( /fll(?/)) (o.o)( ) ﬂl( ln)(T))
(0,0)

(54)
Hence, by Lemma 4 and (54), we have
A 1n
dr(s,t) = mdﬂ(s,t )- (55)
Observe
1™ i 1n
Aenl51)= Ht L(7) )’(o,n—1)(’7) dn(s, t )’ (36)

A(Teq (5 1)) =

-1 2n
|1/l‘||L1((T)) <J|Tz til/nd”(s’ tl/n)) ' (57)
Yon-1yl 0

We now characterize the subnormality of T(")

a backward extension of

. . B
(T( )z’m (T)> ’ . (in the t direction), ~ (58)
a0, (755)(m)

(0.0)
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after applying Lemma 5. To do so, let shift(a(g ), &(1,),+) in
the zero level of T be subnormal with the Berger measure &, .
Then, by (57), we have that

Lemma 3.3

. 1
issubnormal =

Vaw (7

L")

d(Text (S, t) )X
Li(r)

(1,n)

(0.0)

(3.22) Il , .
<di, () 2 B, <J £y s, ))
0

L (T
smm:%@ wwwﬂ

I
<dg, (s)(bylettingu=t"") = B3, <J tdn(s, t))
0
1
< d‘f% (S) = [530 ? (’7)2; < ‘Eoto .
Li(n)

(59)
By again Lemma 5 and (59), therefore, T is subnormal.
(&)Clear. (60)

By Corollary 9 and Lemma 12, we have:

Corollary 13. Let T = W((x,ﬁ) € gO‘ IfT‘./ﬂl(W) or T|/V1(%’) is
subnormal, then the following are equivalent:

(a) T™D s subnormal for some m > 1
(b) T is subnormal for all m> 1
(c) TN js subnormal for some n > 1
(d) TU" s subnormal for all n > 1

(e) T is subnormal

The following theorem is a core of our main result.

Theorem 14. If T| ;5 is subnormal, then for some m,n > 1
)™ (m1);
(T ) is subnormal & T\"™")is subnormal. (61)

Proof. (=). For fixed m,n > 1, suppose that (T(l,n))(m,m _

T(™") is subnormal. Then, W = (T<m’n)%<'”’”>(T>)|

) (9 (T))

»0)
is also subnormal. Let 7 be the Berger measure of T| ; ()
and let TE;(’;;) be the Berger measure of W. For each 0<
p<m-—1, using Lemma 5, we characterize the subnormal-

ity of T(™"| ) () @S 3 backward extension of W (in the
(»0)

t direction).

First observe that from (26) in Lemma 3, for0<p <m — 1,

()
(T|/%l<7f>)

) (T ) = <T(m,n)%(myn)(T)) ’
= M\ () .0) !
e w0 L (G ).

(62)
By Lemma 4 and (62), we have
Sp/mtn—lln
dT(m,n> s t) — d’1 Sl/m’ tlln . (63)
oo (0= 5 e )
Observe
1 -1 gPimy=1in
d T(m,n) s, t) _ 1= d71 Sl/m’ tl/n
( (P0) )ext( t ! (TE;"OV;)) Y(Pﬁ’l)(rl) ( )
(64)
(m.m) X
d((T(‘D’()) )ext(s, t))
(65)

Y(pn-1) (n) 0

V|7 e
_ | ||L1(TEP‘O))) <J 2|l Sp/mtllnd},l(sllm,tlln)>.

Let W, = shift(ay ), (1 x,)") be the k,-th horizontal
slice of T with Berger measure Eakz for k, > 0. By (65) and a

similar way to (59), for 0 < p <m — 1, we have that

Lemma 3.3 2

T(mn) issubnormal = 0 Bl
e oy Tem T
1 ’ b'e
' H? (m.n) d<TE';nor)l> (S’ t))ext
()
Yp(WO) ’ YP(WI)
1 X
- d(r(m’") (s t))
o N 00) (S1))
e () "
/m 2
< Ld@ (Sllm) <3‘:2>6> ﬁ(P)O) ’1
vp(Wo) VoW 1l ()

1

t
shm d 1m 2

< Etxn (S ) = ﬁ(p,o)

YP(WO)
| T5 1> pim—1/n

. J st d?’](Sl/m, tl/n)
0 Vp(Wl)

8, (™) = Bly)

Sp/m
1T /m
. J u—l s dﬂ(sl/m, u)
0 YP(WI)

-1 (171>
J Sp/mt—llndrl (Sllm’ tl/n)
! (T('W‘J) 0

(P0)

= YP(WO)
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Sp/m
<
yp(WO)

IT)1* L s
- J t dn
0 Y(p.0) (n)

spim 3.26

(3.26)
<—_dE_(s"m) = B2
Vp(WO) ° ( ) ﬁ(PO)

. <m,l>)X <
(W(p,o) ext

d&ao (Sllm) (bylettlngu — tl/n) = ﬁ?P‘O)

)

1
t

v (50
(%) (mp)’
(66)

where (&, ) ) is the Berger measure of the subnormal shift:

(myp
shift (“(p,o) T X pem-1,0)0 F(p+m0) T ‘X(p+2m—1,o)"")- (67)

By Lemma 5, (66), and a similar way to the proof of
Lemma 12, for 0 < p <m — 1, we have

m,1
(T(l’”>>( )is subnormal = T{"™")

(mim)
%(p,[]) (T)

1 (m1)\* (68)
L (11("%1)) (’7(];,0) >ext

is subnormal = 18%}7,0) 7
)

< (E“O)(mp) = T™is subnormal.

Therefore, by (68), we get the result.
(&) Since (T“’”))(m’l) = (mn) = (T(””U)(l’n), it follows

that (T(l’”>)<m’l) is subnormal whenever T is subnormal.

Corollary 15. Let T =W, g € 9. If T| - () is subnormal,
then the following are equivalent:

(a) (T(""I))u’n) is subnormal for some m, n > 1

(b) T is subnormal

(c) T is subnormal

We are ready to give a proof of our main theorem (The-
orem 2). For convenience, we restate Theorem 2:

Theorem 16. Let T= W, 5 € 9. If a corner of T is subnor-
mal, i.e., T|/%p(%)n/i/q(%’) is subnormal for some p, q € Z,, then
the following are equivalent:

(a) T is subnormal
(b) T™") s subnormal for all m,n > 1

(c) T s subnormal for some m,n > 1

Proof. (a) = (b): This is clear from the functional calculus. (b)
= (¢): Clear. (c) = (a): Suppose T|/%p<?f)WVq(%”) is subnormal
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for some p, q € Z, and T"™" is subnormal for some m, n.> 1.
By Lemma 7, we have T| (5)q, (%) is subnormal. Also,

(T|/V1(W))(m’”) is subnormal. We thus have

(m.n) (1) (™)
(T/V1 (%)) = < (T i %>) ) is subnormal

Theorem3.12 (m,1
=

).
i 7/)) issubnormal  (69)

Corollary3.123.11

= is subnormal.

N(F)

Therefore, by Corollary 15, we can see that T is
subnormal.

We conclude by revealing examples to illustrate Theorem
2. Their proofs are given from a straightforward calculation.
We will omit their proofs.

Example 1. Let T= (T, T,) = W(ap) € Ho and let T|ﬂ1(%) be

subnormal with Berger measure

1

dn(s, t) = tdsdt + gd‘s(o,ua)(s’ t) 70)
1 1

+ gd‘s(uz,n(s’ t)+ gd6(1,1/2) (5, 7).

Also, let
1 1 1 1
df%(s) = Eds+ gd(?o(s) + gd81,2(s) + gd8l(s), (71)

be the Berger measure of W, = shift(a(q ), &(1,0)>*+). We then
have:
(a) T is subnormal

(b) T®Y is subnormal

(c) T is subnormal
1
0< B0 < 3 (72)

Example 2. Let T=(T,,T,)=Wgp €9, and let
T| 4, (7)o, () be subnormal with Berger measure

1 1
dp (s, t) = 2stdsdt + L—ld5(1,1,2)(s, t) + Zd6(1,2,1)(s, t).
(73)

Also, let

1 1 1 1
df% (s)=~ds+ gdSO(s) + gd81/2(5) + gd(Sl (s), (74)

T2
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be the Berger measures on [0, 1] of W, = shift(a o), &(1,0)>"*)
and

dng (1) = y2dt + (1 - %) ddy(t) -
75

2 2 2
+ %d(Sl/Z(t) + %dal(t)’

be the Berger measures on [0, 1] of V, = shift(B,4)> Bg1)>*)-
We then have:

(a) T is subnormal

(b) T2 is subnormal
1 1
e oo (043} o
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