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Given a pair T ≡ ðT1, T2Þ of commuting subnormal Hilbert space operators, the Lifting Problem for Commuting Subnormals
(LPCS) asks for necessary and sufficient conditions for the existence of a commuting pair N ≡ ðN1,N2Þ of normal extensions of
T1 and T2; in other words, T is a subnormal pair. The LPCS is a longstanding open problem in the operator theory. In this
paper, we consider the LPCS of a class of powers of 2-variable weighted shifts. Our main theorem states that if a “corner” of a 2-
variable weighted shift T =Wðα,βÞ ≔ ðT1, T2Þ is subnormal, then T is subnormal if and only if a power Tðm,nÞ ≔ ðTm

1 , Tn
2Þ is

subnormal for some m, n ≥ 1. As a corollary, we have that if T is a 2-variable weighted shift having a tensor core or a diagonal
core, then T is subnormal if and only if a power of T is subnormal.

1. Introduction

For a Hilbert space operator, a subnormal operator means an
operator admitting a normal extension, i.e., an extension
which is a normal operator. As a lifting problem of operators,
many researchers of operator theory have considered neces-
sary and sufficient conditions for a pair of subnormal opera-
tors on a Hilbert space to admit commuting normal
extensions: more concretely, given a pair T = ðT1, T2Þ of
commuting subnormal operators T1, T2 on a Hilbert space,
find a necessary and sufficient condition for the existence of
commuting normal extensions N1 and N2 of T1 and T2,
respectively. This problem is referred to as the Lifting Prob-
lem for Commuting Subnormals (LPCS). A pair of subnor-
mal operators admitting commuting normal extensions is
called a subnormal pair.

For a bounded linear operator T on a complex Hilbert
space H , it is well known that the subnormality of T implies
the subnormality of powers Tmðm ≥ 2Þ. However, its con-
verse is not true in general; in fact, Stampfli [1, p. 378]
showed that the subnormality of all powers Tmðm ≥ 2Þ does
not necessarily imply the subnormality of T , even if T ≡Wa
is a unilateral weighted shift. It is also well known that the
hyponormality (i.e., ½T∗, T� ≡ T∗T − TT∗ is positive semide-

finite) of T does not imply the hyponormality of T2 [2].
However, for a unilateral weighted shift Wa, the hyponorm-
ality of Wa (detected by the condition ak ≤ ak+1 for all k ≥ 0
when a = fang∞n=0) clearly implies the hyponormality of all
powers Wm

a ðm ≥ 1Þ.
On the other hand, Franks [3] showed that given a pair

T = ðT1, T2Þ of commuting subnormal operators, if pðTÞ is
subnormal for all 2-variable polynomials p ∈ℂ½z1, z2� with
deg p ≤ 5, then T is a subnormal pair. Clearly, if T = ðT1,
T2Þ is a subnormal pair and if m, n ≥ 1, then Tðm,nÞ ≔ ðTm

1 ,
Tn
2Þ is also a subnormal pair. Motivated by Stampfli’s work

[1], it is natural to ask whether the subnormality of Tðm,nÞ

≔ ðTm
1 , Tn

2Þ for each ðm, nÞ > ð1, 1Þ implies the subnormality
of T. For the 2-variable weighted shifts, we may consider
these analogous results. The standard assumption on a pair
T ≡ ðT1, T2Þ is that each component Ti is subnormal ði = 1,
2Þ. With this in mind, these analogous results are highly non-
trivial. In the works [4–8], it was considered whether there is
a 2-variable weighted shift T =Wðα,βÞ ≔ ðT1, T2Þ such that

Tðm,nÞ is subnormal for some ðm, nÞ > ð1, 1Þ, but T is not
subnormal.

For a ≡ fang∞n=0, a bounded sequence of positive real
numbers (called weights), a weighted shift Wa : ℓ

2ðℤ+Þ⟶
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ℓ2ðℤ+Þ is defined byWaen ≔ anen+1 (all n ≥ 0), where feng∞n=0
is the canonical orthonormal basis in ℓ2ðℤ+Þ. In this case, we
write

Wa = shift a0, a1, a2,⋯ð Þ: ð1Þ

Now, for 0 < x < y < 1, consider the weighted shift

Wa = shift x, y, 1, 1,⋯ð Þ: ð2Þ

Then, Wa is hyponormal (detected by the condition an
≤ an+1 for all n) but not subnormal. However, all powers
Wm

a ðm ≥ 2Þ are subnormal. If y = 1 in Wa = shift
ðx, y, 1, 1,⋯Þ, then the following statements are equivalent:

(a) Wa is subnormal

(b) Wm
a is subnormal for all m ≥ 1

(c) Wm
a is subnormal for some m ≥ 1

In [5, 6], we have examined the above results for the class
of 2-variable weighted shifts T =Wðα,βÞ. More concretely, for
the class of 2-variable weighted shifts T =Wðα,βÞ with a core
of tensor form, denoted T C [5], or with a core of diagonal
form, denoted DC [6], we have shown that if T =Wðα,βÞ ∈
TC ∪DC , then the following statements are equivalent:

(a) T is subnormal

(b) Tðm,nÞ is subnormal for all m, n ≥ 1

(c) Tðm,nÞ is subnormal for some m, n ≥ 1

In spite of the above facts for 1 or 2-variable weighted
shifts and consideration of the recent works ([4–8]), we have
guessed that there exists a class of 2-variable weighted shifts

Wðα,βÞ such that Wðα,βÞ is not subnormal but Wðm,nÞ
ðα,βÞ is sub-

normal for all ðm, nÞ > ð1, 1Þ, under a more general condition
that a “corner” ofWðα,βÞ is subnormal. In this paper, we show
that this guess is not right and that the above three statements
are equivalent whenever a corner of Wðα,βÞ is subnormal. In
the below, we will notice that TC ∪DC is a very special cor-
ner of Wðα,βÞ.

On the other hand, the reason why we take 2-variable
weighted shifts for examining the subnormality of powers
for pairs of operators is that 2-variable weighted shifts play
an important role in detecting properties such as subnormal-
ity, via the Lambert-Lubin Criterion ([9, 10]): a commuting
pair ðT1, T2Þ of injective operators acting on a Hilbert space
H admits a commuting normal extension if and only if for
every nonzero vector x ∈H , the 2-variable weighted shift
with weights

α i,jð Þ ≔
Ti+1
1 T j

2x
��� ���
Ti
1T

j
2x

��� ��� andβ i,jð Þ ≔
Ti
1T

j+1
2 x

��� ���
Ti
1T

j
2x

��� ��� , ð3Þ

has a normal extension.

The organization of this paper is as follows. In Section 2,
we give preliminary notions and state the main theorem. In
Section 3, we provide a proof of the main theorem.

2. Preliminaries and the Main Theorem

Let H be a complex Hilbert space and let BðHÞ denote the
algebra of bounded linear operators on H . For S, T ∈BðHÞ
let ½S, T�≔ ST − TS. We say that an n-tuple T = ðT1,⋯,TnÞ of
operators onH is (jointly) hyponormal if the operator matrix

T∗, T�≔

T∗
1 , T1� T∗

2 , T1½ � ⋯ T∗
n , T1½ �

T∗
1 , T2� T∗

2 , T2½ � ⋯ T∗
n , T2½ �

⋮ ⋮ ⋱ ⋮

T∗
1 , Tn� T∗

2 , Tn½ � ⋯ T∗
n , Tn½ �

0
BBBBB@

1
CCCCCA, ð4Þ

is positive semidefinite on the direct sum of n copies of H
(cf. [11, 12]). The n-tuple T is said to be normal if T is com-
muting and each Ti is normal, and T is subnormal if T is the
restriction of a normal n-tuple to a common invariant sub-
space. For k ≥ 1, a commuting pair T ≡ ðT1, T2Þ is said to
be k -hyponormal ([13]) if

T kð Þ≔ T1, T2, T2
1, T2T1, T2

2,⋯,Tk
1, T2T

k−1
1 ,⋯,Tk

2

� �
, ð5Þ

is hyponormal, or equivalently

T kð Þ∗, T kð Þ� = Tq
2T

p
1

� �∗, Tm
2 T

n
1

h i� �1≤n+m≤k

1≤p+q≤k
≥ 0: ð6Þ

Clearly, normal ⇒ subnormal ⇒ k-hyponormal for
n-tuples of operators. The Bram-Halmos criterion states
that an operator T ∈BðHÞ is subnormal if and only if the
k-tuple ðT , T2,⋯,TkÞ is hyponormal for all k ≥ 1.

LetWa be a weighted shift with weights a ≡ fang∞n=0. The
moments of a are given as

γk ≡ γk að Þ≔
1, if k = 0

a20 ⋯ a2k−1, if k ≥ 1

(
: ð7Þ

It is easy to see that Wa is never normal and that it is
hyponormal if and only if a0 ≤ a1 ≤⋯. Similarly, consider
double-indexed positive bounded sequences α ≡ fαkg, β ≡
fβkg ∈ ℓ∞ðℤ2

+Þ and k ≡ ðk1, k2Þ ∈ℤ2
+ and let ℓ2ðℤ2

+Þ be the
Hilbert space of square-summable complex sequences
indexed byℤ2

+. Recall that ℓ
2ðℤ2

+Þ is canonically isometrically
isomorphic to ℓ2ðℤ+Þ ⊗ ℓ2ðℤ+Þ. We define the 2-variable
weighted shift Wðα,βÞ ≡ ðT1, T2Þ by a pair of operators acting
on the Hilbert space H ≡ ℓ2ðℤ2

+Þ given by

T1e k1,k2ð Þ ≔ α k1,k2ð Þe k1+1,k2ð Þ,

T2e k1,k2ð Þ ≔ β k1,k2ð Þe k1,k2+1ð Þ,:
ð8Þ

for each ðk1, k2Þ ∈ℤ2
+. For all k ≡ ðk1, k2Þ ∈ℤ2

+, we clearly
have
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T1T2 = T2T1 ⇔ β k1+1,k2ð Þα k1,k2ð Þ = α k1,k2+1ð Þβ k1,k2ð Þ: ð9Þ For a commuting 2-variable weighted shift Wðα,βÞ, the
moment of Wðα,βÞ of order k ∈ℤ2

+ is

We remark that, due to the commutativity condition (9),
γk can be computed using any nondecreasing path from ð0,
0Þ to ðk1, k2Þ. For a detailed discussion of the 2-variable
weighted shifts, the reader may refer to ([4, 13, 14] [8]).

We now recall a well-known characterization of subnor-
mality for multivariable weighted shifts [15], due to C. Berger
(cf. [2, III.8.16]) and independently established by Gellar and
Wallen [16]) in the single variable case:Wðα,βÞ admits a com-
muting normal extension if and only if there is a probability
measure μ, called the Berger measure of Wðα,βÞ, defined on

the 2-dimensional rectangle R = ½0, c1� × 0, c2� (where ci ≔
kTik2Þ such that

γk =
ð
R
tkdμ tð Þ≔

ð
R
tk11 t

k2
2 dμ t1, t2ð Þ, for all k ∈ℤ2

+: ð11Þ

Observe that U+ ≡ shift ð1, 1, 1,⋯Þ and Sc ≡ shiftðc, 1,
1,⋯Þðc ≤ 1Þ are subnormal, with Berger measuresδ1 and
ð1 − c2Þδ0 + c2δ1, respectively, where δp denotes the point-
mass probability measure with support from the singleton
set fpg.

Throughout this paper, we write H ≡ ℓ2ðℤ2
+Þ ≡ ∨

fekgk∈ℤ2
+
and

H0 ≔ the set of all commuting pairs of
subnormal operators onH ,

ð12Þ

Mp Hð Þ≔ ∨ ek : k = k1, k2ð Þwith k1 ≥ 0, k2 ≥ pf g, ð13Þ

N q Hð Þ≔∨ ek : k = k1, k2ð Þwith k1 ≥ q, k2 ≥ 0f g: ð14Þ

for p, q ≥ 0. For a 2-variable weighted shiftWðα,βÞ, a corner of
Wðα,βÞ is defined by

W α,βð Þ
���
Mp Hð Þ∩N q Hð Þ

for some p, q ≥ 0, ð15Þ

which is a restriction of Wðα,βÞ to the invariant subspace
MpðHÞ ∩N qðHÞ. The core of Wðα,βÞ, denoted by cðWðα,βÞÞ,
is defined by a corner with p = q = 1, i.e.,

c W α,βð Þ
� �

≔W α,βð Þ
���
M1 Hð Þ∩N 1 Hð Þ

: ð16Þ

Thus, for 2-variable weighted shifts, the core is a special
form of a corner. A 2-variable weighted shift Wðα,βÞ is said
to be of tensor form if it is of the form ðI ⊗Wa,Wb ⊗ IÞ. If a
tensor formWðα,βÞ is subnormal, then the corresponding Ber-
ger measure is given by a Cartesian product ξ × η where ξ and
η are the Berger measure ofWa andWb, respectively (cf. [5]).
Also, for strictly increasing weight sequences a ≡ fang∞n=0, con-
sider a 2-variable weighted shiftWðα,βÞ on ℓ

2ðℤ2
+Þ given by the

double-indexed weight sequences

αk = βk ≔ ak1+k2 for k = k1, k2ð Þwith k1, k2 ≥ 0: ð17Þ

This 2-variable weighted shift Wðα,βÞ induced by a 1-var-
iable weighted shift Wa is said to be of the diagonal form. If
a diagonal form Wðα,βÞ is subnormal, then the corresponding
Berger measure is given by a measure supported in the diago-
nal fðs, sÞ ∈ℝ2 : s ≥ 0g (cf. [6]). The class of all 2-variable
weighted shifts Wðα,βÞ ∈H0 whose core is of the tensor form
will be denoted by T C ; in symbols,

TC ≔ fWðα,βÞ ∈H0 : cðWðα,βÞÞ is of tensor form g (see
Figure 1(i)).

Also, the class of all 2-variable weighted shifts Wðα,βÞ ∈
H0 whose core is of the diagonal form will be denoted by D
C ; in symbols,

DC ≔ fWðα,βÞ ∈H0 : cðWðα,βÞÞ is of diagonal formg (see
Figure 1(ii)).

In [5, 6], it was shown that if T =Wðα,βÞ ∈T C ∪DC ,

then Tðm0,n0Þ is subnormal for some m0, n0 ≥ 1 if and only if
T is subnormal. Now, it is natural to consider that given a
2-variable weighted shift T =Wðα,βÞ ∈H0, whether or not

Tðm,nÞ is subnormal if and only if T is subnormal. In other
words, we ask the following:

γk ≡ γk W α,βð Þ
� �

≔

1, if k1 = 0 and k2 = 0

α20,0ð Þ ⋯ α2k1−1,0ð Þ, if k1 ≥ 1 and k2 = 0

β2
0,0ð Þ ⋯ β2

0,k2−1ð Þ, if k1 = 0 and k2 ≥ 1

α20,0ð Þ ⋯ α2k1−1,0ð Þβ
2
k1,0ð Þ ⋯ β2

k1,k2−1ð Þ, if k1 ≥ 1 and k2 ≥ 1:

8>>>>>>><
>>>>>>>:

ð10Þ
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Problem 1 ([6, 8]). Given a 2-variable weighted shift T =
Wðα,βÞ ∈H0, assume that Tðm,nÞ is subnormal for all ðm, nÞ
> ð1, 1Þ. Does it follow that T is subnormal?

For the class of 2-variable weighted shifts Wðα,βÞ, it is
often the case that the powers are less complex than the initial
pair; thus, it becomes especially significant to unravel the

invariance of subnormality under the action Wðα,βÞ ↦

Wðm,nÞ
ðα,βÞ ðm, n ≥ 1Þ. The aim of this paper is to shed new light

on some of the intricacies associated with LPCS and powers
of commuting subnormals in H0.

Our main theorem now states:

Theorem 2. Let T ≡Wðα,βÞ ∈H0. If a corner of T is subnor-
mal, i.e., TjMpðHÞ∩N qðHÞ is subnormal for some p, q ∈ℤ+, then

the following are equivalent:

(a) T is subnormal

(b) Tðm,nÞ is subnormal for all m, n ≥ 1

(c) Tðm,nÞ is subnormal for some m, n ≥ 1

As we observed before, TC ∪DC is a special cor-
ner of Wðα,βÞ. Indeed, if T =Wðα,βÞ ∈TC ∪DC , then
TjM1ðHÞ∩N 1ðHÞ is subnormal, so that T satisfies the condition
of Theorem 2. Therefore, if T =Wðα,βÞ ∈TC ∪DC , then
three conditions of Theorem 2 are equivalent. Thus, as
immediate corollaries of Theorem 2, we can recapture the
both main results of [5, Theorem 7.1] and [6, Theorem 3.2].

Briefly stated, our key idea to prove the main results is as
follows: (i) we split the ambient space H ≡ ℓ2ðℤ2

+Þ as an

orthogonal direct sum H = ⊕ m−1
p=0 ⊕ n−1

q=0H
ðm,nÞ
ðp,qÞ ; (ii) when

TjM1ðHÞ is subnormal, we show that for some m ≥ 1,Tðm,1Þ

is subnormal if and only if T is subnormal by using the back-
ward extension of subnormality; (iii) when TjM1ðHÞ is sub-

normal, we show that for some m, n ≥ 1ðTð1,nÞÞðm,1Þ
is

subnormal if and only if Tðm,1Þ is subnormal by using (i)
and the backward extension of subnormality; and (iv) by
combining (ii) and (iii), we have that if TjMpðHÞ∩N qðHÞ is sub-

normal for some p, q ∈ℤ+, then Tðm,nÞ = ðTðm,1ÞÞð1,nÞ is sub-
normal for some m, n ≥ 1 if and only if T is subnormal.

3. The Proof of the Main Theorem

We will first establish several auxiliary lemmas and then
prove the main theorem (Theorem 2).

To study subnormality for powers of multivariable
weighted shifts, we recall that, in one variable, the m-th
power of a weighted shift is unitarily equivalent to the direct
sum of m weighted shifts. First, we need some terminology.
Let ℓ2ðℤ+Þ = ∨∞

j=0fejg. Given integers i and mðm ≥ 1, 0 ≤ i ≤
m − 1Þ, define Hm,i ≔ ∨∞

j=0femj+ig; clearly, ℓ2ðℤ+Þ = ⊕ m−1
i=0

Hm,i. Following the notation in [17], for a weight sequence
a ≡ fang∞n=0, we let

Wa m:ið Þ ≔ shift Πm−1
n=0 amj+i+n

� �∞
j=0, ð18Þ

that is, Waðm:iÞ denotes the shift with the weight sequence
given by the products of weights in adjacent packets of size
m, beginning with ai ⋯ ai+m−1. For example, given a weight
sequence a ≡ fang∞n=0, we have Wað2:0Þ = shiftða0a1, a2a3,⋯Þ,
Wað2:1Þ = shiftða1a2, a3a4,⋯Þ, Wað3:2Þ = shiftða2a3a4, a5a6a7,
⋯Þ, etc. For m ≥ 1 and 0 ≤ i ≤m − 1, we note that Waðm:iÞ is
unitarily equivalent to Wm

a jHm,i
: Therefore, Wm

a is unitarily

equivalent to ⊕ m−1
i=0 Waðm:iÞ: Thus, we have (cf. [17]) that if

Wa is subnormal with the Berger measure μ, then Waðm,iÞ is
subnormal with the Berger measure μðm,iÞ, where

dμ m,ið Þ sð Þ =
si/m

γi
dμ s1/m
� �

for 0 ≤ i ≤m − 1, ð19Þ

and furthermore,

a

(0, 0)

(i) (ii)

(0, 1)

(0, 2)

(1, 0)

T1 T1

(2, 0) (0, 0) (1, 0) (2, 0)

y2

y1 y1

y2

y0 y0

𝛽2

𝛽1 𝛽1

𝛼1

𝛼1

𝛼1 𝛼1

𝛼2 𝛼2
𝛼2 𝛼2 𝛼3

𝛼2 a 𝛼1 𝛼2

𝛽2a𝛽1
y1

a𝛼1
y1

ay0
x0

ay0
x0

ay0𝛼1
x0x0

ay0𝛼1
x0x0

x0 x1 x2 x0 x1 x2

T2 T2

Figure 1: Weight diagram of the 2-variable weighted shift T ∈T C and weight diagram of the 2-variable weighted shift T ∈DC , respectively.
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Wm
a is subnormal⇐Wa m:ið Þ is subnormal for 0 ≤ i ≤m − 1:

ð20Þ

For h ≥ 1, we letLh ≔ ∨fen : n ≥ hg denote the invariant
subspace obtained by removing the first h vectors in the
canonical orthonormal basis of ℓ2ðℤ+Þ. Thus, if Wa ≡ shiftð
a0, a1, a2,⋯Þ is subnormal with Berger measure σ, then
WajLh

is subnormal for each h ≥ 1, and the Berger measure
ðσÞh of WajLh

is given by

d σð Þh sð Þ = sh

γh
dσ sð Þ: ð21Þ

Something similar happens in two variables, as we will
see it below. For a 2-variable weighted shift T =Wðα,βÞ = ð
T1, T2Þ ∈H0 on H ≡ ℓ2ðℤ2

+Þ, we observe a new direct sum
decomposition for powers of 2-variable weighted shifts
which parallels the decomposition used in [17] to analyze
the subnormality for powers of (one-variable) weighted
shifts. Specially, we split the ambient space H ≡ ℓ2ðℤ2

+Þ ≡ ∨

fekgk∈ℤ2
+

as an orthogonal direct sum H ≡ ⊕ m−1
p=0 ⊕ n−1

q=0

H
ðm,nÞ
ðp,qÞ , where for p = 0, 1,⋯,m − 1, and q = 0, 1,⋯, n − 1,

H
m,nð Þ
p,qð Þ Tð Þ≔∨ e mi+p,nj+qð Þ : i = 0, 1, 2,⋯,j = 0, 1, 2,⋯,

n o
,

ð22Þ

where T =Wðα,βÞ is a 2-variable weighted shift on H ≡ ℓ2ð
ℤ2

+Þ. Then, each of H
ðm,nÞ
ðp,qÞ ðTÞ reduces Tm

1 and Tn
2 . Also,

Tðm,nÞ is subnormal if and only if each Tðm,nÞj
H

ðm,nÞ
ðp,qÞ ðTÞ

is sub-

normal. Similarly, for h, l ≥ 0, consider TjMhðHÞ∩MlðHÞ on
MhðHÞ ∩MlðHÞ and let

H
m,nð Þ
p,qð Þ TjMh Hð Þ∩Ml Hð Þ
� �

≔∨ e mi+p+h,nj+q+lð Þ : i = 0, 1, 2,⋯,j = 0, 1, 2,⋯
n o

:
ð23Þ

In a similar fashion to (13) and (14), we can define

Mh H
m,nð Þ
p,qð Þ Tð Þ

� �
≔ ∨ ek ∈H

m,nð Þ
p,qð Þ Tð Þ: i ≥ 0 and j ≥ h

n o
,

N l H
m,nð Þ
p,qð Þ Tð Þ

� �
≔ ∨ ek ∈H

m,nð Þ
p,qð Þ Tð Þ: i ≥ l and j ≥ 0

n o
:

ð24Þ

We thus have:

Lemma 3. Let T =Wðα,βÞ be a 2-variable weighted shift. Then,
for a fixed m ≥ 1 and 0 ≤ p, q ≤m − 1, we have

T m,1ð Þ
���
H

m,1ð Þ
0,0ð Þ Tð Þ

 !
Mp H

m,1ð Þ
0,0ð Þ Tð Þ

� �����
≅ TMp Hð Þ
� � m,1ð Þ

����
H

m,1ð Þ
0,0ð Þ TjMp Hð Þ

� �,

T m,1ð Þ
���
H

m,1ð Þ
0,0ð Þ Tð Þ

 !
N q H

m,1ð Þ
0,0ð Þ Tð Þ

� �����
≅ TN mq Hð Þ
� � m,1ð Þ

����
H

m,1ð Þ
0,0ð Þ TjMmq Hð Þ

� �

ð25Þ

and for m, n ≥ 1, 0 ≤ p ≤m − 1, 0 ≤ q ≤ n − 1, we have

TjM1 Hð Þ∩N 1 Hð Þ
� � m,nð Þ

H
m,nð Þ
p,n−1ð Þ TM1 Hð Þ∩N 1 Hð Þð Þ

����
≅ T m,nð Þ

H
m,nð Þ
p,0ð Þ Tð Þ

� 	����
M1 Hð Þ∩N 1 Hð Þ H

m,nð Þ
p,0ð Þ Tð Þ

� � ;
Tj

Mq
Hð Þ

� � m,nð Þ

H
m,nð Þ
0,0ð Þ T

Mq
Hð Þ

� � ≅ T m,nð Þ
�����

�����
H

m,nð Þ
0,qð Þ Tð Þ

;

Tj
N p

Hð Þ
� � m,nð Þ

H
m,nð Þ
0,0ð Þ T

N p
Hð Þ

� � ≅ T m,nð Þ
�����

�����
H

m,nð Þ
p,0ð Þ Tð Þ

;

TjM1 Hð Þ
� � m,nð Þ

H
m,nð Þ
0,n−1ð Þ TM1 Hð Þð Þ

����
≅ T m,nð Þ

H
m,nð Þ
0,0ð Þ Tð Þ

� 	����
M1 H

m,nð Þ
0,0ð Þ Tð Þ

� � ;
TjN 1 Hð Þ
� � m,nð Þ

H
m,nð Þ
p,n−1ð Þ TN 1 Hð Þð Þ

����
≅ T m,nð Þ

H
m,nð Þ
p,0ð Þ Tð Þ

� 	����
N 1 H

m,nð Þ
p,0ð Þ Tð Þ

� �,

ð26Þ

where ≅ means a unitary equivalence of two operators.

Lemma 4. Let T =Wðα,βÞ be a 2-variable weighted shift inH0.

If T is subnormal with Berger measure μ, then Tðm,nÞ is sub-
normal for all m, n ≥ 1. Furthermore, for each 0 ≤ p ≤m − 1,
0 ≤ q ≤ n − 1, the Berger measure of Tðm,nÞj

H
ðm,nÞ
ðp,qÞ ðTÞ

is given by

dμ m,nð Þ
p,qð Þ s, tð Þ = sp/mtq/n

γ p,qð Þ
dμ s1/m, t1/n
� �

: ð27Þ

Proof. Observe first that if T =Wðα,βÞ is subnormal then

Tðm,nÞ ≅ ⊕ m−1
p=0 ⊕ n−1

q=0Tðm,nÞj
H

ðm,nÞ
ðp,qÞ ðTÞ

, where each direct sum-

mand is a subnormal 2-variable weighted shift.
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For the second assertion, observe

γ i,jð Þ μ
m,nð Þ
p,qð Þ

� �
=
γ mi+p,nj+qð Þ μð Þ

γ p,qð Þ μð Þ for p, q ≥ 0: ð28Þ

Thus, for i, j ≥ 0,

ð
sit jdμ m,nð Þ

p,qð Þ s, tð Þ = γ i,jð Þ μ
m,nð Þ
p,qð Þ

� �
=
γ mi+p,nj+qð Þ

γ p,qð Þ

=
1

γ p,qð Þ

ð
smitnj+qdμ s, tð Þ

=
1

γ p,qð Þ

ð
sit jsp/mtq/ndμ s1/m, t1/n

� �
,

ð29Þ

so that

dμ m,nð Þ
p,qð Þ s, tð Þ = sp/mtq/n

γ p,qð Þ
dμ s1/m, t1/n
� �

, ð30Þ

which gives the result.

To detect the subnormality of 2-variable weighted shifts,
we introduce some definitions.

(i) For a regular Borel measure μ onℝ+, we say that μ is
positive if μðEÞ ≥ 0 for all Borel subset E ⊆ℝ+, or
equivalently, μ ≥ 0 if and only if

Ð
f dμ ≥ 0 for all f

∈ Cðℝ+Þ such that f ≥ 0 on ℝ+. Similarly, we say
that dμðsÞ is positive (denoted by dμðsÞ ≥ 0) if

Ð
f ðsÞ

dμðsÞ ≥ 0 for all f ∈ Cðℝ+Þ such that f ≥ 0 on ℝ+.
For positive two measures μ and ν onℝ+, we say that
μ ≥ ν on ℝ+ if μ − ν is positive

(ii) Let μ be a probability measure on X × Y , and assume
that 1/t ∈ L1ðμÞ: The extremal measure μext (which is
also a probability measure) on X × Y is given by

dμext s, tð Þ≔ 1 − δ0 tð Þð Þ 1
t 1/tk kL1 μð Þ

dμ s, tð Þ: ð31Þ

(iii) Given a measure μ on X × Y , the marginal measure
μX is given by μX ≔ μ ∘ π−1

X , where πX : X × Y ⟶

X is the canonical projection onto X. Thus, μXðEÞ
= μðE × YÞ for every E ⊆ X, or equivalently, dμXðsÞ
=
Ð
Ydμðs, tÞ.

Lemma 5 [14, Proposition 3.10] (subnormal backward
extension). Let T =Wðα,βÞ be a 2-variable weighted shift,
and assume that TjM1ðHÞ is subnormal with associated Berger
measure η and that W0 ≔ shif tðα00, α10,⋯Þ is subnormal
associated with Berger measure ξα0 . Then, T is subnormal if
and only if

1
t
∈ L1 ηð Þ,

β2
0,0ð Þ ≤

1
t

����
����
L1 ηð Þ

 !−1

,

β2
0,0ð Þ

1
t

����
����
L1 ηð Þ

ηð ÞXext ≤ ξα0 :

ð32Þ

Moreover, if β2
00k1/tkL1ðηÞ = 1, then ðηÞXext = ξα0 . In the case

when T is subnormal, the Berger measure μ of T is given by

dμ s, tð Þ = β2
0,0ð Þ

1
t

����
����
L1 ηð Þ

d ηð Þext s, tð Þ

+ dξα0 sð Þ − β2
0,0ð Þ

1
t

����
����
L1 ηð Þ

d ηð ÞXext sð Þ
 !

dδ0 tð Þ:

ð33Þ

We also recall:

Lemma 6 [18]. For a positive measure μ on Z ≡ X × Y ≡ℝ+
×ℝ+, let 1/t ∈ L1ðμÞ. Then, 1/t ∈ L1ðμYÞ and

1
t

����
����
L1 μð Þ

=
1
t

����
����
L1 μYð Þ

, ð34Þ

where μY ≔ μ ∘ π−1
Y and πY : Z⟶ Y is the canonical projec-

tion onto Y .

Given a 2-variable weighted shift T =Wðα,βÞ ∈H0, and
given k1, k2 ≥ 0, we let

Wk2
≔ shift α 0,k2ð Þ, α 1,k2ð Þ,⋯

� �
, ð35Þ

be the k2-th horizontal slice of T1 with associated Berger
measure ξαk2

; similarly, we let

Vk1
≔ shift β k1,0ð Þ, β k1,1ð Þ,⋯

� �
, ð36Þ

be the k1-th vertical slice of T2 with associated Berger mea-
sure ηβk1

. Clearly, W0 and V0 are the unilateral weighted

shifts associated with the 0th row and 0-column in the weight
diagram for T, respectively.

Then, we have:

Lemma 7. Let T =Wðα,βÞ ∈H0. If TjMpðHÞ∩N qðHÞ is subnor-
mal for some p, q ∈ℤ+, then TjM1ðHÞ∩N 1ðHÞ is also subnormal.

Proof. It is enough to show that if TjM2ðHÞ∩N 1ðHÞ or
TjM1ðHÞ∩N 2ðHÞ is subnormal, then TjM1ðHÞ∩N 1ðHÞ is subnor-
mal. Without loss of generality, assume that TjM2ðHÞ∩N 1ðHÞ
is subnormal. Since Wðα,βÞ ∈H0, we have that Vk1

≡ shift
ðβðk10Þ, βðk11Þ,⋯Þ is subnormal for all k1 ≥ 0. By Lemma 5,
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we have β2
ðk1,1Þk1/tkL1ðηβk1 Þ = 1ðk1 ≥ 0Þ. Let ζ be the Berger

measure of TjM2ðHÞ∩N 1ðHÞ. By Lemma 6, since k1/tkL1ðηβ1 Þ
= k1/tkL1ðζÞ and β2

ð1,1Þk1/tkL1ðζÞ = 1, it follows from Lemma

5 that ðζÞXext = ξα1 , that is,

ζð ÞXext = ξα1 ⇒ β2
1,1ð Þ

1
t

����
����
L1 ζð Þ

ζð ÞXext ≤ ξα1 : ð37Þ

Moreover, 1/t ∈ L1ðζÞ and β2
ð1,1Þ ≤ ðk1/tkL1ðζÞÞ−1. Thus, by

Lemma 5 again, we have that TjM1ðHÞ∩N 1ðHÞ is subnormal, as
desired.

Next, we have:

Lemma 8. Assume T =Wðα,βÞ ∈H0 and TjM1ðHÞ is subnormal

with Berger measure η. Assume 1/t ∈ L1ðηÞ: Let ξα0 be the Ber-
ger measure of subnormal shiftW0 ≡ ðαð0,0Þ, αð1,0Þ,⋯Þwhich is
in the zero level of T. We also let

lψ≔ ξα0 − β2
00

1
t

����
����
L1 ηð Þ

ηð ÞXext: ð38Þ

If Tðm,1Þj
H

ðm,1Þ
ð0,0Þ ðTÞ

is subnormal for some m ≥ 1, then ψ ≥ 0.

Moreover, if Tðm,1Þj
H

ðm,1Þ
ð0,0Þ ðTÞ

is subnormal, then its Berger mea-

sure is

β2
00

1
t

����
����
L1 ηð Þ

d ηextð Þ s1/m, t
� �

+ dψ s1/m
� �

dδ0 tð Þ: ð39Þ

Proof. We first claim that

dψ sð Þ ≥ 0⇔ dψ s1/m
� �

≥ 0 for anym ∈ℕ: ð40Þ

To see (40), we note that the positivity of ψ depends on
the densities of ðηÞXext and ξα0 . There are three cases to
consider.

(i) If ðηÞXext and ξα0 are finite atomic measures, then it is
clear

(ii) If ðηÞXext and ξα0 are continuous measures, then by a
change of variables, letting u = s1/m, which goes in
both directions because s1/m is an invertible function
on the positive axis. That is, one can change the
name of the variable from s1/m to u and then relabel
u as s

(iii) If ðηÞXext and ξα0 are any probability measures, then
by the above arguments, we have the claim (40).

Now, suppose that Tðm,1Þj
H

ðm,1Þ
ð0,0Þ ðTÞ

is subnormal with

the Berger measure ϖ. Since Tðm,1Þj
H

ðm,1Þ
ð0,0Þ ðTÞ

and

ðTðm,1Þ
H

ðm,1Þ
ð0,0Þ ðTÞ

Þj
M1ðH ðm,1Þ

ð0,0Þ ðTÞÞ
are subnormal, we thus recon-

struct the subnormality of Tðm,1Þj
H

ðm,1Þ
ð0,0Þ ðTÞ

as a backward

extension of

T m,1ð Þ
H

m,1ð Þ
0,0ð Þ Tð Þ

� 	����
M1 H

m,1ð Þ
0,0ð Þ Tð Þ

� � in the t directionð Þ, ð41Þ

by applying Lemma 5. We let ς be the Berger measure of

T m,1ð Þ
H

m,1ð Þ
0,0ð Þ Tð Þ

� 	����
M1 H

m,1ð Þ
0,0ð Þ Tð Þ

� �: ð42Þ

Since η is the Berger measure of TjM1ðHÞ, by Lemma 4, we
have

lγ k1,k2ð Þ ςð Þ = 1
β2
00

· γ k1,k2+1ð Þ ϖð Þ⇒
ð
sk1 tk2dς s, tð Þ

=
1
β2
00

·
ð
sk1 tk2+1dϖ s, tð Þ⇒

ð
sk1 tk2dη m,1ð Þ

0,0ð Þ s, tð Þ

=
ð
sk1 tk2

t

β2
00
dϖ s, tð Þ

 !
for all k1, k2ð Þð Þ:

ð43Þ

Thus, we obtain

dη m,1ð Þ
0,0ð Þ s, tð Þ = t

β2
00
dϖ s, tð Þ: ð44Þ

Also, by Lemma 4 and (44), we have

dη s1/m, t
� �

=
t

β2
00
dϖ s, tð Þ: ð45Þ

Since ς is the Berger measure of

T m,1ð Þ
H

m,1ð Þ
0,0ð Þ Tð Þ

� 	����
M1 H

m,1ð Þ
0,0ð Þ Tð Þ

� �, ð46Þ

and ϖ is the Berger measure of Tðm,1Þj
H

ðm,1Þ
ð0,0Þ ðTÞ

, by Lemma 4,

(44) and (45), we have

dς s, tð Þ = t

β2
00
dϖ s, tð Þ = dη m,1ð Þ

0,0ð Þ s, tð Þ = dη s1/m, t
� �

: ð47Þ

We let ηβ0
be the Berger measure of the following subnor-

mal shift:

shift β 0,0ð Þ, β 0,1ð Þ, β 0,2ð Þ,⋯
� �

: ð48Þ
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Since ς is the Berger measure of
ðTðm,1Þ

H
ðm,1Þ
ð0,0Þ ðTÞ

Þj
M1ðH ðm,1Þ

ð0,0Þ ðTÞÞ
, by Lemma 6, we have

1
t

����
����
L1 ηð Þ

=
1
t

����
����
L1 ηβ0ð Þ1ð Þ

=
1
t

����
����
L1 ςð Þ

,

d ςext s, tð Þð ÞX = d ηext s1/m, t
� �� �X

:

ð49Þ

If shiftðαð0,0Þ, αð1,0Þ,⋯Þ in the zero level of T is subnormal
with the Berger measure ξα0 , then

shift α 0,0ð Þ ⋯ α m−1,0ð Þ, α m,0ð Þ ⋯ α 2m−1,0ð Þ,⋯
� �

, ð50Þ

is subnormal with the Berger measure dðξα0Þðm,0ÞðsÞ =
dξα0ðs1/mÞ by (18).

Since T =Wðα,βÞ ∈H0 and Tðm,1Þj
H

ðm,1Þ
ð0,0Þ ðTÞ

is subnormal, it

follows from Lemma 5, (22), (44), (47), and (49) that

T m,1ð Þ
���
H

m,1ð Þ
0,0ð Þ Tð Þ

is subnormal ⇒Lemma 3:3
β2
00

1
t

����
����
L1 ςð Þ

d ςext s, tð Þð ÞX

≤ dξα0 s1/m
� �

⇒
3:18ð Þ

β2
00

1
t

����
����
L1 ηð Þ

d ηext s1/m, t
� �� �X

≤ dξα0 s1/m
� �

⇒ dψ s1/m
� �

≥ 0 ⇔
3:14ð Þ

dψ uð Þ
≥ 0 by letting u = s1/m
� �

⇔ ψ ≥ 0:
ð51Þ

This proves the first assertion. The second assertion is
clear from Lemma 4 and analyzing the moments of
Tðm,1Þj

H
ðm,1Þ
ð0,0Þ ðTÞ

:

The following corollary is an immediate result of Lemma
8.

Corollary 9. Assume T =Wðα,βÞ ∈H0 and TjM1ðHÞ is subnor-
mal with Berger measure η. Let 1/t ∈ L1ðηÞ: Then

(a) T is subnormal ⇔ψ ≥ 0

(b) For any m, n ≥ 1, Tðm,1Þ is subnormal ⇔Tðn,1Þ is sub-
normal. Hence, in particular

T m,1ð Þis subnormal for somem ≥ 1⇔ T is subnormal: ð52Þ

Proof. (a) This follows from Lemma 5. (b) If Tðm,1Þ is subnor-
mal for some m ≥ 1, then Tðm,1Þj

H
ðm,1Þ
ð0,0Þ ðTÞ

is subnormal. By

Lemma 8, we have ψ ≥ 0 and hence T is subnormal by (a).
Clearly, if T is subnormal then Tðn,1Þ is subnormal for all
n ≥ 1.

Remark 10.We remark that if T =Wðα,βÞ ∈H0 and TjM1ðHÞ is
subnormal with Berger measure η, then 1/t ∈ L1ðηÞ because
V0 ≔ shiftðβð0,0Þ, βð0,1Þ,⋯Þ is subnormal.

We next have:

Corollary 11. Let T =Wðα,βÞ ∈H0. If there exists p ∈ℤ+ such

that TjMpðHÞ is subnormal, then Tðm,1Þ is subnormal for some

m ≥ 1 if and only if T is subnormal.

Proof. It suffices to consider the case of p = 2. In the case, if

Tðm,1Þ is subnormal for some m ≥ 1, then ðTjM1ðHÞÞðm,1Þ is
subnormal. Thus, by Corollary 9, TjM1ðHÞ is subnormal,
and therefore, T is subnormal. The converse is clear.

We now have:

Lemma 12. Let T =Wðα,βÞ ∈H0 and let TjM1ðHÞ be subnor-
mal. Then,

lT 1,nð Þis subnormal for some n ≥ 1⇔ T is subnormal: ð53Þ

Proof. ð⇒Þ Let η be the Berger measure of TjM1ðHÞ and sup-

pose that Tð1,nÞ is subnormal for fixed n ≥ 1. Then,
ðTð1,nÞ

H
ð1,nÞ
ð0,0Þ ðTÞ

Þj
M1ðH ð1,nÞ

ð0,0Þ ðTÞÞ
is subnormal. Let τ be its Berger

measure. By Lemma 3, we have

TjM1 Hð Þ
� � 1,nð Þ

H
1,nð Þ
0,n−1ð Þ TM1 Hð Þð Þ ≅ T 1,nð Þ

H
1,nð Þ
0,0ð Þ Tð Þ

� 	����
����
M1 H

1,nð Þ
0,0ð Þ Tð Þ

� �:
ð54Þ

Hence, by Lemma 4 and (54), we have

dτ s, tð Þ = tn−1/n

γ 0,n−1ð Þ ηð Þ dη s, t1/n
� �

: ð55Þ

Observe

dτext s, tð Þ = 1
t

����
����
−1

L1 τð Þ

t−1/n

γ 0,n−1ð Þ ηð Þ dη s, t1/n
� �

, ð56Þ

d τext s, tð Þð ÞX =
1/tk k−1L1 τð Þ

γ 0,n−1ð Þ ηð Þ
ð T2k k2n

0
t−1/ndη s, t1/n

� � !
: ð57Þ

We now characterize the subnormality of Tð1,nÞj
H

ð1,nÞ
ð0,0Þ ðTÞ

as

a backward extension of

T 1,nð Þ
H

1,nð Þ
0,0ð Þ Tð Þ

� 	����
M1 H

1,nð Þ
0,0ð Þ Tð Þ

� � in the t directionð Þ, ð58Þ
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after applying Lemma 5. To do so, let shiftðαð0,0Þ, αð1,0Þ,⋯Þ in
the zero level of T be subnormal with the Berger measure ξα0 .
Then, by (57), we have that

T 1,nð Þ
���
H

1,nð Þ
0,0ð Þ Tð Þ

is subnormal ⇒Lemma 3:3
γ 0,nð Þ Tð Þ 1

t

����
����
L1 τð Þ

d τext s, tð Þð ÞX

≤ dξα0 sð Þ ⇒
3:22ð Þ

β2
00

ð T2k k2n

0
t−1/ndη s, t1/n

� � !

≤ dξα0 sð Þ⇒ β2
00

ð T2k k2

0
u−1dη s, uð Þ

 !

≤ dξα0 sð Þ by letting u = t1/n
� �

⇒ β2
00

ð T2k k2

0
t−1dη s, tð Þ

 !

≤ dξα0 sð Þ⇒ β2
00

1
t

����
����
L1 ηð Þ

ηð ÞXext ≤ ξα0 :

ð59Þ

By again Lemma 5 and (59), therefore, T is subnormal.

⇐ð ÞClear: ð60Þ

By Corollary 9 and Lemma 12, we have:

Corollary 13. Let T =Wðα,βÞ ∈H0. If TjM1ðHÞ or TjN 1ðHÞ is
subnormal, then the following are equivalent:

(a) Tðm,1Þ is subnormal for some m ≥ 1

(b) Tðm,1Þ is subnormal for all m ≥ 1

(c) Tð1,nÞ is subnormal for some n ≥ 1

(d) Tð1,nÞ is subnormal for all n ≥ 1

(e) T is subnormal

The following theorem is a core of our main result.

Theorem 14. If TjM1ðHÞ is subnormal, then for some m, n ≥ 1

T 1,nð Þ
� � m,1ð Þ

is subnormal⇔ T m,1ð Þis subnormal: ð61Þ

Proof. ð⇒Þ. For fixed m, n ≥ 1, suppose that ðTð1,nÞÞðm,1Þ =
Tðm,nÞ is subnormal. Then, W ≔ ðTðm,nÞ

H
ðm,nÞ
ðp,0Þ ðTÞ

Þj
M1ðH ðm,nÞ

ðp,0Þ ðTÞÞ
is also subnormal. Let η be the Berger measure of TjM1ðHÞ
and let τðm,nÞ

ðp,0Þ be the Berger measure of W. For each 0 ≤
p ≤m − 1, using Lemma 5, we characterize the subnormal-
ity of Tðm,nÞj

H
ðm,nÞ
ðp,0Þ ðTÞ

as a backward extension of W (in the

t direction).

First observe that from (26) in Lemma 3, for 0 ≤ p ≤m − 1,

TjM1 Hð Þ
� � m,nð Þ

H
m,nð Þ
p,n−1ð Þ TM1 Hð Þð Þ ≅ T m,nð Þ

H
m,nð Þ
p,0ð Þ Tð Þ

� 	����
����
M1 H

m,nð Þ
p,0ð Þ Tð Þ

� �
:

ð62Þ

By Lemma 4 and (62), we have

dτ m,nð Þ
p,0ð Þ s, tð Þ = sp/mtn−1/n

γ p,n−1ð Þ ηð Þ dη s1/m, t1/n
� �

: ð63Þ

Observe

d τ
m,nð Þ
p,0ð Þ

� �
ext

s, tð Þ = 1
t

����
����
−1

L1 τ
m,nð Þ
p,0ð Þ

� � sp/mt−1/n

γ p,n−1ð Þ ηð Þ dη s1/m, t1/n
� �

ð64Þ

d τ
m,nð Þ
p,0ð Þ

� �
ext

s, tð Þ
� �X

=
1/tk k−1

L1 τ
m,nð Þ
p,0ð Þ

� �
γ p,n−1ð Þ ηð Þ

ð T2k k2n

0
sp/mt−1/ndη s1/m, t1/n

� � !
:

ð65Þ

Let Wk2
= shiftðαð0,k2Þ, αð1,k2Þ,⋯Þ be the k2-th horizontal

slice of T with Berger measure ξαk2
for k2 ≥ 0. By (65) and a

similar way to (59), for 0 ≤ p ≤m − 1, we have that

T m,nð Þ
���
H

m,nð Þ
p,0ð Þ Tð Þ

is subnormal ⇒Lemma 3:3

3:2ð Þ
β2

p,0ð Þ ⋯ β2
p,n−1ð Þ

·
1
t

����
����
L1 τ

m,nð Þ
p,0ð Þ

� �d τ
m,nð Þ
p,0ð Þ s, tð Þ

� �X
ext

≤
sp/m

γp W0ð Þ dξα0 s1/m
� �

⇒
checkingmomentsβ2

p,0ð Þ · γ p,n−1ð Þ ηð Þ
γp W1ð Þ

� 1
t

����
����
L1 τ

m,nð Þ
p,0ð Þ

� �d τ
m,nð Þ
p,0ð Þ s, tð Þ

� �X
ext

≤
sp/m

γp W0ð Þ dξα0 s1/m
� �

⇒
3:26ð Þ β2

p,0ð Þ
γp W1ð Þ

1
t

����
����
L1 τ

m,nð Þ
p,0ð Þ

� �
� 1

t

����
����
−1

L1 τ
m,nð Þ
p,0ð Þ

� �
ð T2k k2n

0
sp/mt−1/ndη s1/m, t1/n

� � !

≤
sp/m

γp W0ð Þ dξα0 s1/m
� �

⇒ β2
p,0ð Þ

�
ð T2k k2n

0

sp/mt−1/n

γp W1ð Þ dη s1/m, t1/n
� � !

≤
sp/m

γp W0ð Þ dξα0 s1/m
� �

⇒ β2
p,0ð Þ

�
ð T2k k2

0
u−1

sp/m

γp W1ð Þ dη s1/m, u
� � !
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≤
sp/m

γp W0ð Þ dξα0 s1/m
� �

by letting u = t1/n
� �

⇒ β2
p,0ð Þ

�
ð T2k k2

0
t−1

sp/m

γ p,0ð Þ ηð Þ dη s1/m, t
� � !

≤
sp/m

γp W0ð Þ dξα0 s1/m
� �

⇒
3:26ð Þ

β2
p,0ð Þ

1
t

����
����
L1 η

m,1ð Þ
p,0ð Þ

� �
� η

m,1ð Þ
p,0ð Þ

� �X
ext

≤ ξα0
� �

m,pð Þ,

ð66Þ

where ðξα0Þðm,pÞ is the Berger measure of the subnormal shift:

shift α p,0ð Þ ⋯ α p+m−1,0ð Þ, α p+m,0ð Þ ⋯ α p+2m−1,0ð Þ,⋯
� �

: ð67Þ

By Lemma 5, (66), and a similar way to the proof of
Lemma 12, for 0 ≤ p ≤m − 1, we have

T 1,nð Þ
� � m,1ð Þ

is subnormal⇒ T m,nð Þ
����
H

m,nð Þ
p,0ð Þ Tð Þ

is subnormal⇒ β2
p,0ð Þ

1
t

����
����
L1 η

m,1ð Þ
p,0ð Þ

� � η
m,1ð Þ
p,0ð Þ

� �X
ext

≤ ξα0
� �

m,pð Þ ⇒ T m,1ð Þis subnormal:

ð68Þ

Therefore, by (68), we get the result.

ð⇐Þ Since ðTð1,nÞÞðm,1Þ = Tðm,nÞ = ðTðm,1ÞÞð1,nÞ, it follows

that ðTð1,nÞÞðm,1Þ
is subnormal whenever Tðm,1Þ is subnormal.

Corollary 15. Let T =Wðα,βÞ ∈H0. If TjN 1ðHÞ is subnormal,
then the following are equivalent:

(a) ðTðm,1ÞÞð1,nÞ is subnormal for some m, n ≥ 1

(b) Tð1,nÞ is subnormal

(c) T is subnormal

We are ready to give a proof of our main theorem (The-
orem 2). For convenience, we restate Theorem 2:

Theorem 16. Let T ≡Wðα,βÞ ∈H0. If a corner of T is subnor-
mal, i.e., TjMpðHÞ∩N qðHÞ is subnormal for some p, q ∈ℤ+, then

the following are equivalent:

(a) T is subnormal

(b) Tðm,nÞ is subnormal for all m, n ≥ 1

(c) Tðm,nÞ is subnormal for some m, n ≥ 1

Proof. (a)⇒ (b): This is clear from the functional calculus. (b)
⇒ (c): Clear. (c)⇒ (a): Suppose TjMpðHÞ∩N qðHÞ is subnormal

for some p, q ∈ℤ+ and Tðm,nÞ is subnormal for somem, n ≥ 1.
By Lemma 7, we have TjM1ðHÞ∩N 1ðHÞ is subnormal. Also,

ðTjN 1ðHÞÞðm,nÞ is subnormal. We thus have

TN 1 Hð Þ
� � m,nð Þ

= TN 1 Hð Þ
� � 1,nð Þ� 	 m,1ð Þ

is subnormal

⇒Theorem3:12
TN 1 Hð Þ
� � m,1ð Þ

is subnormal

⇒
Corollary3:123:11

T

�����
N 1 Hð Þ

is subnormal:

ð69Þ

Therefore, by Corollary 15, we can see that T is
subnormal.

We conclude by revealing examples to illustrate Theorem
2. Their proofs are given from a straightforward calculation.
We will omit their proofs.

Example 1. Let T = ðT1, T2Þ ≡Wðα,βÞ ∈H0 and let TjM1ðHÞ be
subnormal with Berger measure

dη s, tð Þ = tdsdt +
1
6
dδ 0,1/3ð Þ s, tð Þ

+
1
6
dδ 1/2,1ð Þ s, tð Þ + 1

6
dδ 1,1/2ð Þ s, tð Þ:

ð70Þ

Also, let

dξα0 sð Þ≔ 1
2
ds +

1
6
dδ0 sð Þ + 1

6
dδ1/2 sð Þ + 1

6
dδ1 sð Þ, ð71Þ

be the Berger measure ofW0 ≡ shiftðαð0,0Þ, αð1,0Þ,⋯Þ. We then
have:

(a) T is subnormal

(b) Tð2,1Þ is subnormal

(c) Tð1,2Þ is subnormal

0 < β 0,0ð Þ ≤
ffiffiffi
1
3

r
: ð72Þ

Example 2. Let T = ðT1, T2Þ ≡Wðα,βÞ ∈H0 and let
TjM1ðHÞ∩N 1ðHÞ be subnormal with Berger measure

dμcore s, tð Þ = 2stdsdt +
1
4
dδ 1,1/2ð Þ s, tð Þ + 1

4
dδ 1/2,1ð Þ s, tð Þ:

ð73Þ

Also, let

dξα0 sð Þ≔ 1
2
ds +

1
6
dδ0 sð Þ + 1

6
dδ1/2 sð Þ + 1

6
dδ1 sð Þ, ð74Þ
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be the Berger measures on ½0, 1� ofW0 ≡ shiftðαð0,0Þ, αð1,0Þ,⋯Þ
and

dηβ0 tð Þ≔ y2dt + 1 −
11y2

6

� 	
dδ0 tð Þ

+
2y2

3
dδ1/2 tð Þ + y2

6
dδ1 tð Þ,

ð75Þ

be the Berger measures on ½0, 1� of V0 ≡ shiftðβð0,0Þ, βð0,1Þ,⋯Þ.
We then have:

(a) T is subnormal

(b) Tð2,2Þ is subnormal

α 0,1ð Þ, β 0,0ð Þ
� �

∈ 0,
ffiffiffi
1
3

r #
× 0,

ffiffiffiffiffi
1
11

r #
: ð76Þ
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