# A short solution of the kissing number problem in dimension three 

Alexey Glazyrin
The University of Texas Rio Grande Valley

Follow this and additional works at: https://scholarworks.utrgv.edu/mss_fac
Part of the Mathematics Commons

## Recommended Citation

Glazyrin, A. (2020). A short solution of the kissing number problem in dimension three. ArXiv:2012.15058 [Math]. http://arxiv.org/abs/2012.15058

This Article is brought to you for free and open access by the College of Sciences at ScholarWorks @ UTRGV. It has been accepted for inclusion in Mathematical and Statistical Sciences Faculty Publications and Presentations by an authorized administrator of ScholarWorks @ UTRGV. For more information, please contact justin.white@utrgv.edu, william.flores01@utrgv.edu.

# A SHORT SOLUTION OF THE KISSING NUMBER PROBLEM IN DIMENSION THREE 

ALEXEY GLAZYRIN

Abstract. In this note, we give a short solution of the kissing number problem in dimension three.

## 1. Introduction

The problem of finding the maximum number of non-overlapping unit spheres tangent to a given unit sphere is known as the kissing number problem. Schütte and van der Waerden [13] settled the thirteen spheres problem (the kissing number problem for dimension three) that was the subject of the famous discussion between Isaac Newton and David Gregory in 1694. A sketch of an elegant proof was given by Leech [6]. The thirteen spheres problem continues to be of interest to mathematicians, and new proofs have been published in recent years [8, 2, 1, 9]. In other dimensions, the kissing number problem is solved only for $d=8,24$ [7, 11], and for $d=4$ [10].

Theorem 1. [13] The kissing number in dimension three is 12.
For our proof, we use the linear programming approach. The method was discovered by Delsarte [3] for the Hamming space, then extended to the spherical case [4] and generalized by Kabatyansky and Levenshtein [5]. For the linear programming approach, we use the properties of Gegenbauer polynomials defined recursively as follows.

$$
G_{0}^{(d)}(t)=1, \quad G_{1}^{(d)}(t)=t, \quad G_{k}^{(d)}(t)=\frac{(d+2 k-4) t G_{k-1}^{(d)}(t)-(k-1) G_{k-2}^{(d)}(t)}{d+k-3}
$$

In particular, the Delsarte method in the spherical case is based on the following proposition.
Proposition 1. 4, 5] For any finite set $X=\left\{x_{1}, \ldots, x_{N}\right\} \subset \mathbb{S}^{d-1}$ and any $k \geq 0$,

$$
\sum_{1 \leq i, j \leq N} G_{k}^{(d)}\left(\left\langle x_{i}, x_{j}\right\rangle\right) \geq 0
$$

## 2. A short proof of Theorem 1

Let $f(t)=0.09465869+0.17273741 G_{1}^{(3)}(t)+0.33128438 G_{2}^{(3)}(t)+0.17275228 G_{3}^{(3)}(t)+$ $0.18905584 G_{4}^{(3)}(t)+0.00334265 G_{5}^{(3)}(t)+0.03616728 G_{9}^{(3)}(t)$ (see Figure 1 for the plot of $f(t)$ ).

Assume we have $N$ non-overlapping unit spheres tangent to a given unit sphere $\mathbb{S}^{2}$. Then all pairwise angular distances between points of tangency $x_{1}, \ldots, x_{N}$ in $\mathbb{S}^{2}$ are at least $\pi / 3$. If we show that for each $i, \sum_{j=1}^{N} f\left(\left\langle x_{i}, x_{j}\right\rangle\right) \leq 1.23$ then we can conclude the statement of the theorem. Indeed, on the one hand $\sum_{i, j=1}^{N} f\left(\left\langle x_{i}, x_{j}\right\rangle\right) \leq 1.23 N$. On the other hand, Proposition $\square$ implies $\sum_{i, j=1}^{N} f\left(\left\langle x_{i}, x_{j}\right\rangle\right) \geq \sum_{i, j=1}^{N} 0.09465869=0.09465869 N^{2}$. Therefore, $N \leq 1.23 / 0.09465869 \approx$ 12.99405263.

Fix $x=x_{i}$. The polynomial $f$ is negative on $[-1 / \sqrt{2}, 1 / 2]$ so the positive contribution to the sum $\sum_{j=1}^{N} f\left(\left\langle x, x_{j}\right\rangle\right)$ can be made only by points $x_{j}$ in the open spherical cap $C$ with the center

[^0]

Figure 1. Plot of $f(t)$ for $t \in[-1,1 / 2]$.
$-x$ and the angular radius $\pi / 4$. No more than 3 points with pairwise angular distances at least $\pi / 3$ can fit in $C$. Indeed, if there are at least 4 points $y_{1}, y_{2}, y_{3}, y_{4}$ in $C$ then at least one angle $\angle\left(y_{i},-x, y_{j}\right)$ is no greater than $\pi / 2$. By the spherical law of cosines, the angular distance between $y_{i}$ and $y_{j}$ is less than $\pi / 3$.

If there is exactly one point $y$ in $C$, then

$$
f(1)+f(\langle x, y\rangle) \leq f(1)+\max _{t \in[-1,-1 / \sqrt{2}]} f(t) \leq 1.23 .
$$

For two points $y, z$ in $C$, the angular distance between $y$ and $-x$ is at least $\frac{\pi}{12}$ by the triangle inequality for $y, z,-x$. Hence if $\langle x, y\rangle=t$ then $t$ cannot be less than $-\cos \frac{\pi}{12}$. By the triangle inequality, $\langle x, z\rangle \geq \alpha(t)=\frac{1}{2} t-\frac{\sqrt{3}}{2} \sqrt{1-t^{2}}$. Since $f$ is decreasing on $I=\left[-\cos \frac{\pi}{12},-1 / \sqrt{2}\right]$,

$$
f(1)+f(\langle x, y\rangle)+f(\langle x, z\rangle) \leq f(1)+\max _{t \in I}(f(t)+f(\alpha(t))) \leq 1.23 .
$$

For three points $y, z, w$ in $C$, we use the monotonicity of $f$ on $I$ and move them as close as possible to $-x$. This way we get at least two of the three pairwise angular distances equal to $\pi / 3$. Assume $\langle y, z\rangle=\langle z, w\rangle=1 / 2$. Note that $z, w, x$ cannot belong to the same large circle because otherwise $y$ does not fit in $C$. This means we can always move $w$ keeping $\langle w, z\rangle=1 / 2$ and decreasing $\langle x, w\rangle$. The process stops in two possible cases: $w$ reaches the boundary of $C$ or $\langle y, w\rangle$ becomes $1 / 2$. In the former case we are left with the case of two points in $C$ covered above. Now we can assume that $\langle y, z\rangle=\langle z, w\rangle=\langle y, w\rangle=1 / 2$. Without loss of generality, $\langle x, y\rangle \leq\langle x, z) \leq\langle x, w\rangle$. We keep the point $y$ intact and rotate the regular triangle $y z w$ so that $\langle x, z\rangle$ decreases. Since $\langle x, y\rangle \geq\langle x, z\rangle,\langle x, z\rangle \leq-\frac{\sqrt{2}}{4}-\frac{1}{2}$. Note that $\langle x, z\rangle+\langle x, w\rangle$ decreases in this case as well and, due to convexity and monotonicity of $f$ on the interval $\left[-\frac{\sqrt{2}}{4}-\frac{1}{2},-\frac{1}{\sqrt{2}}\right]$, $f(\langle x, z\rangle)+f(\langle x, w\rangle)$ increases. This process will stop either when $w$ reaches the boundary of $C$ or when $\langle x, z\rangle$ becomes equal to $\langle x, y\rangle$. In the former case, we are left with two points in $C$. In the latter case, if $\langle x, y\rangle=\langle x, z\rangle=t$ then $\langle x, w\rangle=\beta(t)=\frac{2}{3} t-\frac{2}{3} \sqrt{\frac{3}{2}-2 t^{2}}$. Given that $t \leq\langle x, w\rangle \leq-1 / \sqrt{2}, t$ must belong to $J=\left[-\frac{\sqrt{2}}{4}-\frac{1}{2},-\sqrt{\frac{2}{3}}\right]$. Then

$$
f(1)+f(\langle x, y\rangle)+f(\langle x, z\rangle)+f(\langle x, w\rangle) \leq f(1)+\max _{t \in J}(2 f(t)+f(\beta(t))) \leq 1.23 .
$$

Remark 1. This proof is similar to the proof in [9] and the solution of the kissing problem in dimension four [10 (see also [12]) but the function is chosen more carefully so the case analysis is much simpler.

Remark 2. The function $f(t)$ was found by using a fixed value of 1.23 and maximizing the constant term in the Gegenbauer expansion while imposing required conditions. All inequalities are easily verifiable. For convenience, their explicit forms are available in a separate file attached to the arXiv submission of the paper.

## References

1. K. M. Anstreicher. The thirteen spheres: a new proof. Discrete Comput. Geom., 31(4):613-625, 2004.
2. K. Böröczky. The Newton-Gregory problem revisited. In Discrete geometry, volume 253 of Monogr. Textbooks Pure Appl. Math., pages 103-110. Dekker, New York, 2003.
3. P. Delsarte. An algebraic approach to the association schemes of coding theory. Philips Res. Rep. Suppl., (10):vi+97, 1973.
4. P. Delsarte, J. M. Goethals, and J. J. Seidel. Spherical codes and designs. Geometriae Dedicata, 6(3):363-388, 1977.
5. G. A. Kabatyansky and V. I. Levenshtein. Bounds for packings on the sphere and in space. Problems of Information Transmission, 14(1):3-25, 1978.
6. J. Leech. The problem of the thirteen spheres. Math. Gaz., 40:22-23, 1956.
7. V. I. Levenshtein. Boundaries for packings in $n$-dimensional Euclidean space. Dokl. Akad. Nauk SSSR, 245(6):1299-1303, 1979.
8. H. Maehara. The problem of thirteen spheres-a proof for undergraduates. European J. Combin., 28(6):17701778, 2007.
9. O. R. Musin. The kissing problem in three dimensions. Discrete Comput. Geom., 35(3):375-384, 2006.
10. O. R. Musin. The kissing number in four dimensions. Ann. of Math. (2), 168(1):1-32, 2008.
11. A. M. Odlyzko and N. J. A. Sloane. New bounds on the number of unit spheres that can touch a unit sphere in $n$ dimensions. J. Combin. Theory Ser. A, 26(2):210-214, 1979.
12. F. Pfender. Improved Delsarte bounds for spherical codes in small dimensions. J. Combin. Theory Ser. A, 114(6):1133-1147, 2007.
13. K. Schütte and B. L. van der Waerden. Das Problem der dreizehn Kugeln. Math. Ann., 125:325-334, 1953.

School of Mathematical \& Statistical Sciences, The University of Texas Rio Grande Valley, Brownsville, TX 78520

Email address: alexey.glazyrin@utrgv.edu


[^0]:    Date: January 1, 2021.

