
University of Texas Rio Grande Valley University of Texas Rio Grande Valley 

ScholarWorks @ UTRGV ScholarWorks @ UTRGV 

Mathematical and Statistical Sciences Faculty 
Publications and Presentations College of Sciences 

12-30-2020 

A short solution of the kissing number problem in dimension A short solution of the kissing number problem in dimension 

three three 

Alexey Glazyrin 
The University of Texas Rio Grande Valley 

Follow this and additional works at: https://scholarworks.utrgv.edu/mss_fac 

 Part of the Mathematics Commons 

Recommended Citation Recommended Citation 
Glazyrin, A. (2020). A short solution of the kissing number problem in dimension three. ArXiv:2012.15058 
[Math]. http://arxiv.org/abs/2012.15058 

This Article is brought to you for free and open access by the College of Sciences at ScholarWorks @ UTRGV. It has 
been accepted for inclusion in Mathematical and Statistical Sciences Faculty Publications and Presentations by an 
authorized administrator of ScholarWorks @ UTRGV. For more information, please contact justin.white@utrgv.edu, 
william.flores01@utrgv.edu. 

https://scholarworks.utrgv.edu/
https://scholarworks.utrgv.edu/mss_fac
https://scholarworks.utrgv.edu/mss_fac
https://scholarworks.utrgv.edu/cos
https://scholarworks.utrgv.edu/mss_fac?utm_source=scholarworks.utrgv.edu%2Fmss_fac%2F115&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=scholarworks.utrgv.edu%2Fmss_fac%2F115&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:justin.white@utrgv.edu,%20william.flores01@utrgv.edu
mailto:justin.white@utrgv.edu,%20william.flores01@utrgv.edu


ar
X

iv
:2

01
2.

15
05

8v
1 

 [
m

at
h.

M
G

] 
 3

0 
D

ec
 2

02
0

A SHORT SOLUTION OF THE KISSING NUMBER PROBLEM IN

DIMENSION THREE

ALEXEY GLAZYRIN

Abstract. In this note, we give a short solution of the kissing number problem in dimension three.

1. Introduction

The problem of finding the maximum number of non-overlapping unit spheres tangent to a
given unit sphere is known as the kissing number problem. Schütte and van der Waerden [13]
settled the thirteen spheres problem (the kissing number problem for dimension three) that was
the subject of the famous discussion between Isaac Newton and David Gregory in 1694. A sketch
of an elegant proof was given by Leech [6]. The thirteen spheres problem continues to be of interest
to mathematicians, and new proofs have been published in recent years [8, 2, 1, 9]. In other
dimensions, the kissing number problem is solved only for d = 8, 24 [7, 11], and for d = 4 [10].

Theorem 1. [13] The kissing number in dimension three is 12.

For our proof, we use the linear programming approach. The method was discovered by Delsarte
[3] for the Hamming space, then extended to the spherical case [4] and generalized by Kabatyansky
and Levenshtein [5]. For the linear programming approach, we use the properties of Gegenbauer
polynomials defined recursively as follows.

G
(d)
0 (t) = 1, G

(d)
1 (t) = t, G

(d)
k (t) =

(d+ 2k − 4) tG
(d)
k−1(t)− (k − 1)G

(d)
k−2(t)

d+ k − 3
.

In particular, the Delsarte method in the spherical case is based on the following proposition.

Proposition 1. [4, 5] For any finite set X = {x1, . . . , xN} ⊂ S
d−1 and any k ≥ 0,

∑

1≤i,j≤N

G
(d)
k (〈xi, xj〉) ≥ 0.

2. A short proof of Theorem 1

Let f(t) = 0.09465869 + 0.17273741G
(3)
1 (t) + 0.33128438G

(3)
2 (t) + 0.17275228G

(3)
3 (t)+

0.18905584G
(3)
4 (t) + 0.00334265G

(3)
5 (t) + 0.03616728G

(3)
9 (t) (see Figure 1 for the plot of f(t)).

Assume we have N non-overlapping unit spheres tangent to a given unit sphere S
2. Then all

pairwise angular distances between points of tangency x1, . . . , xN in S
2 are at least π/3. If we

show that for each i,
∑N

j=1 f(〈xi, xj〉) ≤ 1.23 then we can conclude the statement of the theo-

rem. Indeed, on the one hand
∑N

i,j=1 f(〈xi, xj〉) ≤ 1.23N . On the other hand, Proposition 1 im-

plies
∑N

i,j=1 f(〈xi, xj〉) ≥
∑N

i,j=1 0.09465869 = 0.09465869N2 . Therefore, N ≤ 1.23/0.09465869 ≈
12.99405263.

Fix x = xi. The polynomial f is negative on [−1/
√
2, 1/2] so the positive contribution to the

sum
∑N

j=1 f(〈x, xj〉) can be made only by points xj in the open spherical cap C with the center
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Figure 1. Plot of f(t) for t ∈ [−1, 1/2].

−x and the angular radius π/4. No more than 3 points with pairwise angular distances at least
π/3 can fit in C. Indeed, if there are at least 4 points y1, y2, y3, y4 in C then at least one angle
∠(yi,−x, yj) is no greater than π/2. By the spherical law of cosines, the angular distance between
yi and yj is less than π/3.

If there is exactly one point y in C, then

f(1) + f(〈x, y〉) ≤ f(1) + max
t∈[−1,−1/

√
2]
f(t) ≤ 1.23.

For two points y, z in C, the angular distance between y and −x is at least π
12 by the triangle

inequality for y, z,−x. Hence if 〈x, y〉 = t then t cannot be less than − cos π
12 . By the triangle

inequality, 〈x, z〉 ≥ α(t) = 1
2t−

√
3
2

√
1− t2. Since f is decreasing on I = [− cos π

12 ,−1/
√
2],

f(1) + f(〈x, y〉) + f(〈x, z〉) ≤ f(1) + max
t∈I

(f(t) + f(α(t))) ≤ 1.23.

For three points y, z, w in C, we use the monotonicity of f on I and move them as close as
possible to −x. This way we get at least two of the three pairwise angular distances equal to
π/3. Assume 〈y, z〉 = 〈z, w〉 = 1/2. Note that z, w, x cannot belong to the same large circle
because otherwise y does not fit in C. This means we can always move w keeping 〈w, z〉 = 1/2
and decreasing 〈x,w〉. The process stops in two possible cases: w reaches the boundary of C
or 〈y,w〉 becomes 1/2. In the former case we are left with the case of two points in C covered
above. Now we can assume that 〈y, z〉 = 〈z, w〉 = 〈y,w〉 = 1/2. Without loss of generality,
〈x, y〉 ≤ 〈x, z) ≤ 〈x,w〉. We keep the point y intact and rotate the regular triangle yzw so that

〈x, z〉 decreases. Since 〈x, y〉 ≥ 〈x, z〉, 〈x, z〉 ≤ −
√
2
4 − 1

2 . Note that 〈x, z〉 + 〈x,w〉 decreases in

this case as well and, due to convexity and monotonicity of f on the interval [−
√
2
4 − 1

2 ,− 1√
2
],

f(〈x, z〉) + f(〈x,w〉) increases. This process will stop either when w reaches the boundary of C or
when 〈x, z〉 becomes equal to 〈x, y〉. In the former case, we are left with two points in C. In the latter

case, if 〈x, y〉 = 〈x, z〉 = t then 〈x,w〉 = β(t) = 2
3t− 2

3

√

3
2 − 2t2. Given that t ≤ 〈x,w〉 ≤ −1/

√
2, t

must belong to J = [−
√
2
4 − 1

2 ,−
√

2
3 ]. Then

f(1) + f(〈x, y〉) + f(〈x, z〉) + f(〈x,w〉) ≤ f(1) + max
t∈J

(2f(t) + f(β(t))) ≤ 1.23.
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Remark 1. This proof is similar to the proof in [9] and the solution of the kissing problem in
dimension four [10] (see also [12]) but the function is chosen more carefully so the case analysis is
much simpler.

Remark 2. The function f(t) was found by using a fixed value of 1.23 and maximizing the constant
term in the Gegenbauer expansion while imposing required conditions. All inequalities are easily
verifiable. For convenience, their explicit forms are available in a separate file attached to the arXiv
submission of the paper.
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