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Abstract
LoRa technology has received a lot of attention in the last few years. Numerous success stories about using LoRa technology for the 

Internet of Things in various implementations. Several studies have found that the use of LoRa technology has the opportunity to be imple-
mented in indoor-based applications. LoRa technology is found more stable and is more resilient to environmental changes. Environmental 
change of the indoor is a major problem to maintain accuracy in position prediction, especially in the use of Received Signal Strength (RSS) 
fingerprints as a reference database. The variety of approaches to solving accuracy problems continues to improve as the need for indoor lo-
calization applications increases. Deep learning approaches as a solution for the use of fingerprints in indoor localization have been carried 
out in several studies with various novelties offered. Let’s introduce a combination of the use of LoRa technology’s excellence with a deep 
learning method that uses all variations of measurement results of RSS values at each position as a natural feature of the indoor condition 
as a fingerprint. All of these features are used for training in-deep learning methods. It is DeepFi-LoRaIn which illustrates a new technique 
for using the fingerprint data of the LoRa device’s RSS device on indoor localization using deep learning methods. This method is used to 
find out how accurate the model produced by the training process is to predict the position in a dynamic environment. The scenario used to 
evaluate the model is by giving interference to the RSS value received at each anchor node. The model produced through training was found 
to have good accuracy in predicting the position even in conditions of interference with several anchor nodes. Based on the test results, 
DeepFi-LoRaIn Technique can be a solution to cope with changing environmental conditions in indoor localization.
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1. Introduction
In recent years several studies have been carried out to solve the problem of Indoor locali-

zation with varying degrees of accuracy. The proposed indoor positioning system uses a variety of 
technologies such as Radio Frequency Identification (RFID), WiFi, Bluetooth Low Energy (BLE), 
Zigbee, Ultra-Wideband (UWB), Visible Light Communication (VLC) as well as vision-based 
technology. A few years ago the use of Low Power Wide Area (LPWA) LoRa technology was 
widely used to localize applications. LoRa is generally projected for outdoor applications. LoRa 
is generally projected for outdoor applications. Many publications have reported successful imple-
mentation of LoRa in a variety of outdoor applications including [1–4]. The LoRa property can also 
be used for indoor scenarios as in [5, 6] including for localization applications [7–9].

In general, regional characteristics and obstacles greatly affect the propagation of telecom-
munications signal waves regardless of technology. The density, height of buildings, environmen-
tal conditions, and contours of the area greatly affect the use of Internet of Things Technology 
such as LoRa for indoor localization applications. Sadowski et al [10] found that LoRa has a poor 
performance for indoor localization however on the other side diverse the development of IoT 
LoRa technology was found to have some advantages as an alternative wireless-based technology.  
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In other research Islam et al. [7]. LoRa technology was found to be more stable than WiFi and BLE 
and is more resilient to environmental changes. LoRa operates in the sub-GHz band, which makes 
it obtain more penetration capability so it is more resistant to noise and multipath so that LoRa 
becomes the best choice for indoor localization in large rooms and high rise buildings. In a recent 
2020 study, Anjum et al. [11] chose LoRa as a device in the positioning system and it was found that 
LoRa could be a viable solution for the Indoor localization system. Diverse results were obtained 
from various studies in the use of LoRa in indoor locations. Here it is possible to see that there are 
many opportunities to improve LoRa performance in indoor locations. With the right approach, 
this property makes LoRa a promising choice for indoor localization systems.

One popular approach to indoor localization systems is the use of radiofrequency fingerprinting 
such as WiFi. Fingerprinting is a localization technique used for positioning based on the measurement 
of Received Signal Strength Intensity (RSSI) on several wireless access points. Positioning is based on 
a fingerprinting database as a reference containing RSS values that represent each position in the room. 
Fingerprinting based localization generally consists of two basic phases [12]. First, is the off-line phase, 
which is also called the training phase, and second, is the on-line phase, which is also called the test 
phase. In the off-line training stage, machine learning methods can be used to train and store fingerprints 
that contain all RSS data. Such machine learning methods not only to reduce computational complexity 
but also to gain core features in RSS for better localization performance. K-nearest-neighbor (KNN) 
algorithm, artificial neural network, and supporting vector machines, as a popular machine learning 
method that has been applied for fingerprinting-based indoor localization fingerprinting [13, 14].

Indoor localization systems use RSS data as fingerprint information [15] because of the simpli-
city of RSS operation and low hardware requirements. However, there are two disadvantages to the RSS 
method. First, the RSS data collected will be different for the same position from time to time due to the 
influence of various transmission conditions in the indoor environment. Changes in environmental con-
ditions in a room such as changes in the location and addition of furniture, the addition of other equipment 
as well as changes in room partitions are a problem in the application of indoor localization. Changes in 
these conditions will greatly affect variations in RSS data obtained so that it can cause significant errors 
in positioning [16], especially in the use of fingerprint techniques for indoor localization. In general, 
there are three main problem formulations captured in the description of the above mention problem:

1. How to reduce the influence of changes in environmental conditions that are dynamic 
to minimize a very significant difference between the RRS value obtained at the off-line training 
stage with the RSS value obtained at the testing stage.

2. What is the right solution to address variations in RSS values that will occur in the use of 
fingerprinting techniques for indoor localization?

3. How to minimize positioning errors caused by variations in RSS value differences in each 
position due to dynamic environmental conditions.

The following studies have been conducted to overcome the dynamic environmental condi-
tions in indoor localization.

In paper [17] Seong et al. proposed a new database creation method based on the Log-distance 
Path loss Model to delete RSSI data from unnecessary Wi-Fi, and produce an Access Point (AP)  
database that can be updated depending on changes in the indoor environment. The proposed algo-
rithm has a higher position resolution than the existing fingerprinting and can improve positioning 
accuracy due to low dependence on the reference point. To develop the database, the AP signal is 
not regularly filtered by using Hausdorff distance. There is an opinion that this is not necessary, by 
using the method of deepening the data of abnormal measurement results can enrich the features of 
a position that will be the main source of learning at the training stage.

Luo et al. [18] using autonomous robots that patrol the path that has been determined to detect 
changes in the environment and continue to collect RSS measurement data and map it as a solution. 
RSS and map measurements are used to build and update databases. Position detection accuracy is 
maintained by always updating the fingerprinting database if environmental changes are detected. This 
research was conducted in a simulation with controlled change scenarios and in a limited environment.

Let’s offer a different technique to cope with changes in dynamic environments without 
continuously updating when conditions change. The idea is quite simple, namely by recording all 
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variations of RSS measurement results in each position. Let’s make variations of the measurement 
results as patterns of disturbance in the room that will be included in off-line training. Disturbances 
can be caused by many factors such as interference, attenuation of multipath, reflection, deflection, 
diffraction, and channel fading. Our study does not discuss in detail the types of disturbances that 
cause variations in RSS measurement results in one position. Let’s consider these variations to be 
natural features of important environmental conditions as a source of learning. This paper contri-
butes to overcoming the problems outlined above. In this paper, let’s use the term DeepFi-LoRaIn 
to describe the use of LoRa device fingerprinting RSS data in indoor localization using the deep 
learning method. Some of these contributions are as follows:

1. Using LoRa technology as an option for indoor localization systems with good penetra-
tion capability so that it is more resistant to noise and multipath, resulting in a more stable RSS 
measurement value.

2. Using variations in the measurement results of RSS values in a position as a natural fea-
ture of the condition of the room without normalizing the data as a fingerprinting database. All of 
these features are used for training on deep learning methods.

3. Using a deep learning approach to solve the problem of changing environmental condi-
tions to see the accuracy of position predictions.

4. Conduct testing of models that have been trained to be able to predict position in natural 
conditions using a variety Scenarios of RSS values and changes in the value of RSS in some Anchor 
Node (AN) that does not exist at the training stage.

The rest of the paper is outlined as follows. Related works are presented in Section 2. In Section 3 
let’s present the proposed system Deep-Fi LoRaIn. The result and validation are presented in Section 4. 
Discussion of experimental results is presented in Section 5. Finally, Section 6 shows the conclusion.

2. Related Work
Several studies have been conducted to improve the accuracy of positioning in the indoor 

localization system. Changes in the dynamic indoor environment are a challenge for researchers to 
maintain accuracy in positioning, especially in the use of fingerprinting RSS as a reference database. 
Some of the following research has tried to overcome the problems that have been stated previously.

Long-time before other studies were carried out in 2005 the paper [19] initiated a basic the-
ory and developed an algorithm to build a localization and tracking system in a room with Zero- 
configuration. The technique introduced can produce a reliable system to support service and loca-
tion-based network management. The localization algorithm takes input in the form of an on-line 
measurement of the Received Signal Strength (RSS) between the client and the adjacent AP, to 
estimate the client’s location. Online RSS measurements between AP 802.11 are used to capture in 
real-time the effects of multi-path RF on temperature and humidity variations, opening and closing 
doors, furniture relocation, and human mobility during RSS measurements. This technique is also 
quite responsive to environmental dynamics because the impact of changes in physical characteris-
tics has been explicitly found in the mapping between RSS value and actual geographical distance. 
This rationale is used as a reference in our research. Characteristics of environmental changes that 
affect variations in RSS values are the main features that represent natural conditions at a point. 
Variation of features is needed as a source of training in the proposed deep learning method.

A deep learning approach as a solution to the use of fingerprinting on indoor localization 
has been conducted in several studies with a variety of novelty offered. Some studies use Channel 
State Information (CSI) as Wi-Fi signal fingerprinting data and other studies use RSSI as finger-
printing. Wang et al. [13], produced a novelty using the deep learning method in the Indoor locali-
zation system. Indoor fingerprinting uses CSI which is trained using a deep learning approach called 
Deep learning fingerprinting (DeepFi). The DeepFi system architecture includes an off-line training 
phase and an online localization phase. In the off-line training stage, deep learning is used to train 
all deep network weights as fingerprints. Besides, the greedy learning algorithm is used to train 
each layer to reduce complexity. In the on-line localization phase, the probabilistic method is used 
based on the radial basis function to obtain an approximate location. The experimental results are 
presented to confirm that DeepFi can effectively reduce location errors compared to the previous 
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three methods namely FIFS [20], Horus [21], and Maximum Likehood [22]. The results obtained 
that DeepFi is more accurate in predicting the location of a device compared to the FIFS, Horus, and 
Maximum Likehood methods. Let’s also use the term DeepFi in the development of research-based 
on RSSI fingerprinting data on LoRa devices – DeepFi-LoRaIn.

The use of CSI was also followed by researchers [23], but by using an integrated approach. 
The approach consists of three stages. First, using the Local Outlier Factor (LOF), the anomaly detec-
tion algorithm is used to correct abnormal data. Second, in the training phase, 3 DNN models were 
trained to classify fingerprint regions using CSI data that was processed from 3 antennas. Third, in 
the testing phase, a model fusion method called the Group Method of Data Handling (GMDH) was 
adopted to integrate 3 prediction results of several models and provide final position results. Test-bed 
experiments are carried out in empty corridors, and the final position accuracy reaches at least 97 %.

The CellinDeep in research [24] used a deep learning approach to Android-based cellular 
communication for indoor localization. The system produces this accuracy better than other cel-
lular-based indoor systems at least 350 %. CellinDeep produces savings of at least 93.45 % power 
compared to WiFi-based techniques. Paper [25] used deep learning methods that focus even more 
on design problems including the influence of different hyperparameters, avoiding overfitting, and 
training algorithms. Some things done in the paper are used as references, such as the determina-
tion of several hyperparameters that are proven to be able to improve the optimization and accu-
racy of a model in the training and prediction process. Other guidelines [26] derived from several 
experiments that were carried out widely are also used as a reference for solving problems. The use 
of Python in Tensorflow along with Keras modules as a deep learning framework makes it easy for 
us to solve problems in deep learning in indoor localization as in previous studies [25, 27].

3. Proposed System Deep-Fi LoRaIn
The method used in this study is to combine the use of devices and simulations. The device 

used is the LoRa device to obtain RSS values at each position and NS3 simulators to simulate the 
LoRa network and Tensorflow Keras is used to simulate the process of deep learning and position 
prediction test. Following Fig. 1 shows the overall research flow.

Fig. 1. Research flow chart
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The research flow is divided based on the three stapes, The first step measuring RSS using 
a testbed, the second stage measuring RSSI at 30 positions using network simulation and the third 
stage is designing a neural network architecture. Detail of the flow of the research is described in 
the following stages as shown in Fig. 1.

3. 1. RSS measurement using testbed
Testbed was conducted to determine the RSSI characteristics of LoRa devices in a room and 

find variations in RSS values in several positions. This variation of RSS values will then be used 
to form a dataset that will be used in training. To obtain the existing pattern of disturbances in the 
room such as interference, attenuation of multipath, reflection, deflection, diffraction, and chan-
nel fading using data obtained based on direct measurements in the room using a testbed. During 
testing, let’s used the ESP32 LoRa SX1278 device as an anchor node and as a tracked node. LoRa 
device specification is shown in Table 1.

Table 1
LoRa device specification

Parameter LoRa Value
Radio SX1278

Frequency band 433 MHz
Anchor height 2 m

Tracked node height 1.5 m
Radiation pattern Omnidirectional

Sensitivity –148 dBm, +20 dBm

The room size is 11 meters long and 7 meters wide. The building wall material is made of 
70 % Concrete board and 30 % glass with a thickness of 0.75 cm. The ceiling is made of plaster-
board with a thickness of 0.5 cm. In the room, there are 28 cubical tables with particle board mate-
rial with a thickness of 2 cm and a thin steel storage cabinet with a thickness of 1.5 mm.

RSS measurement is conducted using 1 device as the anchor node and 1 device as tracked 
nodes. The measurement scenario is done by shifting the tracked node away from the anchor node 
at the intervals of 1 meter and 2 meters in the line-of-sight. Measurements are made in several 
points and then recorded in the database using a computer as a data logger. Measurements are made 
at each point every 2 seconds with a duration of 2 minutes for each position as shown in Fig. 2.

Fig. 2. RSS measurement position testbed in the interval of 1 m and 2 m

RSS characteristics obtained from the results of simulation and testbed measurements are 
used to find variations in RSS values at one point caused by disturbances that occur in the room. 
RSS measurement results are processed using spreadsheets to determine the amount of data varia-
tion as well as the range of data for the highest and lowest RSS values which are delta changes in 
RSS values found at each position at the time of measurement.

3. 2. Measure RSSI at 30 positions using network simulation
Network simulations using NS3 are performed to measure RSS at 30 positions based on 

values received at 4 anchor nodes. RSS values generated through simulation are fixed values that 
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represent each position. The results of this measurement are further extended using a variation 
pattern of values obtained in the measurement using the testbed so that each position has 10 varia-
tions of the measurement results. The total dataset generated is as much as 300 RSS fingerprinting 
data. The dataset in the form of RSS fingerprinting was obtained from simulations using NS-3 with  
a scenario of 4 anchor nodes positions in each corner of the room measuring 11X7 m. The collec-
tion of RSS values uses a node that functions as a tracked node that is positioned at 30 different 
points scattered in the room as shown in Fig. 3.

Fig. 3. RSS Fingerprint position for 30 different locations

Furthermore, the amount of RSS value sent from the tracked node will be read at each an-
chor node as a fingerprinting database. For communication between LoRa nodes using 433 MHz 
frequency with a 14 dBm sending signal strength with spreading factor 7. Tensorflow Keras sim-
ulations are used for several processes. First, to design a neuron network architecture along with 
hyper parameter. Second, conduct training on the fingerprinting dataset to produce the most opti-
mal model. Third, it is used for testing in predicting position using the optimal model.

3. 3. System architecture
This section will explain system architecture in general As shown in Fig. 4. The system 

uses LoRa devices as sender and receiver, 4 devices as an anchor node, and 1 device as a tracked 
node. The system is divided into 2 stages: the off-line phase, which is called the training phase, 
and second, the on-line phase, which is called the test phase. The training phase is carried out to 
construct a database based on survey data related to RSS feeds in several positions. At this stage, 
a comprehensive location survey is performed to record fingerprints of the RSS magnitude of each 
anchor node at the target tracked node location. During the location survey, the collector must stand 
in each training position and do RSS scans for several at different positions. RSS value is collected 
at each position as a reference point in the database.

Fig. 4. System architecture
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The LoRa end-device sends an uplink packet to the server. The server receives the packet 
and measures the RSSI value. These values are stored in a database and fingerprint maps are gene-
rated from RSSI data for the service area. In the online phase, the LoRa end-device sends an uplink 
packet containing RSSI information to the Server. RSSI data is sent to the position server from the 
position of the end device for identification.

А. Neuron Architecture
Hyperparameter is a variable that greatly affects the model output. Hyperparameter learning 

consists of the number of layers, the number of neurons in each layer, the choice of nonlinearity parame-
ters, the learning rate, batch size, etc. The choice of hyperparameter is an important problem in learning. 
Until now, there is currently almost no integrated theory to choose the parameters correctly. However, 
some research experiments can be used as a reference as in the paper that has been reviewed previously, 
although not all hyperparameters are discussed in this paper. In this section, let’s discuss how to improve 
the performance of deep learning networks and how to set deep learning hyperparameters. Let’s focus 
on the parameters that affect the results of the training, to find the most accurate model.

a. Activation function
In the process of building a neural network, one of the choices is what activation function to 

use in the hidden layer as well as at the output layer of the network. The activation function decides 
whether a neuron should be activated or not by calculating the weighted sum and further adding 
bias with it. The purpose of the activation function is to introduce non-linearity into the output of 
a neuron. The neural network has neurons that work in correspondence of weight, bias, and their 
respective activation function. In a neural network, it would update the weights and biases of the 
neurons based on the error at the output. This process is known as back-propagation. Activation 
functions make the back-propagation possible since the gradients are supplied along with the error 
to update the weights and biases. As the name implies, the activation function functions to deter-
mine whether the neuron must be «active» or not based on the weighted sum of the input. In gene-
ral, there are 2 types of activation functions, Linear and Non-Linear Activation functions. Let’s use 
non-linear functions namely sigmoid and Relu. There are many other activation functions however, 
the functions mentioned above are functions that are used in this case.

The sigmoid activation or is also called a logistic function has been the default choice for 
activation functions for a long time. The sigmoid function is the continuous activation function most 
commonly used to classify 2 classes or groups of data. The Sigmoid function has a range from 0 to 1.

In hidden units, the nonlinear activation function h(.) Used is the logistic sigmoid function, 
as follows [28]:
 z h a aJ J J= ( ) = ( )tanh ,  (1)

the quantities a J  known as activations, where

 tanh( )
( )

( )

( )

( )a
e e

e e

a a

a a=
-
+

-

-  (2)

a sum-of-squares error, in which the output units have linear activation functions, so that At output 
units, for regression problems, the usual activation function used is the identity function [28]:

 y ak k= .  (3)

For classification problems, the usual activation function used is a logistical sigmoid func-
tion, i. e.:

 y ak k= σ( ),  (4)

where

 σ( ) .a
e a=

+ -

1

1
 (5)
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The ReLU function is the most popular function currently used with several success stories 
in terms of image recognition and voice recognition. Basically, ReLU does a «threshold» from 0 
to infinity. ReLU can also cover up weaknesses held by Sigmoid and Tanh. It is known that the 
Rectified Linear Unit (ReLU), is formulated as a function [29]

 f x x( ) = ( )max , .0  (6)

b. Learning rate
The use of learning rate parameters has an important influence on the time needed to achieve 

the desired target. Will slowly optimize the value of weight changes and produce smaller errors.  
The learning rate variable states a constant that is between 0.1–0.9. This value shows the speed of 
learning from the network. If the learning rate used is too small then too many epochs are needed 
to achieve the desired target value, causing the training process to take a long time. The greater 
the value of learning rate is used, the network training process will be faster, but if it is too large it 
will cause the network to become unstable and cause repeated error values back and forth between 
certain values, thus preventing errors from reaching the expected target. Therefore the selection 
of the value of the variable learning rate must be as optimal as possible to obtain a fast training 
process [30].

c. Adam optimization
Adam (Adaptive Moment Estimation) is a first-order stochastic-based optimization algo-

rithm of stochastic objective functions, based on adaptive estimates of low-order moments that can 
be used instead of the classical stochastic gradient descent procedure to update the network weight 
iteratively based on training data. Adam is currently a popular algorithm in the field of deep learn-
ing because it achieves good results quickly. Empirical results show that Adam works well in prac-
tice and is better than other stochastic optimization methods. Adam is relatively easy to configure 
where the default configuration parameters work well in most problems. In several papers [31, 32], 
Adam is recommended as an optimization algorithm used for deep learning applications. Adam 
keeps an exponentially decaying average of past gradients mt. mt and vt are values of the first mo-
ment which is the Mean and the second moment which is the uncentered variance of the gradients 
respectively [33]. The formulas for the first Moment (mean) and the second moment (the variance) 
of the Gradients. Where β1 and β2 is Exponential decay rates:
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Then the final formula for the parameter update is:

 θ θ
η

t t
t

t
v

m+ = -
+ ∈

1 ,


  (9)

where θt  is updated parameters.
d. Number of layers
Bengio et al. [26], suggests the use of a higher number of hidden neuron layers to provide 

significant expressive power. A large number of hidden layers provide more capacity for more com-
plex function models with weaknesses that are difficult in the training process. For regression and 
classification tasks, and not learning representations, it is also recommended to use the same layer 
size rather than decreasing or increasing the number of layers. The fully-connected layer is the layer 
in which all the activation neurons from the previous layer are all connected with neurons in the next 
layer as well as ordinary artificial neural networks. Every activation from the previous layer needs 
to be converted into one-dimensional data before it can be connected to all neurons in the Fully-con-
nected layer. The difference between the fully-connected layer and the ordinary convolution layer 
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is that the neurons in the convolution layer are connected only to certain regions of the input, while 
the fully-connected layer has a whole connected neuron. However, the two layers still operate the 
dot product, so the function is not so different. The neural network configuration is shown in Fig. 5.

Fig. 5. Neural network configuration

Recommendations from some of the above experimental results are used as a reference to 
determine hyperparameter in this paper. Let’s propose to use three hidden layer neural networks 
that are fully connected by changing the number of neurons in each hidden layer during training. 
All hidden layers are equipped with the ReLU non-linearity activation function and for output  
using the Sigmoid activation function. For the output layer, let’s use a dropout layer with a 50 per-
cent reduction rate. Its weight is initialized by using the random procedure suggested by [34].  
Neural networks are trained using Adam’s algorithm with a learning rate of 0.001, batch size 8. 
Training data uses 70 % of the 300 data available on the datasets while the test data uses 30 % of 
the 300 data available on the datasets. Input is the RSSI value obtained from 4 different anchor 
nodes. The output is an approximate location with 30 labels in a multi-categorical format that rep-
resents each position. The following Table 2 shows the parameters used.

Table 2
Parameter Set Up

Parameter Parameter Value
Model type Sequential

Hidden layer (Activation) ReLu
Output layer (Activation) Sigmoid

Hidden layer number 3
Neuron number 50, 250, 500 fully connected layer

Optimizer Adam
Data set size 300
Data training 70 %

Data test 30 %
Learning rate 0.001

Batch size 8
Epochs 100, 125, 150, 200, 250

The main objective of the training stage is to find the best model with the highest accuracy, 
which will then be used as a reference to determine the position at the testing stage. In this scenario, 
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the training is repeated to find the best model. At each parameter switch, the number of neurons 
and epochs is set with different values. For the parameter number of neurons using 3 different va-
lues, namely 50, 250, and 500 neurons with all layers connected. Epochs parameter uses 5 different 
values namely, 100, 125, 150, 200, and 250 number of epochs. The results of the training model will 
be discussed in result and validation in the next session.

В. Testing Scenarios
The dataset used is in the form of a fingerprint database which is the result of RSS measure-

ments using the previous NS-3 simulation stage. The determination of variations in data features 
is done randomly uses on RSS values of 30 positions that have been obtained on measurements 
using NS-3. The range of variations in RSS value generated refers to the delta values obtained in 
the measurement using the testbed. Each position produces 10 variations of RSS values, resulting 
in 300 datasets of RSS values from 30 positions on the 4 anchors.

The test stage for predicting the position consists of 4 scenarios. The first scenario is called 
variable position testing which aims to measure the accuracy of the prediction results of each fea-
ture variation that each position has. In this test, the RSS input values are taken randomly from 
various features representing the 30 available positions from the RSS fingerprinting dataset.

The second scenario is called an adaptive test which aims to measure the accuracy of pre-
diction of positions if there is a change in the indoor environment. Adaptive testing consists of 
3 scenarios namely the scenario of changes in the value of RSS on 1 anchor node, 2 anchor nodes, 
and 3 anchor nodes at each position randomly. Changing the RSS value is done to simulate inter-
ference with the environment that can occur when predicting position. Disturbances can change the 
measurement results of RSS values at certain anchor nodes.

4. Result and Validation
4. 1. Training model result
Based on the results of several pieces of training using a combination of different numbers 

of neurons and epochs, let’s obtain varying model accuracy values as shown in Table 3 below.
Training using 50 neurons; the number of epochs 100 produces an accuracy value of the mo-

del 84.44 %, the number of epochs 125 has an accuracy of the model 86.67 %, the number of epochs 
150 obtains an accuracy value of the model 84.44 %, the number of epochs 200 gets an accuracy value 
of the model 87.78 % and the accuracy of the model the highest is 90 % on the number of epochs 250.

Furthermore, training uses 250 neurons; the number of epochs 100 obtained the accura-
cy value of the model 81.11 %, the number of epochs 125 resulted in the accuracy of the model 
83.33 %, the number of epochs 150 obtained the accuracy value of the model 85.56 %, the number 
of epochs 200 obtained the accuracy value of the model 87.78 % and the accuracy value of the  
model the highest was obtained on epochs 250 with a model accuracy value of 88.89 %.

The training uses 500 neurons; the number of epochs 100 produces an accuracy value of the 
model 82.22 %, the number of epochs 125 obtained the accuracy of the model 85.56 %, the number 
of epochs 150 the accuracy value of the model is 84.44 %, the number of epochs 200 gets the ac-
curacy value of the model 87.78 % and the accuracy value of the model the number of epochs 250  
is 92.22 %. From the overall results of the training, the highest accuracy model obtained on the use 
of the number of 500 neurons on epochs 250 was 92.22 %.

Table 3
Training model accuracy

Epochs
Model Accuracy (%)

50 Neurons 250 Neurons 500 Neurons
100 84.44 81.11 82.22
125 86.67 83.33 85.56
150 84.44 85.56 85.56
200 87.78 87.78 90.00
250 90.00 88.89 92.22
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In Fig. 6 it is possible to see a graph of the highest model training results with an accuracy 
of 92.22 % using 500 neurons and 250 epochs. In the graph, it is possible to see the results of the 
training model that shows that there is no overfitting where the accuracy value obtained during 
training does not exceed the accuracy value obtained during training. 

Fig. 7 shows a graph of the loss model where the amount of the loss value obtained in test-
ing is below the loss value during training. This model is the best model obtained from the overall 
results of the training model used as a reference to predict the position at a later stage.

Fig. 6. Result of validation of the training model

Fig. 7. Result of validation of the loss model

4. 2. Varied positions testing results
In the varied position testing stages, the input RSS values at 4 AN that have been randomly 

selected from each position. The test produces predictive results that correspond to 30 actual posi-
tions as shown in Table 4.

Table 4
Prediction result of 30 positions for Varied position test and

Input 
Real Position

Predict
(RSS1,RSS2,RSS3,RSS4) Position

1 2 3
[–39.0871,–54.1477,–62.7648,–65.0123] 1 1
[–42.8357,–54.3426,–62.9856,–64.6272] 2 2
[–46.9621,–53.7561,–64.4561,–62.8952] 3 3
[–51.8922,–46.9673,–61.3546,–63.5343] 4 4
[–54.5921,–42.5249,–63.6538,–63.2173] 5 5
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1 2 3
[–56.2007,–37.1931,–64.6808,–62.7425] 6 6
[–48.1532,–58.1024,–58.1733,–63.1034] 7 7
[–48.7533,–54.9862,–60.3752,–61.7533] 8 8
[–51.8532,–53.2734,–60.8533,–61.4732] 9 9
[–52.8637,–52.8543,–62.8632,–61.8656] 10 10
[–56.3754,–50.6482,–62.7563,–62.1064] 11 11
[–56.5783,–48.3858,–63.2738,–58.2567] 12 12
[–54.6392,–58.8634,–55.5383,–59.6374] 13 13
[–54.1073,–58.8536,–57.5993,–56.1274] 14 14
[–55.6499,–56.8695,–57.4759,–58.4178] 15 15
[–55.1962,–54.3759,–59.9853,–58.1652] 16 16
[–58.7353,–54.9637,–58.8263,–57.1823] 17 17
[–60.1938,–52.5638,–61.2933,–57.2034] 18 18
[–59.0723,–60.9722,–52.1733,–57.5743] 19 19
[–58.8653,–60.1062,–52.9724,–56.0363] 20 20
[–59.9627,–58.9366,–53.6428,–55.7453] 21 21
[–59.8714,–59.1291,–55.2549,–53.6468] 22 22
[–60.9632,–58.2134,–56.1633,–52.9833] 23 23
[–62.3647,–59.4629,–59.3562,–52.4728] 24 24
[–61.3849,–63.7005,–43.1623,–56.7086] 25 25
[–61.9673,–63.9763,–47.1734,–53.8364] 26 26
[–61.1635,–62.9634,–49.9534,–52.9534] 27 27
[–61.9726,–62.4838,–51.5368,–48.8253] 28 28
[–64.1834,–62.1723,–55.4738,–46.8356] 29 29
[–63.2739,–61.8364,–56.1836,–43.9673] 30 30

The 30 input RSS values that are used represent 30 positions at the test stage resulting in 
the exact position prediction results corresponding to the actual position. As represented in Fig. 8.

Fig. 8. Prediction result of 30 positions for varied position testing
Correct prediction 

7 m 

11
m

Continuation of Table 4
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Prediction results for positions 1 to 30 are very much in line with the actual position. These 
results indicate that the model obtained from the training results functions optimally as a reference 
at the prediction stage.

4. 3. Adaptive 1 node test result
In the adaptive 1 node test, the changes in RSS values in several AN positions do not signifi-

cantly influence the predicted results. A prediction error occurred at 4 points out of 30 test points. 
The test result data can be seen in the following Table 5.

Table 5
Prediction result of 30 positions for adaptive test

Input
Real Position

Predict
(RSS1,RSS2,RSS3,RSS4) Position

[–39.0871, –54.1477, –60.5478, –65.0123 ] 1 1
[–40.8647, –54.3426, –62.9856, –64.6272] 2 1
[–46.9621, –50.7685, –64.4561, –62.8952] 3 3
[–51.8922, –46.9673, –61.3546, –55.8673] 4 11
[–54.5921, –42.5249, –63.6538, –63.2173] 5 5
[–56.2007, –37.1931, –62.7332, –62.7425] 6 6
[–48.1532, –55.8757, –58.1733, –63.1034] 7 7
[–48.7533, –54.9862, –60.3752, –59.1857] 8 8
[–52.3569, –53.2734, –60.8533, –61.4732] 9 9
[–52.8637, –52.8543, –62.8632, –62.7356] 10 10
[–57.9563, –50.6482, –62.7563, –62.1064] 11 11
[–56.5783, –48.3858, –60.8686, –58.2567] 12 12
[–54.6392, –55.875, –55.5383, –59.6374] 13 12

[–54.1073, –58.8536, –55.9636, –56.1274] 14 14
[–56.1356, –56.8695, –57.4759, –58.4178] 15 15
[–56.9866, –54.3759, –59.9853, –58.1652] 16 16
[–58.7353, –56.1345, –58.8263, –57.1823] 17 16
[–60.1938, –52.5638, –60.4736, –57.2034] 18 18
[–59.0723, –60.9722, –52.1733, –58.1355] 19 19
[–58.8653, –61.8653, –52.9724, –56.0363] 20 20
[–59.9627, –58.9366, –53.6428, –54.8674] 21 21
[–58.6537, –59.1291, –55.2549, –53.6468] 22 22
[–60.9632, –58.2134, –56.1387, –52.9833] 23 23
[–63.1698, –59.4629, –59.3562, –52.4728] 24 24
[–61.3849, –63.7005, –42.8756, –56.7086] 25 25
[–61.9673, –63.1899, –47.1734, –53.8364] 26 26
[–62.8754, –62.9634, –49.9534, –52.9534] 27 27
[–61.9726, –62.4838, –50.9532, –48.8253] 28 28
[–64.1834, –63.3861, –55.4738, –46.8356] 29 29
[–63.2739, –61.8364, –55.4637, –43.9673] 30 30

Fig. 9 exhibits 4 position prediction errors, 2 of them just shifted to the closest position, 
which was position 2 and position 17 prediction.

Incorrect prediction results occur when using input data in position 2, position 4, posi-
tion 13, and position 17. Prediction for position 2 produces output for position 1, position 4 produ-
ces prediction output position 11, position 13 produces predictive output position 12, and position 
17 produces predictive output position 16.
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Fig. 9. Prediction result of 30 positions for adaptive 1 node test

4. 4. Adaptive 2 node test result
For adaptive 2 node testing results, prediction error increased from the previous test to 5 po-

sitions as shown in Table 6 and Fig. 10 below.

Table 6
Prediction result of 30 positions for adaptive 2 node test

Input 
Real Position

Predict
(RSS1,RSS2,RSS3,RSS4) Position

1 2 3
[–40.0426, –54.1477, –60.5478, –65.0123 ] 1 1
[–40.8647, –52.7537, –62.9856, –64.6272] 2 2
[–46.9621, –50.7685, –64.4561, –61.2937] 3 3
[–50.8663, –46.9673, –61.3546, –55.8673] 4 11
[–54.5921, –42.5249, –62.7384, –63.2173] 5 5
[–56.2007, –36.9371, –62.7332, –62.7425] 6 6
[–46.5362, –55.8757, –58.1733, –63.1034] 7 7
[–48.7533, –54.9862, –61.6365,-59.1857] 8 8
[–52.3569, –53.2734, –60.8533,-62.6382] 9 9
[–52.8637, –53.0635, –62.8632, –62.7356] 10 10
[–57.9563, –50.6482, –64.0737, –62.1064] 11 11
[–56.5783, –48.3858, –60.8686, –57.5352] 12 12
[–54.6392, –55.875, –54.2738, –59.6374] 13 14

[–56.8364, –58.8536, –55.9636, –56.1274] 14 14
[–56.1356, –58.0635, –57.4759, –58.4178] 15 15
[–56.9866, –54.3759, –59.9853, –60.1257] 16 16
[–58.7353, –56.1345, –61.8536, –57.1823] 17 16

[–60.1938, –52.5638, –60.4736, –58.0436] 18 18

Correct prediction 
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Incorrect prediction: In Position 2, 4, 13 and 17 
Prediction result 
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1 2 3

[–59.0723, –60.9722, –52.1733, –58.1355] 19 19

[–58.8653, –61.8653, –52.9724, –58.0364] 20 20

[–58.8653, –61.8653, –52.9724, –58.0364] 21 22

[–58.6537, –61.1873, –55.2549, –53.6468] 22 22

[–62.1584, –58.2134, –56.1387, –52.9833] 23 23

[–63.1698, –60.0354, –59.3562, –52.4728] 24 24

[–61.3849, –65.6353, –42.8756, –56.7086] 25 25

[–61.9673, –63.1899, –47.1734, –56.0627] 26 26

[–62.8754, –62.9634, –49.9534, –54.0263] 27 27

[–61.9726, –63.0527, –50.9532, –48.8253] 28 28

[–64.1834, –63.3861, –55.4738, –47.9267] 29 29

[–65.0737, –61.8364, –55.4637, –43.9673] 30 29

Fig. 10. Prediction result of 30 positions for adaptive 2 node test

Prediction errors occur at 5 positions namely, position 5, position 13, position 17, position 21, 
and position 30. Position 4 is predicted to be position 11, position 13 is predicted at the closest po-
sition is 14. At position 17 the prediction becomes position 16, Position 21 becomes position 22, 
and prediction result position 30 becomes position 29. From 5 prediction error results, 4 prediction 
positions only shift to the closest position.

4. 5. Adaptive 3 node test result
Adaptive test results for changes in 3 nodes increased from adaptive testing on 2 nodes to 

9 position prediction errors. These errors can be seen in Table 7 and Fig. 11 below.
Prediction errors occur at 9 positions, namely, at position 4, position 8, position 13, position 17,  

and position 20. Furthermore, the prediction error occurs at position 21, position 22, position 28, 
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and position 30. For all prediction errors, 5 of them are error position predictions that also oc-
curred in previous tests. Fig. 11 is clearly seen from 9 prediction errors, 7 prediction errors are only  
shifted at the closest position, position 8 prediction becomes position 9, position 13 prediction 
shifts to position 14, and position 17 prediction becomes position 16. Furthermore, prediction of 
position 20 becomes position 19, prediction position 21 shifts to position 22, prediction of posi-
tion 28 becomes position 27, and the result of the prediction of position 30 shifts to position 29. 
For the results of predictions that have a shift in a position somewhat far away is at position 4 and 
position 22. Prediction of position 4 becomes position 11 and prediction 24 shifts to position 14.

Table 7
Prediction result of 30 positions for adaptive 3 node test

Input 
Real Position

Predict
(RSS1,RSS2,RSS3,RSS4) Position

[–40.0426,–54.1477,–60.5478,–66.0527] 1 1
[–40.8647,–52.7537,–64.9657,–64.6272] 2 2
[–49.8546,–50.7685,–64.4561,–61.2937] 3 3
[–50.8663,–46.9673,–64.9665,–55.8673] 4 11
[–54.5921,–42.5249,–62.7384,–64.7854] 5 5
[–54.8754,–36.9371,–62.7332,–62.7425] 6 6
[–46.5362,–55.8757,–58.1733,–63.8094] 7 7
[–50.6342,–54.9862,–61.6365,–59.1857] 8 9
[–52.3569,–54.8375,–60.8533,–62.6382] 9 9
[–53.9446,–53.0635,–62.8632,–62.7356] 10 10
[–57.9563,–50.6482,–64.0737,–63.0463] 11 11
[–55.1856,–48.3858,–60.8686,–57.5352] 12 12
[–54.6392,–55.875,–54.2738,–58.9547] 13 14

[–56.8364,–58.8536,–55.9636,–56.6484] 14 14
[–56.1356,–58.0635,–57.4759,–58.8536] 15 15
[–56.9866,–54.3759,–60.1757,–60.1257] 16 16
[–56.0251,–56.1345,–61.8536,–57.1823] 17 16

[–60.5424,–52.5638,–60.4736,–58.0436] 18 18
[–59.0723,–60.4746,–52.1733,–58.1355] 19 19
[–59.0824,–59.8635,–53.1072,–55.8254] 20 19
[–60.8678,–58.9366,–55.0374,–54.8674] 21 22
[–58.6537,–61.1873,–55.2549,–55.1072] 22 14
[–62.1584,–58.2134,–56.1387,–53.9673] 23 23
[–63.1698,–60.0354,–59.3562,–53.0828] 24 24
[–63.2438,–65.6353,–42.8756,–56.7086] 25 25
[–62.0854,–63.1899,–47.1734,–56.0627] 26 26
[–62.8754,–64.8432,–49.9534,–54.0263] 27 27
[–61.9726,–63.0527,–50.9532,–51.1756] 28 27
[–65.0547,–63.3861,–55.4738,–47.9267] 29 29
[–65.0737,–61.8364,–55.4637,–45.0565] 30 29

The results of varied position test and the adaptive test showed that the model used as  
a predict reference to make predictions is quite adaptive to changes. Disturbance simulations do not 
significantly affect the predicted results. Table 8 summarizes the final results for a varied position 
testing and adaptive testing.
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Fig. 11. Prediction result of 30 positions for adaptive 3 node test

Table 8
Accuracy of predictions

Predict Test Incorrect Correct Accuracy ( %)

Varied positions 0 30 100

Adaptive 1 node 4 26 86.66

Adaptive 2 node 5 25 83.33

Adaptive 3 node 9 21 70

The results of the predictions in varied position testing reach 100 % accuracy and the adap-
tive 1 node testing results obtained the accuracy level of 86,66 %, The 2 node adaptive test results 
produce an accuracy of 83.33 % and for the 3 nodes adaptive test the prediction accuracy results are 
obtained at 70 %. From the overall prediction results using 4 test scenarios, the average accuracy 
obtained is far above 50 %, which is 85 %.

5. Discussion of Experimental Results
Three main problems to be solved in this research are reducing the environmental influence 

on the results of RSS measurements, addressing the variability of RSS values, and positioning ac-
curacy. Therefore, this study aims to develop techniques that can improve the ability and accuracy 
of object position detection for indoor localization applications in a dynamic environment. Deve-
lopment and optimization of the use of fingerprint techniques for indoor localization applications 
using a deep learning approach. The following are the results obtained from the study.

Environmental influences that cause differences in the RSS value at the time of fingerprint-
ing data collection with the RSS value at the time of testing can be minimized by taking advantage 
of the LoRa device. Here the researchers see that there are still opportunities to improve LoRa 
performance in indoor locations. With the right approach, these properties make LoRa a promising 
choice for indoor localization systems.
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Variation in the change in the RSS measurement value at each position due to changing 
environmental conditions which can serve as a feature that helps improve the training process. The 
right hyperparameter setting based on best practice experience produces the best model with the 
highest accuracy of 92.22 %, as shown in Fig. 2. The best model with the highest accuracy is used 
as a reference to obtain position prediction results with high accuracy.

The results of the position variation test and adaptive test in Table 8 show that the deep 
learning approach can be a solution to address changes in environmental conditions that occur in 
cases of indoor localization. Referring to the results of the simulation of environmental changes 
carried out in the adaptive test scenario, it shows that the use of a deep learning approach is proven 
to be able to overcome changes in environmental conditions that occur in indoor environments with 
accurate predictions.

With the concept and use of simple infrastructure, this method is possible to be implemen-
ted in an Indoor Localization system. Compared to the concept applied in previous studies, the 
use of the DeepFi-LoRaIn concept does not require additional equipment that is always operating 
indoors to monitor and record changes that occur in the environment. The resulting training mo-
del is able to maintain a good accuracy of position prediction despite changing conditions in the 
environment.

This research was conducted with several limitations, including the use of limited space and 
static object detection. The future challenge is the implementation in a wider indoor environment 
using moving object prediction. The advantages of LoRa’s reach can be used to implement indoor 
localization between buildings. Improved position prediction accuracy can still be improved by 
increasing the number of RSS fingerprint features that represent each changing environment as 
training data predicts the existence of immovable objects using.

6. Conclusions
The results of variation and adaptive tests showed the average accuracy obtained is 85 %, 

even the result of predictions in varied position testing reaches 100 % accuracy. That result showed 
the deep learning approach can be a solution to overcome changes in environmental conditions 
that occur in the case of indoor localization. Variations in changes in the measurement value of 
RSS in each position are caused by changes in environmental conditions that can represent the 
real conditions in the environment. Variations in RSS values in each position serve as features 
that help to improve the training process. The use of the deep learning approach is proven to be 
able to cope with changes in environmental conditions that occur in the indoor environment with 
accurate prediction accuracy. The characteristic of RSS LoRa fingerprint in indoor location is 
promising to be implemented due to it is relatively more stable to environmental changes with 
the result that is no significant shift in RSS values that are between in training stages and the 
prediction stages.
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