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Abstract
The objects of the study were diagnostic features that allow determining the quality of controlling temperature modes of 

induction crucible melting. For this, in the normalized space of feature factors, which are the content of SiO2 and FeO+Fe2O3 in slag, 
a discriminant function is constructed and a decision rule is obtained in the form of a linear classifier, which allows determining in 
which mode the process was carried out. It is shown that this rule is the basis for identifying an event qualified as a parametric failure, 
and it can be included in the general structure of the parametric failure function.

The parametric failure function constructed for the temperature control system of induction crucible melting makes it possible 
to ascertain that the control system does not meet the specified requirements for a specific temperature mode of melting. The mecha-
nism of inferencing regarding the occurrence of a parametric failure based on this function is as follows. If the decision rule showed 
that the object belongs to the «low-temperature mode» class, although the process under these conditions should have been carried out 
in the high-temperature mode, a parametric failure is recorded. In this case, the numerical value of this function takes the value of «1», 
otherwise – «0». The inferencing mechanism works similarly if, on the basis of the decision rule, it is revealed that the process was car-
ried out in the high-temperature mode, although under these conditions it should have been carried out in the low-temperature mode.

Based on the constructed parametric failure function, practical problems related to planning maintenance of the temperature 
control system integrated into the melting complex or organizational and technical measures aimed at minimizing violations of the 
melting regulations can be solved. 

Keywords: parametric failure function, temperature control, induction crucible furnace, discriminant function, classifi
cation rule.
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1. Introduction
Modern views on the issue of optimal regulation of thermal modes for melting ferrous al-

loys in induction melting furnaces are based on the need to follow the «all-inclusive» paradigm.  
It involves deep integration of electrical and automated solutions for the creation of melting systems, 
including using intelligent melting control elements. This is illustrated by the ready-made solutions 
offered on the market of induction furnaces. Such solutions can be found, for example, in [1–3]. 
Such integrated solutions imply the need for scientific research in terms of both improvement of 
power electronics [4, 5], and process control based on the study of physical processes occurring in 
furnaces, depending on electrical modes of melting [6, 7]. The importance of combining these two 
approaches, one representing the electric power aspect, and the other – the physicochemical aspect, 
is evident in solving the existing problems related to the quality control of the melting process. This 
circumstance is noted in [8], where, to solve the problem of choosing the optimal melting strategy, 
an attempt was made to use the ideas of the statistical game theory and the synthesis of an optimal 
temperature controller based on a multi-alternative description of the final state [9]. In this case, the 
final state is described by a family of suboptimal solutions in a parametric form by means of ridge 
analysis of a mathematical model of the «composition – property» type [10, 11], which are built 
on the basis of regression analysis, including the use of artificial orthogonalization methods [12].

Since the final composition of the alloy is formed by complex physicochemical processes 
that occur both in the liquid phase in parallel and sequential stages, and in solid phases until com-
plete crystallization, the determining factor to be controlled is temperature. It is the temperature 
mode of melting that should provide such temperature values at which the required direction and 
speed of the physicochemical processes occurring in the furnace crucible as an open system are 
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guaranteed. The effect of temperature on the course of these processes is manifested in the known 
dependence of the reaction rate constants on temperature, obeying the Arrhenius equation:

	 k A
E

RT
A= −







exp , 	 (1)

where A is the preexponential factor, ЕА is the process activation energy, R is the universal gas 
constant, T is the temperature.

In the production of complex alloys, for example, alloyed and modified with a set of elements 
that have an opposite effect on structure formation, it is necessary to take into account the multi-
factorial effect of melting parameters on the final composition of the alloy. The mechanisms of this 
influence are related to changes in the parameters of the Arrhenius equation [13], so a targeted control 
effect should be selected based on an understanding of how the temperature trajectory will affect the 
course of physicochemical processes for alloys of different chemical compositions. Deviations from 
optimal trajectories can cause the composition of the alloy at the end of the process to differ from 
the specified one, regulated by technical requirements. Considering the probability that the content 
of each element of the chemical composition falls within a given range as the quality criterion of 
the melting process, the concept of parametric reliability of the melting temperature control system 
can be used. Namely, the temperature control system can be considered parametrically reliable if it 
provides a temperature trajectory at which the rate constants k of physicochemical processes ensure 
that the content of each element of the chemical composition at the end of the process falls into the 
range regulated by the requirements. Obviously, it is hardly possible to solve this problem in full, 
due to the complexity and multifactorial nature of the processes taking place in the crucible of an 
induction furnace, but a solution can be obtained with regard to priority parameters. Such parameters 
can be, for example, elements of the chemical composition that most significantly affect a particular 
quality criterion of the alloy, in accordance with the mathematical model «composition – property». 
And since the final product of the physicochemical process in induction melting includes not only the 
alloy but also slag, which plays an important role in controlling the reduction processes of melting, it 
makes sense to assume that the composition of the slag may indirectly indicate the temperature mode 
at which melting was carried out. It should be noted that the temperature mode does not mean a deter-
ministic temperature value, but a temperature range, which provides a given course of the process, the 
final result of which is the production of an alloy of given chemical composition. This is the problem 
that the temperature control system should solve. With this consideration, the parametric failure of 
the control system should be understood not as an event that the temperature values fall outside the 
tolerance range, but an event that the temperature mode does not correspond to that specified by the 
melting regulations. Accordingly, the parametric reliability of the temperature control system should 
be understood as its ability to provide a given technological regulation of melting. In conditions where 
continuous monitoring of the state of the control system is impossible, indirect methods of assessment 
are required. That is why, the assumption was tested in this work that the slag parameters can be in-
direct diagnostic indicators for assessing the quality of controlling the temperature mode of melting, 
on the basis of which it becomes possible to judge the parametric reliability of the control system.

2. Materials and methods
2. 1. Working hypothesis
It is assumed that the composition of the slag obtained during melting structural cast iron in 

an induction crucible furnace indicates whether the process was carried out under a low-tempera-
ture or high-temperature mode. Traditionally, the first is characterized by the temperature range 
T = 1.250±50 °C, and the second – by the temperature range T = 1.450±50 °C. If it turns out that 
the actual composition of the slag indicates that the process was conducted in a low-temperature 
mode, although it should have been carried out in a high-temperature mode under these conditions,  
a parametric failure is recorded. If monitoring is carried out at different time intervals, then a flow 
of events qualified as parametric failures can be formed, on the basis of which it is possible to simu-
late the system operation, making adjustments to the operation process. So, if the furnace complex 
does not contain automation elements, and the process is carried out manually, then the presence 
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of such a failure may indicate a violation of the melting regulations. If the furnace complex is auto-
mated and contains an integrated temperature control circuit, such a failure indicates the presence 
of faulty elements in the circuit and requires maintenance. The same applies to the case when the 
results of the slag analysis revealed that the process was carried out in a high-temperature mode, 
although it should have been carried out in a low-temperature mode under these conditions.

2. 2. Experimental data
To obtain theoretical results confirming or refuting the hypothesis, experimental and indus-

trial data were selected [14]. A fragment of such experimental and industrial data, which are the 
basis of theoretical verification, is given in Table 1.

Table 1
Experimental and industrial data

Sampling time since the beginning of slag 
formation, min 

Slag composition, %
SiO2 CaO FeO+Fe2O3 MnO Al2O3

Low-temperature mode
0 39.32 2.08 40.77 1.31 11.22
10 44.55 2.13 35.92 2.27 14.11
20 47.16 2.52 31.18 1.2 13.18
30 50.17 2.76 29.4 0.75 14.14
40 53.22 3.18 23.55 1.15 13.9
50 54.91 3.16 23.11 1.02 11.20

High-temperature mode
0 56.62 3.11 20.78 1.19 12.15
10 65.38 3.14 16.82 0.93 7.55
20 76.18 3.18 7.14 2.48 7.42
30 70.85 4.11 10.12 1.22 10.55
40 69.95 3.59 9.86 0.41 12.44

Note: the sampling time since the beginning of slag formation for each mode corresponds to the number of the experimental point 
0→No. 1, 10→No. 2, 20→No. 3, 30→No. 4, 40→No. 5, 50→No. 6.

2. 3. Research methods
For the study, pattern recognition methods were selected. The rationale for this choice was 

dictated by the following. If we consider two options for the modes of the melting process (Table 1), 
each of them forms its own cluster, described by a set of data – feature factors, the content of slag 
components. The temperature control system should provide the selected temperature range in accor-
dance with the melting task, the result of which should be the specified chemical composition of the 
alloy. Under specific process conditions in acid-lined furnaces at the rates of charge consumption, en-
suring a given chemical composition, slag with the composition that depends on all these conditions 
is formed. Thus, the task is to obtain a decision rule that allows, in the space of factors – the content 
of the most essential slag components – referring the process to one of the clusters, either low-tem-
perature or high-temperature. In other words, it is necessary to implement an algorithm that allows 
obtaining a classification rule that will attribute an object to one of the clusters with a high degree of 
reliability. As noted in [15], most of the pattern recognition algorithms are representatives of paramet-
ric families. Even in the case of linearly inseparable samples, it is possible to construct a continuum of 
hyperplanes that correctly classifies all sampling objects. Parametric classification makes it possible, 
with sufficient accuracy, to classify objects as «good – defective» [16–18], or the process stages re-
sponsible for the formation of defects [19, 20], in the field of metallurgical technologies. Restrictions 
imposed on these methods related to the requirement of equality of covariance matrices and confor-
mity of the distribution law of the feature factor values to the normal one can be taken into account or 
partially removed using special combined methods [21–23]. The results of [16–23] suggest that for the 
considered problem of classifying states «low-temperature mode» – «high-temperature mode» in the 
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space of feature factors of the content of slag components, it is advisable to use parametric methods 
of classification. However, it should be borne in mind that there remains uncertainty in the selection 
of significant factors, and the sample size can be potentially small for a qualitative assessment of 
sample functions. In addition, an increase in the number of such factors will inevitably lead to an in-
crease in the size of the covariance matrices to be inverted. Under these conditions, with an arbitrary 
distribution of experimental points in the feature factor space, it is difficult to expect the fulfillment 
of the above conditions, which constitute the essence of the restrictions on parametric classification 
methods. Therefore, the choice of feature factors was made on the basis of practical experience, based 
on the fact that the main components of the slag, which make it possible to judge the physical and 
chemical processes in the «melt – slag – furnace atmosphere» system when using an acidic lining, are 
silicon dioxide and iron oxides. So, in the given initial data, SiO2 (x1) was chosen as the first factor 
and FeO+Fe2O3 (x2) – as the second. They make it possible to judge the final state of the controlled 
melting process in acid-lined induction crucible furnaces, since the values of these factors depend on 
the temperature trajectory provided by the temperature control system.

Fig. 1 presents the process diagram showing the relationship of the control parameters with 
the mechanisms of forming the final state, if it is estimated in the «SiO2 – FeO+Fe2O3» (x1–x2) co-
ordinates, and Fig. 2 – the circuit diagram of the furnace [24] with the given control loops for the 
electrical and thermal modes of the process.

Fig. 1 shows that when choosing the low-temperature melting mode, iron is reduced from 
FeO in two parallel reactions: melt silicon and melt carbon, which leads to saturation of the slag 
with SiO2. In this case, the FeO content in the slag decreases, which is compensated continuously 
during melting by the addition of new portions of the charge. This causes the content of iron oxides 
in the slag to remain high in the low-temperature mode of the process (Table 1).

Under the high-temperature mode, the reaction of reduction of iron oxides by melt carbon 
is more active, while the reduction of silica proceeds much more slowly. This results in the slag 
rapidly becoming highly siliceous, as can be seen from Table 1 by the content of SiO2 in the slag.

From the analysis of the ongoing processes, it can be concluded that two classes of objects 
can be distinguished – class A (low-temperature mode) and class B (high-temperature mode) – in 
the space of selected feature factors, each of which forms its own cluster, grouped around its center 
of gravity. This center of gravity corresponds to the mathematical expectation of its class, on the 
basis of which it is possible to carry out the procedure of parametric classification according to the 
known formulas [25, 26], systematically presented in the form of an algorithm shown in Fig. 3.

Fig. 3 presents the following notation:
X – matrix of values of feature factors (XА and XВ – for classes A and B, respectively),
xk max – maximum value of the k-th feature factor,
xk min – minimum value of the k-th feature factor,
xkj

norm – normalized value of the k-th feature factor in the j-th implementation,
N i – number of experiments in the i-th class (cluster),
mA, mB – mathematical expectation of classes A and B, respectively,
С – covariance matrix,
f(X) – discriminant function,
Р(А), Р(В) – probabilities of classes A and B, respectively,
f0 – threshold value of the discriminant function,
pi – probability of correct classification of objects,
ni

+ – number of correctly classified objects,
W – linear transformation matrix,
D2  – intraclass distance for the class,
σk

2 – unbiased variance of the class,
N – dimension of the feature factor space,
ak

j  – mean coordinate value of the image vector describing the position of the object in the 
feature factor space,

D2  – intraclass distance in the coordinate system obtained by the linear transformation of 
the original feature factor space.
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Fig. 1. Process diagram showing the relationship of control parameters with the mechanisms 
for forming the final state: Р – input power (Рnom – nominal power, Рmax – maximum power); 

hm = hm(ti) – melt depth in the crucible; hsl = hsl(ti) – slag layer thickness; Gm = Gm(ti) – melt mass; 
Gsl = Gsl(ti) – slag mass; ti – time points of the melting process; Δhm, Δhsl, ΔGm, ΔGsl – decrease  

in melt depth, slag layer thickness, melt mass, slag mass, respectively, after the next melt portion 
is delivered from the furnace; [C], [Si], [Fe] – content of carbon, silicon, iron in the melt;  

(SiO2), (FeO) – content of silicon and iron oxides in the slag; {CO} – content of carbon monoxide 
in the gas phase; SiO2  – content of silicon dioxide in the slag
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Fig. 2. Circuit diagram of the furnace demonstrating the principle of controlling electric (green marking) 
and thermal (burgundy marking) modes: TC – tap changer, BC – balancing capacity, LC – balun reactor,  
I – furnace inductor, Ci – capacitance of the balancing capacitor battery, K1–K5 – battery capacity 
control contactors, ARIS – balun controller, ARIR – automatic power controller, u1 – power control, 
u2 – electric mode control, I – current, U – voltage, n – transformer voltage tap number, T – temperature

Fig. 3. Algorithm of parametric classification under which the research methodology was implemented
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3. Results
Fig. 4 shows the distribution of the SiO2 and FeO+Fe2O3 feature factor values for the low-tem-

perature and high-temperature modes in natural form according to Table 1 for time intervals 0–40. 
The data line for the time point 50 for the low-temperature mode is not included in the original  
sample in order to subsequently check the predictive ability of the resulting classification rule.

                                               a                                                         b
Fig. 4. Diagram of feature factor values: a – SiO2, %; b – FeO+Fe2O3, %

Table 2 shows the results of calculating the statistical characteristics – estimates of mathe-
matical expectation М(х) and standard deviation s, as well as ranges of the feature factors for each 
of the modes in natural form.

Table 2
Results of calculating the statistical characteristics of the feature factors for each of the modes

Sample number

High-temperature mode (Class B) Low-temperature mode (Class A)

Slag components

SiO2 FeO+Fe2O3 SiO2 FeO+Fe2O3

1 56.62 20.78 39.32 40.77

2 65.38 16.82 44.55 35.92

3 76.18 7.14 47.16 31.18

4 70.85 10.12 50.17 29.4

5 69.95 9.86 53.22 23.55

M(x) 67.796 12.944 46.884 32.164

s 7.331 5.648 5.331 6.538

ximax 76.18 20.78 53.22 40.77

ximin 56.62 7.14 39.32 23.55

From Table 2 it follows that the range of the SiO2 feature factor values is limited by the  
values x1min = 39.32 %, x1max = 76.18 %, and the range of variation FeO+Fe2O3 feature factor values 
is limited to x2min = 7.14 %, x2max = 40.77 %. Based on these ranges, the operation of normalization 
of the «Preliminary data processing» algorithm block (Fig. 3) was performed according to the for-
mula (1). The results of processing are shown in Table 3, where the normalized values of the feature 
factors x1 and x2 are denoted by x norm

1  and x norm
2  respectively.

Tables 4, 5 show the results of calculating all the parameters of the discriminant function of 
the «Parametric classification» algorithm block (Fig. 3) for classes A and B, respectively.
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Table 3
Results of preliminary data processing

Sample number

High-temperature mode (Class B) Low-temperature mode (Class A)
Slag components

x norm
1 x norm

2 x norm
1 x norm

2

1 –0.06131 –0.18882 –1 1
2 0.413999 -0.42432 0.169598 0.711567
3 1 –1 0.23812 0.429676
4 0.710798 –0.82278 0.317693 0.323818
5 0.661964 –0.83824 0.393923 –0.02409

M(x) 0.54509 –0.65483 0.023867 0.488195
s 0.398 0.336 0.579 0.389

Table 4
Results of calculating the parameters of the discriminant function for class А

mA С A C m m=






= −( )−a

a
A B

1

2

1 f0

0.023867

0.488195






0 126594 0 10382

0 10382 0 090258

. .

. .

−
−







10.27893

22.06121




 1.086018

Table 5
Results of calculating the parameters of the discriminant function for class B

mB С A C m m1=






= −( )−a

a
A B

1

2
f0

0.54509

0.65483−






0 267744 0 14838

0 14838 0 120944

. .

. .

−
−







110.5798

139.8582






19.80475

From the general form of formula (4) of the «Constructing a discriminant function» algo-
rithm block (Fig. 3) it follows that f(X) is a linear form L x xnorm norm

1 2, .( )  Therefore, the condition 
for assigning objects to one of the classes (6) of the «Creating a classification rule» algorithm 
block (Fig. 3) can be written as follows:

– if the classification rule is based on the use of the covariance matrix for class A (Table 4):

L x x x classnorm norm j
1 2 1 086018 0, ,.( ) − → ∈≥ ( ) A

L x x x classnorm norm j
1 2 1 086018 0, ,.( ) − → ∈< ( ) B

where L x x x xnorm norm norm norm
1 2 1 2

10 27893

22 06121
1,

.

.
( ) = = ( )





=XA 00 27893 22 061211 2. . ;x xnorm norm+

– if the classification rule is based on the use of the covariance matrix for class B (Table 5):

L x x x classnorm norm j
1 2 19 80475 0, ,.( ) − → ∈≥ ( ) A

L x x x classnorm norm j
1 2 19 80475 0, ,.( ) − → ∈< ( ) B

where L x x x xnorm norm norm norm
1 2 1 2

110 5798

139 8592
1,

.

.
( ) = = ( )





=XA 110 5798 139 85921 2. . .x xnorm norm+
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Assuming that the found sample distribution parameters for classes A and B correspond to the 
general ones, it is possible to build probability density graphs pA( f ), pB( f ) for the cases if the classifica-
tion rule is based on the use of the covariance matrix for class A and for class B (Fig. 5, 6, respectively). 

Fig. 5. Probability densities pA( f ), pB( f ) for the cases when the classification rule is based  
on the use of the covariance matrix for class A; markers show the calculated values for  

the experimental points (Table 3)

Fig. 6. Probability densities pA( f ), pB( f ) for the cases when the classification rule is based  
on the use of the covariance matrix for class B; markers show the calculated values for  

the experimental points (Table 3)

The results obtained indicate that there is a classification error, which is greater if the clas-
sification rule is based on the use of the covariance matrix for class B (Fig. 5, 6). Therefore, it is 
preferable to use the classification rule based on the use of the covariance matrix for class A. In this 
case, the line separating the classes has the form shown in Fig. 7.

Fig. 7 shows that all objects are classified correctly. Therefore, despite the fact that experimen-
tal point No. 1 with coordinates (–0.06131; –0.18882) for class A and experimental point No. 1 with 
coordinates (–1; 1) for class B make a negative contribution to minimizing the intra-class distance, 
operations (8)–(13) of the «Clustering transformations» algorithm block (Fig. 3) were not carried out.
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Fig. 7. Separating line 10 27893 22 06121 1 0860181 2. . .x xnorm norm+ =  and location of experimental points 
in the normalized feature factor space x xnorm norm

1 2−( ) by clusters – classes A and B

To form the condition for the absence of parametric failure of the temperature control sys-
tem of induction crucible melting, the following designations are introduced:

Tm(T) – process mode, depending on one variable – melt temperature, which means the 
following: the factor of identification of the process mode is the «temperature» parameter;

Tm(T)↓ – low-temperature melting mode, temperature ranges of 1 200 1 300. .≤ ≤T  (Fig. 1);
Tm(T)↑ – high-temperature melting mode, temperature ranges of 1 400 1 500. .≤ ≤T  (Fig. 1);
[Tm(T)] – melting temperature mode specified by the process conditions;
Δ(Tm) – parametric failure function, which is a quantitative characteristic for evaluating 

the parametric reliability of the temperature control system based on recording events that the 
temperature mode does not correspond to the specified process. The function can take two values: 
«0» – if there is no parametric failure, «1» – if the parametric failure is recorded.

Taking into account these designations and the classification rule based on the use of the 
covariance matrix for class A in the space of normalized feature factors x norm

1  and x norm
2 , the para-

metric failure function can be represented as follows.

	 ∆ Tm
Tm Tm

Tm
( ) =

( )  ⇔ ↓ ∧ ( ) − ≥

( )

0 1 086018 0

1

1 2, , . ,

,

T L x x

T

norm norm

  ⇔ ↓ ∧ ( ) − <





 Tm L x xnorm norm
1 2 1 086018 0, . ,

	 (14)

or in the equivalent form:

	 ∆ Tm
Tm Tm

Tm
( ) =

( )  ⇔ ↑ ∧ ( ) − <

( )

0 1 086018 0

1

1 2, , . ,

,

T L x x

T

norm norm

  ⇔ ↑ ∧ ( ) − ≥





 Tm L x xnorm norm
1 2 1 086018 0, . .

	 (15)

The text version of this function, for example (14), is as follows.
If the process conditions specify the low-temperature melting mode Tm TmT( )  ⇔ ↓( ), then 

parametric failure is absent only if the point with coordinates x xnorm norm
1 2( ) is located in cluster A.

If the process conditions set the low-temperature melting mode, and the point with coordi-
nates x xnorm norm

1 2( ) is located in cluster B, then a parametric failure is recorded.
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4. Discussion
The parametric failure function obtained in the form of (14) or (15) allows recording the 

time points at which Δ(T) = 1, which form the flow of events qualified as parametric failures of the 
temperature control system of induction crucible melting. This allows, during short-term or long-
term observations, depending on the rate of parametric failures, evaluating failure flow parameters 
for planning maintenance or organizational and technical solutions aimed at minimizing violations 
of the melting regulations. Obviously, the result of such measures is improved control quality of the 
process as a whole, assessed on the basis of the WECQ-Algorithm [27].

It should be noted that for the practical use of this function, it is necessary to first convert the 
natural values of SiO2 and FeO+Fe2O3 into normalized ones x norm

1  and x norm
2  according to the formulas:

	 x norm
1

57 75

18 43
=

( ) −SiO2 .

.
, 	 (16)

	 x norm
2

2 3 23 955

16 815
=

( ) −FeO+Fe O .

.
, 	 (17)

where the numerical values in the numerator correspond to the average content of the slag compo-
nent over the range (Table 2):

– SiO2, %: 39 32 76 18. . ,≤ ( ) ≤SiO2

– FeO+Fe2O3, %: 7 14 40 772 3. . ,≤ ( ) ≤FeO+Fe O
and the numerical values in the denominator correspond to the range of the slag component content:

– SiO2, %: I SiO SiOSiO 2 22( )= ( ) − = −( )max min
. . ,57 75 57 75  (SiO2)max = 76.18 %, (SiO2)min = 39.32 %,

– FeO + Fe2O3,  % : I FeO Fe O FeO Fe OFeO+Fe O2 3 2 3 2 323 955 23 955( ) = +( ) − = − +( )max min
. . , 

(FeO+Fe2O3)max = 40.77 %, (FeO+Fe2O3)min = 7.14 %.
It is important to note that the parametric failure function (14), (15) is valid only within the spec-

ified ranges of the SiO2 and FeO+Fe2O3 content. Outside these ranges, it may not work. This is a limita-
tion of this study. However, even within the specified range, there is a zone of uncertainty regarding the 
assignment of an object to one of the classes, which is determined by the overlap area of the distribution 
density curves pA( f ), pB( f ), taking into account the classification error. To confirm this, it is possible to 
check the possibility of correct classification of experimental point No. 6 (Table 1): (SiO2) = 54.91 %, 
(FeO+Fe2O3) = 23.11 %, which in the normalized factor space corresponds to the point with coordi-
nates x xnorm norm

1 2 0 154 0 05( ) = − −( ). . . Fig. 8 shows that this point is classified incorrectly, that is, it is 
erroneously assigned to class B, although it actually belongs to class A (the process was carried out 
in the low-temperature mode – Table 1). This is also confirmed by the calculation of the value of 
the discriminant function at the point x xnorm norm

1 2 0 154 0 05( ) = − −( ). . : f(x) = –2.686, which violates 
the condition of assigning an object to class A: f(x) = –2.686 < 1.086 (Fig. 9).

This result is due to the fact that to construct the classification rule, a general data sample for 
time intervals 0–40 was used, and the tested point was in the zone of uncertainty: for the low-tem-
perature mode, data from the ranges of 39 32 53 22. . ,≤ ( ) ≤SiO2  23 55 40 772 3. .≤ ( ) ≤FeO+Fe O  that 
the test point did not get into were used. The obtained result indicates that in such cases the use 
of the parametric failure function in the form of (14) will lead to a false conclusion. To avoid this,  
a restriction on the use of (14) should be imposed, taking into account the permissible ranges of the 
feature factor values in the normalized form: − ≤ ≤1 0 24581x norm .  and − ≤ ≤0 024 12. .x norm

Another restriction on the practical application of the parametric failure function in the 
form of (14) or (15) is the need to ensure that other process factors correspond to the specified ones. 
For example, the charge quality and stability of charging are important, which should ensure such  
a chemical composition of the melt at the start of heat treatment, that, at a given temperature mode 
at the moment of the melt delivery from the furnace, for each element would fall into the required 
range, regulated by the alloy quality requirement.

It should also be noted that the choice of feature factors in this study was based on practical 
experience rather than strict significance verification of other feature factors, which could not but 
affect the quality of the constructed decision rule. Carrying out an appropriate procedure would 
improve the accuracy of classification by increasing the size of the factor space.



Original Research Article:
full paper

(2020), «EUREKA: Physics and Engineering»
Number 6

30

Engineering

Fig. 8. Results of the test verification of the accuracy of classification of experimental point No. 6 
in the normalized feature factor space x xnorm norm

1 2−( ) by clusters – classes A and B

Fig. 9. Results of the test verification of the accuracy of classification of experimental point No. 6 
based on the calculation of the discriminant function

Thus, there is reason to believe that a solution to the problem of incorrect classification may 
be to minimize the area of the uncertainty zone. For this, it is necessary to construct a classifica-
tion rule for a larger sample, with the inclusion of additional significant feature factors, choosing 
the geometry of clusters and distribution of experimental points in them so that the condition of 
equality of dispersion matrices is satisfied [28]. This can be a direction for further research aimed 
at improving the accuracy and predictive ability of the parametric failure function.
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5. Conclusions
It was found that by the composition of induction crucible melting slag, it is possible to deter-

mine the temperature mode at which the process was carried out. To do this, in the space of feature 
factors, composed of slag components, it is necessary to construct a classification rule, which allows 
assigning the melting mode to one of two classes: A – «low-temperature mode» (T = 1.250±50 °C), 
B – «high-temperature mode» (T = 1.450±50 °C). Based on a small sample of data in the norma
lized space of feature factors, which are the content of SiO2 and FeO+Fe2O3 in slag, a discriminant 
function is constructed and a decision rule is obtained, which has the form of a linear classifier 
L x x x classnorm norm j

1 2 1 086018 0, ,.( ) − → ∈≥ ( ) A  L x x x classnorm norm j
1 2 1 086018 0, .( ) − → ∈< ( ) B.

This rule is the basis for identifying an event qualified as a parametric failure and is included 
in the general structure of the parametric failure function. This function, built for the temperature 
control system of induction crucible melting, makes it possible to ascertain that the control system 
does not meet the specified requirements regulated by a specific temperature mode of melting. The 
parametric failure function can take two values: «0» – if there is no parametric failure, «1» – if a para-
metric failure is recorded, and the mechanism of inferencing based on this function is as follows.  
If the classification rule shows that the object belongs to the class «low-temperature mode», although 
the process under these conditions should have been carried out in the high-temperature mode, a para-
metric failure (Δ(Tm) = 1) is recorded. The inferencing mechanism works in a similar way if, on the 
basis of the classification rule, it is revealed that the process was carried out in the high-temperature 
mode, although under these conditions it should have been carried out in the low-temperature mode.

On the basis of this, a flow of events qualified as parametric failures can be formed, which 
allows further simulation of the system operation, making adjustments to the operation process. 
This will allow, in particular, planning the maintenance of the temperature control system inte-
grated into the melting complex, or organizational and technical measures aimed at minimizing 
violations of the melting regulations.

It is found that using the range of the values of the feature factors 39 32 76 18. . ,≤ ( ) ≤SiO2  
7 14 40 772 3. .≤ ( ) ≤FeO+Fe O  common for the two classes, the obtained decision rule is operable 
only when the restrictions imposed by the ranges of the content of slag components for the low-tem-
perature mode 39 32 53 22. . ,≤ ( ) ≤SiO2  23 55 40 772 3. .≤ ( ) ≤FeO+Fe O  are met.
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