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Abstract. When bearing vibration of instruments is monitored, a large number of data are 
produced. This requires a massive capacity of storage and high bandwidth of data transmission 
whereby costs and complex installation are concerned. In this study, we aim to propose an 
effective framework to address such the amount of bearing signals to which only meaningful 
information is extracted. Based on the compressed sensing (CS) theory. We proposed a 
reconstruction algorithm based on the multiple side information signal (RAMSI) with a purpose 
to effectively obtain important information from recorded bearing signals. In the process of sparse 
optimization, the RAMSI algorithm was implemented to solve the 𝑛 − 1ଵ minimization problem 
with the weighting adaptive multiple side information signals. Wavelet basis and Hartley matrix 
were applied for the reconstruction process, for which the effective sparse optimization processing 
of bearing signals was able to adaptively computed. The performance of our RAMSI-based CS 
theory was compared with the basis pursuit (BP) which is based on the alternating direction 
method of multiplier (ADMM) and orthogonal matching pursuit (OMP). The error indices of the 
reconstruction algorithms were evaluated. This proves that the performance of the sparse 
optimization algorithm from our proposed framework is superior to the BP based on the ADMM 
and OMP algorithm. After recovering vibration signals, some strong noise caused by the incipient 
fault characteristic of the bearing. The complete ensemble empirical mode decomposition with 
adaptive noise (CEEMDAN) method was performed to extract the bearing fault component from 
such noise. In terms of performance, the CEEMDAN method was compared to the standard 
ensemble empirical mode decomposition (EEMD) method. The results show that the CEEMDAN 
method yields a better decomposition performance and is able to extract meaningful information 
of bearing fault characteristic. 
Keywords: compressed sensing RAMSI, measurement matrix, bearing vibration signal, 
CEEMDAN method. 

1. Introduction 

Long-term monitoring of rotating machinery can help early warning for safety and 
maintenance cost. This also guarantee for a normal operation for important machinery [1-3]. 
However, online monitoring of rotating machinery normally generates a large number of data, 
which could produce heavy loads on acquisition devices [4-6]. Therefore, methods to practically 
compressing data are crucial for cost-effective purpose and for an optimal control process in 
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industrials. 
The Compressed sensing (CS) theory has been widely applied to massive sampling data, which 

is able to break through the limitation of the Nyquist-Shannon sampling rule. The CS theory can 
effectively reconstruct signals with a small number of meaningful data, so as to alleviating a 
process of storage and transmission, which is suitable for long-term health monitoring of the 
rotating machinery [7-9].  

The CS theory has been used in many areas, such as image and signal processing. The CS 
theory is combined with reconstruction algorithms for dealing with the minimum norm problem, 
resulting in realized reconstructed signals. Based on CS theory, the parallel FISTA algorithm is 
proposed for construction of vibration bearing, and Orthogonal matching pursuit (OMP) based on 
CS theory can be used to extract meaningful transient representation of bearing vibration signals 
[10, 11]. Furthermore, the k-means singular value decomposition algorithm was proposed to 
solves the sparse atom problem regarding the gear fault diagnosis, but there exists and issue when 
tackling a large number of collected signals [12, 13]. 

Besides, the alternating direction method of multiplier (ADMM) has shown its advantages of 
decomposition ability and convex optimization solution. Such method is beneficial to signal 
processing and statistical fields [14-16]. the ADMM also exhibits a good performance when 
applied to vibration signals. However, the characteristic of such signals is usually nonlinear and 
non-convex, so the ADMM algorithm should be improved for vibration signals [17, 18]. 

In order to improve quality of the recovering signals, we try to use different method, prior 
information theory of a signal side is introduced to satisfy the quality, which can deal with the 
measurement constraint. Meanwhile, signal side of prior information whereby weights are 
included can further improve the performance of the CS. The weights are determined by dividing 
the 1ଵ  frame of the source signal into two sets with specific probability to ensure that signal 
recovery exists. This can also improve the reconstruction performance of sparse signals. So here, 
multiple prior signals method can replace the one prior signal, which can further reconstruct a 
spare signal, so the reconstruction algorithm with the multiple side information signal (RAMSI) 
based on the CS with weighing extension was proposed. The RAMSI algorithm takes advantage 
from the side information signals to reconstruct signals [19, 20]. 

In a real-world scenarios, the rotating machinery works under complex noise conditions, so it 
is necessary to decompose the rotating machinery fault information from such strong noise. 
Generally, wavelet transform (WT) has been applied to extract the fault characteristic information 
from the hybrid vibration signals [21]. However, the drawback of the WT is that the pre-set 
wavelet basis may lead WT to incompletely self-adaptive results when applied to non-stationary 
vibration signals. In this case, the Empirical Mode Decomposition (EMD) method is much more 
suitable to decompose such nonstationary signals into several intrinsic mode functions (IMF) [22]. 
Based on local characteristic time scale of the analyzed signals, the EMD show a strong adaptive 
ability for the vibration signals. However, the mode mixing is still the main drawback of the EMD 
method. An improved ensemble EMD (EEMD) was proposed to overcome the mode mixing issue, 
while decomposed IMFs represent residual noise [23]. Moreover, the complete ensemble 
empirical mode decomposition with adaptive noise (CEEMDAN) was proposed to detect the fault 
diagnosis of rotating machinery from the hybrid signal. 

According to the advantages of the ADMM, OMP and RAMSI approaches as described above, 
a new framework based on such algorithms for vibration signals analysis can make it possible. In 
this study, the basis pursuit (BP) based on ADMM is first described. We then introduce the 
RAMSI algorithm and how to apply three methods: (i) RAMSI, (ii) BP based on ADMM and 
OMP algorithm to vibration signals recorded from an actual operation of a bearing. The 
reconstruction errors were measured and discussed in the conclusions. Finally, the CEEMDAN is 
introduced to analyze the fault diagnosis characteristic of the bearing experiments. 
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2. The basis pursuit (BP) based on alternating direction method of multiplier (ADMM) 
algorithm 

ADMM algorithm is usually utilized for a decomposition of several simple sub-problems and 
then solves them to obtain results. The ADMM method therefore has an advantage of solving 
composite problems. In order to improve the reconstruction performance of the ADMM algorithm, 
a small number of data points should be processed to recover important information, whereby the 𝐿଴-norm minimum should be conversed to the 𝐿ଵ-norm minimum solution. The ADMM algorithm 
is described as follow: min  𝑓ሺ𝑥ሻ + 𝑔ሺ𝑧ሻ,            subject   to   𝐴𝑥 + 𝐵𝑧 = 𝑏, (1)

where 𝑓(𝑥) and 𝑔(𝑥) are described as convex functions, the vector variables 𝑥, 𝑧 ∈ 𝑅௡, and such 
functions are combined with the augmented Lagrangian, where 𝐴 = 𝐼 , 𝐵 = −𝐼 , and 𝑏 = 0, a 
sparse optimal problem can be written as follows: 𝐿ఘ(𝑥, 𝑧,𝑢) = 𝑓(𝑥) + 𝑔(𝑧) + ቀ𝜌2ቁ ‖𝑥 − 𝑧 + 𝜇‖ଶଶ, (2)

where 𝑥 = 𝑧 , 𝜇 = (1 𝜌⁄ )𝑦, and the augmented Lagrangian parameter 𝜌 > 0. The Lagrangian 
minimization is derived as the basis pursuit formula for the ADMM algorithm, which has an 
advantage for optimizing distributed convex vectors with a number of iteration of the basis pursuit 
(BP). The formula is carried out into three steps as Eq. (3): min ‖𝑥‖ଵ + ‖𝑧‖ଵ        𝑠. 𝑡.              𝑥 − 𝑧 = 0,𝑥௞ାଵ = (1 − 𝐴்(𝐴𝐴்)ିଵ𝐴)(𝑧௞ − 𝜇௞) + 𝐴்(𝐴𝐴்)ିଵ𝑏,𝑧௞ାଵ = 𝑆ଵ ఘ⁄ (𝑥௞ାଵ + 𝜇௞),𝜇௞ାଵ = 𝜇௞ + 𝑥௞ାଵ − 𝑧௞ାଵ.  (3)

When dealing with a composite problem, the iteration mainly includes three steps: firstly 𝑧 
and 𝑢 are fixed, and then minimize augmented Lagrangian with 𝑥; the second step is the same 
loop procedure but with the fixed values of 𝑥 and 𝜇 and the minimize augmented Lagrangian with 
respect to 𝑧; and the third step, 𝜇 is updated until the decomposition satisfies the stopping criterion. 

3. The reconstruction algorithm with the multiple side information signal (RAMSI) recovery 
algorithm with multiple prior information  

The RAMSI approach can be applied for recovering original signal from low dimensional 
measurement data with their prior information. When implementing the reconstruction algorithms 
based on the CS theory, the correlation across multiple prior information is leverage and results 
in an improvement quality of the sparse reconstruction. The RAMSI algorithm can overcome a 
shortcoming of one prior information by exploiting multiple previous information. The RAMSI 
method can be described as Eq. (4): 

𝑔(𝑥) = 𝜆෍ ฮ𝑊௝൫𝑥 − 𝑧௝൯ฮଵ௃௝ୀ଴ , (4)

where 𝑊௝ = diag(𝑤௝ଵ,𝑤௝ଶ,⋯,𝑤௝௡) and 𝑧଴ = 0 are diagonal matrices, the measured vector 𝑥 
combined with the multiple prior information, 𝑧ଵ, … , 𝑧௃ ∈ 𝑅௡ is derived to be the 𝑛 − ℓଵ-norm 
function and formulated the objective function as Eq. (5): 
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min௫ ቊ12 ‖𝑦 − Φ𝑥‖ଶଶ + 𝜆෍ ฮ𝑊௝(𝑥 − 𝑧௝)ฮଵ௃௝ୀ଴ ቋ. (5)

The 𝑛 − ℓଵ  objective function with multiple prior information evolves from the ℓଵ − ℓଵ 
minimization of one prior information, whereby the ℓଵ − ℓଵ minimization deals with the problem min௫ ቄଵଶ ‖𝑦 − Φ𝑥‖ଶଶ + 𝜆 ቀ‖𝑥‖ଵ + ฮ𝑥 − 𝑧௝ฮଵቁቅ. The difference is that the computation of 𝑥 and the 
updated 𝑊௝ yield an optimal solution for the 𝑛 − ℓଵ objective function for which multiple side 
information is applied to improve reconstruction quality. However, a decrease in correlation 
between the target signal and its prior information can occur which could lead to the problem of 
recovery degradation. Therefore, in the RAMSI approach, a multiplication of the weight 
parameters at each 𝜅 iteration is facilitated as Eq. (6): 𝑤௝௜ = 𝜂௜ห𝑥௜ − 𝑧௝௜ห + 𝜀, (6)

where the 𝑖th element of 𝑧௝ is defined as 𝑧௝௜. When the multiple side information 𝑧௝ is fixed, it 
becomes crucial to choose 𝑊௝, which affects the recovery of the original signal 𝑥. Besides, when 
updating 𝑤௝௜ , different strategies should be applied to solve the constraint ∑ 𝑊௝ = 𝐼௡௃௝ୀ଴   where 𝑤௝௜ > 0 is assigned. The value of ห𝑥௜ − 𝑧௝௜ห is required attention when it is at a very low values. 
This produce a high value of 𝑤௝௜ which means that a strong the correlation is produced which is 
suitable for the recovery of the signal. Meanwhile in order to avoid function Eq. (6) breakdown 
when ห𝑥௜ − 𝑧௝௜ห is zero, the parameter 𝜀 > 0 is applied to Eq. (6). If 𝜂௜ > 0 and the constraint ∑ 𝑊௝ = 𝐼௡௃௝ୀ଴ , we can then obtain the 𝜂௜ as Eq. (7): 

𝜂௜ = ቆ෍ 1ห𝑥௜ − 𝑧௝௜ห + 𝜀௃௝ୀ଴ ቇିଵ, (7)

and the weight parameter 𝑤௝௜ can be written as Eq. (8): 

𝑤௝௜(௞ାଵ) = ൫ห𝑥௜(௞) − 𝑧௝௜ห + 𝜀൯ିଵ∑ ൫ห𝑥௜(௞) − 𝑧௝௜ห + 𝜀൯ିଵ௃௟ୀ଴ , (8)

where 𝑥(௞) can be calculated from the function 𝑥(௞) = Γభಽ௚ ൬𝑥(௞ିଵ) − ଵ௅ 𝛻𝑓൫𝑥(௞ିଵ)൯൰, and Γభಽ௚(𝑥௜) 
is given by: 

Γଵ௅௚(𝑥௜) = ቐ𝑥௜ − 𝜆𝐿෍ 𝑤௝௜(−1)௕(௥ழ௝),    if Eq. (10a),௃௝ୀ଴𝑧௟௜ ,      if Eq. (10b).  (9)

For which Eq. (10a) and (10b) are described as follow: 

𝑧௥௜ + 𝜆𝐿෍ 𝑤 ,    ௝௜ (−1)௕(௥ழ௝)௃௝ୀ଴ ≤ 𝑥௜ ≤ 𝑧௥௜ ,+ 𝜆𝐿෍ 𝑤 ,     ௝௜ (−1)௕(௥ழ௝)௃௝ୀ଴ ,  (10a)
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𝑧௥௜ + 𝜆𝐿෍ 𝑤 ,     ௝௜ (−1)௕(௥ିଵழ௝)௃௝ୀ଴ ≤ 𝑥௜ ≤ 𝑧௥௜ ,+ 𝜆𝐿෍ 𝑤 ,       ௝௜ (−1)௕(௥ழ௝)௃௝ୀ଴ ,  (10b)

and −∞ = 𝑧(ିଵ)௜ ≤ 𝑧଴௜ ≤ 𝑧ଵ௜ ≤ ⋯ ≤ 𝑧௃௜ ≤ 𝑧(୎ାଵ)௜ = ∞ where by a boolean function is defined as 
follow: 𝑏(𝑟 < 𝑗) = ൜1,      𝑟 < 𝑗,0,     otherwise. (11)

Finally, the relative variation of 𝐻(𝑥) is chosen as the stopping criteria. 

Table 1. Algorithm 1: The propose RAMSI algorithm 
Input: 𝑦, Φ, 𝑧ଵ, 𝑧ଶ,…, 𝑧௃; 
Output: 𝑥ො; 
Initialization: 𝑊଴(ଵ) = 1; 𝑊௝(ଵ) = 0  ∀  1 ≤ 𝑗 ≤ 𝐽; 𝑢(ଵ) = 𝑥(଴) = 0; 𝐿 = 𝐿∇௙; 𝜆 > 0; 𝜀 > 0; 𝑡ଵ = 1; 𝑘 = 0; 
While Stopping criterion is false do 
 𝑘 = 𝑘 + 1; ∇𝑓൫𝑢(௞)൯ = Φ்(Φ𝑢(௞) − 𝑦); 𝑥(௞) = 𝛤భಽ௚ ൬𝑢(௞) − ଵ௅ ∇𝑓൫𝑢(௞)൯൰; 

Where 𝛤భಽ௚(. ) is given by Eq. (9) 
// Updating weights. 𝑤௝௜(௞ାଵ) = ቀቚ௫೔(ೖ)ି௭ೕ೔ቚାఌቁషభ∑ ቀቚ௫೔(ೖ)ି௭ೕ೔ቚାఌቁషభ಻೗సబ ; 

// Updating values for next iteration  𝑡௞ାଵ = ቆ1 + ට1 + 4𝑡௞ଶቇ /2; 𝑢(௞ାଵ) = 𝑥(௞) + ௧ೖିଵ௧ೖశభ (𝑥(௞) − 𝑥(௞ିଵ)); 
End 
Return 𝑥(௞) 

4. Sparse optimization algorithms for bearing vibration signals 

In this study, different sparse optimization algorithms are compared to each other for 
evaluating their performance with vibration signals recorded from bearing operations as input of 
the system. An effective framework is proposed to achieve sparse recovery of such vibration 
signals. Error analysis for indices of recovery bearing vibration signals was also examined for 
different sparse optimization algorithms. Based on the CS algorithm, the framework combined 
with the different algorithms is shown in Fig. 1.  

A sparse representation, measurement and optimal reconstruction were mainly established as 
the procedures of the framework. Before comparing the performance among the three algorithms: 
the RAMSI algorithm, the OMP algorithm and the BP based on ADMM algorithm, the adaptive 
measurement were implemented in the framework. As sparse characteristic of the vibration signals 
recorded from a bearing operation is inexistent, so we were able to use the wavelet basis to process 
such vibration signals The three wavelet basis were selected as adaptive features for the proposed 
framwork. The Gaussian matrix, the Hadamar matrix and the Hartley matrix were performed to 
achieve a large sparse signal compression which results in a small number of data points with 
essential information. As the Gaussian matrix, the Hadamar matrix and the Hartley matrix indicate 
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the incoherent characteristic of the analyzed signals. These matrices are then combined with the 
wavelet basis to form an adaptive measurement matrix, which also satisfy the restricted isometry 
property (RIP). The performance of the adaptive measurement matrix therefore was improved in 
terms of its accuracy. After compressing the signals, appropriate approach among the three 
algorithms: the RAMSI, BP base on ADMM and OMP algorithms were selected as the 
reconstruction algorithm. This can achieve the goal for obtaining meaningful signals with a small 
number of data points. 

[ ]T
1 2 Nx= x x x， ，

Ψ
TS= xΨ

Φ
y= SΦ

y

 
0

main . . Tx s t x yΦΨ =
x

 
Fig. 1. The proposed framework for vibration signal analysis. The framework is based  

on implementing the compressed sensing (CS) and RAMSI, ADMM and OMP algorithms 

To validate the sparse recovering performance of the proposed framework. An examination 
among the three reconstruction algorithms with different measurement matrix, analyses the crucial 
indices were conducted. Here experimental data of the bearing signals were used as inputs of the 
proposed framework, the platform to generate vibration signals is described in Fig. 2. The 
experimental study and data collection were referred to Case Western Reserve University [3]. In 
this experiment, we chose the 6205-2RS JEM SKF bearings for obtaining vibration signals. The 
load 2.3 kW motor and the 40-mm pitch diameter of the ball group were used. The speed of the 
motor was set to 1750 rpm while the load was selected as 2 Hp. The vibration signals were 
acquired and sampled at 12 kHz. 

 
Fig. 2. The system of bearing vibration used in experiments. 

To evaluate the performance of the proposed framework, 1024 data points of the recorded 
vibration signals were extracted. This results in sparse elements which were then compressed by 
both the wavelet basis and the Gaussian matrix. Optimal algorithms were then employed to 
reconstruct the recovering signals through the three algorithms: RAMSI, BP base on ADMM and 
OMP. The results from a reconstruction of different sparse optimal algorithms are indicated in 
Fig. 3. After reconstruction, we examined the performance of the three algorithms: RAMSI, OMP 
and BP based on ADMM by illustrating. the distribution diagrams of the recovering signals errors 
shown in Fig. 4. 

From the computing of standard deviation and probability distribution of the reconstruction 
errors, the RAMSI algorithm shows smallest error which means the performance of the RAMSI 
yields the best performance among the three algorithms. After that, the specific quantitative 
indices were employed to evaluate the quality of the recovering precision shown in Table 2. The 
three performance indices: absolute mean, RMSE and SNR were computed from the results based 
on the RAMSI algorithms which give the values of 0.076, 0.107 and 12.740 respectively. For the 
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BP based on ADMM algorithm, the three performance indices are 0.121, 0.156 and 9.478 
respectively. Lastly, for the OMP algorithm, the three values are 0.193, 0.256 and 5.196, 
respectively. This proves that the sparse recovering performance of the RAMSI algorithm is the 
best. 

 
Fig. 3. The reconstructed signals resulting from the three sparse optimal algorithms based on Gaussian 

matrix: a). OMP algorithm; b) BP algorithm based on ADMM; c) RAMSI algorithm 

 
Fig. 4. The errors distribution diagram based on the three different sparse optimal algorithms 

Table 2. The comparison among the three algorithms: RAMSI, BP base on ADMM and OMP 
Algorithm Absolute mean RMSE SNR 

OMP 0.193  0.256  5.196  
BP 0.121  0.156  9.478  

RAMSI 0.076  0.107  12.740  

To improve the recovering performance of the RAMSI algorithm, the Gaussian matrix, the 
Hadamar matrix and the Hartley matrix were employed for the measurement matrix. In Fig. 5, the 
three measurement matrices are depicted using the 3d contour maps. We analyzed the density and 
stratification from the maps. When the three measurement matrices have the same number, it is 
found that the Hartley matrix yields the highest number of layers and sparse density. This means 
that the incoherence characteristics of the Hartley matrix is stronger than the Gaussian matrix and 
Hadamar matrix. 

Furthermore, in order to evaluate the influence performance of the three measurement matrices 
based on the results performed by the reconstruction algorithm, the 1024 sparse data points were 
employed. By applying the wavelet basis, the sparse signals were then compressed using the 
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Gaussian, Hadamar and Hartley matrices respectively. The RAMSI algorithm was then used to 
recover such compressed signals as illustrated in Fig. 6. After this process, the reconstructed 
signals were analyzed their recovering performance using the Gaussian, Hadamar and Hartley 
matrices, the errors of recovered signals were obtained by a distribution diagram shown in Fig. 6. 

 
a) 

 
b) 

 
c) 

Fig. 5. Three measurement matrices: a) Gaussian matrix, b) Hadamar matrix and c) Hartley matrix 

 
Fig. 6. The reconstructed bearing signals using the RAMSI based on the three measurement matrices,  

a) Gaussian matrix, b) Hadamar matrix and c) Hartley matrix 

The reconstruction errors of the RAMSI approach based on different measurement matrices 
were evaluated through the distribution diagram. It is found that the analyzed results from each 
measurement matrix has influence on recovering performance of the RAMSI method. From the 
computed standard deviation and probability distribution, the Hartley matrix shows the smallest 
error. This means that the performance of Hartley matrix is better than both the Gaussian and 
Hadamar matrices. Besides, the specifically quantitative indices were used to assess the quality of 
recovering precision depicted in Table 3. The three values: absolute mean, RMSE and SNR 
computed computed using the Hartley matrix are 0.042, 0.059 and 17.99, respectively, while the 
three values computed using the Gaussian matrix are 0.076, 0.107 and 12.740, respectively and 
lastly the three values computed using the Hadamar matrix are 0.057, 0.079 and 15.425, 
respectively. This can prove that the sparse recovering performance of the RAMSI based on the 
Hartley matrix yields the best performance among the Gaussian and Hadamar matrices. 

Table 3. The comparison of recovering performance among  
the three matrices: Gaussian, Hadamar and Hartley 

Measurement matrix Absolute mean RMSE SNR 
Gaussian matrix 0.076  0.107  12.740  
Hamada matrix 0.057  0.079  15.425  
Hartley matrix 0.042  0.059  17.990  
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a) 

 
b) 

 
c) 

Fig. 7. The errors distribution diagram based on the three measurement matrices resulting  
from applying the RAMSI approaches to the recorded bearing signals,  

a) Gaussian matrix; b) Hadamar matrix and c) Hartley matrix 

5. The CEEMDAN method  

The performance of the CEEMDAN and EEMD methods was compared whereby for the 
CEEMDAN, the white Gaussian noise was replaced by the particular noise 𝐸  ௞ (𝑤(௜))  This 
particular noise 𝐸  ௞ (𝑤(௜)) was applied to extract the decomposed 𝑘th IMF based on the EMD 
algorithm. In summary, the CEEMDAN method can be described as follows: 

Step 1. Construct a particular noise 𝐸  ଵ (𝑤(௜)) and obtain 𝑥(௜) = 𝑥 + 𝛽଴𝐸  ଵ (𝑤(௜)), where 𝑥 is 
the original signal and 𝑤(௜) is the 𝑖th white noise. 

Step 2. Calculate the local means for each 𝑥(௜) and average all the determined local means for 
the first residual 𝑟ଵ = ଵ௟ ∑ 𝑀(𝑥(௜))ூ௜ୀଵ , and then, extract the the first IMF (for the first iteration) 
from 𝑐̃ଵ = 𝑥 − 𝑟ଵ. 

Step 3. Calculate the second residual 𝑟ଶ = ଵ௟ ∑ 𝑀(𝑟ଵ + 𝛽ଵ𝐸ଶ(𝑤(௜)))ூ௜ୀଵ  and the second IMF 𝑐̃ଶ = 𝑟ଵ − 𝑟ଶ as performed in step 2. 
Step 4. For the 𝑘 th, each number of IMF, is derived from the 𝑐̃௞ = 𝑟௞ିଵ − 𝑟௞ , where  𝑟௞ = ଵ௟ ∑ 𝑀(𝑟௞ିଵ + 𝛽௞ିଵ𝐸௞(𝑤(௜)))ூ௜ୀଵ , 𝑘 = 2,3,⋯𝑁. 
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Fig. 8. Flow of the CEEMDAN method. 
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In order to demonstrate the effectiveness of the CEEMDAN method, the vibration signals were 
employed to examine the performance of both the EEMD and CEEMDAN methods Decomposed 
IMF signals and their frequency spectra were decomposed as shown in the Fig. 9 and Fig. 10. 

 
a) b) 

Fig. 9. a) The decomposed IMFs of the recorded vibration signal using the EEMD method,  
b) frequency responses of each decomposed IMF 

 
a) 

 
b) 

Fig. 10. a) The decomposed IMFs of the recorded vibration signal using the CEEMDAN method,  
b) frequency responses of each decomposed IMF 

For the EEMD method, the frequency spectra of the decomposed IMF#1 to IMF#3 are shown 
in Fig. 9(b) whereby their peak frequencies are at 284.18 Hz, 162.11 Hz, 47.85 Hz respectively.  

For the CEEMDAN method, frequency spectra of the decomposed IMF#1 to IMF#3 are shown 
in Fig. 10(b) whereby their peak frequencies are at 284.18 Hz, 162.11 Hz, 47.85 Hz respectively. 
Besides, when the decomposed IMF2 signals of both algorithms in terms of frequency spectrum, 
it can be seen that the EEMD method was unable to reduce the residual noise, while CEEMDAN 
method can tackle this residual noise satisfactorily. 

6. Conclusions 

In this study, an adaptive hybrid model has been proposed in analysing vibration bearing for a 
long period of recordings. In which a large number of data are collected. Based on the compressed 
sensing theory and the sparse wavelet basis, we selected the Hartley matrix for compression. We 
then facilitated the RAMSI algorithm for reconstructing the compressed signals. The results from 
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experiments have proved that the proposed framework yield high performance for vibration 
signals generated from bearing. Moreover, we have found some important facts based on 
implementation of our proposed framework as follows: 

1) As the RAMSI has shown an advantage of exploiting the correlation and multiple prior 
information characteristic of the vibration signals, the framework therefore can overcome the 
shortcoming of one prior information and improve the quality of the recovered signals. 
Furthermore, compared with the BP based on ADMM and the OMP algorithms, the RAMSI 
algorithm has shown the minimum errors with the highest signal noise ratio (SNR). Therefore, the 
proposed RAMSI algorithm yields the best recovering performance.  

2) In order to improve the recovering quality of the RAMSI algorithm, the Hartley matrix was 
selected as the measurement matrix, such matrix exhibits stronger incoherence characteristic 
compared to that using both the Gaussian and Hadamar matrices. 

3) In terms of selecting a suitable decomposition approach, it is found that the CEEMDAN 
method can reduce the residual noise questions and extract the fault characteristics compared to 
the traditional EEMD method. 
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