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Abstract 

Fractional calculus is related to derivatives and integrals with the order is not an integer. Fractional Black-

Scholes partial differential equation to determine the price of European-type call options is an application of 

fractional calculus in the economic and financial fields. Laplace decomposition method is one of the reliable 

and effective numerical methods for solving fractional differential equations. Thus, this paper aims to apply 

the Laplace decomposition method for solving the fractional Black-Scholes equation, where the fractional 

derivative used is the Caputo sense. Two numerical illustrations are presented in this paper. The results show 

that the Laplace decomposition method is an efficient, easy and very useful method for finding solutions of 

fractional Black-Scholes partial differential equations and boundary conditions for European option pricing 

problems. 

 

Keywords:  Laplace transform, Adomian decomposition method, fractional Black-Scholes equation, Caputo 

sense, option price. 

 

1. Introduction 

Fractional calculus is a field of calculus relating to derivatives and integral with the fractional 

order. In calculus, the derivative has the order of natural number, denoted by 𝐷𝑥
𝑛𝑦(𝑥), where 

𝑛 = 1, 2, 3, …. The notation can be generalized into derivatives of the fractional-order denoted by 

𝐷𝑥
𝛼𝑦(𝑥) ,  where 𝛼 ∈ ℝ . Most people assume that fractional calculus is an abstract field of 
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mailto:irasumiati@gmail.com


 Abiodun Ezekiel Owoyemi et al./ International Journal of Quantitative Research  and Modeling, Vol 1, No 4, pp. 194-207, 2020 195 

mathematics that has very little use and almost no application. Nowadays, various studies have 

begun to emerge regarding the application of fractional calculus in various fields, such as physics, 

engineering, chemistry, biology, environment, economics and finance (Debnath, 2003; Kisela, 

2008; Dalir and Bashour, 2010; David et al., 2011; Katsikadelis, 2014; Giusti and Colombaro, 2017; 

Rusyaman et al., 2017; Rusyaman et al., 2018; Sumiati et al., 2018; Sun et al., 2018). 

Fractional Black-Scholes partial differential equation to determine option prices is one 

application of fractional calculus in economics and finance. The classic Black-Scholes equation was 

first introduced by Fisher Black and Myron Scholes in 1973. The notation 𝐶 = 𝐶(𝑆, 𝑡) is the price 

of European call options when the price of the asset 𝑆 and time 𝑡. Let 𝜎 is the asset price volatility, 

𝐸 is the exercise price, 𝑇 is the maturity time, and 𝑟 is the risk-free interest rate. The Black-Scholes 

equation and the boundary conditions for determining the call option price of European type is 

(Wilmott et al., 1995; Gulkac, 2010) 

𝜕𝐶

𝜕𝑡
+

1

2
𝜎2𝑆2

𝜕2𝐶

𝜕𝑆2 + 𝑟𝑆
𝜕𝐶

𝜕𝑆
− 𝑟𝐶 = 0, (1) 

with 𝐶(0, 𝑡) = 0 , 𝐶(𝑆, 𝑡)~𝑆  as 𝑆 → ∞ , and 𝐶(𝑆, 𝑇) = max{𝑆 − 𝐸, 0} . Equation (1) resembles a 

diffusion equation with more parameters. Equation (1) can be simplified through conversion as 

follows 

𝑆 = 𝐸𝑒𝑥, 𝑡 = 𝑇 −
2𝜏

𝜎2
, 𝐶(𝑆, 𝑡) = 𝐸𝑣(𝑥, 𝑡), (2) 

thus a partial differential equation is obtained 

𝜕𝑣

𝜕𝜏
=

𝜕2𝑣

𝜕𝑥2
+ (𝑘 − 1)

𝜕𝑣

𝜕𝑥
− 𝑘𝑣, (3) 

where 𝑘 =
2𝑟

𝜎2 and the initial conditions become 𝑣(𝑥, 0) = max{𝑒𝑥 − 1, 0}. 

Various numerical methods are used to solve fractional Black-Scholes equations, such as 

homotopy perturbation method (Kumar et al., 2012; Ouafoudi and Gao, 2018), homotopy analysis 

method (Kumar et al., 2014), variational iteration method (Ghandehari and Ranjbar, 2014a; Eshaghi 

et al., 2017), finite difference method (Akrami and Erjaee, 2016), projected differential 

transformation method (Edeki et al., 2017; Edeki et al., 2019) and Adomian decomposition method 

(Ghandehari and Ranjbar , 2014b; Yavuz and Ozdemir, 2018). 

George Adomian (1980) first introduced the Adomian decomposition method to solve the 

system of stochastic equation. This decomposition method can be an effective and useful procedure 

for solving differential or integral equations without linearization, perturbation, or discretization 

(Adomian, 1988). This method is able to solve natural or fractional-order differential equations, 

ordinary or partial, with initial or boundary value problems, with constant or variable coefficients, 

linear or nonlinear, homogeneous or non-homogenous (Ray and Bera, 2005; Tatari et al., 2007; 

Saeed and Rahman, 2010; Duan et al., 2012; Bougoffa and Rach, 2013; Abushammala, 2014; Al 

awawdah, 2016; Sumiati et al., 2019a). The combination of the Adomian decomposition method 

with the Laplace transform is used to solve nonlinear differential equations (Khuri, 2001). The 
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Laplace decomposition method is efficiently and reliably used to solve Voltera integro-differential 

equations (Wazwaz, 2010), Burger differential equations (Naghipour and Manafian, 2015), Kundu-

Eckhaus equations (Gonzalez-Gaxiola, 2017), system of fractional partial differential equations 

(Ahmed et al., 2017), the problem of giving up smoking of fractional order (Haq et al., 2018), and 

classical (non-fractional order) Black-Scholes partial differential equations (Sumiati et al., 2019b). 

Based on the background of the problem and previous studies that have been presented, this 

paper aims to apply the Laplace decomposition method for solving the fractional Black-Scholes 

partial differential equation and the boundary conditions for the European option pricing problem. 

2. Fractional Calculus 

This section presents the basic theories and properties which relate and support this research, 

such as the Laplace transform, Mittag-Leffler function, and fractional derivatives. 

Definition 1 (Schiff, 1999). Let 𝑓 be a real or complex function of a variable 𝑡 ≥ 0 and 𝑠 is a real or 

complex parameter. The Laplace transform of 𝑓 is defined 

𝐹(𝑠) = 𝐿[𝑓(𝑡)] = ∫ 𝑒−𝑠𝑡𝑓(𝑡)𝑑𝑡

∞

0

= lim
𝑏→∞

∫ 𝑒−𝑠𝑡𝑓(𝑡)𝑑𝑡

𝑏

0

, 

where the limit value exists and finite or the unnaturally integral is convergent. The inverse of the 

Laplace transform is denoted as 

𝐿−1[𝐹(𝑠)] = 𝑓(𝑡), 𝑡 ≥ 0. 

Based on Definition 1, for 𝑓(𝑡) = 𝑡𝑛 where 𝑡 ≥ 0 and 𝑛 are non-negative integers, the Laplace 

transform of 𝑓 is 

𝐿[𝑡𝑛] =
𝑛!

𝑠𝑛+1
, 𝑠 > 0. (4) 

If 𝛼 ∈ ℝ, then equation (4) can be written 

𝐿[𝑡𝛼] =
Γ(𝛼 + 1)

𝑠𝛼+1
, 𝑠 > 0. (5) 

where Γ(𝑥) is the Gamma function. Additionally, based on Definition 1, Laplace transform from 

derivatives of order 𝑛 can be written 

𝐿[𝑓(𝑛)(𝑡)] = 𝑠𝑛𝐹(𝑠) − 𝑠𝑛−1𝑓(0) − 𝑠𝑛−2𝑓′(0) − ⋯ − 𝑓(𝑛−1)(0) = 𝑠𝑛𝐹(𝑠) − ∑ 𝑠𝑛−𝑘−1𝑓(𝑘)(0)

𝑛−1

𝑘=0

. 

Definition 2 (Mathai and Haubold, 2017). The basic Mittag-Leffler function is denoted by 𝐸𝛼(𝑧), 

where 𝛼 ∈ ℝ and 𝑧 ∈ ℂ, is defined as 

𝐸𝛼(𝑧) = ∑
𝑧𝑘

Γ(𝛼𝑘 + 1)
.

∞

𝑘=0

 

Definition 3 (Podlubny, 1999). The Riemann-Liouville fractional derivative of the function 𝑓 for 𝑡 
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and order 𝛼 > 0 defined as 

𝐷𝑎 𝑡
𝛼𝑓(𝑡) =

1

Γ(𝑛 − 𝛼)

𝑑𝑛

𝑑𝑡𝑛
∫(𝑡 − 𝑢)𝑛−𝛼−1𝑓(𝑢)𝑑𝑢

𝑡

𝑎

, 𝑛 − 1 < 𝛼 ≤ 𝑛. 

Definition 4 (Podlubny, 1999). The Caputo fractional derivative of the function f for t and order 

𝛼 > 0 defined as 

𝐷𝑎
𝐶

𝑡
𝛼𝑓(𝑡) =

1

Γ(𝑛 − 𝛼)
∫(𝑡 − 𝑢)𝑛−𝛼−1𝑓(𝑛)(𝑢)𝑑𝑢

𝑡

𝑎

, 𝑛 − 1 < 𝛼 ≤ 𝑛. 

Definition 5 (Podlubny, 1999). The Laplace transform of the Caputo fractional derivative is defined 

as 

𝐿[𝐷𝛼𝑓(𝑡)] = 𝑠𝛼𝐹(𝑠) − ∑ 𝑠𝛼−𝑘−1𝑓(𝑘)(0)

𝑛−1

𝑘=0

, 𝑛 − 1 < 𝛼 ≤ 𝑛. 

3. Laplace Decomposition Method 

The Adomian decomposition method assumes that the solution is decomposed into an infinite 

series, the nonlinear term (if any) is decomposed into Adomian polynomials and an iterative 

algorithm is built to determine the solution recursively. The numerical scheme of Laplace transform 

based on the Adomian decomposition method applies the Laplace transform and its inverse to the 

differential equation (Khuri, 2001). 

Given the fractional partial differential equation as follows 

𝐷𝑡
𝛼𝑢(𝑥, 𝑡) + 𝑁𝑢(𝑥, 𝑡) + 𝑅𝑢(𝑥, 𝑡) = 𝑔(𝑥, 𝑡), (6) 

and initial condition 𝑢(𝑥, 0) = 𝑓(𝑥), where 𝐷𝑡
𝛼 ≡ 𝐷0

𝐶
𝑡
𝛼 is the Caputo fractional derivative operator 

with 0 < 𝛼 ≤ 1, 𝑁 is the nonlinear operator, 𝑅 is the linear operator, 𝑔 is the function that shows 

the non-homogenous of the differential equation and 𝑢 is the function to be determined. Equation 

(6) can be rewritten as the subject 

𝐷𝑡
𝛼𝑢(𝑥, 𝑡) = 𝑔(𝑥, 𝑡) − 𝑁𝑢(𝑥, 𝑡) − 𝑅𝑢(𝑥, 𝑡). (7) 

Laplace transform of equation (7) is obtained 

𝑢(𝑥, 𝑠) =
𝑢(𝑥, 0)

𝑠
+

1

𝑠𝛼
𝐿[𝑔(𝑥, 𝑡)] −

1

𝑠𝛼
𝐿[𝑁𝑢(𝑥, 𝑡)] −

1

𝑠𝛼
𝐿[𝑅𝑢(𝑥, 𝑡)]. (8) 

Then, through the inverse Laplace transform to equation (8) is obtained 

𝑢(𝑥, 𝑡) = 𝑢(𝑥, 0) + 𝐿−1 [
1

𝑠𝛼
𝐿[𝑔(𝑥, 𝑡)]] − 𝐿−1 [

1

𝑠𝛼
𝐿[𝑁𝑢(𝑥, 𝑡)]] − 𝐿−1 [

1

𝑠𝛼
𝐿[𝑅𝑢(𝑥, 𝑡)]]. (9) 

The Adomian decomposition method assumes that the function 𝑢 can be decomposed into an 

infinite series 
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𝑢 = ∑ 𝑢𝑛

∞

𝑛=0

, (10) 

where 𝑢𝑛 can be determined recursively. This method also assumes the nonlinear operator 𝑁𝑢 can 

be decomposed into the infinite polynomial series 

𝑁𝑢 = ∑ 𝐴𝑛

∞

𝑛=0

, (11) 

where 𝐴𝑛 = 𝐴𝑛(𝑢0, 𝑢1, 𝑢2, … , 𝑢𝑛) are Adomian polynomials are defined 

𝐴𝑛(𝑢0, 𝑢1, 𝑢2, … , 𝑢𝑛) =
1

𝑛!

𝑑𝑛

𝑑𝜆𝑛 [𝑁 (∑ 𝜆𝑘𝑢𝑘

𝑛

𝑘=0

)]

𝜆=0

, 𝑛 = 0, 1, 2, …, 

where 𝜆 is a parameter. The Adomian polynomial 𝐴𝑛 can be described as follows 

𝐴0 =
1

0!

𝑑0

𝑑𝜆0 [𝑁 (∑ 𝜆𝑘𝑢𝑘

0

𝑘=0

)]

𝜆=0

= 𝑁(𝑢0), 

𝐴1 =
1

1!

𝑑1

𝑑𝜆1 [𝑁 (∑ 𝜆𝑘𝑢𝑘

1

𝑘=0

)]

𝜆=0

= 𝑢1𝑁′(𝑢0), 

𝐴2 =
1

2!

𝑑2

𝑑𝜆2 [𝑁 (∑ 𝜆𝑘𝑢𝑘

2

𝑘=0

)]

𝜆=0

=
𝑢1

2

2!
𝑁′′(𝑢0) + 𝑢2𝑁′(𝑢0), 

⋮ 

Substitution of initial conditions, equations (10) and (11) to equation (9), yields 

∑ 𝑢𝑛

∞

𝑛=0

= 𝑓(𝑥) + 𝐿−1 [
1

𝑠𝛼
𝐿[𝑔(𝑥, 𝑡)]] − 𝐿−1 [

1

𝑠𝛼
𝐿 [∑ 𝐴𝑛

∞

𝑛=0

]] − 𝐿−1 [
1

𝑠𝛼
𝐿 [𝑅 ∑ 𝑢𝑛

∞

𝑛=0

]]. (12) 

If both sides of equation (12) are described, then successively is obtained 

𝑢0 = 𝑓(𝑥) + 𝐿−1 [
1

𝑠𝛼
𝐿[𝑔(𝑥, 𝑡)]] , 

𝑢1 = −𝐿−1 [
1

𝑠𝛼
𝐿[𝐴0]] − 𝐿−1 [

1

𝑠𝛼
𝐿[𝑅𝑢0]] , 

𝑢2 = −𝐿−1 [
1

𝑠𝛼
𝐿[𝐴1]] − 𝐿−1 [

1

𝑠𝛼
𝐿[𝑅𝑢1]] , 

⋮ 

thus obtained the recursive relation of the solution of the fractional partial differential equation (6) 

is as follows 

𝑢0 = 𝑓(𝑥) + 𝐿−1 [
1

𝑠𝛼
𝐿[𝑔(𝑥, 𝑡)]] , (13) 
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𝑢𝑛+1 = −𝐿−1 [
1

𝑠𝛼
𝐿[𝐴𝑛]] − 𝐿−1 [

1

𝑠𝛼
𝐿[𝑅𝑢𝑛]] , 𝑛 = 0, 1, 2, …. 

Therefore, the approximate solution of equation (13) is 

𝑢 ≈ ∑ 𝑢𝑛

𝑘

𝑛=0

, where lim
𝑘→∞

∑ 𝑢𝑛

𝑘

𝑛=0

= 𝑢. (14) 

4. Numerical Illustration 

Two numerical illustrations of the application of the Laplace decomposition method to solve 

fractional Black-Scholes partial differential equations are presented in this section. 

Illustration 1. Based on equation (3), the fractional Black-Scholes partial differential equation is 

given as follows 

𝜕𝛼𝑣

𝜕𝑡𝛼
=

𝜕2𝑣

𝜕𝑥2
+ (𝑘 − 1)

𝜕𝑣

𝜕𝑥
− 𝑘𝑣, (15) 

with the initial condition 𝑣(𝑥, 0) = max{𝑒𝑥 − 1, 0}. 

The solution of the fractional Black-Scholes equation (15) using the Laplace decomposition 

method is as follows 

𝑣0 = max{𝑒𝑥 − 1, 0} , 

𝑣𝑛+1 = 𝐿−1 [
1

𝑠𝛼
𝐿 [

𝜕2𝑣𝑛

𝜕𝑥2
+ (𝑘 − 1)

𝜕𝑣𝑛

𝜕𝑥
− 𝑘𝑣𝑛]] , 𝑛 = 0, 1, 2, …. 

(16) 

If the recursive solution is described, then it is obtained 

𝑣1 = 𝐿−1 [
1

𝑠𝛼
𝐿 [

𝜕2𝑣0

𝜕𝑥2
+ (𝑘 − 1)

𝜕𝑣0

𝜕𝑥
− 𝑘𝑣0]] 

= 𝐿−1 [
1

𝑠𝛼
𝐿[𝑘 max{𝑒𝑥, 0} − 𝑘 max{𝑒𝑥 − 1, 0}]] 

= 𝐿−1 [
𝑘 max{𝑒𝑥, 0} − 𝑘 max{𝑒𝑥 − 1, 0}

𝑠𝛼+1
] 

=
𝑡𝛼

Γ(𝛼 + 1 )
(𝑘 max{𝑒𝑥, 0} − 𝑘 max{𝑒𝑥 − 1, 0}), 

because 
𝜕𝑣1

𝜕𝑥
=

𝑡𝛼

Γ(𝛼+1 )
(𝑘 max{𝑒𝑥, 0} − 𝑘 max{𝑒𝑥, 0}) = 0, so that 

𝑣2 = 𝐿−1 [
1

𝑠𝛼
𝐿 [

𝜕2𝑣1

𝜕𝑥2
+ (𝑘 − 1)

𝜕𝑣1

𝜕𝑥
− 𝑘𝑣1]] 

= 𝐿−1 [
1

𝑠𝛼
𝐿 [

𝑡𝛼

Γ(𝛼 + 1 )
(−𝑘2 max{𝑒𝑥, 0} + 𝑘2 max{𝑒𝑥 − 1, 0})]] 
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= 𝐿−1 [
−𝑘2 max{𝑒𝑥, 0} + 𝑘2 max{𝑒𝑥 − 1, 0}

𝑠2𝛼+1
] 

=
𝑡2𝛼

Γ(2𝛼 + 1 )
(−𝑘2 max{𝑒𝑥, 0} + 𝑘2 max{𝑒𝑥 − 1, 0}), 

𝑣3 = 𝐿−1 [
1

𝑠𝛼
𝐿 [

𝜕2𝑣2

𝜕𝑥2
+ (𝑘 − 1)

𝜕𝑣2

𝜕𝑥
− 𝑘𝑣2]] 

= 𝐿−1 [
1

𝑠𝛼
𝐿 [

𝑡2𝛼

Γ(2𝛼 + 1 )
(𝑘3 max{𝑒𝑥, 0} − 𝑘3 max{𝑒𝑥 − 1, 0})]] 

= 𝐿−1 [
𝑘3 max{𝑒𝑥, 0} − 𝑘3 max{𝑒𝑥 − 1, 0}

𝑠2𝛼+1
] 

=
𝑡3𝛼

Γ(3𝛼 + 1 )
(𝑘3 max{𝑒𝑥, 0} − 𝑘3 max{𝑒𝑥 − 1, 0}), 

⋮ 

Therefore, the solution of the fractional Black-Scholes equation (15) can be formed into an 

infinite series which converges as follows 

𝑣(𝑥, 𝑡) = ∑ 𝑣𝑛(𝑥, 𝑡)

∞

𝑛=0

= max{𝑒𝑥 − 1, 0} 𝐸𝛼(−𝑘𝑡𝛼) + max{𝑒𝑥, 0} (1 − 𝐸𝛼(−𝑘𝑡𝛼)). (17) 

For 𝛼 = 1, then obtained 

𝑣(𝑥, 𝑡) = max{𝑒𝑥 − 1, 0} 𝑒−𝑘𝑡 + max{𝑒𝑥, 0} (1 − 𝑒−𝑘𝑡), 

the above solution is equivalent to the exact solution of the Black-Scholes partial differential 

equation (Ghandehari and Ranjbar, 2014b; Yavuz and Ozdemir, 2018; Sumiati et al., 2019c). 

Figure 1 is a graph of the solution of the fractional Black-Scholes equation (17), respectively for 

𝛼 equal to 0.2, 0.75, 0.8, and 1.0, where 𝑘 equal to 0.5. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 1. Graph of the solution function (17) with different 𝛼 values: (a) 𝛼 = 0.2; (b) 𝛼 = 0.75; (c) 𝛼 = 0.8; (d) 𝛼 = 1 

 

Illustration 2. Given the generalization of fractional Black-Scholes partial differential equations as 

follows (Cen and Le, 2011; Kumar et al., 2012; Yavuz and Ozdemir, 2018) 

𝜕𝛼𝑣

𝜕𝑡𝛼
+ 0.08(2 + sin 𝑥)2𝑥2

𝜕2𝑣

𝜕𝑥2
+ 0.06𝑥

𝜕𝑣

𝜕𝑥
− 0.06𝑣 = 0, (18) 

with the initial condition 𝑣(𝑥, 0) = max{𝑥 − 25𝑒−0.06, 0}. 

The solution of the fractional Black-Scholes equation (18) using the Laplace decomposition 
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method is as follows 

𝑣0 = max{𝑥 − 25𝑒−0.06, 0} , 

𝑣𝑛+1 = 𝐿−1 [
1

𝑠𝛼
𝐿 [−0.08(2 + sin 𝑥)2𝑥2

𝜕2𝑣𝑛

𝜕𝑥2
− 0.06𝑥

𝜕𝑣𝑛

𝜕𝑥
+ 0.06𝑣𝑛]] , 𝑛 = 0, 1, 2, …. 

(19) 

If the recursive solution is described, then it is obtained 

𝑣1 = 𝐿−1 [
1

𝑠𝛼
𝐿 [−0.08(2 + sin 𝑥)2𝑥2

𝜕2𝑣0

𝜕𝑥2
− 0.06𝑥

𝜕𝑣0

𝜕𝑥
+ 0.06𝑣𝑛]] 

= 𝐿−1 [
1

𝑠𝛼
𝐿[−0.06𝑥 + 0.06 max{𝑥 − 25𝑒−0.06, 0}]] 

= 𝐿−1 [
−0.06𝑥 + 0.06 max{𝑥 − 25𝑒−0.06, 0}

𝑠𝛼+1
] 

=
𝑡𝛼

Γ(𝛼 + 1 )
(−0.06𝑥 + 0.06 max{𝑥 − 25𝑒−0.06, 0}), 

because 
𝜕𝑣1

𝜕𝑥
=

𝑡𝛼

Γ(𝛼+1 )
(−0.06 + 0.06) = 0, so that 

𝑣2 = 𝐿−1 [
1

𝑠𝛼
𝐿 [−0.08(2 + sin 𝑥)2𝑥2

𝜕2𝑣1

𝜕𝑥2
− 0.06𝑥

𝜕𝑣1

𝜕𝑥
+ 0.06𝑣1]] 

= 𝐿−1 [
1

𝑠𝛼
𝐿 [

𝑡𝛼

Γ(𝛼 + 1 )
(−(0.06)2𝑥 + (0.06)2 max{𝑥 − 25𝑒−0.06, 0})]] 

= 𝐿−1 [
−(0.06)2𝑥 + (0.06)2 max{𝑥 − 25𝑒−0.06, 0}

𝑠2𝛼+1
] 

=
𝑡2𝛼

Γ(2𝛼 + 1 )
(−(0.06)2𝑥 + (0.06)2 max{𝑥 − 25𝑒−0.06, 0}), 

𝑣3 = 𝐿−1 [
1

𝑠𝛼
𝐿 [−0.08(2 + sin 𝑥)2𝑥2

𝜕2𝑣2

𝜕𝑥2
− 0.06𝑥

𝜕𝑣2

𝜕𝑥
+ 0.06𝑣2]] 

= 𝐿−1 [
1

𝑠𝛼
𝐿 [

𝑡2𝛼

Γ(2𝛼 + 1 )
(−(0.06)3𝑥 + (0.06)3 max{𝑥 − 25𝑒−0.06, 0})]] 

= 𝐿−1 [
−(0.06)3𝑥 + (0.06)3 max{𝑥 − 25𝑒−0.06, 0}

𝑠2𝛼+1
] 

=
𝑡3𝛼

Γ(3𝛼 + 1 )
(−(0.06)3𝑥 + (0.06)3 max{𝑥 − 25𝑒−0.06, 0}), 

⋮ 

 

Therefore, the solution of generalizing the fractional Black-Scholes equation (18) is 
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𝑣(𝑥, 𝑡) = ∑ 𝑣𝑛(𝑥, 𝑡)

∞

𝑛=0

= max{𝑥 − 25𝑒−0.06, 0} 𝐸𝛼(0.06𝑡𝛼) + 𝑥(1 − 𝐸𝛼(0.06𝑡𝛼)). (20) 

For 𝛼 = 1, then obtained 

𝑣(𝑥, 𝑡) = max{𝑥 − 25𝑒−0.06, 0} 𝑒0.06𝑡 + 𝑥(1 − 𝑒0.06𝑡), 

the above solution is equivalent to the exact solution of the generalized Black-Scholes partial 

differential equation (Ghandehari and Ranjbar, 2014b; Yavuz and Ozdemir, 2018; Sumiati et al., 

2019c).  

Figure 2 is a graph of the solution of the generalized fractional Black-Scholes equation (20), 

respectively for 𝛼 equal to 0.2, 0.75, 0.9, and 1.0. 

 

 
(a) 

 
(b) 

  

 
(c) 

 
(d) 

 

Figure 2. Graph of the solution function (20) with different 𝛼 values: (a) 𝛼 = 0.2; (b) 𝛼 = 0.75; (c) 𝛼 = 0.9; (d) 𝛼 = 1 
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Based on the two numerical illustrations given, Laplace decomposition method has the 

advantage that the solution can be expressed as an infinite series that converges quickly to its exact 

solution. This is supported by the results of the analysis of the solution function and its graph, 

showing that the fractional-order moves from 0.2 to 1, then the solution function graph also 

converges towards the exact solution. 

5. Conclusion 

The Laplace decomposition method is a combination of the Adomian decomposition method and 

the Laplace integral transform. This method is very reliable and able to solve ordinary or partial 

differential equations and can be ordered natural or fractional number. The two numerical 

illustrations are presented in this paper show that the Laplace decomposition method is very 

effective, useful and easy to use for solving fractional Black-Scholes partial differential equations 

with boundary conditions for European option pricing problems. 
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