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Abstract 

The maximum clique problem (MCP) is graph theory problem that demand complete subgraph with 

maximum cardinality (maximum clique) in arbitrary graph. Solving MCP usually use Branch and Bound 

(BnB) algorithm. In this paper, we will show how n + 1 color classes (where n is the difference between upper 

and lower bound) selected to form k-clique covering vertex set which later used for branching strategy can 

guarantee finding maximum clique. 
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1. Introduction 

The maximum clique problem (MCP) is the problem of finding a complete subgraph with the 

maximum number of vertices in it (maximum clique) on any graph G = (V, E), the maximum clique 

cardinality in G is denoted by ω(G). The maximum clique has a wide range of applications 

including social network analysis (Balasundaram et al., 2011), economics (Boginski et al., 2006), 

bioinformatics (Szabó and Zavalnij, 2018), and biochemistry (Pardalos and Xue, 1994). In solving 

MCP generally using the Branch and Bound (BnB) algorithm (Wu et al., 2019), examples of the 

BnB algorithm for MCP can be found in (Aslan and Baykan, 2016) and a review of the algorithm 

for MCP can be seen in (Wu et al., 2019; Blum et al., 2020; Smith et al., 2019; Guo et al., 2019). 

Pardalos and Xue (1994)  formulated three main keys to the BnB algorithm for MCP, namely: 

(1) How is a good lower bound? 

(2) How is a good upper bound of the maximum clique size determined? 

(3) How is the search carried out? 

https://ijqrm.rescollacomm.com/
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According to Babel and Tinhofer, G. (1990), there are two stages in the BnB algorithm, namely 

the bounding stage and the branching stage, the branching stage is carried out to break the problem 

into smaller sub-problems (in the form of subgraphs) so that the search for maximum clique will be 

easier to do, then at the limitation stage, the upper bound (UB) and the lower bound (LB) are 

determined to cancel the subgraph of the branching result which will not produce maximum clique. 

Szabó and Zaválnij (2019) describe how a  k-clique covering vertex set is used for branching on 

BnB for MCP. In this paper, the method for determining the k-clique covering vertex set uses a 

color class, but they note that this method can guarantee that the set has a minimum size so that it 

will affect the length of the branching process, then we realize that choosing an incorrect color class 

can causing no maximum clique to be found. So that it is motivated by this in this paper to explain 

how the selection of color classes is carried out to form the k-clique covering vertex set which will 

later be developed into a branching strategy in BnB for MCP. 

2. Definitions and Notation 

In this paper, the graph used is a simple graph, the graph G = (V, E) is said to be a simple graph 

if the graph does not have directed edges, double edges and loops. The set of vertices which are 

adjacent to vertex v is denoted by N (v), while the neighborhood set of v is N [v] = N (v) ∪ v. Let G 

= (V, E) be a simple graph and X  ⊆  V, the subgraph H resulting from subtracting the set                   

V −X = Y on graph G is called an induced subgraph denoted by H [Y]. 

Clique is a subgraph in which every vertex within is adjacent to one another, k-clique is clique 

with k vertices (Yang et al., 2019; Blanuša et al., 2020). k-clique is said to be maximum on the 

graph if there is no (k + 1) -clique on the graph, the maximum cardinality of clique in G is called the 

clique number G denoted by 𝜔 (G). Graph coloring is the color labeling of vertices with the 

condition that there are no the same color on two adjacent vertices, a set of vertices that have the 

same color is called a color class, in this paper the color class will be denoted by CCn where the 

number of n is as many as the colors on the graph. The minimum number of colors from the 

coloring results on graph G is called the chromatic number denoted by 𝜒(G). Let C be the maximum 

clique on G, the coloring of the graph against C requires exactly as much color 𝜒(G) and since C is 

a subgraph of G, then the coloring on G is at least as much 𝜔(G) or 

 

 𝜔(𝐺) ≤ 𝜒(G)                                                               (1) 

 

 Let G = (V, E) is a simple finite graph and W⊆V, if each k-clique has at least one vertex on W, 

then W is called the k-clique covering vertex set (see Szabó and Zavalnij, 2018). An illustration of 

the k-clique covering vertex set can be seen in Figure 1. 

The 4-clique covering vertex set on the graph in Figure 1 contains vertex b, but if selected the set 

of vertices c, d, then the 4-clique covering vertex set is a set of vertices covering k-clique on a graph 

is not a unique set. 
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  Figure 1. 4-clique covering vertex set. 

 

3. Branching with vertices covering the k-clique 

This section describes the results of study and discussions which are taken from transcription of 

interview and questionnaire. The findings are intended to answer the purposes of study which 

include analyzing how the teacher integrated technologies in blended learning, how the students 

perceive blended learning using technologies, and what challenges overcome by the teacher and 

students during blended learning.  

Let W = {𝑣1, 𝑣2, . . . , 𝑣𝑛} is a k-clique covering vertex set, and let ∆ is k-clique in graph G. If an 

induced subgraph 𝐻𝑖 = 𝐺[𝑁[𝑣𝑖]] is formed where 1 ≤ i ≤ n according to the definition of the set of 

vertices covering k-clique, then in the induced subgraph k vertices of v or in other words there are k-

clique in 𝐻𝑖. By making induced subgraphs all k-clique have been mapped in each subgraph so that 

it is easier for us to find k-clique on graph G. 

To find k-clique covering vertex set where k is the maximum can be obtained from the vertex 

coloring of the graph. Let G = (V, E) is a simple graph that has been colored vertices on it 

where 𝜔(G) = k, it will be clear that the set of vertices that make up the maximum clique has a 

different color on each vertex by as many as k colors. Let ∆ is the maximum clique in G and Cn is 

the color class, in this condition if an induced subgraph is formed from 𝑣 ∈ 𝐶𝑛 ∩ ∆ this will result in 

the induced subgraph, or in other words we only need to select the color class where the color is is 

on that which has been colored. However, it is difficult to know whether the colors in the selected 

color class are included in the maximum clique color.  

Example: will illustrate the process of branching by utilizing the k-clique covering vertex set. 

Notice that the graph G below has 𝜒 (G) = 4 and  𝜔 (G) = 4 where the color classes are                             

C1 = {𝑎, 𝑑, 𝑔, 0}, C2 ={𝑏, 𝑐, 𝑚}, C3 = {𝑒, ℎ, 𝑙, 𝑛}, and C4 = {𝑓, 𝑖, 𝑗, 𝑘}. For a branch on G, let the          

k-clique covering vertex set from C2 is chosen, so that the branching will produce three new 

subgraphs, namely𝐻1 = 𝐺[𝑁[𝑏]], 𝐻2 = 𝐺[𝑁[𝑐]], 𝑎𝑛𝑑 𝐻3 = 𝐺[𝑁[𝑚]] . Subgraph H1 can be seen 

easily as 4-clique as well as the maximum clique in G, namely {𝑎, 𝑏, ℎ, 𝑖} and {𝑏, 𝑔, 𝑘, 𝑛}, then in H2 

there is also a 4-clique namely{𝑎, 𝑐, 𝑒, 𝑗}, and {𝑐, 𝑑, 𝑓, 𝑙}. 

 

 



 Mochamad Suyudi et al./International Journal of Quantitative Research  and Modeling, Vol 1, No. 4, pp. 208-216, 2020 211 

 

 
 

Figure 2. The 4-clique covering vertex set. 

 

It should be noted, the method of finding a k-clique covering vertex set with a color class does 

not guarantee a minimum set size, meaning that the more vertices in the color class, the more 

subgraphs will be formed so that it will take more time to work on it. On the other hand, not all 

vertices in the color class can produce maximum clique in its branching subgraph as subgraph G = 

[N [m]] above. The use of a color class where the color is not used in the maximum clique coloring 

causes no maximum clique in the branching subgraphs, see the Figure 3. 

  
  

 Figure 3. Branching with a purple color class 
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In Figure 3, the use of the purple color class for the branches does not produce a maximum 

clique in it, this is because purple is not included in the maximum clique color combination (red, 

yellow, green, blue). 

 

3.1. Selection of color classes. 

 

According to equation (1), for every graph 𝜔(𝐺) ≤ 𝜒(G), so that the branching stage of the 

search for clique on the graph will be viewed according to two conditions, namely the graph 

with        𝜔(G) = 𝜒(G) and 𝜔(G)  < 𝜒(G). On the graph 𝜔(G) = 𝜒(G), the branching process of 

finding a clique is easier than 𝜔(G) < 𝜒(G), because a graph with 𝜔(G) = 𝜒(G)  has only one 

combination of clique coloring the maximum is C(𝜒(G), 𝜔(G)) = 1, meaning that all the colors on 

the graph are used for maximum clique coloring so that only taking one color class can be ensured 

that the set of vertices covers the k-clique W ⊆Cn for every 1 ≤ n ≤ 𝜒(G). However, if a graph has! 

𝜔 (G)  < 𝜒(G), then this will result in more than one color combination is C(𝜒(G), 𝜔 (G)) = 
𝜒(𝐺)!

 𝜔(𝐺)!(𝜒(𝐺)−𝜔(𝐺))!
> 1, because it is not known how many clique the maximum number of clique is 

in graph G and the form of graph, that way the graph has the most possible color combinations in 

the maximum clique 
𝜒(𝐺)!

 𝜔(𝐺)!(𝜒(𝐺)−𝜔(𝐺))!
  and there is at least one maximum clique color combination 

on the graph. Inappropriate selection of color classes can result in not all of the maximum clique 

found by the clique search branching subgraph until the worst case, namely the absence of 

maximum clique in these subgraphs. In the condition 𝜔(G)  < 𝜒(G), it is difficult to determine how 

many color combinations are used to form the maximum clique on the colored graph. 

 

Theorem 3.2. Let𝑛, 𝑟 ∈ ℤ+ where  1 ≤ 𝑟 ≤ 𝑛, then; 

                      𝐶(𝑛, 𝑟) = 𝐶(𝑛 − 1, 𝑟 − 1) + 𝐶(𝑛 − 2, 𝑟 − 1)+. . . +𝐶(𝑟 − 1, 𝑟 − 1). 
 

Proof. The subset combination will be divided according to the smallest to largest number 

sequentially. Suppose the combination starts from number 1, the number of combinations based on 

number 1 will be as much as C(𝑛 − 1, 𝑟 − 1). Then the number of the next combination based on 

number 2 will be as much as C(𝑛 − 2, 𝑟 − 1), 𝑛 − 2 because number 1 has been loaded in the 

previous combination. So that the combination with the number x is as much as C (𝑛 − x, 𝑟 − 1), 

the subset group will stop at number (y = n − r) + 1 where C(n − (y + 1), 𝑟 − 1) = C((n − y) – 1, 

𝑟 − 1) = C(𝑟 − 1, 𝑟 − 1) = 1. Combines all combinations based on numbers from 1 until y + 1 gives 

C(n, r) , so Theorem 3.2 is proven. 

 In the previous explanation, the use of color classes where the color is in the maximum clique 

color combination can find the maximum clique in the subgraph of the results of the branching, to 

overcome the problem of not knowing which maximum clique color combination is present in a 

graph, in this paper it will be assumed that there are all color combinations maximum clique on the 

graph. To reduce the number and size of subgraphs resulting from the branching, color classes with 

cardinality and quantity will be selected minimum degree. Suppose on any graph G has vertices 

with degrees|𝑉| − 1, if G is colored by vertices on them, vertices with degrees |𝑉| − 1will become 

color classes with the vertices themselves. The induced subgraph of the vertex of the color class will 

produce the same subgraph as the previous graph so that the color class to be avoided in the color 
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class selection is the vertex having the degree|𝑉| − 1. In the selection of more than one color class, 

the formation of induced subgraphs with vertices in the color class must be reduced by the color 

class that has been used, for example, the CC1, CC2, CC3 color classes are selected, then the induced 

subgraph formation with these color classes is sequentially (CC3, CC1, CC2) then all CC1 induced 

subgraphs will be reduced by CC3 then all CC2 induced subgraphs will be reduced CC3 ∪ CC1. 

4. BnB Algorithm 

According to Wu and Hao  (2015) to solve MCP  generally using BnB. Babel and Tinhofer, 

(1990) states there are two stages in the BnB algorithm, namely the bound stage and the branching 

stage. The previous explanation has discussed the use of a set of vertices covering the k-clique as a 

branching strategy and how to select color classes to be used as a set. This method will be used for 

the branching stage of this paper, then for the bound stage an algorithm is needed to determine the 

upper and lower bound. Algorithms for determining the upper bound and lower bound can be found 

in (Babel and Tinhofer, 1990; Suyudi et al., 204), various comparisons of the algorithm for 

determining the upper bound can be seen in (Aslan and Baykan, 2016). For each clique on graph G 

is the lower bound (LB) of 𝜔(G) and for each color on the graph G is the upper bound (UB) of 𝜒(G) 

(Suyudi et al., 204),: 

 

LB ≤ 𝜔(𝐺) ≤ 𝜒(G)  ≤ UB                                                  (2) 

 

Suppose that UB* is the upper bound on subgraph H, if UB* ≤ LB then according equation (2)     

 𝜔(H) ≤ LB or subgraph H will not have a maximum clique greater than LB. On this basis, the 

search for maximum clique will only focus on subgraphs with UB*≥ LB and pruning subgraphs 

that do not meet these requirements. The following is an example of an algorithm for determining 

the lower bound (Babel and Tinhofer, 1990; Suyudi et al., 204): 
 

Algorithm 1: Maximum Clique 

 

          Let V := {𝑣1, 𝑣2, . . . , 𝑣𝑛} is set vertices of G 

         W := V 

         CLIQUE := ∅ 

         While W ≠ ∅ do 

               select any v ∈ W where deg (v) = ∆G 

               CLIQUE ∩ {𝑣} 

               W := W∩ 𝑁(𝑣) 

 

 

In determining the upper limit, we can use node coloring algorithms such as DSATUR, Welsh-

Powell (WP), Incidence Degree Ordering, etc. This paper will show an example of the WP 

algorithm as follows: 
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Algorithm 2: Welsh-Powell 

 

         Let V := {𝑣1, 𝑣2, . . . , 𝑣𝑛} is set vertices of G 

         W := V 

         COLOR := 0 

         select v ∈ W where deg (v) = ∆G 

        ColorClass(COLOR) := ∅ 

        ColorClass(COLOR) ∪ {𝑣} 

        W −{𝑣}  

        while W ≠ ∅ do 

             for 1 to |𝑊| do 

                  X := W 

                  select v ∈ X where deg (v) = max(N(v)) 

                   if v not adjacent to w ∈ ColorClass(COLOR) then 

                      put v in ColorClass(COLOR) 

                      X −{𝑣}; 

             else 

                     X −{𝑣} 

 

 

The BnB algorithm in this paper begins with the initial value of 𝜔(G), k = 0, the value of k is 

used to select all graphs or subgraphs in the k-level tree search for upper and lower bound searches 

and branches, then the k value will continue to increase as iteration progresses. Furthermore, after 

searching the upper bound of all graphs at k-level, the lower bound of the graph with UB > 𝜔(G) 

will be determined, graphs that do not meet these conditions will be pruned. The value of 𝜔(G) will 

continue to increase following the found LB if LB >  𝜔 (G) then the CLIQUE set obtained in 

Algorithm 1. Maximum Clique will be said to be maximum if UB = LB. Determination of upper 

and lower bound will stop and continue to the branching stage if all graphs at level-k have been 

reviewed. In the branching stage, it is carried out by following the conditions for selecting the color 

class as explained earlier, the graph will be branched if UB  ≥ 𝜔(G) if it does not meet these 

conditions then the graph will be pruned. The following is the overall BnB algorithm: 
 

Algorithm 3: Branch and Bound 

Step (0) Initialization 

𝜔(G) := 0, k := 0; CLIQUE := ∅ 

Step (1) Graph selection 

select all graphs at level-k 

k := k + + 

go to (2) 

Step (2) Define upper and lower bound 

do 

     Find UB on the graph 

      if UB ≥ 𝜔(G) then 

          find LB 
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          if 𝜔(G) < LB then 

             𝜔(G) := LB 

          if UB = LB and i  > |W(𝐺)| then 

              CLIQUE is the maximum clique 

      else 

             Prune 

while all graphs at level-k have been defined UB and LB; 

if there are no more branchable graphs then 

     search stopped 

else 

      go to (3) 

Step (3) Branching do 

      if UB ≥ 𝜔(G) then 

          graph branch 

      else 

            Prune 

while all graphs at level-k have been branched; 

go to (1) 

 

 

5. Conclusion 

It has been explained how the use of color classes as a branching strategy in the BnB algorithm 

for MCP, in selecting the color class it is necessary (n = UB−LB) + 1 color class in order to find the 

maximum clique. The overall BnB algorithm has also been shown in this paper but it is necessary to 

make a program for the algorithm in order to see the algorithm's performance. 
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