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 The shovel-truck system is commonly used in open-pit mining operations. 

Truck haulage cost constitutes about 26% of open-pit mining costs as the 

trucks are mostly powered by diesel whose cost is escalating annually. 

Therefore, reducing fuel consumption could lead to a significant decrease in 

overall mining costs. Various methods have been proposed to improve fuel 

efficiency in open-pit mines. Case-based reasoning (CBR) can be used to 

estimate fuel consumption by haulage trucks. In this work, CBR methods 

namely case-based reasoning using forward sequential selection (CBR-FSS), 

traditional CBR, and Naïve techniques were used to predict fuel consumption 

by trucks operating at Orapa Mine. The results show that the CBR method 

can be used to predict fuel consumption by trucks in open-pit mines; the 

predicted values of fuel consumption using the CBR-FSS technique gave 

much lower absolute residual values, higher standardised accuracy values, 

and effect sizes than those of other prediction techniques on all the datasets 

used. The system will enable mine planners to know the fuel consumed per 

trip and allow them to take mitigation measures on trucks with high fuel 

consumption. 

Keywords: 

Case-based reasoning  

Fuel consumption 

Haulage trucks 

Open-pit mine 

Prediction 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Gomolemo Tadubana 

Department of Mining and Geological Engineering 

Botswana International University of Science and Technology 

Private Bag 16, Khurumela, Palapye, Botswana 

Email: tadubana.gomolemo@studentmail.biust.ac.bw 

 

 

1. INTRODUCTION  

Mining is the process of obtaining useful minerals from the earth’s crust at a profit [1]. Open-pit 

mining operations generally employ conventional methods to mine ore or waste [2]. The profitability of any 

mine is determined by the efficient management of the unit operations [3]. Research shows that truck haulage 

costs account for 26% of the production costs, and together with shovels, they account for 40% of the total 

mining cost [4-6]. Diesel operated dump trucks are commonly used to haul materials in most surface mining 

operations [7]. The mobile materials handling fleet often account for a sizeable amount of both capital and 

operational costs. Fuel consumption is one of the primary operating costs associated with shovel-truck 

operations, with fuel cost constituting a significant part of the materials handling cost [8] and accounts for 

about 30% of total energy costs in surface mines. During idling, there is no production by the truck but the 

engine continues to run. Hence it is necessary to control fuel consumption by haulage trucks to reduce mining 

costs. The need for cost-saving has motivated mine operators and governments to conduct several research 

studies on how to reduce energy consumption in the mining industry [9].  

https://creativecommons.org/licenses/by-sa/4.0/
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A paper using case based reasoning (CBR) shows that good driving style reduced fuel consumption 

by 12% for light driving vehicles in urban areas [10]. However, CBR cannot be used in predictions when the 

available data is misleading or irrelevant [11]. Hence, methods that lessen the impact of irrelevant or 

misleading features are required to ensure that reliable and accurate predictions are made using CBR for the 

CBR frameworks to benefit from improvements of the feature sets. 

The use of the CBR method could enable mine operators to predict the fuel consumed by each truck 

per trip and the total amount of fuel consumed per shift or per day by the truck fleet. This will assist in 

making logistical arrangements for fuel supplied to the mine and to determine when the fuel consumption of 

any of the trucks is getting too high for remedial action. This study investigated the factors that affect fuel 

consumption by haul trucks in open pit mines and developed an algorithm for predicting the consumption of 

fuel by haul trucks. The CBR algorithm that was developed was used to predict fuel consumption of 

randomly selected haulage trucks in an operating open pit mine. 

 

 

2. BACKGROUND RESEARCH 

Case based reasoning is the process of effectively dealing with a new problem based on the solution 

of the past problems [12, 13]. After getting a prediction each time, a new problem has been solved, the new 

solution is retained and made available for future identical problems [14]. For accurate predictions to take 

place the cases must be similar and close to the new problem [15, 16]. 

The primary idea of CBR is that when a new prediction of fuel consumed per trip is required, a 

similarity measure will be used to select the most similar past trips to predict the amount of fuel to be 

consumed. The performance of CBRs in relation to other prediction methods has been shown to be 

encouraging [17]. The level of success of CBRs depend upon attributes of the dataset. Discontinuities 

existing in fundamental connections between dependent and independent variables tend to make the CBR 

technique more effective [18]. Unfortunately, CBR method is often exposed to the likelihood of misleading 

or irrelevant factors in the prediction exercise [11]. Therefore, all irrelevant or misleading features must be 

removed to reduce their effects in the predictions. This is done by using feature subset selection (FSS) which 

determines the most favorable feature subsets for an accurate prediction [19]. In FSS the factors that carry 

significant information regarding the output are considered as relevant features. Thus, in assigning weights, it 

is best to allocate higher weight values to factors that carry significant information about the output. Also, all 

CBR methods must assign weights to factors. For instance, a CBR technique that uses all features basically 

assigns non-zero weights to all factors. FSS techniques assign 0 or 1 weights to features indicating exclusion 

or inclusion respectively [12]. FSS techniques can be categorised into two main groups using filter and 

wrapper methods. The filter method reduces the number of factors before training [20]. Thus, it is less 

computationally complex but less accurate [10]. Wrapper method combines with indicators to limit fitting 

errors [21]. Hence, wrapper method has high fitting accuracy, high complexity and a low generalisation of 

chosen factors to other conditions. 

 

2.1.  Dataset creation 

In this paper, a dataset is formed entailing dependent variables (DV) and independent variables (IV) 

as required by the CBR technique. DV is the variable that must be estimated using a lot of independent 

variables or parameters. Fuel consumption in light duty vehicles has been successfully evaluated using CBR 

techniques [10]. In most researches, DV and IV of datasets are chosen utilising domain experts and the 

choice of the best parameters do not necessarily lead to optimal results. Therefore, to derive the right 

independent variables, factors that affect fuel consumption by haulage trucks are used. 

 

2.2.  Independent variables 
From the literature, 19 parameters where identified to influence fuel consumption by haulage trucks. 

Interviews, site visits and data was collected from Komatsu and Barloworld who are the service providers for 

haulage trucks at Debswana Orapa Mine. Table 1 (see in Appendix) summaries the key 19 parameters 

identified by various researchers as determinants of fuel consumption by trucks in open pit mines. These 

were employed to predict fuel consumption by haulage trucks in this study.  

 

 

3. RESEARCH METHODS 

3.1.  Repeated measure design 

Repeated measure design is taking measurements on the same subject over time and under different 

conditions. It is characterised by having more than one measurement of at least a given variable for each 

subject [34]. Repeated design measures were used in this research because they reduce the variance of 
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estimates of fuel consumed per trip, fewer trips need to be trained to complete the analysis enabling many 

analyses to be done in a shorter period and it permits monitoring of how the weights of the features change 

after some time for both short- and long-term situations. 

 

3.2.  Creation of datasets  

Domain experts have been used by most researchers to select dependent and independent variables 

for data sets. There are next to no hypothetical reflection to help select great variables [35]. To select the best 

variables, domain experts may not always be available. Therefore, this work presents variable selection 

systems which can be used by mine managers. 

 

 

4. EVALUATION METHODS 

The accuracy of various estimation techniques is used as the main criterion in analysing the value of 

CBR’s estimation of the fuel consumption by haulage trucks. Shepperd and MacDonnell method (SMM) was 

used to reduce the irregularities between validated research results and to provide a basis for understanding 

results with a specific emphasis on continuous prediction systems [36]. This work also followed the 

methodology generally employed when predicting the Design Reality Gap scores for telecentres [12]. 

The evaluation of an estimation system is based on standardised accuracy (SA), an unbiased 

statistic, calculation of effect sizes and testing the results of likelihood of the value relative to the baseline 

technique of random predictions (guessing). According to the SMM, an estimation system, E i, is assumed. 

This is validated over a dataset D using some accuracy statistic S as per the validation scheme V [37]. The 

SMM method can be utilised alongside other competing estimation systems. For example, given two 

estimation systems, E1 and E2 and an accuracy statistic S, one must answer basic questions such as: How is 

the performance against random guessing? What is significance testing? What is the effect of size? 

 

4.1.  Performance against random guessing 

A baseline of random guessing is established to find out if the suggested method performs better 

than random guessing. It is expected that any theoretically good system should execute better than random 

guessing over time. If that is not the case, then it is assumed that the indicator is not utilising the target case 

features in any useful way. 

 

4.2.  Significance testing 

Mean absolute residual (MAR) is used as the accuracy statistic, S, for continuous estimation 

systems. In contrast to mean magnitude of relative errors, MAR does not depend on proportions. Thus, it is 

unbiased. Unfortunately, with MAR comparisons across the datasets cannot be made because the residuals 

are not standardised and are difficult to interpret. Accordingly, a standardised accuracy measure (SA) has 

been presented [36] where accuracy is measured as the MAR relative to random guessing figure, E0. Hence, 

the SA for estimation of Ei is given by (1). 

 

SAEi
= 1 −  

MAREi

MARE0

 ×  100 (1) 

 

where MARE0
 is the mean of a large number, normally 1000, runs of random guessing? SA is a ratio 

representing how better the estimation system, Ei, is than random guessing E0. If the value of SA is near zero 

it would be discouraging, and a negative value would be regrettable. 

 

4.3.  Effect size 

Effect size is a simple way of quantifying the difference between the methodologies. Research work 

has shown that the larger the effect size the stronger the relationship between the two methodologies. To 

assess the effect size, a standardised measure by Glass delta (∆) is used [36]. Glass delta is a measure of 

effect size which uses only the control standard deviations and it is only used when the standard deviations 

are significantly different between the techniques, this is given by (2). 

 

Δ = 
MAREi

−MARE0

σE0

 (2) 

 

where E0 represents the sample standard deviation of the random guessing methodology. Glass delta 

standardises the contrast between the two estimation frameworks and afterwards it contextualises the 

distinction as far as measure of variety in the two measures of the accuracy statistic S. 
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The standardised effect size is scale-free and considered as small (≈0:2), medium (≈0.5) and large 

i.e.≈0.8 [37]. The ∆ has a unit of a standard deviation, so the effect is a decrease in the MAR of n amount of 

fuel consumed per trip. 

 

 

5. EXPERIMENTS 

Three CBR estimation techniques namely traditional CBR, case-based reasoning using forward 

sequential selection (CBR-FSS) and Naïve methods, were used in the prediction of fuel consumption by 

haulage trucks in an operating open pit mine in Botswana. These techniques have been utilised by other 

researchers in their work and they constitute a range of potential methodologies that can be used for case-

based fuel consumption estimation [37, 38]. The Naïve method uses a sample mean to estimate a new fuel 

consumed per trip [36, 37] and CBR method uses all the parameters equally weighted to estimate the fuel 

consumed. The Naïve technique might be considered as a baseline technique and its application is from the 

1990 s [39]. The case-based reasoning using forward sequential selection (CBR-FSS) method was preferred 

in this research because it has been proven to perform better that other techniques employed in their research 

[37]. CBR-FSS gives weights of 0 to irrelevant parameters and 1 to relevant parameters. This technique 

excludes all irrelevant features to fuel consumption prediction as compared to CBR. 

 

5.1.  Limitations of study 

This study used data obtained from Debswana Orapa Mine only. Therefore, the results may not be 

applicable to all mines due to their different locations and operating conditions. Another limitation of the data 

used is that it does not include all parameters such as weather identified from the literature. Earlier studies 

have identified the parameters in Table 2 as those that influence fuel consumption by haulage trucks in open 

pit mines [22, 40-43]. 

 

 

Table 2. Feature description of fuel consumption by haulage trucks dataset [22] 
# Factor Description/Motivation Source 

1. Extreme acceleration 
Refers to the rate of change of velocity over time. It is defined where fuel 
consumption increases rapidly while driving. An increase in fuel consumption 

occurs with acceleration increase or extreme acceleration. 

[22, 40, 41] 

2. Extreme braking This is when the braking distance required to stop is shorter than expected. [44] 

3. Excess RPM 
It is the measure of how many times an engine turns in a minute. Fuel 

consumption is lower at low RPM due to friction. 
[45] 

4. Traffic conditions 
Increasing levels of congestion lead to lower average speeds, longer travel times 
and increased delays at loading and dumping points. Hence flow of road traffic has 

a great effect on fuel consumption. 

[46, 47] 

5. Road geometry Road geometry has a great impact on overall energy consumption. [48] 

6. Driver’s age 
Older drivers have been acknowledged as less aggressive when driving as 

compared to younger drivers 
[49] 

7. Truck age 
Older vehicles have high shortfall in fuel consumption as compared to younger 
drivers. 

[42] 

8. Driver’s experience 
A skilled driver can reduce the fuel consumption by more than 10% compared to 

an inexperienced driver, by reducing the need of braking 
[43] 

9. 
Vehicle consuming 

accessories 
These are heating, air-conditioning and other accessories that consume fuel. [45] 

 

 

6. EXPERIMENTAL RESULTS 

All the statistical analysis contained in this research work is based on absolute residuals from the 

methodologies selected. The absolute residual results are summarised in Table 3 while Figure 1 shows the 

residual distribution of the results. The SMM method was used to evaluate the results from the various 

estimation techniques. Consequently, the results are analysed based on mean absolute residuals being 14.24, 

20.24 and 24.33 for CBR-FSS, CBR and Naïve technique respectively as compared to 35.97 obtained from 

random guessing. The initial results on the standardised accuracy of the three methods compared to random 

guessing based on standardised accuracy (SA) and effect size (∆) are summarised in Table 4 [39]. The results 

in Table 4 shows that when the CBR-FSS, CBR and Naïve techniques are used to predict fuel consumption 

by haul trucks per trip in open pit mines, the predictions are 60.42%, 43.73% and 32.37% better than those 

based on random guessing respectively. The effect size relative to guessing by CBR-FSS can be said to be of 

medium effect size while that for the CBR and Naïve technique may be considered as small.  
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Table 3. Random sample (10%) of actual and predicted fuel consumed and absolute residuals 

Trip Number 
Actual Fuel 

Consumed litres 

(x) 

Predicted Fuel litres (y) 
Absolute Residuals/Errors 

(|x-y|) 

CBR-FSS CBR Naïve CBR - FSS CBR Naïve 

5 92.74 92.07 89.03 85.17 0.68 3.71 7.58 
20 87.06 86.12 99.38 85.17 0.95 12.31 1.90 

21 86.12 86.59 93.21 85.17 0.47 7.09 0.95 

29 21.77 20.50 39.74 85.17 1.26 17.97 63.40 
47 90.85 90.69 84.23 85.17 0.16 6.63 5.68 

49 88.96 89.21 99.33 85.17 0.25 10.38 3.79 

62 101.26 101.23 111.20 85.17 0.03 9.94 16.09 
70 86.12 85.65 88.96 85.17 0.47 2.84 0.95 

74 88.01 88.64 156.22 85.17 0.63 68.21 2.85 

107 29.34 28.39 64.16 85.17 0.95 34.83 55.83 
114 88.01 88.48 118.07 85.17 0.47 30.05 2.85 

120 90.85 90.85 99.79 85.17 0.00 8.94 5.68 

134 102.21 103.15 97.98 85.17 0.95 4.22 17.04 
138 34.07 33.83 83.48 85.17 0.24 49.42 51.10 

139 35.02 35.02 35.96 85.17 0.00 0.95 50.15 

142 35.02 35.96 142.66 85.17 0.95 107.64 50.15 

 

 

Table 4. Standardised accuracy and effect of sizes 

Technique 
Criteria 

SA (%) ∆ 

CBR-FSS 60.42 0.672 
CBR 43.73 0.486 

Naive 32.37 0.360 

  

 

 
 

Figure 1. Boxplot showing residual distribution of the dataset 

 

 

7. CONCLUSION  

In this paper, it has been shown that the CBR-FSS technique can be used to predict fuel 

consumption per trip of haulage trucks in open pit mines without any expert knowledge. The results also 

show that when using CBR-FSS, CBR and the Naïve techniques to predict fuel consumption by haul trucks 

in open pit mines, the predictions are 60.42%, 43.73% and 32.37% respectively better than those based on 

random guessing. Furthermore, the standardised values show that predictions using CBR-FSS are 16.69% 

and 28.05% better than those of CBR and Naïve techniques. The effect size relative to guessing by CBR-FSS 

can be said to be of medium effect size while those of CBR and Naïve techniques may be considered as 

small.  

It is concluded that using CBR prediction techniques to predict fuel consumption in open pit mines 

could be more cost-effective than using rough estimations to predict outputs or engaging experts to do 

extensive evaluations for the mine. It is acknowledged that predictions made in this work were based on 

datasets from one operating mine. Accordingly, the predictions made on fuel consumption by haulage trucks 

may only be applicable to the mine’s setting only and larger dataset features are needed to make the findings 

more applicable all mines irrespective of their location and operating conditions. 
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APPENDIX 

 

 

Table 1. Feature description for haulage truck fuel consumption dataset [22] 
# Factor Description/Motivation Source(s) 

1. Material The material which is hauled by haul trucks [23] 

2. Weather conditions Ambient conditions refer to the external conditions such as wind, temperature and 

barometric pressure. These affect a vehicle’s fuel consumption as they influence the 
engine operation. They might also affect driver’s behavior as the driver must adjust 

his driving pattern accordingly. 

[24, 25] 

3. Idle time Refers to running a vehicle without moving the vehicle. When the duration of idling 
is longer than 10 s, an engine consumes more fuel compared to when it is restarted. 

[26-28] 

4. Speed The rate of fuel consumption increases with an increase in speed. Fuel consumption is 

increased by aggressive driving dramatically by up to 24%. 

[23, 29] 

5. Trip frequency Trip frequency of haulage trucks directly influences the production output in open pit 

mines. The trip frequency should be maximised to accomplish least fuel consumption 

per ton of materials hauled. 

[30] 

6. Type of haulage truck Fuel consumption of vehicles vary primarily with vehicle type. Truck types used 

were CAT 789, KOMATSU 730 or KOMATSU 830 

Debswana 

Orapa Mine 

7. Gradient Rolling resistance of the haul trucks vary due to road conditions. A haul road that is 
dry and hard-packed keeps fuel costs and tyre wear to a minimum. 

[31, 32] 

8. Payload Fuel consumption increases with an increase in the gross weight at which a truck 

operates. 

[33] 

9. Trip distance One-way distance in meters [23] 

10. Cycle time For trucks is the sum of loading time, travel loaded, return (empty), dumping, 
spotting and wait times at excavator and dumping points. 

[24, 33] 

11. Loading time Measure of the time taken to load the haulage truck by the excavator. [8, 23] 

12. Spotting time Measure of the time taken during which the loading unit has the bucket in place to 
dump but awaits the truck to move into correct loading position. 

[8, 23] 

13. Dumping time Measure of the time taken for the truck to maneuver and dump its load. Measure of 

the time taken for the truck to maneuver and dump its load. 

[8, 23] 

14. Fixed time Sum of load, spot and dump times. [8, 23] 

15. Travelling time A measure of the time taken to travel (loaded) and return (empty). [8, 23] 

16. Tonne-kilometre per 
hour (t-km/hr) 

This represents Tyre Load × Average Speed Debswana 
Orapa Mine 

17. Frame Torque 

(tonne-meter) 

Measured as the frame time in either clockwise direction or anticlockwise Debswana 

Orapa Mine 
18. Torque time Time taken from the start of the haul cycle to the peak torque Debswana 

Orapa Mine 

19. Sprung load Peak dynamic load calculations Debswana 
Orapa Mine 
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