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 This work proposes a portable, handheld electronic device, which measures 

the cleanliness in fiber optic connectors via digital image processing and 

artificial neural networks. Its purpose is to reduce the evaluation subjectivity 

in visual inspection done by human experts. Although devices with this 

purpose already exist, they tend to be cost-prohibitive and do not take 

advantage of neither image processing nor artificial intelligence to improve 

their results. The device consists of an optical microscope for fiber optic 

connector analysis, a digital camera adapter, a reduced-board computer, an 

image processing algorithm, a neural network algorithm and an LCD screen 

for equipment operation and results visualization. The image processing 

algorithm applies grayscale histogram equalization, Gaussian filtering, 

Canny filtering, Hough transform, region of interest segmentation and 

obtaining radiometric descriptors as inputs to the neural network. Validation 

consisted of comparing the results by the proposed device with those 

obtained by agreeing human experts via visual inspection. Results yield an 

average Cohen's Kappa of 0.926, which implies a very satisfactory 

performance by the proposed device. 
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1. INTRODUCTION  

Throughout the ages, humanity has faced the engineering challenge of transporting large quantities 

of information from one place to another, which has been faced through diverse means. During the 30s, the 

introduction of the coaxial and multipair cable technologies enabled transporting signals during many years. 

Later on, the increasing telecommunications demand and digitalization trends resulted in the development of 

a new technology which took off during the 60 s, known as fiber optics [1]. Meanwhile, other data transport 

technologies appeared such as microwaves and satellite communications, which use atmospheric properties 

for data transfer. However, each technology has its own operating conditions. For example, microwaves are 

severely affected by weather conditions and have limited capacity depending on the requirement [2]. On the 

other hand, the fiber optic communications requires that the connectors used to join the cables are completely 

clean and free of any kind of dirt to ensure the quality of the services. Otherwise, there will be a negative 

impact on the transmitted signal, which will impair the performance of the link [3, 4]. 

With this in mind, industry has developed technology both for identifying dirty connectors and for 

cleaning them. IEC 61300-3-35:2015 is the standard that sets the quality requirements for fiber optic 

connector terminations [5]. That is how the main problem to solve is develop a device that include strong 

https://creativecommons.org/licenses/by-sa/4.0/
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image algorithms to evaluate optical fiber connectors with high precision and low cost. In the scientific 

literature there are some proposals to solve the problem, Duffy et al. study in [6] automatized solutions to 

evaluate and clean fiber optic connectors. Rehman and Mozaffar [7] use wavelets to evaluate the dirtiness of 

connectors, while Filipenko in [8] use the interference method to analyze them. Commercially, companies 

such as VIAVI solutions [9] and EXFO [10] manufacture and commercialize inspection and evaluation 

equipment to verify the state of the fiber optic connector. Proposals in the scientific literature do not use 

image processing and neural networks, which can improve the method’s precision. Likewise, the proposal by 

Duffy et al. uses a programmable logic controller (PLC), which is not the best alternative for a portable 

solution. On the other hand, commercial solutions imply making large investments which may not be viable 

for small and medium-sized telecommunications networks companies. 

In the face of all these problems and drawbacks, the present work proposes a low-cost portable 

equipment capable of successfully evaluating and identifying the dirtiness of fiber optics connectors using an 

optical microscope, a single-board computer, open-source tools, image processing algorithms and neural 

networks. The device has a near-perfect assertiveness with evaluation results showing a Cohen’s Kappa 

agreement index of 0.926. Furthermore, the equipment is well-suited to fieldwork requirements due to its 

portability. 

 

 

2. DESCRIPTION OF THE PROPOSED DEVICE 

Figure 1 shows the block diagram of the proposed algorithm. The monocular of the microscope has 

an adapter fixed to it, which safely holds the digital camera that takes the RGB image of the fiber optic 

connector. The following paragraphs describe the image processing steps and algorithms employed to 

achieve the desired results. 

 

 

 
 

Figure 1. Proposed method flowchart 

 

 

2.1.  Optical microscope 

It is composed of a manual device which allows visualization of the connector’s ferrule and the 

contact area. Figure 2 shows the composing parts of a manual microscope. The eyepiece permits 

visualization of the fiber through an optical zoom up to 400X. The focus control handles the manual focus to 

improve image definition. The light source entrance helps the user note if the illumination LED is on or off.  

 

2.2.  Camera-microscope adapter and prototype device 

The camera-microscope adapter consists of a piece, 3D printed in black PLA. This design is 

exclusive to the proposed solution and helps in creating a dark enclosure to have a stable, constant 

illumination when imaging takes place. Figure 3 shows a schematic of the adapter. The top piece is a 

removable lid that covers the digital camera, while the rectangular hole is the entrance for an HDMI 

connector to the camera. Figure 4 shows the camera installed in the rectangular area of the adapter see 

Figures 4(a) and 4(b). Figure 4(c) shows the HMDI cable connected to the camera. Figure 4(d) shows a 

picture of the bottom view, in which the camera lens is observed. 

The adapter must comply with some minimum requirements to be compatible with the monocular in 

the microscope. Per the manufacturer, the minimum focal distance is of 3.6 mm. Then, the designed adapter 

will achieve a focal distance of 8 mm and be able to take images of the full fiber optic for subsequent 

analysis. Figure 5 shows a picture of the adapter, the microscope, the ensemble and the labeled parts. 

Likewise, the Figure 5(d) shows the complete box that contains the processor, the touch screen and the 

program that will allow the evaluation. The complete prototype has characteristics: 

 Easy to connect as seen in the Figure 5. The equipment allows connection through the HDMI cable and 

the camera sends the image to the processor. All the data processed in the single board computer will be 

displayed on the touch screen in real time. 
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 The portability of the solution is based on its ease of transport: lightweight and easy to handle. 

 The prototype uses an AC-DC power adapter. However, it has the option to deploy an internal battery. 

 

 

 
 

 

Figure 2. Optical microscope description  

Source: microscope quick start guide 

 

Figure 3. Adapter schematic diagram 

  

 

    
(a) (b) (c) (d) 

 

Figure 4. Camera-microscope adapter: (a) Camera installed, (b) Adapter with the top piece, (c) HDMI cable 

connected, (d) Bottom view 

 

 

  
(a) (b) 

  
(c) (d) 

 

Figure 5. Adapter and prototype equipment: (a) Both elements separated, (b) Ensemble,  

(c) Parts and components for image acquisition, (d) Prototype box 
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2.3.  Image acquisition 

A 25x24x9 mm, 8 Megapixel digital camera with a Sony IMX219 sensor images the fibers. To 

allow the user real-time image visualization, the camera configuration was set to RGB (true color, 24 bits). 

Because of the small sizes of the dirt objects, the chosen image resolution was of 3280x2464 pixels. This 

translated into a spatial resolution of 0.0625 μm2 per pixel, an appropriate size to adequately evaluate the 

objects. The default illumination intensity level was used since it is supplied by the microscope and kept 

stable by the adapter’s enclosure. Figure 6(a) shows an example of an image acquired with the ensemble. 

 

2.4.  Image processing and descriptors 

The following section details the steps taken to analyze the acquired image and obtain the three 

selected image descriptors to train the neuronal network and determine the level of cleanliness or dirt in the 

regions of interest.  

 

2.4.1. Image cropping 
The image acquired in step 2.3 is cropped, taking into account the fiber core and cladding areas 

(area of interest for processing). The resulting image has a smaller size and its digitized primary components 

of light are expressed as 𝐼𝑅(𝑥, 𝑦), 𝐼𝐺(𝑥, 𝑦) and 𝐼𝐵(𝑥, 𝑦). The values of this components are 8 bit-integers  

([0,255]) according with true color format. 

 

2.4.2. Grayscale conversion 

In order to reduce computational load without diminishing the algorithm’s performance, the image 

from Figure 6(b) is converted into an 8-bit grayscale image, according to (1) [11]. 

 

𝐼1(𝑥, 𝑦) = 0.299𝐼𝑅(𝑥, 𝑦) + 0.587𝐼𝐺(𝑥, 𝑦) + 0.114𝐼𝐵(𝑥, 𝑦) (1) 

 

where 𝐼𝑅(𝑥, 𝑦), 𝐼𝐺(𝑥, 𝑦) and 𝐼𝐵(𝑥, 𝑦) are the primary components (red, green and blue) of the cropped image, 

and 𝐼1(𝑥, 𝑦) is the grayscale image as shown in Figure 6(c). 

 

 

    
(a) (b) (c) 

 

Figure 6. Example results of the grayscale conversion: (a) Acquired image example, (b) Image with primary 

components 𝐼𝑅(𝑥, 𝑦), 𝐼𝐺(𝑥, 𝑦) and 𝐼𝐵(𝑥, 𝑦), (c) Image 𝐼1(𝑥, 𝑦) 

 

 

2.4.3. Histogram equalization 

Image 𝐼1(𝑥, 𝑦) as shown in Figure 7(a) goes through a histogram equalization process [12]. The 

resulting image is labeled 𝐼2(𝑥, 𝑦) Figure 7(b). Histogram equalization showed better results than 

enhancement via histogram stretching, because it improved the later segmentation between the cladding 

region and the rest of the image. 

 

2.4.4. Gaussian filtering 

Image 𝐼2(𝑥, 𝑦) is filtered with a 5x5 Gaussian mask [13] to eliminate undesired edges and contrast 

regions. Such mask is defined by (2) [14]. 

 

ℎ1(𝑥, 𝑦) =
1

2𝜋𝜎2 𝑒
−(𝑥2+𝑦2)

2𝜎2  (2) 

 

In this case we consider 𝜎 = 1 to obtain satisfactory results. The filtering process is expressed 

through convolution between 𝐼2(𝑥, 𝑦) and ℎ1(𝑥, 𝑦) mask:  

 

cladding cladding cladding 
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𝐼3(𝑥, 𝑦) = 𝐼2(𝑥, 𝑦) ∗ ℎ1(𝑥, 𝑦)   (3) 

 

Figure 7(c) illustrates the input image 𝐼2(𝑥, 𝑦) and the output image 𝐼3(𝑥, 𝑦). 

 

 

   
(a) (b) (c) 

 

Figure 7. Example results of the histogram equalization and Gaussian filtering: (a) Image 𝐼1(𝑥, 𝑦),  

(b) Image 𝐼2(𝑥, 𝑦), (c) Image 𝐼3(𝑥, 𝑦) 

 

 

2.4.5. Image thresholding 

Image 𝐼3(𝑥, 𝑦) is thresholded in order to obtain the cladding segmentation mask, according to (4): 

 

𝐼4(𝑥, 𝑦) = {
255, 𝐼3(𝑥, 𝑦) > 𝜇1

    0, 𝑎𝑛𝑦 𝑜𝑡ℎ𝑒𝑟 𝑐𝑎𝑠𝑒
 (4) 

 

Any pixel with a higher value than the threshold 𝜇1 = 104 will be set to 255. This threshold was 

chosen because it yielded the best results for different types of fibers and levels of cleanliness. Figure 8(a) 

illustrates the output of the thresholded image, 𝐼4(𝑥, 𝑦). 

 

2.4.6. Canny filtering 

Canny filtering is applied to image 𝐼4(𝑥, 𝑦) to obtain the circle of the fiber cladding. The Canny 

filtering involve: smoothed using a Gaussian kernel, obtaining of edge strength from Sobel filtering, 

calculation and quantization of the edge direction, nonmaximum suppression and thresholding with 

hysteresis [15]. In this case, two hysteresis thresholds (𝜇𝑀𝐴𝑋 = 110 and 𝜇𝑀𝐼𝑁 = 50) are set to obtain the 

shapes and borders of the objects in the thresholding. The result of this filtering is 𝐼5(𝑥, 𝑦), shown in  

Figure 8(b). The chosen hysteresis thresholds enabled reducing false contours for different types of fibers and 

levels of cleanliness. 

 

 

  
(a) (b) 

 

Figure 8. Example results of the thresholding and filtering image: (a) Image 𝐼4(𝑥, 𝑦), (b) Image 𝐼5(𝑥, 𝑦) 

 

 

2.4.7. Circle detection via Hough transform 

The Hough transform for circle detection [16] is applied to image 𝐼5(𝑥, 𝑦). In this case a  

3-dimensional accumulator was used, storing the 2 coordinates of the center and the radius. In the 

implementation of Hough's transform, the parameter “dp” was set to 3, in order to resolve the search of a 

large circle with low distortion levels. Gradski [17] defines this parameter as the resolution of the 

accumulator image, which enables the creation of an accumulator with a lower resolution than the original 

image. Essentially, a larger “dp” value translates into a smaller accumulator matrix. The chosen value 

resulted in successfully detecting the circle which exactly belongs to the cladding, and greatly reduced the 
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false detection of circles. A larger “dp” value might have reduced the detected circle quantities to zero in 

some cases. The transform requires setting a minimum distance between the centers of the circles. If this 

distance is too small, false circles may be detected. If it is too large, circles may go undetected. It is known 

that the circle to be detected has a radius of 250 pixels, so this value serves as the starting point for the 

following computation. 

If the value were chosen to be less than or equal to 250, most detected circles would be 

superimposed over each other. If the value were chosen to be 500 (the circle diameter), some circles tangent 

to the true circle would be detected. Figure 6 shows that the cladding is almost in the middle of the image, 

and the region of interest is not large, so lost circles outside of this region would not be relevant for this 

process. Thus, the distance between centers of circles is defined to be 1000, which reduced the quantity of 

possible circles in the selection process. The results of the transform are the circle radius 𝑟𝑐  and the 

coordinates of the circle center (𝑥𝑐 , 𝑦𝑐). With these coordinates and the circle radius 𝑟𝑐 , the detected circles 

are drawn over the original image such that the regions of interest are defined. Figure 9 shows an example 

where results correspond to 3 case: Clean fiber as shown in Figure 9(a), dirty fiber as shown in Figure 9(b) 

and very dirty fiber as shown in Figure 9(c). 

 

 

 
(a) (b) (c) 

 

Figure 9. Example results of the transform: (a) Clean fiber, (b) Dirty fiber, (c) Very dirty fiber 

 

 

2.4.8. Regions of interest segmentation 

The segmentation of the regions of interest takes the circle coordinates and radius from the previous 

step and generates a mask 𝑍1(𝑥, 𝑦) the same size of 𝐼1(𝑥, 𝑦), according to the (5). 

 

𝑍1(𝑥, 𝑦) = {
1,  (𝑥 − 𝑥𝑐)2 + (𝑦 − 𝑦𝑐)2 ≤ 𝑟𝑐

2

0,                                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  
 (5) 

 

where (𝑥𝑐 , 𝑦𝑐) corresponds to the center coordinates of the found circle and 𝑟c, the radius of the found circle. 

Using the (6), the mask 𝑍1(𝑥, 𝑦) segments the region of interest in 𝐼1(𝑥, 𝑦): 

 

𝐼6(𝑥, 𝑦) = 𝑍1(𝑥, 𝑦). 𝐼1(𝑥, 𝑦)  (6) 

 

where 𝐼6(𝑥, 𝑦) is the output image after masking. Figure 10(a) shows an example of 𝐼6(𝑥, 𝑦). 

Since the fiber cleanliness must also be evaluated around the outer neighborhood of the cladding, the 

outer ring was also segmented. Thus, mask 𝑍3(𝑥, 𝑦) was computed according to the (7). 

 

𝑍3(𝑥, 𝑦) = 𝑍2(𝑥, 𝑦) − 𝑍1(𝑥, 𝑦)  (7) 

 

where 𝑍2 is defined according to (8). 

 

𝑍2(𝑥, 𝑦) = {
1,  (𝑥 − 𝑥𝑐)2 + (𝑦 − 𝑦𝑐)2 ≤ (2𝑟𝑐)2

0,                                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒         
 (8) 

 

Finally, the segmentation of the grayscale pixels in the cladding exterior ring is computed according to (9). 

 

𝐼7(𝑥, 𝑦) = 𝑍3(𝑥, 𝑦). 𝐼1(𝑥, 𝑦)  (9) 

 

Figure 10(b) shows an example of 𝐼7(𝑥, 𝑦). 
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(a) (b) 

 

Figure 10. Example results of the segmentation: (a) Image 𝐼6(𝑥, 𝑦) (segmented cladding), (b) Image 𝐼7(𝑥, 𝑦) 

(segmented outer ring) 

 

 

2.4.9. Obtaining descriptors 

These steps evaluate the segmented regions 𝐼6(𝑥, 𝑦) and 𝐼7(𝑥, 𝑦) to compute the first two 

descriptors: cladding and ring variance. Furthermore, they also evaluate image 𝐼1(𝑥, 𝑦) to find the third 

descriptor: quantity of contours in the image. The first step consists on calculating the histograms of 𝐼6(𝑥, 𝑦) 

and 𝐼7(𝑥, 𝑦), without considering pixels with zero intensity (black pixels), such that histograms only contain 

only gray pixels. Figures 11 and 12 show these histograms. 

 

 

  
 

Figure 11. Segmented cladding histogram 

 

Figure 12. Segmented ring histogram 

 

 

These histograms serve to calculate the variances [18] in each region (cladding or ring). These 

variances are defined as σ𝐶𝑙𝑎𝑑𝑑𝑖𝑛𝑔
2  and σ𝑟𝑖𝑛𝑔

2  according to (10). 

 

𝜎2 =
∑ (𝑋𝑖−�̅�)2𝑚

𝑖=1

𝑚−1
 (10) 

 

where 𝑋𝑖 represents a pixel value of a region, 𝑚 the number of pixels of a region and �̅� the average value of a 

region (cladding or ring).  

The variances of each region are radiometric descriptors that allow to detect the dirt presence level.  

In this case a region with high level of dirt also will have high variance value. The third descriptor is the 

number of contours (𝑁𝑢𝑚𝐶𝑜𝑛𝑡) identified in the 𝐼1(𝑥, 𝑦) image. This descriptor was chosen because the 

number of contours increases significantly when the dirt level is high. It helps to differentiate between 

different levels of dirt or cleanliness. 

To obtain this descriptor, the steps 2.4.2, 2.4.3, 2.4.4, 2.4.5 and 2.4.6 are applied to 𝐼1(𝑥, 𝑦). The 

difference is in the hysteresis thresholds used in the Canny filtering step: 𝜇𝑀𝐴𝑋 = 200 and 𝜇𝑀𝐼𝑁 = 10. These 

hysteresis values attempt to increase the threshold range such that more borders will be found in the whole 

image, instead of only in the cladding region. This translates into searching for more borders and shapes that 

could correspond to dirtiness. Figure 13 shows the output image 𝐼8(𝑥, 𝑦). 

The next step consists of finding the quantity of contours in image 𝐼8(𝑥, 𝑦). Figure 14 shows a 

flowchart to achieve this objective. Figure 14 shows that Suzuki’s algorithm [19] analyzes image 𝐼8(𝑥, 𝑦) to 

then discard redundant points and obtain a list with the coordinates of all the relevant contours. Then, the 

integer variable 𝑁𝑢𝑚𝐶𝑜𝑛𝑡 is calculated from this list’s length.  
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Figure 13. Image 𝐼8(𝑥, 𝑦) 

 

Figure 14. Flowchart for contour quantification 

 

 

Figure 15 illustrate the basic steps of Suzuki’s algorithm. The algorithm scans the image from left to 

right, labels edges as outer or hole edges and establishes the hierarchy between the discovered pixels. This 

repeats for each image row, from top to bottom. The algorithm considers contours as continuous and smooth 

curves. Finally, the steps achieve the following 3 descriptors: σ𝐶𝑙𝑎𝑑𝑑𝑖𝑛𝑔
2 , σ𝑟𝑖𝑛𝑔

2  and 𝑁𝑢𝑚𝐶𝑜𝑛𝑡. 

 

2.5.  Identification of the cleanliness level by neural networks 

A trained model of neural networks was used to identify the cleanliness level of the fiber optic 

connectors [20]. The model inputs consist on the three previously calculated descriptors, and the output is a 

3-element array which indicates the cleanliness of the fiber optic connector. Figure 16 illustrates how the 

descriptors are input into the neural network and the model outputs the binary array as described above. 

 

[0,0,1]: CLEAN state [0,1,0]: DIRTY state [1,0,0]: VERY DIRTY state 

 

 

  
 

Figure 15. Suzuki’s algorithm basic steps 

 

Figure 16. ANN diagram 

 

 

The dataset consisted of 99 pictures of fiber optic connectors, evenly distributed into 3 groups of 33 

photos for each possible output. The dataset was further divided into training and evaluation sets: 

 Training set (70% of the total dataset) 

 Evaluation set (30% of the total dataset) 

The objective was to achieve a precision of at least 90%. To achieve this, the network was set 

according to the following characteristics: 

 Network size: Sánchez [21] mentions that the importance of the hidden layer size to the neural network 

model fit has been stated many times in the scientific literature, but no conclusive results have been 

demonstrated. Nonetheless, there are plenty guiding criteria to start building said models. Some of the 

criteria considered in this work are described by Del Carpio [22]: 

a) Quantity of hidden layers: more layers add complexity to the network and make the training slower. If 

data are linearly separable, hidden layers are not necessary, but in this case, data are not linearly 

separable. 
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b) Quantity of neurons in each hidden layer: these neurons are related to the input variables, such that 

this quantity must not be larger than twice the input size. If this is not enough to achieve acceptable 

results, more neurons are added to the output layer. 

Another criterion is directly related to the final adjustment error and desired precision. These criteria 

guided the model building and simulation, which was done with TensorFlow (a free and open-source 

software library for dataflow and differentiable programming developed by Google). This simulation 

helped in defining the final network size: 3 hidden layers with 12, 4 and 3 neurons, which improve the 

loss during training and testing. Scikit-learn [23] explains each neuron in the hidden layer transforms the 

values from the previous layer with a weighted linear summation, followed by an activation function. The 

output layer receives the values from the last hidden layer and transforms them into output values. 

 Alpha=0.06, for overfitting correction. This value contributes to keeping the precision above 90% by 

avoiding overfitting. Scikit-learn use this parameter as a regulator which penalizes overfitting by 

restricting the weight magnitude. 

 ReLU (rectified linear unit) activation function for the hidden layer. 

 Training algorithm ‘adam’. Scikit-learn defines ‘adam’ as a stochastic gradient-based optimizer, which 

can automatically adjust the amount to update parameters based on adaptive estimates of lower-order 

moments 

 Maximum iterations=11000 

With these hyperparameters, the model achieved a training precision of 97% and a testing precision 

of 92%. Figure 17 presents the training and testing algorithm flowchart. The first step is building the network 

model, defining neurons, layers, and iterations. Next, training takes place, where loss is analyzed at the end: 

if it is lower than 0.3, the model is tested, otherwise, training resumes. The 0.3 loss ensured that by the end of 

the training, precision was of at least 90%. Finally, if precision is higher than 91%, the model is saved, 

otherwise training resumes. 
 

 

 
 

Figure 17. Neural network training flowchart 
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3. RESULTS AND DISCUSSION  

First of all, as result, the device reaches the denomination of a low-cost device. Also, the novel 

proposal device permits a high-quality image acquisition in order to solute the issues registered in previous 

solutions and proposals [7]. In the other hand, to test the accuracy of the device, two human experts evaluated 

the cleanliness/dirtiness of 27 SC/UPC fiber optic connectors through survey-type formats. This evaluation 

was performed by visual inspection of images acquired with optical microscope. However, for validation, 

only cases where both experts agreed in their evaluation were considered.  

Furthermore, the images of the same connectors were evaluated by the proposed algorithm (output 

of the neural network algorithm). Using the Cohen’s Kappa Index [24] which is served to measure the 

agreement level according between two or more observers according to the values in Table 1 [25, 26], the 

agreement level according between experts and the device proposed are defined by the magnitude of the 

index K [27]. 

 

 

Table 1. Kappa Cohen index interpretation 
Kappa Cohen Index Interpretation Kappa index Range  

Poor coincidence K ≤0.20 
Fair agreement 0.20 <K ≤0.40 

Moderate agreement 0.40 <K ≤0.60 

Satisfactory agreement 0.60 <K ≤0.80 
Near-perfect agreement K >0.80 

 

 

Figure 18 shows the flowchart to compute K. A first agreement evaluation of the 27 connectors 

resulted in 6 of them where human experts had differing results, due to subjective perception. After 

eliminating those 6 conflicting elements, the evaluation set was reduced to 21 connectors (i.e., the device was 

evaluated 21 times), which results are indicated in Table 2. Next, Table 3 shows the confusion matrix 

between expert evaluation and the proposed algorithm’s evaluation. These results are shown as proportions in 

Table 4. The metric K [24] is computed according to (11). 

 

𝐾 =
𝑝𝑜−𝑝𝑐

1−𝑝𝑐
 (11) 

 

where: 

𝑝𝑜 = proportion of evaluated samples where judges agree 

𝑝𝑐 = proportion of evaluated samples expected at random 

 

 

Image adquisition

Run detection 

algorithm

Save results

Experts Survey

Expert 1

Expert 2

Save results

Eliminate 

subjectivity

Calculate K index

 
 

Figure 18. Procedure to compute K 

 

 

Calculating (11) for the confusion matrix at Table 4 yields: 

 

𝐾 =
[0.190+0.429+0.333]−[(0.190×0.238)+(0.429×0.429)+(0.381×0.333)]

1−[(0.190×0.238)+(0.429×0.429)+(0.381×0.333)]
= 0.926  
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The agreement results from Table 5 is interpreted according to Table 1, such that: 

 

𝐾 > 0.8 → 𝑁𝑒𝑎𝑟 𝑝𝑒𝑟𝑓𝑒𝑐𝑡 𝑐𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑐𝑒  

 

Next, the index is calculated for each possible result: clean, dirty, and very dirty. Results are shown 

in Table 6. Note that the proposed method achieves accurate results when compared to human experts.  

 

 

Table 2. Results to avoid subjectivity 
# Image ID Connector Expert 1 Expert 2 Experts’ coincidence Prototype Result 

1 Connector 95 Dirty Dirty Yes Dirty 

2 Connector 97 Dirty Dirty Yes Dirty 
3 Connector 63 Very Dirty Very Dirty Yes Very Dirty 

4 Connector 2 Clean Clean Yes Clean 

5 Connector 5 Clean Clean Yes Clean 
6 Connector 69 Very Dirty Very Dirty Yes Very Dirty 

7 Connector 62 Very Dirty Very Dirty Yes Very Dirty 

8 Connector 7 Clean Clean Yes Clean 
9 Connector 65 Very Dirty Very Dirty Yes Very Dirty 

10 Connector 1 Clean Clean Yes Clean 

11 Connector 67 Very Dirty Very Dirty Yes Very Dirty 
12 Connector 70 Very Dirty Very Dirty Yes Very Dirty 

13 Connector 96 Dirty Dirty Yes Dirty 

14 Connector 68 Very Dirty Very Dirty Yes Very Dirty 
15 Connector 100 Dirty Dirty Yes Dirty 

16 Connector 66 Very Dirty Very Dirty Yes Very Dirty 

17 Connector 98 Dirty Dirty Yes Dirty 
18 Connector 4 Dirty Dirty Yes Clean 

19 Connector 99 Dirty Dirty Yes Dirty 
20 Connector 101 Dirty Dirty Yes Dirty 

21 Connector 64 Very Dirty Very Dirty Yes Very Dirty 

 

 

Table 3. Confusion matrix 

  
Experts 

 

  
Clean 

Very 
Dirty 

Dirty Total 

Prototype 

results 

Clean 4 0 1 5 

Very Dirty 0 9 0 9 
Dirty 0 0 7 7 

Total 
 

4 9 8 21 
 

Table 4. Confusion matrix of proportions 

  
Experts 

 

  
Clean 

Very 
Dirty 

Dirty Total 

Prototype 

results 

Clean 0.190 0.000 0.048 0.238 

Very Dirty 0.000 0.429 0.000 0.429 
Dirty 0.000 0.000 0.333 0.333 

Total 
 

0.190 0.429 0.381 1.000 
 

 

 

Table 5. Index of agreement result 

Index Value 

Agreement index(K) 0.926 

# Valid cases 21 

 

 

Table 6. Individual agreement index result 

Index Value 

Agreement 

index(K) 

Clean 0.859 

Dirty 0.529 

Very Dirty 1.000 

# Valid cases 
 

21 

 

 

4. CONCLUSION  

The conclusions and final remarks are a low-cost device, capable of evaluating the cleanliness of 

fiber optic connectors with similar results than human experts, has been successfully developed. The 

microscope adapter achieved stable illumination and safely holds the digital camera. The image processing 

algorithm computes adequate variables, which reflects on the Cohen’s Kappa index values being close to 

perfect agreement. Nonetheless, when analyzing results individually, the index for dirty connectors is 0.529, 

which is classified as Moderate Agreement. Although this can be considered an acceptable result, it will be 

necessary to enhance training such that the agreement value can be higher for this particular result.  



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 11, No. 4, August 2021 :  3093 - 3105 

3104 

The algorithm takes 3 seconds to output the image classification. The digital camera microscope 

adapter is practical and innovative. The proposed system can be implemented in companies and organizations 

that already have the optical microscope, further reducing the system cost and increasing the market 

acceptance. The algorithm might fail when analyzing fiber optic connectors with a broken or damaged 

ferrule. Since this case is not considered in the algorithm design, the result might not agree with the 

connector being clean, dirty, or very dirty. As opportunities for improvement, there is the development of a 

case that can withstand the inclemency of field work and complement the algorithm developed with instances 

that allow us to distinguish what type of dirt is present and perhaps carry out an automatic cleaning, using 

electronic tools. 
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