
International Journal of Electrical and Computer Engineering (IJECE) 

Vol. 11, No. 4, August 2021, pp. 3145~3153 

ISSN: 2088-8708, DOI: 10.11591/ijece.v11i4.pp3145-3153      3145 

  

Journal homepage: http://ijece.iaescore.com 

Optimization of open flow controller placement in software 

defined networks 
 

 

Raghda Salam Al mahdawi, Huda M. Salih 
Department of Computer Engineering, Diyala University, Iraq 

 

 

Article Info  ABSTRACT  

Article history: 

Received Oct 2, 2019 

Revised Dec 20, 2020 

Accepted Jan 13, 2021 

 

 The world is entering into the era of big data where computer networks are 

an essential part. However, the current network architecture is not very 

convenient to configure such leap. Software defined network (SDN) is a new 

network architecture which argues the separation of control and data planes 

of the network devices by centralizing the former in high level, centralised 

devices and efficient supervisors, called controllers. This paper proposes a 

mathematical model that helps optimizing the locations of the controllers 

within the network while minimizing the overall cost under realistic 

constrains. Our method includes finding the minimum cost of placing the 

controllers; these costs are the network latency, controller processing power 

and link bandwidth. Different types of network topologies have been adopted 

to consider the data profile of the controllers, links of controllers and 

locations of switches. The results showed that as the size of input data 

increased, the time to find the optimal solution also increased in a non-

polynomial time. In addition, the cost of solution is increased linearly with 

the input size. Furthermore, when increasing allocating possible locations of 

the controllers, for the same number of switches, the cost was found to be less. 

Keywords: 

Computer networks 

Network controller 

Open flow controller 

Software defined network 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Raghda Salam Al mahdawi 

Department of Computer Engineering  

Diyala University 

Diyala, Baqubah, 32001 Iraq 

Email: raghdasalam@uodiyala.edu.iq, raghdasalam@ymail.com 

 

 

1. INTRODUCTION 

Recently, the number of users has rised exponentially, this urged the network operators and vendors 

to seek new network designs and advanced annaovations [1]. Today, computer networks are used extensively 

to enable communication throughout the globe. Wi-Fi and cellular networks shall be very adaptable within 

their network infrastructure. A resolution to this is moving the current networks towards more flexible and 

easier to manipulate architecture, called software defined network (SDN) [2].  

SDN is an emerging network design that is dynamic, manageable and cost-effective. SDN can boost 

the network up for the bandwidth-hungry applications, which is the nature of today's requirements [3]. SDN 

architecture decouples the network’s control and forwarding functions and permits the underlying 

infrastructure to be abstracted for network services via abstracting the network equipment and their operating 

system. It enables the control plane to become directly programmable and moved into a central location 

within the network, called “controller” [4]. 

The two main parities in this architecture are the controllers and switches, where the former makes 

decisions where information goes, and the latter is responsible for moving information hop-by-hop [5]. In 

between the controller and the switch, comes the channel, also called open flow protocol that is responsible 

https://creativecommons.org/licenses/by-sa/4.0/


                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 11, No. 4, August 2021 :  3145 - 3153 

3146 

for the necessary communications [6]. The controller uses this channel to install open flow tables into the 

switches, this table contains flow entries, such as IP and MAC addresses, and holds the necessary routing 

information that are required to direct the packets to their destinations [7].  

Clearly, the placement of these controllers is very vital for the network to reduce the latency of the 

network that is the prerequisite of 5G and beyond systems. The optimal location offers reduced latency to all 

the switches within the network and therefore, reduced latency to the network subscribers [8]. Accordingly, 

such optimization decreases the transmitted power required to send the packets to their destinations. Once the 

transmitted power is reduced, the power consumption of the networks is reduced too [9]. At the end, the 

network efficiency shall be enhanced. Hence, this work sheds light upon the controller’s placement under 

realistic constrains to minimize the cost while determining the number and the types of controllers to be 

optimised [10]. Different constraints and network metrics, such as controller capacity, controller and link 

types, link bandwidth and connectivity of the network devices have been considered. To achieve this, the 

following contributions have been made: 

 Given the many changes related to the controller, we presented a model that decides to supply the ideal 

number, area and type of controller at the same time. The purpose of the model is to reduce network costs by 

taking into account requirements such as the controller's range, contact area and power management distance.  

 Evaluation of the offer of the corresponding model and create typologies in different sizes. 

 Develop typologies areas that determine how the number of potential areas may affect utilities. 

 To evaluate organizational performance by expanding the size of the network in order to estimate the cost. 

Assessment of the controlling body and limitation of the number of controllers as indicated by the 

dynamic understanding of traffic and the improvement of the use of resources by the controller's network to 

change links. We have provided for a direct ability to monitor the performance of the controllers based on 

continuous feedback from the current monitoring body in accordance with mandatory regulations. We have 

also proposed a reclassification algorithm to speed up the adjustment of the burden between controllers. In 

addition, a failing element aims to solve the problem of controller disappointment [11]. 

 

 

2. RELATED WORKS 

In order to define the controller problem, a mathematical model is required to represent the behavior 

of SDN traffic [12]. We have used a solver called CPLEX to returns the optimal solution or the best solution 

found when the time limit is reached. Since the first introduction of the SDN controller issue by Heller et al. [7], 

many researchers have proposed different algorithms for dealing with one of the most difficult problems  

facing an engineer with respect to deploying an SDN network: the placement of controllers in the network.  

A formidable challenge associated with solving SDN controller placement problems is that all of the 

algorithms proposed involve a tradeoff among scalability, resilience, and model expansion [13, 14]. With 

respect to investigations of the SDN controller problem, the technical paper published by Heller et al. [15] is 

one of the most cited. The authors proposed a heuristic approach to finding the ideal role for controllers in 

large SDN organizations. In this study, the main prediction was the normal inactivity scenario, which is 

considered essential in determining the inertia estimates required for large-scale SDN use [16]. The approach 

is dependent primarily on propagation delay, with the location of a controller being based on the shortest path 

between switches and controllers that have been assigned in the network topology [17]. This study offered 

the most accurate solution for addressing the problem. An interesting conclusion was that increasing the 

number of controllers does not necessarily decrease the average latency between switches and assigned 

controllers [18]. 

 

 

3. RESEARCH METHOD 

We received an undirected organization topology 𝐺(𝑆,), where 𝑆 indicates the arrangement of 

switches and 𝐸 is the arrangement of edges in the middle. Let 𝐿 speaks to the arrangement of dynamic 

controllers and 𝑁 is the quantity of controllers, which is 1 as a matter of course. 𝑋=[𝑥𝑖𝑘] |𝑆|×𝑁 means the 

task relations among switches and controllers, in which each section 𝑥𝑖𝑘=1 if switch 𝑖 interfaces with 

controller 𝑘 and 𝑥𝑖𝑘=0 something else. For the gathered insights, 𝑡𝑘𝑛 speaks to the preparing time for 

occasion 𝑛 dealt with by controller 𝑘 and 𝑖 is the normal number of streams requiring for arrangement at 

switch 𝑖 in current time. 

 

3.1.  Constraints 

Our objective is to minimize the number of controllers’ 𝑁 considering a series of constraints, 

including as,  



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Optimization of open flow controller placement in software defined networks (Raghda Salam Al mahdawi) 

3147 

∀ 𝑘 ∈ 𝐿, 𝑘 < 𝐶𝑚𝑎𝑥 (1) 

 

and 

 

∀ 𝑘 ∈ 𝐿, 𝑘 < 𝑀𝑚𝑎𝑥 (2) 

 

and 

 

∀ 𝑘 ∈ 𝐿, 𝑘 < 𝐸𝑚𝑎𝑥 (3) 

 

and 

 

∀ 𝑘 ∈ 𝐿, 𝑘 < 𝐷𝑚𝑎𝑥 (4) 

 

and 

 

∀ 𝑘 ∈ 𝐿, 𝛴𝑡𝑘𝑛𝑛𝐸𝑘 < 𝑡𝑚𝑎𝑥 (5) 

 

Finally; 

 

∀ 𝑖 ∈ 𝑆, 𝛴𝑥𝑖𝑘𝑘 = 1 (6) 

 

As shown in (1) to (5) for each controller specify the maximum CPU usage, memory usage, normal 

number of hours per second and normal number of dropped packets, and normal packet preparation time. 

Missing packet include both the packet provided by the controller and the associated switches. A packet 

issued by the driver ensures that the driver will be overloaded. Assuming we do not think about good and up-

down switch times, the packet that removes the associated switches also shows that the controller ignores the 

flow setting problems. As shown in (6) determines whether each switch is assigned to one controller and one 

controller [19, 20]. 

 

3.2.  Evaluation function 

In order to evaluate the utility of a controller, an evaluation function is defined a function of the 5 

metrics for each controller: 

 

𝑈𝑘 = (𝐸𝑘, 𝐶𝑘, 𝑀𝑘, 𝐷𝑘, 𝑡𝑘𝑛) (7) 

 

Each of the 5 metrics reflects the controller performance. We design the evaluation function as 

follows though there is more than one possible expression. 

 

𝑈𝑘 = 𝛼𝐸𝑘 + 𝛽𝐶𝑘 + 𝛾𝑀𝑘 + 𝜇𝐷𝑘 + 𝜔𝛴𝑡𝑘𝑛𝑛𝐸𝑘 (8) 

 

In this formula, 𝛼, and ω are coefficients that can be redone to alter the general centrality of the 5 

measurements. 𝑈𝑘 is standardized to [0,1] expecting to rearrange the count. The ordinary range of 𝑈𝑘 is 

indicated as [𝑈𝑙𝑜𝑤𝑒𝑟], where 𝑈𝑙𝑜𝑤𝑒𝑟>0 and 𝑈𝑢𝑝𝑝𝑒𝑟<1. When 𝑈𝑘>𝑈𝑢𝑝𝑝𝑒𝑟, it implies controller 𝑘 is over-

burden and subordinate switches ought to be reassigned to different controllers. On the off chance that no 

dynamic controllers have enough limit (regarding parcels handling amount), another controller will be 

enacted to assume control over the unassigned switches. When 𝑈𝑘<𝑈𝑙𝑜𝑤𝑒𝑟, it implies the related switches of 

controller 𝑘 can be converted to those of other controller to chop down assets. Thinking about the 

requirements, when the estimation of a measurement goes past the ordinary area, the estimation of the 

assessment capacity should see strange consequently. Subsequently, the assessment capacity can be changed 

as (8) [21-23]. 

 

𝑈𝑘 = 𝑈𝑘 ∗ ||(𝐸𝑘 > 𝐸𝑚𝑎𝑥)||(𝐶𝑘 > 𝐶𝑚𝑎𝑥)||(𝑀𝑘 > 𝑀𝑚𝑎𝑥)||(𝐷𝑘 > 𝐷𝑚𝑎𝑥)||(𝛴𝑡𝑘𝑛𝑛𝐸𝑘 > 𝑡𝑚𝑎𝑥) (8) 

 

where 𝑈𝑘∗=𝛼𝐸𝑘+𝛽𝐶𝑘+𝛾𝑀𝑘+𝜇𝐷𝑘+ωΣ𝑡𝑘𝑛𝑛𝐸𝑘 and || is the logical operator OR. If any metrics violate the 

constraints, 𝑈𝑘 will become 1 immediately and trigger the centralized scheduler program. 

 

 

 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 11, No. 4, August 2021 :  3145 - 3153 

3148 

3.3.  Reassignment 
In the attached schedule, the contacts associated with each driver are sorted by traffic key. 

Meanwhile, the controls are set at your fingertips [24]. The largest stacking switches in the overload 

controller are initially switched to another dynamic controller with the highest available limits for example, 

packet processing probability and are intended to regulate steel between controllers over a period of short 

time [25, 26]. 

 

3.3.1. Algorithm 1: Reassignment algorithm 
Input: Network topology 𝐺, Switch set 𝑆, Active controller set 𝐿, Traffic set 𝐴= 𝑠] |𝑆|,  
Previous assignment 𝑋 

Output: New assignment 𝑋∗ 
1: 𝐿𝑣← List of the outstanding controllers for 𝑋 
2: for each 𝑙 from 𝐿𝑣 do 

3: 𝐻𝑐← Sorted list (descending capacity) of controller excluding 𝑙 
4: 𝐻𝑠← Sorted list (descending loading) of the switches for controller 𝑙 
5: 𝑠← First switch in 𝐻𝑠 

6: while statistics of 𝑙 violate the constraints (1) to (6) do 
7: 𝑘← First controller in 𝐻𝑐 

8: if 𝑠<𝐸𝑚𝑎𝑥−𝐸𝑘 then 
9: update 𝑋← reassign switch 𝑖 to controller 𝑘 
10: recalculate 𝐻𝑐, 𝐻𝑠 

11: else if 𝑠 is the last item in 𝐻𝑠 then 
12: update 𝑋← add a new controller 
13: recalculate 𝐻𝑐 

14: reset 𝑠← first switch in 𝐻𝑠 
15: else if 𝐻𝑠=∅ then 

16: update 𝐿,← remove 𝑙 
17: break 

18: else 

19: 𝑠← Next switch in 𝐻𝑠 
20: end if 

21: end while 

22: end for 

23: 𝑋∗←𝑋 

 

3.4.  Failover 

In the failover component, the selection program regularly checks the pulse of each controller as 

well as the connected status of each switch in each time unit [27]. When you identify inactive controllers or 

unspecified switches, you set up a unified scheduling program to resolve the issue. We address the issue in 

two stages: i) check that there are controllers available between actors and partners for unspecified changes; 

ii) If no accessible controller is found, start another controller to check the switches. The connection cycle is 

similar to the redefinition cycle, for example, the most important requirement is the heaviest steel switches 

and upper limit controllers [28].  

In our case, all controllers have only an environmental perspective on the topology of the network. 

Since in our situation we would expect the controllers to only deal with layer 2 learning and startup 

problems, they can, of course, learn the MAC address and specify the address. Thus, after the redefined 

cycle, controllers can become aware of the topological change and adapt as needed. To start at level 3, the 

controller must find a way to obtain information about the new topology at any time when re-mapping the 

switch, which will be considered in the next step. 

 

 

4. RESULTS AND DISCUSSION 

4.1.  Evaluation one - Failover 

As mentioned in the assessment system, the statistics application is acquired by the manager for the 

statistics application of the topology partner Mininet, which always examines the position of the association 

between the switches and the activity of the manager. If there is no chance that the connection status will 

stop, an immediate opportunity for the external scheduler is created in the scheduler. Hence, the scheduler 

starts immediately and designs another/current controller for users who compare switches. Our basic 

evaluation results show that the switches can be reconnected to the ACTION counter in 3 seconds. One of 

our future tasks is to maintain a design table for the connection between controls and switches. Accordingly, 

the “DOWN controller” capability of the scheduler can be used as soon as the scheduler can justify designing 

another/current controller for switches originally designed for the DOWN controller. This saves up to 3 

seconds to achieve takeover results. 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Optimization of open flow controller placement in software defined networks (Raghda Salam Al mahdawi) 

3149 

4.2.  Evaluation two 

 In normal situation, it does not create enough load to run a "pingall" command on the Mininet 

topology head mentioned above (27 hosts, 13 switches) to overload the POX l2_learning controller. One of 

the issues in this review was finding the normal way to recreate situations where the administrator has to 

request an event load (normal packet response time sometimes occurs completely, or even events occur.). We 

first tried extending the stack with a handler by adding additional data and changing the topology of Mininet, 

but "pingall" executes the "ping" command separately between 2, so PACKET_IN- events are usually the 

same than the size of topology, ie. We decided to look for an answer to limit the administrator's ability to 

handle PACKET_IN can be adapted to accelerate administrator overload. It turned out that the Linux utility 

"cpu limit" could definitely mess up the processors, and tests show that it worked perfectly for our needs as 

shown in Figure 1. 

Another problem was that the package preparing the details for the Mininet switch could change 

from topology to topology, but there is only one PACKET_IN control pause of the controller, regardless of 

the topology of the hidden switches. To make the administrator aware of the various provisions that violate 

the work with their hidden switch, our responses identify the possibility of a break from the perspective of a 

topology change. Our response took advantage of Mininet's integrated "ovs-dpctl" tool when our general 

audit was performed on the Mininet (OVS) [2]. The return of the "ovs-dpctl" tool has a field called "hit" that 

shows the number of packets preparing for the pause that takes place at the OVS level. In our response, the 

validated content was sent to the Stats Collector application in the Mininet topology tool, which again 

controls the ovs-dpctl number and will send "Overloaded controller", which activates program capabilities a 

to perform the reclassification calculation when the number of "hits" increases. This is the method to enable 

the ability to perform reclassification algorithm. 

In this review, another “Controller-Overloaded” indicator is that the manager's regular preparation 

time PACKET_IN has been halved from the previous overview. To do this, the scheduling application is 

scheduled at regular intervals to check the normal processing time of the PACKET_IN apartments collected 

by the Stats Collector program in the staffing table. When you recognize half the slope of the previous view, it 

performs the transfer calculation. This is a research method to perform the transfer calculation. Figures 2 and 3 

describes these two conditions. 

 

 

  
 

Figure 1. Graph for average response time  

and CPU ra 

 

Figure 2. Two modes of app 

 

 

Our underlying review results show that it is possible to switch to a typical controller that is 

normally stacked within 8 seconds in lift mode, but this can usually be stopped within 3 seconds in a single 

trigger mode. Advanced SDN tools, such as Mininet and OVS, give us the convenience of re-creating the 

SDN system. Either way, it is not easy to emulate a huge organization with minites with limited resources. 

Initially, we tried to run Mininet topology and many POX controllers in a similar virtual machine (VM), but 

the resource value between Mininet topology and the regulator shares the regulator exposure, especially as 

the size of the organization evolves. This problem can be understood when the CPU and Mininet memory can 

be separated from the POX controllers. 

Later, we proposed running Mininet and POX controllers on individually connected virtual 

machines. The loading of the simulated network could be easily adjusted by simply modifying the number of 

bridged VMs, which increased the flexibility of the simulation. To simulate the performance of the controller, 

we have the "cpulimit" tool to restrict the correct processor for each controller. It will be more advantageous 

that this limitation of processor usage may later become an indirect part of SDN tools. 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 11, No. 4, August 2021 :  3145 - 3153 

3150 

Some visualization tools are suitable for Mininet regulators. In any case, it seems that most of them 

do not defend the powerful topology of the network, which is a major problem with SDN research. 

Moreover, they are not feasible under the compatible circumstances. The video display and information 

display select more adaptable and user-friendly means of data analysis. 

 

4.3.  CPLEX optimization 

As the problem size increases, it becomes very difficult (not to say impossible) to solve the 

problems manually and that is why a solver is needed. The optimization for this scenario is run on IBM's 

ILOG CPLEX Optimizer version 12.5. The optimizer runs on a single thread. The process that is shown in 

Figure 3 is run on a computer that has the solver installed. 

We are already aware of the solution to this problem but the optimizer will validate the above 

solution. Furthermore, the optimizer suggests the time taken to get the solution, which is an important 

information when the problem size increases. The solution is plotted and shown in Figure 3. The links 

connecting the switches to the controllers are shown with either solid blue or green colour. A blue colour 

indicates the cost for the links of type one (1 Mbps). The green colour is the cost for the links of type two  

(10 Mbps). Similarly, the controller placements are coloured and are placed on top of the possible placement 

markers. The yellow colour indicates the first controller type and the red colour indicates the second 

controller type. As we can see, the result of the optimization matches the solution found earlier. The links 

between controllers are always the same type of colour, since we assume that it takes minimal bandwidth to 

have controllers communicate with each other. Because the goal of the planning model is to place controllers 

on a network, traffic between controllers is not considered and in our model, the cheapest link speed should 

be good enough for connecting controllers together. 

 

 

 
 

Figure 3. Optimal solution found by CPLEX for the planning problem 

 

 

4.4.  Small to large input sizes 

The optimization should be measured using a variety of methods. One way to measure, it is to keep 

track of the cost for diff t ranges of solutions. Another method is to keep track of the time taken by the solver 

to fi an optimal solution. The cost of the solution should be increasing as the number of switches increases. 

This is because the input increase means more controllers may be placed and all those switches must be 

connected. The number of switches in the topology is directly related to the number of links placed by the 

solver between switches and controllers. Since every switch must be connected to a controller, it increases 

the cost of the solution. 

The input for the model is very important and, in this section, we show what the input for controllers 

may be. Today many controllers exist and have been tested in real scenarios. Each of these controllers has 

their own specifications. The specification of each controller type depends on the hardware used and the 

implementation of the programming language. Table 1 shows four types of controllers that are used by the solver. 

The specification of the link types that connect controllers and switches together is easy to 

determine. On any networking sales website, one can determine the cost per meter and the types of links that 

are available. Currently, a meter of 100 Mbps ethernet is about $0.25 and $0.63 for a meter of 1 Gbps 

ethernet. Furthermore, over 10 Gbps fi er optic cable is on average $29 per meter. Table 2 shows the link 

input available for optimization. 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Optimization of open flow controller placement in software defined networks (Raghda Salam Al mahdawi) 

3151 

Table 1. The type of controllers that are used as input to the planning model 
 Type 1 Type 2 Type 3 Type 4 

Cost ($) 1200 2500 6500 1200 

Number of Ports 8 32 64 64 

Processing Time (Seconds) 2500 4000 8000 15000 
Number of Controllers 20 15 10 6 

 

 

Table 2. The type of links that are used as input to the planning model 
 Type 1 Type 2 Type 3 

Cost/meter ($) 0.25 0.63 29 
Bandwidth 10Mbps 1Gbps 10Gbps 

 

 

When the error bars are wide, it indicates that the results are less reliable because the range covers a 

wider set of values. This is shown in Figures 3 and 4. We can improve the error bars by running more than 

four instances for each problem. Decreasing the error bars is possible if we decrease the standard deviation 

since standard deviation is related to the square root of the number of instances each problem is repeated. 

Looking at the figure, when |P | is 20 and |S| is 100, the error bars are very wide. To make the bars shorter, 

we need to make the standard deviation smaller by running each problem more than 4 times. If we wish to 

decrease the standard deviation by half, each problem would have to run 16 times. When |P | is 20 and |S| is 

100, each problem instance takes 16 hours to complete. This would mean that for 16 runs, it would take 256 

hours to complete all the 16 instances. The standard deviation for four instances is 8,490 seconds and the 

confidence interval is ±27,019 seconds. Assuming the same mean is used, if we were to run the problem 16 

times, the confidence interval would decrease to ±9,056 seconds (because standard deviation decreased by 

half). This is 33% of the confidence interval when we compare it to the four instances from our result. 

Also, in Figures 3-4, we can see that the error bars are wide for |P|≥15 and ISi 2:50. We can improve 

the reliability of the result for problem 31 by running an instance of the problem 16 times. Since the average 

time for that problem is about 13 hours (46,219 seconds), running it 16 times may take 205 hours (15 fold 

increase). The results show that the total time taken to find optimal solutions for every problem run four 

times is 19 days (1,656,776 seconds).  Improving the reliability by running all of the problems 16 times is not 

practical because it would have taken 306 days to find the solutions. The solution time was expected to be 

high because integer programming problems fall into NP-Hard problem types. 

Figures 3-5 show the plots of the results grouped by IPI- The plots show the solution time and 

solution cost against the number of switches. The figures show more details than the figures that have all the 

IPI in one graph. The reason for this is that when IPI is small, the range of values for the solution time and 

the cost are much lower than when IPI is of a higher value and this allows us to better analyze the graphs. For 

example, if we look at the time taken to find an optimal solution when ISi is 30 and IPI is 5, we cannot see 

any details in Figures 4 and 5 but we see considerable details in Figures 3-5. 

 

 

 
 

Figure 4. Cost of solutions colored against maximum 

number of controllers 

 
 

Figure 5. Solutions time against the number of 

switches with 95% confidence interval 

 

 

 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 11, No. 4, August 2021 :  3145 - 3153 

3152 

5. CONCLUSION 

It is essential to develop methods for finding the preferred controllers in a network, because SDN 

networks transmit motion to a controller. This study finds an ideal place for network mentors by suggesting 

the controllers. Current network is augmented in SDN with a mathematical model that reduces the cost of 

setting up controllers. The goal is to find out the minimum cost of having controllers while considering flow 

setup, controller processing, link bandwidth controllers and network latency for switches and find 

connections between controllers. Existing SDN networks that require a planning process are formed by 

another mathematical model that accepts pre-installed equipment. 

In terms of cost, we can also see some general trends. The first thing we can observe is that the cost 

of solutions is higher as the input size increases. As the number of possible controller locations increased, for 

the same number of switches, the optimal cost was found to be slightly cheaper (up to a certain point). The 

planning model consists of a binary integer program that minimizes the cost of placing controllers on a 

network while keeping the flow setup latency under a threshold and respecting the inventory that is available 

for the planning process. 

Our expansion includes two types of experiments. The first one investigates the result of the 

expansion model by adding and removing switches. The second experiment investigates how the existing 

network changes with different cost to remove existing inventory from the network. Before any expansion 

topology can be optimized, planning the network by the planning model must be done. For the first 

experiment, 3 different networks are planned randomly that form the topologies that our expansion model 

performs modifications on. Then for each of the topologies, 15, 10, and 5 switches are removed from the 

network and 5, 10, and 15 switches are added to the network before expansion is run. The results of the 

optimal solutions show that removing items from the network is inexpensive in cost and time. However, 

when adding 5, 10 and 15 switches to the network, the solution time and cost of the network increases. 

However, when switches are added, to expand the network, the solver takes time but it is a quick operation. 

The time to expand an existing network by adding 15 switches ranges from 1 to 4 seconds. The cost of the 

solutions depends on whether an existing item is reallocated, if so, the optimal solution cost is much more expensive. 

The second expansion experiment involves in adding a set of switches to an existing topology with 

the cost to remove the existing inventory that starts at 100 times the planning cost and goes down to 1 of the 

planning costs. From the results, we observe that the optimal solution when the removal cost of the existing 

inventory is 100, the existing network is not changed at all. A controller is placed for the additional switches 

that were added. As the cost to remove existing inventory decreased, the existing network started changing 

and the optimal solution cost also decreased. Furthermore, the cost to remove existing inventory decreased, 

changes to the existing network became more frequent. For future work, this work can be expanded to apply 

more advanced heuristic algorithms such as Tabu search. This would help the algorithm pass the local 

minimum and find solutions that are closer to the optimal solution. 

  

 

REFERENCES 
[1] N. Feamster and R. Jennifer, "The road to SDN, An intellectual history of programmable networks," ACM Queue, 

vol. 11, no. 12, pp. 20-22, 2013. 

[2] N. McKeown et al., "OpenFlow: enabling innovation in campus networks," ACM SIGCOMM Computer 

Communication Review, vol. 38, no. 2, pp. 69-74, 2008.  

[3] B. Heller et al., "The controller placement problem," Proceedings of the first workshop on Hot topics in software 

defined Networks, 2012, pp. 7-12.  

[4] M. F. Bari et al., "Dynamic controller provisioning in software defined networks," Proceedings of the 9th 

International Conference on Network and Service Management (CNSM 2013), Zurich, Switzerland, 2013, pp. 18-25.  

[5] Y. N. Hu et al., "On the placement of controllers in software-defined networks," The Journal of China Universities 

of Posts and Telecommunications, vol. 19, no. 2, pp. 92-171, 2012. 

[6] J. I. Naser and A. J. Kadhim, "Multicast routing strategy for SDN-cluster based MANET," International Journal of 

Electrical and Computer Engineering (IJECE), vol. 10, no. 5, pp. 4447-4457, 2020.  

[7] L. Yang et al., "Forwarding and control element separation (forces) framework," RFC3746, pp. 5-30, 2004. 

[8] J. Medved et al., “Opendaylight: Towards a model-driven sdn controller architecture,” Proceeding of IEEE 

International Symposium on a World of Wireless, Mobile and Multimedia Networks 2014, Sydney, NSW, Australia, 

2014, pp. 1-6. 

[9] B. Nunes et al., "A survey of software-defined networking: Past, present, and future of programmable networks," 

IEEE Communications Surveys & Tutorials, vol. 16, no. 3, pp. 1617-1634, 2014.  

[10] M. Kind et al., "Split architecture: Applying the software define networking concept to carrier networks," World 

Telecommunications Congress (WTC), pp. 1-6, 2012. 

[11] B. Heller, "The controller placement problem," ACM SIGCOMM Computer Communication Review, vol. 42, no. 4, 

pp. 473-478, 2014. 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Optimization of open flow controller placement in software defined networks (Raghda Salam Al mahdawi) 

3153 

[12] L. Li et al., "Toward software-defined cellular networks," 2012 European Workshop on Software Defined 

Networking, Darmstadt, Germany, 2012, pp. 7-12. 

[13] D. Venmani, "Demystifying link congestion in 4g-lte backhaul using openflow," 2012 5th International Conference 

on New Technologies, Mobility and Security (NTMS), Istanbul, Turkey, 2012, pp. 1-8. 

[14] T. Luo et al., "Sensor openflow: Enabling software-defined wireless sensor networks," IEEE Communications 

Letters, vol. 16, no. 11, pp. 1896-1899, 2012. 

[15] D. Simeonidou et al., "Enabling the future optical internet with openflow: A paradigm shift in providing intelligent 

optical network services," 2011 13th International Conference on Transparent Optical Networks, Stockholm, 

Sweden, 2011, pp. 1-4. 

[16] S. Gringeri, "Extending software defined network principles to include optical transport," IEEE Communications 

Magazine, vol. 51, no. 3, pp. 32-40, 2013. 

[17]  M. Shirazipour et al. "Openflow and multi-layer extensions: Overview and next steps," 2012 European Workshop 

on Software Defined Networking, Darmstadt, Germany, 2012, pp. 13-17. 

[18] S. Das et al., "Packet and circuit network convergence with openflow," 2010 Conference on Optical Fiber 

Communication (OFC/NFOEC), collocated National Fiber Optic Engineers Conference, San Diego, CA, USA, 

2010, pp. 1-3. 

[19] Quintero-Duran, M., Candelo-Becerra, J. E., and Soto-Ortiz, J. D., “A modified backward/forward sweep-based 

method for reconfiguration of unbalanced distribution networks,” International Journal of Electrical and Computer 

Engineering (IJECE), vol. 9, no. 1, pp. 85-101, 2019. 

[20] M. Shirazipour et al., "Realizing packet optical integration with sdn and openflow 1.1 extensions," 2012 IEEE 

International Conference on Communications (ICC), Ottawa, ON, Canada, 2012, pp. 6633-6637. 

[21] M. Channegowda et al., "Experimental evaluation of extended OpenFlow deployment for high-performance optical 

networks," 2012 38th European Conference and Exhibition on Optical Communications, Amsterdam, Netherlands, 

2012, pp. 1-3. 

[22] N. Handigol, "Where is the debugger for my software-defined network," Proceedings of the 1st HotSDN Workshop, 

2012, pp. 55-60. 

[23] Canini, Marco, and Dejan Kostic, "Systematic Software Testing Meets Networking,” Conference Open Networking 

Summit, Research Track (ONS), 2013, pp. 1-2. 

[24] M. K. Shin et al., "VeriSDN: Formal verification for softwaredefined networking (SDN)," Telecommunication 

Review, pp. 1-2, 2013. 

[25] B. Lantz et al., "A network in a laptop: rapid prototyping for software-defined networks," Proceedings of the 10th 

ACM Workshop on Hot Topics in Networks. HotNets 2010, Monterey, CA, USA, pp. 19-26, 2010. 

[26] P. Guimaraes et al., "Experimenting content-centric networks in the future internet testbed environment," 2013 

IEEE International Conference on Communications Workshops (ICC), Budapest, Hungary, 2013, pp. 1383-1387. 

[27] B. B. Bezabeh and A. D. Mengistu, "The effects of multiple layers feed-forward neural network transfer function in 

digital based Ethiopian soil classification and moisture prediction," International Journal of Electrical and 

Computer Engineering (IJECE), vol. 10, no. 4, pp. 4073-4079, 2020. 

[28] H. Attia, "Artificial neural network-based unity power factor corrector for single phase DC-DC converters," 

International Journal of Electrical and Computer Engineering (IJECE), vol. 10, no. 4, pp. 4145-4154, 2020. 

 


