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 Methamphetamine addiction is a prominent problem in Southeast Asia. Drug 

addicts often discuss illegal activities on popular social networking services. 

These individuals spread messages on social media as a means of both 

buying and selling drugs online. This paper proposes a model, the “text 

classification model of methamphetamine tweets in Southeast Asia” 

(TMTA), to identify whether a tweet from Southeast Asia is related to 

methamphetamine abuse. The research addresses the weakness of bag of 

words (BoW) by introducing BoW and Word2Vec feature selection (BWF) 

techniques. A domain-based feature selection method was performed using 

the BoW dataset and Word2Vec. The BWF dataset provided a smaller 

number of features than the BoW and TF–IDF dataset. We experimented 

with three candidate classifiers: Support vector machine (SVM), decision 

tree (J48) and naive bayes (NB). We found that the J48 classifier with the 

BWF dataset provided the best performance for the TMTA in terms of 

accuracy (0.815), F-measure (0.818), Kappa (0.528), Matthews correlation 

coefficient (0.529) and high area under the ROC Curve (0.763). Moreover, 

TMTA provided the lowest runtime (3.480 seconds) using the J48 with the 

BWF dataset.  
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1. INTRODUCTION 

Southeast Asia is considered a centre of methamphetamine production because of many related 

arrests, which continue to rise annually after increasing four-fold from 1998 to 2014 [1]. Drug addicts often 

talk about activities related to methamphetamine on popular social networking services. Some tweets are 

published on social media for the purposes of buying and selling drugs online. However, little research has 

examined the development of text classification models for tweets relating to methamphetamine [2]. This 

study’s objective is to propose a new data preprocessing technique for methamphetamine-related tweets in 

Southeast Asia. 

For this purpose, we have introduced a model called the “text classification model of 

methamphetamine tweets in Southeast Asia using dual data preprocessing techniques (TMTA)”. A critical 

process in the development of the TMTA was data preprocessing using the bag-of-words (BoW) model, a 

basic, classical, straightforward technique, popular for data preprocessing in text classification. This method 

considers the frequency of each word as a classification feature known as one-hot representation. Each word 

is represented by a sparse vector consisting of its index and frequency [3, 4]. As features may potentially run 

https://creativecommons.org/licenses/by-sa/4.0/
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into multiple vectors, Bow’s weakness is the likelihood of resulting in a larger size in the form of high-

dimensional vectors [5]. The current study reduced this weakness of BoW by proposing the BWF technique, 

a novel approach consisting of BoW and Word2Vec feature selection comprising two steps. The first step 

created a text representation dataset using BoW. The second involved a domain-based feature selection, 

performed using the BoW dataset and Word2Vec. 

We began by collecting tweets from Twitter that originated from Southeast Asia and dividing them 

into two classes, namely abuse and non-abuse. We then experimented with three classification algorithms, 

including support vector machine (SVM), decision tree (J48) and naive bayes (NB). We measured the 

performance of each model based on accuracy, F-measure, the Area under the ROC curve (AUC), Kappa, 

Matthews correlation coefficient (MCC) and runtime. Finally, we compared our model with three different 

data preprocessing techniques (BoW, TF–IDF, BWF). The experimental results showed that the TMTA, 

using the J48 and BWF dataset, provided the highest performance measurements. 

This research contributes to the literature a new data preprocessing technique for classifying 

methamphetamine-related tweets. BWF provides a smaller dataset than traditional or widely used techniques 

such as BoW and TF–IDF. Furthermore, the TMTA model can accurately identify narcotic 

methamphetamine tweets. Hence, this model can be developed as an application system to monitor tweets 

related to methamphetamine on the Twitter platform in Southeast Asia. 

Although a handful of researchers have used different classifiers to develop text classification 

models for tweets related to illegal drugs, few research studies are available. Phan et al. [2] developed a 

model to detect the sharing of tweets related to illegal drugs, including marijuana, cocaine and heroin. The 

authors conducted their research in a rural region of the United States of America (USA). Their dataset was 

divided by experts into 2 classes: Abuse or non-abuse. BoW and TF-IDF were used as data preprocessing 

techniques, and 3 classifiers were used: SVM, J48 and NB. The study findings revealed that the best model 

was the J48 algorithm using the TF–IDF method, which provided the highest F-measure of 0.7480. Ragini 

and Anand [6], in a study addressing the multi-class classification problem for a disaster event in India, 

collected 70,817 relevant tweets from 2014 to 2015. They divided the tweets into 7 classes: food, water, 

shelter, and medical emergency, people trapped, collapsed structure and electricity. Next, the authors created 

models using SVM and NB classifiers. The best-performing model in this case used the SVM classifier with 

the TF-IDF dataset. Wang et al. [7] compared the efficiency of data preprocessing techniques consisting of 

BoW, TF–IDF, PV-DM and PV-DBOW. The dataset used in the experiment, based on the Shanghai and 

Shenzhen Stock Exchanges, was divided into 2 datasets: small class and big class. The classification models 

were NB, logistic regression, SVM, K-nearest neighbour (KNN) and Decision Tree. The researchers reported 

that the small class dataset, using the SVM algorithm with the TF-IDF dataset, demonstrated the highest 

accuracy of 0.8355.  

Ghosh et al. [8] addressed the multi-class classification problem for disaster events consisting of 

earthquakes, hurricanes, electrical outages and drought. The experimental tweets in the 2015 dataset related 

to the Nepal earthquake in April of that year. The TF–IDF method provided the dataset for the models that 

were created using the following classifiers: NB, SVM, Decision Tree, AdaBoost, random forest and gradient 

boosting. According to the results, the model created using SVM with the TF-IDF dataset provided the 

highest F-measure of 0.9178. Burel and Alani [9] also addressed disaster events with a dataset that consisted 

of 28,000 tweets on various crises between 2012 and 2013. Their two models were based on the 

convolutional neural network (CNN) classifier using a word-embedding dataset and the SVM classifier using 

the TF-IDF dataset. The results showed that CNN with a word-embedding dataset did not significantly 

outperform SVM with the TF-IDF dataset. The literature review also covers classifiers for the development 

of text classification models using tweeted data with classifiers consisting of SVM, J48 and NB. The SVM 

classifier with TF–IDF was widely used to develop the text classification model. Additionally, researchers 

chose the J48 and NB classifiers to develop the text classification model. 

Text representation is a part of natural language processing (NLP), which converts text data into 

numeric vectors that the machine can manipulate. Numerous methods can perform text data conversion. One 

simple approach gives each word a one-hot representation, such as BoW. In addition, TF-IDF text 

representation is a popular technique for developing a text classification model. As mentioned, BoW involves 

a collection of words that represents the features of the text by the word frequency. For example, a word has 

a value of one if it appears once in the text. The vector representation of text using BoW is an unstructured 

text document [3, 4]. Furthermore, term frequency (TF) is a calculation of the frequency of a word that 

appears in the document relative to the total number of words in the document. A high TF value indicates the 

importance of the word. In addition, inverse document frequency (IDF) is the inverse of the word frequency 

in the document. A high IDF value indicates an important word, which should appear only in that category 

and not in other categories. Therefore, term frequency-inverse document frequency (TF-IDF) is the weight 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Text classification model for methamphetamine-related tweets in Southeast... (Narongsak Chayangkoon) 

3619 

indicating the importance of the word. TF-IDF determines the weight of the word (w) in a document (d) that 

appears in the document, based on (1) [10, 11]. 

 

𝑇𝐹 − 𝐼𝐷𝐹 =  (𝑇𝐹𝑤, 𝑑 ×  𝐼𝐷𝐹𝑤) (1) 

 

Tomas Mikolov developed Word2Vec as a tool for NLP. This tool, which employs deep neural 

networks that train word associations to synonymous words, is used to create a pre-trained word embedding 

model that is trained from the corpus. Word2Vec has two different algorithms: The Skip-gram model and 

continuous bag-of-words (CBOW). Those models represent features that use the vector number. Synonym 

words can be found by using the cosine similarity function between the two vectors [12]. 

Cosine similarity is a statistical technique used to measure the similarity between two documents 

(𝑑1,𝑑2) represented by numeric vectors in the projection space. A cosine similarity value closer to one 

suggests similar documents; alternatively, a value that is closer to zero suggests dissimilar ones. Cosine 

similarity is calculated as shown in (2) [13]. 

 

𝐶𝑜𝑠(𝑑1, 𝑑2) = 
𝑑1,𝑑2

(𝑑1.𝑑2)1/2+(𝑑1.𝑑2)1/2 (2) 

 

Data classification is the process of creating machine learning models in which a relationship exists 

between the features and classes of a dataset. Popular data classification algorithms are SVM [14], J48 [15] 

and NB [16]. SVM is a classification algorithm designed for binary-class problems. SVM classifiers create a 

decision boundary in a hyperplane that divides the data into two classes in the feature space using a non-

probabilistic binary based on a linear function. The function determines a decision boundary that maximizes 

the margin between the support vectors. However, functions defining the decision boundary can be 

polynomial and radial based. The advantage of the SVM classifier is that it does not cause an overfitting 

problem from the model memorizing too many of the training set. Therefore, the model cannot classify the 

test dataset to its best ability [14]. In comparison, J48 is a Decision Tree classification algorithm. J48 

classifiers select the feature with the highest information gain value, which is then used as the root node of 

the tree. The model is created using a top-down greedy search that selects features from the root node. The 

J48 classifier is suitable for large datasets because of its lower runtime [15]. Finally, NB classifiers use a 

conditional probability calculation. P (A | B) is the conditional probability or probability that event B occurs 

first and is followed by event A. P (A ∩ B) is the joint probability or the probability that event A and event B 

will both occur. P (B) is the probability that event B will occur. The NB classifier makes it easy to train 

models using a dataset with a large number of features, such as text datasets. The conditional probability 

calculation is shown in (3) [16]. 

 

P (A | B) = 
P (A ∩ B)

P (B)
 (3) 

 

Performance measurements are the measurements of text classification models that assess their 

accuracy. However, this process may sometimes end up revising the model and evaluating the text mining 

process until the model is the most accurate. Accuracy is calculated from the correct classification of the 

model that considers all classes divided by all data, as shown in (4) [17]. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (4) 

 

F-measure is an overall value that measures the correlation between precision and recall values, as 

shown in (5) [18]. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃), 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)  

 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (5) 

 

AUC is the area under the receiver operating characteristic (ROC) curve graph. AUC is the area 

under the 2D graph to the x-axis (representing the FP) and the y-axis (representing the TP), as shown in (6) 

[19]. 

 

𝐴𝑈𝐶 = 
1+𝑇𝑃−𝐹𝑃

2
 (6) 

 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 11, No. 4, August 2021 :  3617 - 3628 

3620 

The Kappa coefficient is a statistic used to examine the consistency of the results of classification 

between two classes. The dataset used in the experiment does not have to have a normal distribution or non-

parametric statistics. Po is the observed probability of agreement, and Pe is the hypothetical expected 

probability of agreement, as shown in (7) [20]. 

 

𝐾𝑎𝑝𝑝𝑎 = 
𝑃𝑜−𝑃𝑒

1−𝑃𝑒
 (7) 

 

MCC is a measure of the efficiency classification results that is used with two-class datasets. The 

MCC value determines the balance of classification results with a value between -1 and +1 being calculated 

using TP, TN, FP and FN, as shown in (8) [21, 22]. 

 

𝑀𝐶𝐶 =
𝑇𝑃×𝑇𝑁−𝐹𝑃×𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
 (8) 

 

Runtime performance is calculated from the 3 components of the actual working time: train time, 

test time and model time [23]. 

 

 

2. PROPOSED ALGORITHM 

The BWF algorithm was a domain-based feature selection technique performed using the BoW 

dataset and Word2Vec. This algorithm filtered the features of the BoW dataset to produce a new dataset for 

the creation of a text classification model. The advantage of this algorithm was that it created a BWF dataset 

smaller than the BoW dataset. The BWF algorithm included two steps. The first step involved creating the 

BoW dataset, consisting of the set of an instance where a bow such that each bow was instance 1 to instance 

n, as shown in (9). 

 

𝐵𝑜𝑊 = {𝑏𝑜𝑤1, 𝑏𝑜𝑤2, … , 𝑏𝑜𝑤𝑛} (9) 

 

W was a set of features in the BoW dataset where W contained the set of features starting from 

feature 1 to feature w, as shown in (10). 

 

𝑊 = {𝑓𝑒𝑎𝑡𝑢𝑟𝑒1, 𝑓𝑒𝑎𝑡𝑢𝑟𝑒2, … , 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑤} (10) 

 

The second step involved a domain-based feature selection technique, performed using BoW and 

Word2Vec. The domain-based feature selection technique used three steps: 

 Word2Vec was used to produce a pre-trained word embedding model from the methamphetamine tweet 

dataset. We used the Skip-gram model, an algorithm that generated the pre-trained word embedding 

model using Word2Vec. Tomas Mikolov suggested this algorithm, which was superior for infrequent 

words. Those words consisted of technical terms, slang name and synonym name. The Skip-gram model 

selected infrequent words to calculate the vector number. Thus, infrequent words had a higher-quality 

vector number than when using CBOW [12]. The pre-trained word embedding model consisted of 100-

dimensional features represented by vector number. We defined the 100-dimensional features in focusing 

on runtime competencies that were used to create the pre-trained word embedding model from a large 

corpus. 

 The set of domain-based features (SDBF) was created by measuring the cosine similarity between domain 

keywords in the pre-trained word embedding model. Our research used the keyword “methamphetamine” 

as the common name of methamphetamine.  

 

𝑆𝐷𝐵𝐹 =  𝐶𝑜𝑠𝑖𝑛𝑒 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝑃𝑟𝑒 − 𝑡𝑟𝑎𝑖𝑛𝑒𝑑 𝑤𝑜𝑟𝑑 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 𝑚𝑜𝑑𝑒𝑙, “𝑘𝑒𝑦𝑤𝑜𝑟𝑑𝑠”)  

 

The SDBF was sorted by descending cosine similarity. If the cosine similarity was equal to or 

greater than 0.8, those features were selected for inclusion as filter features of the BoW dataset. The SDBF 

contained the set of features starting from feature 1 to feature w', as shown in (11). 

 

SDBF = {𝑓𝑒𝑎𝑡𝑢𝑟𝑒1, 𝑓𝑒𝑎𝑡𝑢𝑟𝑒2, … , 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑤′} (11) 

 

The BoW dataset was filtered to keep only the features in the SDBF. Next, the BoW dataset was 

considered based on the summed frequency in each instance of the dataset. If the sum frequency of an 
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instance was equal to zero, that instance was deleted from the BoW dataset. This research used the R 

programming package to implement the BWF algorithm [24]. The proposed data preprocessing technique 

consisted of the BWF algorithm, as shown in Figure 1. 

 

 
 Input: 𝑩𝒐𝑾 = {𝑏𝑜𝑤1, 𝑏𝑜𝑤2, … , 𝑏𝑜𝑤𝑛} 
            Methamphetamine Tweet Dataset 

 Output: 𝐵𝑊𝐹 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 = {𝑏𝑜𝑤′1, 𝑏𝑜𝑤′2, … , 𝑏𝑜𝑤′𝑚}. 
1 Pre-trained word embedding model = Word2Vec(Methamphetamine Tweet Dataset) 
2 SDBF = Cosine Similarity (Pre-trained word embedding model, “keywords”) 
3 SDBF is sorted by descending cosine similarity 

4 For each 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑖 in SDBF 

5         If cosine similarity value less than 0.8 

6 ……... 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑖 is removed from SDBF 

7         End If 

8 End For 

9 Return SDBF dataset                                                                    SDBF = {𝑓𝑒𝑎𝑡𝑢𝑟𝑒1, 𝑓𝑒𝑎𝑡𝑢𝑟𝑒2, … , 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑤′} 

10 𝑩𝑾𝑭 dataset = Copy of 𝑩𝒐𝑾 

11 𝑩𝑾𝑭 dataset is INNER Join 𝑾 and SDBF                                 𝑊 = {𝑓𝑒𝑎𝑡𝑢𝑟𝑒1, 𝑓𝑒𝑎𝑡𝑢𝑟𝑒2, … , 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑤} 

12 For each 𝑏𝑜𝑤′𝑖 in 𝑩𝑾𝑭dataset  

13        |𝒃𝒐𝒘′𝒊| is the sum frequency of an instance in 𝒃𝒐𝒘′𝒊 

14        If |𝒃𝒐𝒘′𝒊| equal to 0 

15 ……... 𝒃𝒐𝒘′𝒊 is removed from 𝑩𝑾𝑭 dataset 
16        End If 
17 End For 

18 Return 𝑩𝑾𝑭 dataset 

 

Figure 1. BWF algorithm 

 

 

From Figure 1, the result of the BWF algorithm was a new dataset, called the “BWF dataset”, which 

used the same text representation outcomes from the BoW dataset. This dataset was used for text 

classification in that the word frequency was used for the feature of the training with the classifier algorithm. 

However, the BWF dataset had fewer features and instances than the BoW dataset. The BWF contained the 

set of vectorization (bow'), where each vectorization was from instance 1 to instance m, as shown in (12): 

 

𝐵𝑊𝐹 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 = {𝑏𝑜𝑤′1, 𝑏𝑜𝑤′2, … , 𝑏𝑜𝑤′𝑚} (12) 

 

Proof:  

Let w be the number of features in BoW. Let SDBF be the set of features. SDBF derives from the 

cosine similarity using the threshold of 0.8. Let w' be the number of features in SDBF. The BWF dataset is 

derived from BoW with only the features in SDBF. Thus, the number of features in the BWF dataset must be 

at most w'. Moreover, the BWF dataset is produced by removing (instance of) BoW in which the sums of all 

feature frequencies are equal to 0. Therefore, the number of instances in the BWF dataset must be less than 

that of BoW. 

 

 

3. RESEARCH METHOD 

This research consisted of two objectives. The first was the development of the “BWF” dataset. The 

second was the development of the TMTA, which consisted of the following steps: tweet collection, data 

preprocessing, classification, performance testing and hypothesis testing, as shown in the overview of the 

research framework in Figure 2. 

 

3.1.  Tweet collection 

3.1.1. Synonym identification 

This procedure involved the identification of keywords related to methamphetamine consisting of 

the common name, slang name and street name. These were collected and identified by the UK police [25]. 

In addition, we used the common name of methamphetamine to measure cosine similarity with Google News 

vectors [26] to look for additional slang names that had not been collected and identified by the UK police. 

 

3.1.2. Tweet retrieval 

Tweet retrieval is the selection of short text on Twitter related to methamphetamine that was posted 

by users in Southeast Asia, specifically Thailand, Indonesia, and Myanmar. 
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Figure 2. Research framework 

 

 

3.1.3. Tweet labeling 

Tweets were labeled by an expert from the Royal Thai Police Forensics Office into 2 classes: Non-

abuse or abuse. Non-abuse tweets mentioned the penalty for using methamphetamine or its use as a medicine. 

The abuse class contained tweets about the illegal use of methamphetamine, including tweets promoting the 

use of methamphetamine, such as encouraging substance abuse to reduce obesity. 
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3.1.4. Methamphetamine tweet dataset (MTD) 

We collected 2,899 tweets from online social media related to methamphetamine in Southeast Asia 

that an expert from the Royal Thai Police Forensics Office subsequently labeled. These data were divided 

into two classes: 2,170 instances of non-abuse and 729 instances of abuse, for a total of 23,175 words. The 

output of this step was MTD, whose properties are shown in Table 1. 

 

 

Table 1. Characteristics of MTD 
Instances  2,899 

Number of Classes  2 

Number of Class Members 
Non-Abuse 

Abuse 
2,170 
729 

Total Features (words)  23,175 

 

 

3.2.  Data preprocessing 

This process consisted of corpus preparation, text representation and BWF. 

 

3.2.1. Corpus preparation 

Corpus preparation included stop word elimination and stemming. Stop word elimination involved 

removing some words that were not important and did not need to be further analyzed. Stop word elimination 

consisted of making all words lowercase, cutting markers, cutting tabs, cutting stop points and cutting stop 

words, such as “on”, “in”, “to” and “the”. Stemming was the modification of words that had the same stem 

meaning but were written differently, such as “eat” and “eating”. Stemming reduced the number of features 

of the methamphetamine dataset [27]. 

 
3.2.2. Text representation 

The process of text representation was a part of NLP that converted text to vector. Vectorization 

created a set of vectors number representing text tweets that were used to create a text classification model. 

The classifier could operate on the text vectors. We used data preprocessing techniques consisting of BoW, 

TF–IDF and BWF, using BoW, a popular text vectorization model, as a baseline. If words appeared in the 

tweets, then the frequency was counted as 1; otherwise, it was counted as 0 [3, 4]. The TF-IDF algorithm, a 

data preprocessing technique that replaced the text with weight values, calculated the weight of importance 

that words used as a feature for each tweet. We determined that an important feature should not appear in 

every tweet. The TF–IDF method is widely used in text mining research [10, 11], while BWF represents the 

new data preprocessing technique that our research proposed. This algorithm performed the domain features 

selection of the BoW dataset. 

 

3.3.  Classification 

Classification was the process of creating text classification models. In this study, the classification 

algorithms SVM [14], J48 [15] and NB [16], classifiers found in the Weka software, were used to create the 

text classification models. The Weka version 3.9 program, which is open source and widely used in research 

for this purpose, was used to develop the text classification models [28, 29]. 

 

3.4.  Performances testing 

We used 10-fold cross-validation for the measurement of TMTA performance using various metrics: 

accuracy [17], F-measure [18], AUC [19], Kappa [20], MCC [21, 22] and runtime [23]. The 10-fold cross-

validation technique is a popular method to obtain reliable test results because all data points are used for 

training and validation; each data point is used to be tested exactly once [28]. 

 

3.5.  Hypothesis testing 
The Wilcoxon Rank Sum Test was used to investigate 5 different performance measurements 

(accuracy, F-measure, AUC, Kappa, MCC) between the proposed and candidate models to determine the 

differences in 5 performance measurements at a significance level of 0.05 [30, 31]. 

 

 

4. RESULTS AND DISCUSSION  

This section describes and discusses the experimental results. It includes four sub-chapters, 

presented according to the two objectives and based on the characteristics of the BWF dataset, information 

gain, classification performance and hypothesis testing. 
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4.1.  Characteristics of BWF dataset 

The feature reduction performance using the BWF algorithm was compared with two popular 

techniques: BoW and TF–IDF. As Table 2 shows, the BWF dataset had fewer features (969) and instances 

(2,446) than the BoW and the TF-IDF datasets. The BWF algorithm was highly efficient at feature reduction. 

The experimental results demonstrated that the BWF dataset included 969 features out of the total 23,175 

features in the methamphetamine tweet dataset. Table 2 shows the BWF dataset, which had a smaller number 

of features and instances than the BoW and TF-IDF datasets. Those features were filtered features of the 

BoW dataset using SDBF. Therefore, the BWF algorithm was effective at handling the semantic words 

associated with methamphetamine, such as slang names or synonyms for methamphetamine. This 

implementation was different from the BoW, as the latter reduces features by removing infrequent words. 

 

 

Table 2. Comparison of data preprocessing techniques 

Characteristic 
Data Preprocessing Technique 

BoW TF-IDF BWF 

Number of Features 10,926 10,464 969 
Number of Instances 2,899 2,899 2,446 

 

 

4.2.  Information gain  
Information gain was applied to measure the quality of the features used to create a Decision Tree. 

The information gain tests for the BWF dataset identified several important features, including “meth”, “lab”, 

“crystal”, “ice”, “smoke”, “police”, “news”, “report”, “sexy” and “fat”. The words “meth” and “lab” were 

important features in the BWF dataset as they were used in tweets that mentioned laboratory-produced 

methamphetamine. The words “crystal” and “ice” are slang names for methamphetamine; both had high 

information gain, indicating the features’ potential for the prediction classes using the Decision Tree. Ten 

important features are shown in Table 3. 

Table 3 shows the experimental results of the information gain that was used to test the feature 

quality of the BWF dataset. High information gain indicated the important features for the prediction classes 

based on the Decision Tree. Those features had strong power in classifying the classes based on the Decision 

Tree. Information gain showed important features such as “news”, “police” and “report” in the non-abuse 

class tweets; in contrast, “fat” and “sexy” were features of the abuse class tweets. 

 

 

Table 3. Important features of BWF dataset using information gain 
Ranked Feature Information Gain (descending order) 

meth 0.09514 

lab 0.03701 
crystal 0.03511 

ice 0.02542 

smoke 0.02329 
police 0.02143 

news 0.01640 

report 0.01065 
sexy 0.01048 

fat 0.00555 

 

 

4.3.  Classification performance 
The classification performance comparison of the three preprocessing techniques used to produce 

BoW, TF–IDF and BWF datasets are shown in Tables 4, 5 and 6. First, the performance of the SVM 

classifier with the BoW dataset had the highest accuracy (0.813), F-measure (0.803) and MCC (0.465). 

However, this classifier used with the BWF dataset had the highest AUC (0.720) and Kappa (0.461). 

Moreover, the BWF dataset had the lowest runtime (0.820 seconds) with the SVM classifier. Table 4 displays 

the classification performance comparisons of the three preprocessing techniques combined with SVM. 

The decision tree using the J48 classifier with the BWF dataset had the highest scores in all 

measures, including accuracy (0.815), F-measure (0.818), AUC (0.763), Kappa (0.528) and MCC (0.529), 

and the lowest runtime (3.480 seconds). Table 5 presents the classification performance comparisons for this 

classifier. The NB classifier with the BoW dataset had the highest accuracy (0.795), F-measure (0.789), 

Kappa (0.428) and MCC (0.430). However, when combined with the BWF dataset, this classifier had the 

highest AUC (0.819) and the lowest runtime (0.400 seconds). The classification performance comparisons 

are shown in Table 6. 
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Table 4. Classification performance comparison using SVM 

Measurement 
SVM Classifier 

BoW Dataset (baseline) TF-IDF Dataset BWF Dataset 

Accuracy 0.813 0.812 0.805 
F-measure 0.803 0.794 0.800 

AUC 0.708 0.684 0.720 

Kappa 0.456 0.424 0.461 
MCC 0.465 0.446 0.463 

Runtime (seconds) 33.310 11.580 0.820 

 

 

Based on the classification performance comparisons in Tables 4, 5 and 6, the proposed model that 

combined the J48 classifier with the BWF dataset showed the best performance for the TMTA based on the 

four measures of accuracy, F-measure, Kappa and MCC. In comparison, the SVM classifier with the BWF 

dataset was the best based on runtime, and the NB classifier with the BWF dataset provided the highest AUC. 

 

 

Table 5. Classification performance comparison using J48 

Measurement 
J48 Classifier 

BoW Dataset (baseline) TF-IDF Dataset BWF Dataset 

Accuracy 0.807 0.807 0.815 

F-measure 0.804 0.805 0.818 
AUC 0.723 0.735 0.763 

Kappa 0.474 0.474 0.528 

MCC 0.475 0.475 0.529 
Runtime (seconds) 61.060 62.550 3.480 

 

 

The results from Tables 4, 5 and 6 compare the performance measurements for SVM, J48 and NB, 

revealing that the model built on the J48 classifier and using the BWF dataset was the best. In short, this 

model provided the best performance measurements (accuracy, F-measure, Kappa, MCC). The highest 

accuracy was shown in terms of the correctness of the data classification using this model. The BWF dataset 

included 1,827 instances of non-abuse tweets and 619 instances of abuse tweets. This model could be 

predicted to correct 1,565 non-abuse tweets and 428 abuse tweets. Additionally, this model provided the 

highest F-measure values. This result showed that the model demonstrated accurate classification of the 

interest class, which was the abuse tweets. 

 

 

Table 6. Classification performance comparison using NB 

Measurement 
NB Classifier 

BoW Dataset (baseline) TF-IDF Dataset BWF Dataset 

Accuracy 0.795 0.490 0.794 
F-measure 0.789 0.495 0.785 

AUC 0.797 0.762 0.819 

Kappa 0.428 0.165 0.414 
MCC 0.430 0.260 0.419 

Runtime (seconds) 6.190 7.870 0.400 

 

 

The AUC values of J48 with the BWF dataset were close to 1 as shown in Table 5, indicating that 

the classification results of J48 with the BWF dataset had high true positive values. The findings revealed 

that J48 with the BWF dataset highly classified the abuse class (here, an invitation tweet to consume 

methamphetamine). Table 5 shows the model generated using J48 with the BWF dataset, which had the 

highest Kappa and MCC values, suggesting high consistency in classification between the two classes (abuse 

or non-abuse). 

The BWF dataset was fitted to the J48 classifier because the features in the BWF dataset were 

similar to the keyword “methamphetamine”. Table 3 shows the features that had high information gain. 

Therefore, those features were used as a condition for classification based on the Decision Tree, and then the 

J48 classifier was used as a subset of the Decision Tree. 

 

4.4.  Hypothesis testing 
As depicted in Table 7 the Wilcoxon rank sum test results suggested that the proposed model based 

on the J48 classifier using the BWF dataset was the best. This model was presented as TMTA because the 

five performance measurements (accuracy, F-measure, AUC, Kappa, MCC) were significantly higher than 
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for the six-candidate models with a P-Value of 0.043. However, J48 with the BWF dataset yielded 

performance measurements that were not significantly higher than NB using the BOW and BWF dataset with 

a P-Value of 0.225. The Wilcoxon rank sum test results for the performance measurements are shown in 

Table 7. 

 

 

Table 7. Wilcoxon rank sum test for performance measurements 
Proposed Model Candidate Model P-Value 

J48 with BWF SVM with TF-IDF 0.043 

SVM with BOW 
SVM with BWF 

J48 with TF-IDF 

J48 with BOW 
NB with TF-IDF 

NB with BOW 0.225 

NB with BWF 

 

 

Table 7 shows the results of the Wilcoxon rank sum test, which was tested at a significance level of 

0.05. The measured values for the accuracy, F-measure, AUC, Kappa and MCC of the proposed model were 

compared with the eight candidate models. The experimental results suggested these five performance 

measurements of the proposed model were better than for the six candidate models at a significance level of 

0.05 with a statistical confidence level of 95 percent. 

Therefore, the J48 classifier using the BWF dataset was used in developing the TMTA because this 

model provided the highest four performance measurements (accuracy, F-measure, Kappa and MCC) and 

provided a low runtime as shown in Table 5. Furthermore, this model provided significantly higher 

performance measurements than the six-candidate models as shown in Table 7. 

Previous research created text classification models using tweet data based on SVM, J48 and NB 

classifiers. Although SVM with TF–IDF is still widely used for the development of text classification models 

[6-9], we found that the TMTA, using J48 with the BWF dataset, provided higher values for performance 

measurements than SVM with TF–IDF. In particular, the TMTA using J48 with the BWF dataset had a lower 

runtime than such widely used techniques as BoW and TF–IDF. 

 

 

5. CONCLUSION  

We proposed a new model, called the TMTA, to identify whether a Twitter tweet was related to 

methamphetamine use or abuse based on data extracted from Twitter in Southeast Asia. A vital process in the 

TMTA is data preprocessing. This research addressed the weakness of BoW in terms of feature selection 

using the BoW dataset and Word2Vec. A novel data preprocessing technique, the BWF algorithm, used the 

text vectorization method in the same way as the BoW dataset; however, the proposed BWF algorithm was 

applied using the feature selection of the BoW dataset to produce a BWF dataset. This approach resulted in a 

smaller number of features than such widely used techniques as BoW and the TF-IDF datasets. The new 

dataset was used for the TMTA dataset. The development of the TMTA consisted of four steps. First, we 

collected data with keywords related to methamphetamine from the Twitter data stream. Second, data 

preprocessing techniques were applied, including corpus preparation and text representation consisting of 

BoW, TF-IDF and BWF. Third, we experimented and proposed a text classification model using three 

candidate classifiers: SVM, J48 and NB. Lastly, we compared the performance of the various text 

classification models that were created from the above three classifiers using three data preprocessing 

techniques. The performance measurements included accuracy, F-measure, AUC, Kappa, MCC and runtime. 

Additionally, the TMTA model development used the J48 classifier with the BWF dataset. This model 

produced the highest values for accuracy (0.815), F-measure (0.818), Kappa (0.528) and MCC (0.529), high 

AUC (0.763) and low runtime (3.480 seconds) using the J48 classifier. These results showed that the 

proposed TMTA was fitted to the Twitter dataset collected in this study. The TMTA using J48 with the BWF 

dataset provided higher performance measurements than such traditional techniques as SVM with TF–IDF. 

Consequently, the TMTA using the J48 classifier could be converted to an if-then rule-based decision tree. 

This rule might be implemented for prototype software to help the police of the narcotics control board 

identify short messages related to drug abuse. 

The BWF algorithm can be used for data preparation stemming from the development of a text 

classification model based on a different domain, such as amphetamine use in Thailand or illegal 

advertisements for nutritional supplements. Police have found tens of thousands of amphetamine networks on 
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social media that have cozened young juveniles into becoming members for distributing amphetamine. These 

networks offered promotions that were paid after transacting drugs. Furthermore, illegal advertisements for 

nutritional supplements are a problem in Thailand and have been widely sold using social media in that 

country. Most products (e.g. sexual enhancement products for men) exaggerate their properties. Both 

problems might be addressed to new investigations in future. 
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