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 "Froid est le vide de l’espace, froides sont les lumières du 
couloir et froids sont les yeux de la femme dans l’entrebâillement de 
la porte, froids sont les médicaments sur le plateau. 
 Les étoiles regardent fixement l’hopital et la solitude de la 
mer est profonde. 

Peut-être que (Chagalle) verrait les vaches voler s’il était là, 
à la fenêtre où je suis maintenant, à regarder les vagues hérissées et 
la mer noire. 

Parfois j’entends les violons du monde. 
Parfois je vois les montagnes enneigées avancer d’un pas 

lourd. 
Une fois j’ai vu des sorcières voltiger dans les airs sur leur 

manche à balai, mais c’était la Saint-Sylvestre et les gens tiraient des 
feux d’artifice. 

Je grimpe au sommet et touche les étoiles du doigt. Je prends 
les nuages et les enroule comme un foulard autour de mon cou. Je 
vole avec les oiseaux et disparait dans les profondeurs comme une 
baleine. 

J’essai de me figurer les coups de pinceau : comment on 
dessine le temps, comment on colore la vie. A quel maître attribuer 
cette oeuvre étrange. 

Je contemple l’immensité, je vois la mer noire, les ténèbres, 
le froid et les lumières. Je suis maintenant à l’intérieur du château que 
(Bernstein) peignait quand le soleil brillait, à l’intérieur du cercle, 
derrière les fenètres noires, de l’autre côté des coups de pinceau." 

 

∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼ 
 

"Maintenant que la fin approche, que les murs s’ecroulent et 
que le rideau tombe, je le dis haut et clair: J’ai vécu sous une lune 
pleine, voyagé par la voute céleste et dans les grandes profondeurs. 

J’ai aimé, j’ai ri, j’ai pleuré, et maintenant que les larmes 
coulent et qu’on s’amuse bien, je vous le dis: « I did it my way. » 

Non cette tombe n’est pas assez profonde pour contenir nos 
sentiments à tous. 

Vous, hommes et femmes qui avez sauté dans l’abîme. 
Vous, jours pluvieux dont les pleurs ont ruisselé sur les 

vitres. 
Dieu, quelle misère que ce chemin creux; comme il ya peu 

qui reste et comme ce qu’il y a est peu. 
Eternelle est la nuit du silence." 
 
 
 

Einar Mar Gudmundsson – "Les anges de l’univers" 
 
 
 
 

 



Chapter I – General introduction 

Chapter I - General introduction 
 

I.1 About schizophrenia 

I.1.1 The symptoms 

In current terminology, schizophrenia is generally composed of 5 different classes of 

symptoms (from Stahl, 2000): 

 

• Positive symptoms, which are considered to be the reflection of an over 

expression of the normal functions, and are composed of delusions, 

hallucinations, and disorganization of speech, communication and behaviour. 

Delusions are considered as being erroneous interpretations of the perceptions or 

experiences, the more common one being the delusion of persecution. 

Hallucinations can be of any sensory modality (hearing, vision, olfaction, taste 

or tact), but the more common ones and characteristic of schizophrenia are the 

auditory hallucinations. 

 

• Negative symptoms, which are on the other hand considered to be due to an 

under expression of the normal functions, and express themselves as anergia, 

flattened affect, emotional blunting and indifference, lower productivity of 

thoughts, lack of drive, initiative and concern, as well as lack of sexual 

motivation and social withdrawal. 

 

• Cognitive symptoms, which comprise impaired attention (Bleuler, 1950; 

McGhie & Chapman, 1961; Orzack & Kornetsky, 1966; Chen & Faraone, 2000; 

Barr, 2001), reduced verbal fluency (Bokat & Goldberg, 2003), and impairment 

of executive functions (Bersani et al, 2004) and certain forms of memory, 

especially working and declarative memory (Pilkonis, et al, 1980; Goldberg & 

Schmidt, 2001; Lieberman et al, 2001; Pillman et al, 2003; Braff et al, 1978, 

1992, 1999; McKenna et al, 1990; Meltzer & McGurk, 1999). 

 

• Anxiety and depression are often associated with schizophrenia, and are shown 

as tension, irritability, fear and guilt. Wetherell et al (2003), having studied 160 
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Chapter I – General introduction 

elderly inpatients suffering from schizophrenia or schizoaffective disorder, 

noticed that anxiety was particularly present in those who had a bad outcome 

and a poor quality of life. Pallanti et al (2004) found, among 80 schizophrenics, 

a greater propensity for suicide, as well as a more frequent history of 

consumption of drugs of abuse (especially alcohol), and less favourable social 

adaptation. Nonetheless, none of these different features was correlated with any 

of the schizophrenic symptoms. It is interesting to note that a meta-analysis, 

performed by Whitehead et al (2003), did not show any ability for the 

antidepressant drugs to relieve the depressive symptoms of schizophrenics. 

 

• Aggressiveness, which can be physical or verbal and is more frequently directed 

at other people. However, it can be directed at the patient himself, the ultimate 

state being the suicide attempt. Arseneault et al (2003) showed a positive 

correlation between a violent personality during childhood (7-11 years old) and 

violence expressed during adulthood ( ≥ 26 years old) among subjects having 

developed schizophrenia in the meantime. In their review of the literature, 

Walsh et al (2002) found a more pronounced tendency for violence in 

schizophrenics than in healthy subjects, which was worsened by the 

consumption of drugs of abuse. Indeed, Arseneault et al (2004) established a 

positive correlation between the cannabis intake in young subjects and a higher 

risk (x 2) to later develop schizophrenia, and Veen et al (2004) correlated the 

intake of cannabis with a lower age of appearance of the first negative 

symptoms in males. The same profile is obtained with cocaine and alcohol, 

associated with treatment noncompliance, violence, housing instability and 

homelessness (Dixon, 1999). 

 

I.1.2 The diagnostic and Statistical Manual of Mental Disorders - Fourth Edition 

(DSM-IV) 

According to the DSM-IV, the diagnosis of schizophrenia requires that the patient has 

shown at least two of the following symptoms for a significant part of one month: 

delusions, hallucinations, disorganized speech (e.g. frequent derailment or incoherence), 

grossly disorganized or catatonic behaviour, negative symptoms (i.e. affective 

flattening, alogia, or avolition). In addition for at least 6 continuous months the patient 
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Chapter I – General introduction 

must have shown some evidence of the disorder. These manifestations must be 

accompanied, for a significant portion of time, by social/occupational dysfunction (i.e. 

work, interpersonal relations or self-care are markedly below the level achieved prior to 

the onset). Exclusion criteria are that the disturbance is not due to the direct 

physiological effects of a substance (e.g. a drug of abuse, a medication) or a general 

medical condition. Delusions are considered as being erroneous interpretations of the 

perceptions or experiences, the more common one being the delusion of persecution. 

Hallucinations can be of any sensory modality (hearing, vision, olfaction, taste or tact), 

but the more common ones and characteristic of schizophrenia are the auditory 

hallucinations. 

 

The different subtypes of schizophrenia are as follow: 

 

• Paranoid Type. Preoccupation with one or more delusions or frequent auditory 

hallucinations. None of the following is prominent: disorganized speech, 

disorganized or catatonic behaviour, or flat or inappropriate affect. 

 

• Catatonic Type. The clinical picture is dominated by at least two of the 

following: motoric immobility as evidenced by catalepsy (including waxy 

flexibility) or stupor; excessive motor activity (that is apparently purposeless 

and not influenced by external stimuli); extreme negativism (an apparently 

motiveless resistance to all instructions or maintenance of a rigid posture against 

attempts to be moved) or mutism; peculiarities of voluntary movement as 

evidenced by posturing (voluntary assumption of inappropriate or bizarre 

postures); stereotyped movements, prominent mannerisms, or prominent 

grimacing; echolalia or echopraxia. 

 

• Disorganized Type. All of the following are prominent: disorganized speech, 

disorganized behaviour, flat or inappropriate affect. The criteria are not met for 

Catatonic Type. 

 

• Undifferentiated Type. A type of Schizophrenia in which symptoms meet the 

criterion of two of the following: delusions, hallucinations, disorganized speech 

(e.g. frequent derailment or incoherence), grossly disorganized or catatonic 
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behaviour, negative symptoms (i.e. affective flattening, alogia, or avolition), but 

the criteria are not met for the Paranoid, Disorganized, or Catatonic type. 

 

• Residual Type. A type of Schizophrenia in which the following criteria are met: 

Absence of prominent delusions, hallucinations, disorganized speech, and 

grossly disorganized or catatonic behaviour; there is continuing evidence of the 

disturbance, as indicated by the presence of negative symptoms or two or more 

of the following symptoms for schizophrenia: delusions, hallucinations, 

disorganized speech (e.g. frequent derailment or incoherence), grossly 

disorganized or catatonic behaviour, negative symptoms (i.e. affective 

flattening, alogia, or avolition), present in an attenuated form (e.g. odd beliefs, 

unusual perceptual experiences). 

 

Finally, associated features are: learning problems; hypoactivity; psychosis; euphoric 

mood; depressed mood; somatic or sexual dysfunction; hyperactivity; guilt or 

obsession; sexually deviant behaviour; odd/eccentric or suspicious personality; anxious 

or fearful or dependent personality; dramatic or erratic or antisocial personality. 

 

Psychiatrists possess several tools to diagnose schizophrenia and assess its severity. The 

presence of the different symptoms is generally rated using the positive and negative 

syndrome scale (PANSS), which consists in collecting information about the patients, 

generally from clinical interview and reports of primary care staff, but also from their 

family. The interview of the patient, or future patient, allows the observation of physical 

symptoms (e.g. tension, mannerisms and posturing, excitement and blunting of affect), 

interpersonal behaviour (e.g. poor rapport, uncooperativeness, hostility and impaired 

attention), cognitive verbal processes (e.g. conceptual disorganization, stereotyped 

thinking and lack of spontaneity and flow of conversation), thought content (e.g. 

grandiosity, somatic concern, guilt feelings and delusions) and response to structured 

questioning (e.g. disorientation, anxiety, depression and difficulty in abstract thinking) 

(Kay et al, 1987). The brief psychiatric rating scale (BPRS) can also be used, and 

consists of 18 items rated on a 7 point scale from “not present” to “very severe”. The 

items consist of somatic concern, anxiety, emotional withdrawal, conceptual 

disorganization, guilt feelings, tension, mannerisms and posturing, grandiosity, 

depressive mood, hostility, suspiciousness, hallucinatory behaviour, motor retardation, 
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uncooperativeness, unusual thought content, blunted affect, excitement and 

disorientation (Overall & Gorham, 1962). Another tool is the quality of life scale 

(QLS), which is a 15-item instrument that measures five conceptual domains of quality 

of life (i.e. material and physical well-being, relationships with other people, social, 

community and civic activities, personal development and fulfillment and recreation) 

(Burckhardt & Anderson, 2003). 

 

To assess the cognitive abilities of the patients, several tests are used in psychiatry, 

some of which have also been adapted to animal research. To rate higher cognitive 

functions, there are tests of motor planning that involves frontal lobe areas; those tests 

include the Tower of London task, and the Wisconsin Card Sorting Test, the latter being 

based on the acquisition of a rule and the ability of the subject to switch to a new rule 

and match the changing requirements of the task as it progresses. Tasks of working 

memory are also used, either matching to position tasks, or more verbal tasks. They 

have been adapted in animal research (e.g. radial mazes, T-maze, swim-test). Finally, 

attention is usually assessed by means of the continuous performance task (CPT), which 

gave rise to the 5-Choice serial reaction time task for rats. 

 

I.1.3 Childhood-onset versus adult-onset schizophrenia 

This disorder of the central nervous system affects about 1 % of the population 

worldwide. Despite a steep rise in incidence in the early twenties, the age of onset of the 

first symptoms varies between 15 and 35 years old, but they also can appear in children 

(8-9 years old) or in elderly (70-80 years old). Beitchman (1985), distinguishing 

childhood-onset schizophrenia from autism, drew a portrait of the young schizophrenics 

(less than 15 years old) quite similar to that observed in people developing the illness in 

adulthood: he noticed the presence of paranoid delusions, disorder of the thought as 

well as the appearance of auditory hallucinations. The main behavioural features of the 

young patients were a propensity for physical inactivity, loneliness and reverie, as well 

as irritability, and a decrease of interest in things and other people. On the other hand, 

they had little or no speech disturbance (echolalia or neologisms). While there was a 

more marked disturbance of identity below the age of 10, it was in subjects of more 

than 10 years old that delusions and hallucinations were the most prominent. 

Concerning the epidemiology, the childhood-onset schizophrenia was more frequent 
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between 10 and 15 years old, compared to between 5 and 9 years old. Rapoport & Inoff-

Germain (2000), who followed young schizophrenics during several years, found that 

they had speech and motor disturbances, which probably were an indication of 

pronounced maturation deficits. Furthermore, those children had a greater family 

history of psychological disorders, which led the authors to hypothesize that this made 

them more vulnerable to environmental or genetic risk factors, compared to the 

schizophrenics that develop the illness in adulthood. Medication, especially the atypical 

class of neuroleptics, was more effective in childhood-onset schizophrenics, particularly 

regarding negative symptoms, and produced less secondary effects. From an anatomical 

point of view, they had the same pattern of ventricular enlargement and volume loss 

(essentially grey matter at the cortical level, where the white matter was quite well 

spared) than adult-onset schizophrenics. An interesting fact is that the study of Rapoport 

& Inoff-Germain (2000), conducted during a 4-year period, showed progressive 

changes concerning the neuronal loss (increase of ventricular volume and decrease of 

temporal lobe structures), leading the authors to consider schizophrenia as being a 

neurodevelopmental disease. Similarly, Sporn et al (2003), during a two-year MRI 

study, found that the speed of neuronal loss (cerebral gray matter) was greater in 

individuals that had developed the illness during their childhood compared to healthy 

subjects. Russell et al (1989), studying 35 young schizophrenics, did not find any 

lowering of the IQ compared to normal subjects of the same age, and noticed the 

presence of delusions in 63 % and auditory hallucinations in 80 % of the subjects. 

Finally, these young inpatients had a common premorbid history of attention deficits 

and conduct disturbance. A more complete neuropsychological study of 88 

schizophrenics and 190 control subjects, from 9 to 13 years old, using the kiddie formal 

thought disorder rating scale (KFTDRS) and the Halliday and Hassan’s analysis of 

cohesion, revealed more formal thought disorders and cohesive deficits in young 

schizophrenics compared to normal children; according to the authors, this state of mind 

represents a step, necessary but not sufficient, toward the diagnosis of schizophrenia 

(Caplan et al, 2000). Moreover, these disorders were materialized by difficulties in the 

organization of the thought, the frequent production of illogicalities, and less use of 

pronouns, articles and demonstratives to describe a previously heard text (referential 

cohesion). Finally, these subjects used fewer conjunctions to link their ideas, which 

were enunciated through contiguous sentences (Caplan et al, 2000). 
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I.1.4 The cost of schizophrenia 

Schizophrenia is a disease that affects all populations and all social classes without 

distinction. One of the major problems is that, beyond the normal cost of the treatment 

itself, between 25 and 50 % of the schizophrenics make one or several suicide attempts. 

Indeed, Baldessarini (2003) noted that between 10 and 13 % of the schizophrenics die 

every year from suicide. Moreover, about 25 % of all hospital beds are occupied by 

schizophrenics, and schizophrenia accounts for 40 % of all long-term care days in the 

USA (Pickard, 1995). The annual direct cost of their care in the USA was estimated to 

be $ 19 billion in 1991, with an additional indirect cost of $ 46 billion due to lost 

productivity (Barondes et al, 1997). 

 

I.1.5 Gender differences 

Even though, from an anatomical point of view, Lauriello et al (1997), comparing men 

and women, did not notice any significant differences at the level of many regions 

involved in schizophrenia (see below), some authors did find gender differences in 

schizophrenia. One example is given by Pulver et al (1990), who studied 366 

schizophrenics and 1851 of their first-degree relatives. These authors found that the 

sooner schizophrenia appeared in men, the higher was the risk for their relatives to 

develop the disease, which was not the case for women. Whereas men schizophrenics 

had a lesser percentage of mortality, in reaction to the disease, women with 

schizophrenia reached a higher social level, and their rate of hospital readmission, after 

they were treated with neuroleptics, was lower. In numerous studies, men show slightly 

earlier onset of schizophrenia than women, who show a second peak of onset after 40 

years old (Hambrecht et al, 1992). In fact, the better socialization of women is 

attributed to the fact that they develop the illness relatively later than men, and thus 

have more time before onset of the illness to better integrate into society, to get married 

and to have children. Moreover, women have a lower rate of progression of the disease, 

and a better response to neuroleptics, which is generally attributed to the beneficial 

action of the estrogenic hormones. Indeed, the latter enhance the efficacy of 

neuroleptics by directly acting upon some monoaminergic systems, especially the 

dopaminergic system through the D2 receptor, and the serotonergic system through the 

5HT2A receptor (Fink et al, 1996). In order to explain the greater degree of mortality 

encountered among the women population, these authors proposed that it is the 
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reflection of a more pronounced tendency to commit suicide, and also consider a 

possible antagonistic effect of neuroleptics upon the protective action of the estrogenic 

hormones, especially at the level of the cardiovascular system. Finally, tardive 

dyskinesia (i.e. the appearance of involuntary movements of the muscles of the face), a 

secondary effect due to neuroleptics, seems to be more pronounced in women after 

menopause (Seeman, 1986). 

 

I.1.6 Evolution of theories of schizophrenia 

I.1.6.1 Emil Kraepelin (1896) 

One of the first psychiatrists to study the illness that would later become known as 

schizophrenia is Emil Kraepelin. He named this pathology dementia praecox, regarding 

its particular character and because he noted that it appeared earlier in life than other 

forms of dementia. According to him, it is a “peculiar destruction of the internal 

connections of the psychic personality (which) predominate in the emotional and 

volitional spheres of mental life” (p. 3). Raising a clinical picture of the disease, he 

defined two principal groups of disorders: “a weakening of those emotional activities 

which permanently form the mainsprings of volition” and “the loss of the inner unity of 

the activities of intellect, emotion, and volition in themselves and among one another” 

(p. 74-75). At this period, there was no distinct categories of symptoms, like nowadays, 

so Kraepelin defined this pathology by attributing a series of psychological and physical 

manifestations: 

 

• Psychological symptoms. These include difficulties in sustaining attention, 

hallucinations (the most frequent being auditory), disturbances of the thought 

(patients think that they do not possess their senses any more), perturbation of 

taste and olfaction (patients define what they eat and drink as being diabolic), 

morbid tactile sensations (patients feel as if they are being touched), poverty of 

thought (patients’ thoughts are limited and elaborated with difficulty, including 

erroneous associations; moreover, they are inefficient because they are too 

inattentive, bored and weary), stereotypies which can be psychological (flatness, 

persistence of simple ideas) or physical (maintenance of a posture or repetition 

of a movement), affected judgement faculties, delusions that can be transitory or 

permanent (e.g. hypochondria, ideas of sin or persecution), exalted ideas 
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(patients think that they are the messiah, or god), perturbation of the expression 

of emotions, attenuation of the will, impulsive deeds [someone asked them to do 

it (e.g. god)], manias (or obsessions), autistic withdrawal, incoherence in the 

way they think, talk or write (with the frequent appearance of neologisms), 

negativism (patients often show resistance to the dialogue, giving elusive 

answers). Finally, memory seemed to be rather unaffected, with however the 

appearance of pseudo-memories (confabulations). 

 

• Physical symptoms. Headaches, disturbance of the pupillary behaviour 

(flattened reaction to the light), exacerbation of the tendon reflex, psychomotor 

disorders (especially disorder of equilibrium and stumbling), crisis (dizziness, 

fainting and sometimes epileptiform violent shaking), vasomotor disturbances 

(appearance of cyanosis at the level of the hands), fluctuation of the temperature 

(generally lower, but it can vary throughout the day, reaching as low as 34 or as 

high as 39ºC), disturbances of sleep, irregular food intake from total refusal to 

voracity, with a great fluctuation of the patient’s weight. 

 

According to Kraepelin, the clinical forms of the disease can be very diverse, by virtue 

of the presence of the different symptoms: dementia simplex, simple depressive 

dementia, delusional depressive dementia, agitated dementias or paranoid dementias. 

 

I.1.6.2 Eugen Bleuler (1911) 

Following the work of Kraepelin, fundamental progress was made by the Swiss 

psychiatrist Eugen Bleuler. In fact, he is the one who created the term “schizophrenia”, 

derived from the greek words schizein (cleavage) and phrên (spirit), in a view of 

underlying splitting and disorganization of various psychological functions. This change 

of terminology showed his will of separating his work from Kraepelin and the dementia 

praecox, because he thought that numerous symptomatic manifestations such as 

catatonia which, according to him, belonged to dementia praecox but without being the 

reflection of a psychological deterioration, often appeared later. Then, dementia praecox 

became for him a particular form of dementia in young people. 

 

Bleuler defined schizophrenia as being constituted of a group of psychoses whose 

progression is sometimes chronic, and sometimes gives rise to intermittent attacks, and 
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can stop at anytime without allowing the total recovery of the psychological abilities. 

According to him, this disorder is marked by a type of degradation which is specific for 

thought, feelings and links with the surrounding world. The expressions of the emotions 

are absent in the extreme cases while, in the moderate cases, one can notice that their 

intensities are not related to their real cause, which gives a large spectrum of emotions, 

from quiescence to the utmost agitation. Other symptoms are also present, like for 

example hallucinations, delusions, stupor, manias, melancholy and catatonia. The 

diverse presence or absence of these symptoms allows to precisely diagnose 

schizophrenia. 

 

Nevertheless, Bleuler differentiated two main classes of symptoms: 

 

• Fundamental symptoms, which characterized the disease: disturbance of 

association and of the expression of emotions, propensity for fantasies, tendency 

to detach from reality, attention deficits, disturbance of the will, of action and of 

the ability to reason. 

 

• Accessory symptoms, which “may be present throughout the whole course of 

the disease, or only in entirely arbitrary periods of the illness” (p. 95): 

hallucinations (essentially auditory or tactile), delusions (being poisoned, 

persecution, grandeur), accessory memory disturbances, disruption of writing 

and speaking, and of the ego (there can be fragmentation of the personality, each 

of the fragments being able to govern the subject alternately). 

 

He divided the pathology in four sub-classes, depending of the presence of the different 

symptoms: paranoid, catatonic, hebephrenic and simple schizophrenia. 

 

Concerning the memory deficits, it is interesting to underline a few facts, without 

forgetting to note that, if nowadays it is recognized that memory deficits belong to the 

pathophysiology of schizophrenia (cf McKenna et al, 1990), at that time, scientists did 

not possess the experimental and theoretical tools that later allowed to substantial 

progress in this field. In fact, to assess memory functions, the doctors were questioning 

the patients about old facts of their life (which are now termed as “episodic memory”), 

and attributed the incorrect answers to a problem of association, to negativity and to a 
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lack of interest for this kind of test. Bleuler also talked about motor skills, which were 

not affected by such a disease. In fact, they are nowadays mentioned as “procedural 

memory”, and the fact that they are not affected by schizophrenia seems now an 

evidence, as procedural memory has been extensively shown to be the kind of memory 

the better preserved in many diseases, psychiatric or not. A very interesting fact is that 

Bleuler referred to a memory test made with schizophrenics; it was designed to assess 

the visual memory of the subjects, who were asked to remember series of items with 

intervals, between presentation and recall/recognition, from 10 to 30 seconds. The 

results were that the subjects performed rather poorly. In fact, one can notice that this 

test requires what is now called “working memory”, a form of memory which has been 

shown to be altered in schizophrenics. 

 

 Delusions 

 

According to Bleuler, the delusions possess no common-sense, no unity, and 

their contents are consonant with the schizophrenic’s mood. He defines them as: “In the 

schizophrenic confusional states, there arises an apparently wild chaos of false notions 

which the patients believe in.” (p. 130). Two contradictory delusions can be 

concomitant or can follow each other in a short time interval. The most common is the 

delusion of persecution, but one can also find delusions of magnificence or inferiority. 

They are prevalent during the acute manifestations of the illness, and can occur during 

the melancholic or maniac phases. They are not constantly present in the patient’s life, 

and most of them, after many repetitions, can become secondary, lose their emotional 

character, and progressively stop affecting the patient’s behaviour. The patient can stop 

focussing on a particular delusion, without correcting it, but it can re-emerge after a 

fortuitous association, either very clearly like it was before, or vaguely as if the delusion 

had been partly forgotten. 

 

“In delusions everything which one wishes and fears may find its level of expression” 

(p. 117). It is interesting to note the terms used by Bleuler to define delusions, which 

seem to arise primordially, in their definitive shape, from the unconscious. To this 

purpose, he specified that certain delusions arose during an acute phase of the disease, 

and then fell into forgetting, often to re-emerge fortuitously, with sometimes a more 

elaborated structure. According to Bleuler, this means that these delusions are not only 
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dormant, but may also unconsciously mature. To his point of view, dreams and 

delusions are often linked, and he even related the case of patients whose dreams were 

suddenly projected in real life as delusions, i.e. as very strongly-held false beliefs. 

 

I.1.6.3 Gabriel Langfeldt (1966) 

Langfeldt characterized schizophrenia according to a very specific dichotomy. On one 

side, “true schizophrenia” which is linked to the kraepelinian dementia praecox and 

evolves towards dementia, and on the other side the “schizophreniform psychosis”, 

which is reactive, toxic or organic, and has a better outcome. In fact he differentiates 

two types of schizophrenia, or schizotypal state, one being psychogenetic, and the other 

constitutional. 

 

Langfeldt’s conception of schizophrenia is well explained by Rousselot (1981). In fact, 

Langfeldt gives as main supporting evidence the notion of evolution of the patient’s 

state, thinking that typical schizophrenia remains endemic and that its only issue is a 

catastrophic degradation. He describes this pathology following two constitutive poles, 

“process symptoms” and a group of “factors” which are susceptible to precise the 

diagnostic: 

 

• Process symptoms. Specific emotional disturbances (a hypersensitivity that can 

provoke a complete withdrawal from the surrounding world), specific motor 

disturbances (psychomotor anomalies), hallucinations, primary delirious ideas 

(especially in the paranoid forms of the disease), specific disturbance of 

associations (incoherence, deviation from the main point in writing or speaking, 

neologisms, echolalia, stereotypies and perseverance of ideas), symptom of 

depersonalization. The presence of at least two of these symptoms is required to 

diagnose schizophrenia. 

 

• Factors. Biotype, premorbid temper (especially the presence of introversion), 

accelerating factors [(varied organic injuries, intoxications, psychological 

trauma: they are rare and do not provoke the appearance of schizophrenia, but 

they can reveal it); heredity, intelligence (the deterioration is more prevalent in 

persons with low IQ), social and familial environment]. 
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In the early 80s, two quite similar conceptions of schizophrenia arose, one elaborated by 

Andreasen and Olsen, and the other by Crow. 

 

I.1.6.4 Nancy Andreasen and Scott Olsen (1982) 

These authors divided schizophrenia into two sub-types: positive schizophrenia and 

negative schizophrenia. Positive schizophrenia is diagnosed when the patient has at 

least one of the following symptoms, in a preponderant way: hallucinations, delusions, 

thought disorders (incoherence, illogicality), disorganized behaviour and, at the same 

time, has none of the following symptoms: alogia (poverty of speech and of its content), 

emotional flattening, apathy, anhedonia, attention deficits. Negative schizophrenia is 

diagnosed when the patient has at least two of the following symptoms: alogia, 

emotional flattening, apathy, anhedonia, attention deficits, without any positive 

symptoms (hallucinations, delusions, thought disorders, strange behaviour). 

 

According to these authors, the patients suffering from negative schizophrenia show a 

rather limited premorbid social adaptation, as well as an indication of cerebral damage, 

whereas patients suffering from positive schizophrenia have a better outcome, a better 

integration within society, and do not have cerebral atrophy. 

 

I.1.6.5 Timothy Crow (1982, 1985) 

Crow qualifies his approach under the terms: “The two-syndrome concept”. He divides 

schizophrenia according to two distinct types, taking into account the response to 

neuroleptics, and the anatomical encephalic disturbances. 

 

• Type I. This has an organic origin, is reversible, and is associated with the 

positive symptoms, including delusions, hallucinations and thought disorder. It 

is present during the acute psychotic phases, and it exhibits quite a good 

response to neuroleptics (especially the dopaminergic antagonists, leading Crow 

to propose that this syndrome is linked to a defect of dopaminergic 

transmission). 

 

• Type II. It has a functional origin, because it is associated to neuronal loss and 

the enlargement of cerebral ventricles, and its development is progressive. It is 
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present during the chronic psychotic episodes, and it is associated with negative 

symptoms, including flattened affect and poverty of speech. It is also 

characterized by a poor response to neuroleptics. 

 

Differences between Crow’s conception and that of Andreasen and Olsen is that the 

former integrates anhedonia in the depressive state, and attention deficits in the positive 

class of symptoms. Furthermore, Crow thinks that the patients can evolve, over time, 

from type I to type II, but only rarely in the opposite direction. Finally, according to 

him, these two syndromes have a common aetiology, as he considers that one can 

sometimes find both coexisting within a single person. 

 

I.1.7 Toward an anatomy of schizophrenia: the contribution of histology and 

imaging techniques 

During the last two decades, substantial progress has been made in the field of 

psychological and psychiatric diseases thanks to the improvement of histological, as 

well as imaging techniques: positron-emission tomography (PET) and magnetic-

resonance imaging (MRI). Studies performed with such techniques are complementary 

to the behavioural and neurochemical investigations which have limitations. For 

example, post-mortem studies can reveal anomalies which we do not know if they are 

belonging to the pathophysiology of the disease, or if they are in fact due to the use of a 

certain type of medication. As an example, Silvestri et al (2000) found an enhancement 

of the specific binding on prefrontal dopaminergic D2 receptors after a long treatment 

with neuroleptics. Imaging studies overcome this limitation since they can be performed 

at the onset of the disease. Despite the fact that certain discoveries made with imaging 

techniques have sometimes not been confirmed, they however have allowed the 

identification of several regions, altered more or less systematically in schizophrenia: 

cerebral ventricles (lateral, third) and cerebrospinal fluid spaces (sulci and fissures) 

at the cortical level (frontal, temporal and parietal), temporal lobe (hippocampal 

complex and amygdala), thalamus and certain cortical and sub-cortical areas (Fannon 

et al, 2000; Lieberman et al, 2001). 

 

It is interesting to note that childhood-onset schizophrenia and adult-onset 

schizophrenia both lead to the same anatomo-pathological profile. Sowel et al (2000), in 
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a MRI volumetric study with 9 schizophrenics from 9 to 16 years old and 10 control 

subjects, showed, in the patients, enlarged ventricles, especially in the posterior horn of 

the lateral ventricles. They also had more subtle volume reductions of the corpus 

callosum, the cingulate gyrus, the caudate and the thalamus, also at the posterior level. 

Nevertheless, the authors do not know if these anatomical traits are primary or if they 

are due to the enlargement of the ventricles. While it seemed, in that study, that the 

volume of the temporal lobe of the childhood-onset schizophrenics was spared 

compared to the adult-onset schizophrenics, another MRI study by Levitt et al (2001), 

on 13 schizophrenic children and 20 control subjects, showed that the volume of the 

amygdala was slightly greater in the schizophrenics, this enhancement being more 

pronounced on the left side, while the hippocampal volume was unchanged. 

 

I.1.7.1 The cerebral ventricles 

One of the first PET studies that revealed a tendency for an enlargement of the 

ventricles in chronic schizophrenics was performed by Johnston et al (1976). 

Furthermore, they found that this enlargement was correlated with cognitive 

impairments. The authors therefore considered whether this enlargement was a 

consequence of the disease, or if it was particular to a specific form of the disease for 

which cognitive impairments were prevalent. Later, Weinberger et al (1980) showed 

that the schizophrenics with ventricular enlargement had a poorer response to 

neuroleptics (unspecified) than those without such anomaly. This correlation between 

ventricular enlargement and schizophrenia was confirmed by Raz & Raz (1990), in a 

meta-analysis, with a more pronounced change at the level of the third ventricle. This is 

logical if we consider that the structures that are commonly affected in schizophrenia 

are situated close to it (see below, hippocampus and thalamus for example). For 

example, Gaser et al (2004), in 39 schizophrenics, showed a positive correlation 

between ventricular enlargement and the reduction of thalamic volume, and more 

particularly the median nucleus, as well as the reduction of striatal volume (posterior 

putamen) and of the adjacent insular cortex. Finally, an MRI study with 20 

schizophrenics (10 men, 10 women) by Buckley et al (1999) showed an enlargement at 

the level of the temporal horn of the lateral ventricle, as well as the inter-ventricular 

foramen of Monro, that was significant only in men. 
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A debate is still present concerning the correlation between the presence of either 

positive or negative symptoms and the tendency to ventricular enlargement. This thesis, 

asserted by Crow (see above), was investigated by numerous teams, with discrepant 

outcomes. A study by Andreasen et al (1982), on 32 schizophrenics comprising 16 with 

enlarged ventricles and 16 with normal ventricles, showed on the one hand a correlation 

between the prevalence of negative symptoms and the presence of enlarged ventricles, 

coupled with poor cognitive performance, and on the other hand a correlation between 

normal ventricles and the prevalence of positive symptoms. A CT scanner study on 19 

schizophrenics (11 men and 8 women) and 46 control subjects, by Pearlson et al (1984), 

showed an increase of the ventricular volume in schizophrenics, with an increase of the 

difference in non-employed schizophrenics (since at least 6 months) compared to the 

employed (for at least 6 months); moreover, this enlargement was correlated with a 

prevalence of the negative symptoms. Similarly, Kemali et al (1985) confirmed the 

concomitance of lateral ventricle enlargement and the presence of negative symptoms, 

as well as the worsening of cognitive symptoms and social withdrawal. 

 

In contrast to the preceding studies, Losonczy et al (1986) found enlarged ventricles in 

schizophrenics but without any correlation with the severity of negative or positive 

symptoms. An important study is that of Farmer et al (1987), who found, contrary to 

Crow’s conception, a correlation between positive symptoms and ventricular 

enlargement. Finally, Keilp et al (1988), on 28 schizophrenics under medication, 

showed correlation between enlarged lateral ventricles in the anterior frontal horn area, 

and poor neuropsychological performance, and between an enlargement of the central 

part of the lateral ventricles and motor and immediate verbal memory deficits; 

nevertheless, this study did not show any correlation between ventricular size and 

prevalence of positive or negative symptoms. 

 

I.1.7.2 The temporal lobe 

The temporal lobe comprises the hippocampal formation (dentate gyrus, ammonic fields 

CA1 to CA4, subiculum and entorhinal cortex), and in certain studies, a wider area also 

including the amygdala. A MRI study by Suddath et al (1989) on 17 schizophrenics (10 

men and 7 women) found a 15 % reduction of the temporal lobe volume; moreover, the 

grey substance showed a 18 % volume decrease on the right hemisphere, and a 21 % 

reduction on the left, the white substance remaining unchanged. 
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There have been very few imaging studies concerning the amygdala per se. One of 

them showed a volume reduction, in 18 schizophrenics compared to 22 control subjects 

(Joyal et al, 2003). Concerning the hippocampus, a meta-analysis by Nelson et al 

(1998) found a 4 % bilateral reduction of the volume, a reduction that was increased 

when the amygdala was included. An MRI study by Szeszko et al (2003) on 56 

schizophrenics after a first episode, showed that the volume reduction was limited to the 

anterior part of the hippocampal formation, and that its posterior part, and the amygdala, 

were less or not affected. Later, performing post-mortem cell-counting, they showed a 

40 % reduction of the number of non-pyramidal neurons, at the level of the CA2, the 

pyramidal neurons being unaffected. Moreover, this difference was equally present in 

medicated and non-medicated patients (Benes et al, 1998). According to the authors, 

this is the reflection of a deficient neuronal modulation exerted by GABA interneurons. 

Finally, Highley et al (2003) did not find any difference in any of the hippocampal 

pyramidal cells fields investigated (CA1, CA2, CA3, CA4 and subiculum), which could 

also indicate that the changes in cell number only occur in the non-pyramidal neuron 

population, although Conrad et al (1991) showed abnormalities in the orientation of the 

pyramidal cells in the right hemisphere. 

 

At the level of the entorhinal cortex, two studies with small group sizes have found 

differences, while a study with a more adequate group size did not. A post-mortem 

study by Arnold et al (1991) on the brains of 6 schizophrenics and 16 controls showed 

abnormalities of its rostral and intermediate portions that included aberrant 

invaginations of the surface, disruption of cortical layers and heterotopic displacement 

of neurons. Also, Jakob & Beckman (1994), on the brains of 5 schizophrenics (3 men 

and 2 women) revealed a defect in the orientation, as well as in the volume of the 

neurons that was decreased at the level of the pre-α second layer, and the pre-β third 

layer; the authors proposed that this was due to a fault in the migration of the neurons 

during the second trimester of pregnancy. This is very interesting concerning 

schizophrenia, because the entorhinal cortex is linked to many regions, as it is the link 

between primary and secondary sensory cortices (except the olfactory cortex), as well 

as somato-sensory cortical areas, and the hippocampus. Moreover, the pathway 

composed of the entorhinal cortex layers II and III – perforant path – hippocampal 

formation – entorhinal region is the centre of the limbic system. In fact, the entorhinal 

region filters the informations from the sensory areas toward the hippocampus, and 
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anomalies at this level could well explain the schizophrenics’ deficits in sensory gating, 

as well as many cognitive disorders. However, a post-mortem morphometric study by 

Bernstein et al (1998) on 31 medicated schizophrenics (16 men and 15 women) and 45 

control subjects (25 men and 20 women) did not show any difference at this level. 

 

Some studies showed a correlation between the neuropsychological deficits encountered 

in schizophrenia and the temporal lobe anomalies. For example, a MRI study by 

Shenton et al (1992) in 15 right-handed schizophrenics and 15 control subjects showed, 

on the left hemisphere, a reduction of the volume of an area constituted by the anterior 

hippocampus and the amygdala (19 %), of the parahippocampal gyrus (13 %) and of the 

superior temporal gyrus (15 %), the latter being correlated with poor cognitive 

performance. One year later, a MRI study by Nestor et al (1993), coupled to the 

Wechsler memory scale, and the Wechsler adult intelligence scale 

(abstraction/categorisation), on 15 male right-handed schizophrenics with chronic 

positive symptoms, revealed two correlations: on one hand between categorisation and 

abstraction deficits and the reduction of the temporal lobe volume in both hemispheres 

(parahippocampal gyrus and posterior superior temporal gyrus), and on the other hand 

between a verbal memory deficit and the reduction of the posterior superior temporal 

lobe volume in the left hemisphere. 

 

Recently, a pioneering MRI study has been performed by Milev et al (2003). During a 

5-year follow-up study of 123 schizophrenics after their first episode of psychosis, the 

authors found that only the temporal lobe volume was predictive of the outcome; in 

fact, the patients with a smaller temporal lobe volume at the beginning of the illness 

showed a longer persistence of hallucinations, essentially auditory. Moreover, Tepest et 

al (2003) found that the relatives of schizophrenics showed temporal lobe volume 

reduction, leading them to state that hippocampal pathology in schizophrenia could be 

the consequence of a genetic vulnerability. 

 

I.1.7.3 The thalamus 

One of the first post-mortem studies of the thalamus in schizophrenia was performed by 

Pakkenberg (1990) who found, in a study of 12 schizophrenics’ brains and 12 control 

brains, a general reduction of the total number of neurons in the thalamus in the 

schizophrenics, and especially in the mediodorsal nucleus, with 44 % reduction for the 
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astrocytes, and 45 % reduction for the oligodendroglia. Following this discovery, 

Andreasen et al (1994) used MRI to further explore the hypothesis according to which 

cognitive deficits in schizophrenia could be due to a disruption in neuronal circuitry 

mediating attention and information processing centred on the thalamus. Performed 

with 47 schizophrenics and 39 control subjects, all males, they found a decreased 

volume in schizophrenics, especially in the lateral and medial regions, with a prevalence 

in the right hemisphere. Staal et al (1998), using the same technique with 30 

schizophrenics, and including 30 non-schizophrenic patients’ relatives (brothers or 

sisters), found a thalamic volume reduction in 87.5 % of the schizophrenics, compared 

to control subjects. Moreover, 87.5 % of the relatives had a smaller thalamus than their 

normal comparison subjects and, according to these authors, the thalamic abnormalities 

in schizophrenics could have a genetic origin. More recently, Kemether et al (2003), in 

a MRI study with 41 schizophrenics (32 men and 9 women) and 60 control subjects (45 

men and 15 women), noticed a thalamic volume reduction in the schizophrenics, 

concerning the mediodorsal, the pulvinar and the centromedian nucleus, the latter being 

a region particularly involved in arousal and attentional processes. Finally, Hazlett et al 

(2004), in 41 schizophrenics and 60 control subjects, showed a decrease in glucose 

metabolism in the mediodorsal and centromedian nuclei, and an increase in the pulvinar 

nucleus of the schizophrenics compared to control subjects. As these nuclei are closely 

linked with the cortex, according to the authors this study is consistent with the view 

that schizophrenia comprises a disruption of cortico-thalamic synaptic connections. 

Moreover, the authors showed a correlation between the pathology of the pulvinar 

nucleus and the prevalence of hallucinations, as well as positive symptoms in general on 

the one hand, and between the pathology of the mediodorsal nucleus and the prevalence 

of negative symptoms on the other hand. Contrariwise, a MRI study by Portas et al 

(1998), on 15 schizophrenics and 15 control subjects, did not reveal any difference in 

thalamic volume. 

 

I.1.7.4 The basal ganglia 

Concerning the striatum, a study by Bogerts et al (1985) did not show any difference in 

volume between 13 schizophrenics’ brains (3 men and 10 women) and the brains of 9 

control subjects (6 men and 3 women), at the level of the left hemisphere; but a very 

interesting fact is that those were the brains of people who died between 1928 and 1953, 

i.e. before the extensive introduction of the neuroleptics. In fact, nowadays it is quite 
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well accepted that the administration of typical neuroleptics leads to an increase of the 

striatal volume, and then to the appearance of secondary effects, such as motor 

disturbances (Corson et al, 1999a; Keshavan et al, 1994). Recently, a MRI study was 

conducted over a two-year period in 30 schizophrenics after their first episode, 12 

schizophrenics who had received chronic treatment with atypical antipsychotics, and 13 

control subjects. This study showed a lack of striatal volume difference between first-

episode schizophrenics and control subjects, an increased striatal and pallidal volume in 

schizophrenics after chronic treatment with typical antipsychotics, and a lack of 

difference in patients after chronic treatment with risperidone (Lang et al, 2001). In 

contrast, Corson et al (1999b) found a volume reduction of caudate in 36 schizophrenics 

after a first episode compared to 43 control subjects. According to the authors, it could 

mean that striatal pathology is a common feature of schizophrenia not induced by 

medication. 

 

I.1.7.5 The cerebral cortex 

Weinberger et al (1979), in a computer tomography (CT) study, showed that 32 % of 

the schizophrenics observed had a cortical atrophy, especially at the level of the Sylvius 

fissure. Moreover, these authors noticed that some of the patients had this anomaly 

without any change in the ventricular volume. Finally, they found that this atrophy was 

not greater in old patients, leading them to state that this feature was not due to a 

progressive neurodegenerative process, as in Parkinson’s or Alzheimer’s diseases. More 

recently, important advances have been made for the comprehension of the cortical 

anomalies in schizophrenics, at the volumetric and cellular levels. A post-mortem study 

on 35 µm thick slices, performed by Pakkenberg (1993), on the brains of 8 

schizophrenics and 16 control subjects, did not show any significant difference in terms 

of cell number in either hemisphere. This result favours the hypothesis that the volume 

reduction is more due to a decrease of the number of connections than a decrease of the 

number of neurons. 

 

Study of neurons and the glia at the cortical level had produced interesting findings 

related to the behavioural consequences of frontal deficits in schizophrenics (attention, 

memory and categorisation), and reinforced the Selemon and Goldman-Rakic’s 

hypothesis of the “reduced neuropil” (see below). An MRI study by Lim et al (1998), 

was devoted to exploring gray and white matter volumes, by assessing the level of N-
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acetylaspartate (NAA), a neuronal marker selective for neurons, because it is most 

exclusively present in the cell bodies, axons and dendrites, and not in glia. They found 

in schizophrenics a decrease of the volume of the cortical gray matter, but with an 

identical NAA signal compared to control subjects, while the white matter was the same 

in both groups, but with a lower NAA signal in schizophrenics. The authors concluded 

that gray matter abnormality was due to a deficit of neurons and glia, while white matter 

abnormality was only due to axonal deficit. On the other hand Flynn et al (2003), using 

MRI in 30 schizophrenics and 27 control subjects, found a 12 % global reduction of the 

white matter volume, with a most prominent effect on the left genu of the corpus 

callosum. Moreover, post-mortem study showed a significant decrease of 

oligodendroglia-associated proteins detected by immunohistochemistry in 

schizophrenics. This was confirmed by Hof et al (2003) who found a 28 % decrease in 

the number and density of the cortical oligodendrocytes (layer III of the Brodmann’s 

area 9), as well as a 27 % volume decrease of the adjacent white matter (frontal gyrus). 

Finally, Hakak et al (2003) noticed, during a post-mortem study of the brains of 12 

medicated schizophrenics and 12 brains of control subjects, that 5 genes, mostly 

expressed in oligodendrocytes and involved in myelination as well as in synaptic 

plasticity, neuronal development and signal transduction, were under-expressed in 

schizophrenics in dorsolateral frontal cortex (Brodmann’s area 46). 

 

From a cognitive point of view, as schizophrenia has been associated with a 

“hypofrontality”, Andreassen et al (1992) examined frontal activation during the Tower 

of London test. They found a lower activation of the frontal area in schizophrenics 

during this test. Moreover, in the same kind of experiment, using a mental arithmetic 

task, Hugdahl et al (2004) found a dissociation between frontal and parietal lobes. In 

fact, during the task, the frontal lobe was under-activated in schizophrenics compared to 

normal controls, while the parietal lobe was over-activated. According to the authors, 

this parietal over-activation could reflect an attempt to compensate the frontal under-

activation. 

 

Recently, Selemon and Goldman-Rakic (1999) formulated a new hypothesis, called 

“The reduced neuropil hypothesis”. In fact, exploring the cortical neuronal density, they 

noticed an increase, in schizophrenics, in particular in the dorsolateral prefrontal area 

(Brodmann’s area 9 and 46), but concomitant to a reduction of the cortical volume. As 
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schizophrenics had very little neuronal loss, this enhancement of the neuronal density 

could be due to a reduction of the distance between neurons; this could be the 

consequence of a reduction of the number of connections between neurons (less 

dendritic arborisations and less cortical afferent connections), and then less cortico-

cortical connections. Thus, this anatomical disorganisation could explain some 

cognitive deficits affecting attention, working memory, sensory gating and goal-

directed behaviours. Refering to this theory, Matsumoto et al (2003) studied the level of 

expression of the catechol-O-methyltransferase (COMT) mRNA, an enzyme that 

degrades catecholamines, by in situ hybridization in the brains of 14 schizophrenics and 

15 control subjects. They did not find any global quantitative differences, but some 

anomalies in its laminar distribution, the enzyme being less present, in schizophrenics, 

in layers II and III, and more abundant in deeper layers IV and V. The authors 

concluded that, if COMT is more particularly present in dendrites, the fact that it is less 

expressed could mean that the interneuronal connections are affected in schizophrenia, 

leading to a frontal disturbance of monoaminergic transmission. 

 

I.1.8 What may cause schizophrenia ? The different hypothesis stemming 

from fundamental research 

Despite its high prevalence and well-known symptomatology, the anatomical and 

physiological causes of schizophrenia remain obscure. Initially, observations of the 

effects produced by drugs of abuse acting at the level of the central nervous system 

suggested the involvement of some neurotransmitter systems in the appearance of 

schizophrenic symptoms, the main candidates being dopamine, glutamate, serotonin (5-

hydroxytryptamine, 5-HT), acetylcholine and gamma-amino-butyric acid (GABA). The 

investigations performed gave rise to numerous hypotheses, at first isolated from each-

other, and then becoming more and more complementary, the extreme variety of 

symptoms suggesting the concomitant involvement of several cortical and sub-cortical 

areas of the brain, and the involvement of several neurotransmitter systems. 

 

I.1.8.1 Schizophrenia and dopamine 

To date, dopaminergic dysfunction remains the most robust hypothesis, which arose 

from several facts and observations: 1 - the compounds (e.g. amphetamine) that lead to 

an elevated release of dopamine can worsen some symptoms, and their prolonged use 
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can lead to a state resembling paranoid schizophrenia. 2 - L-DOPA, a dopamine 

precursor, used as medication that ameliorates the symptoms of Parkinson’s disease by 

enhancing the dopamine level in the brain can cause or exacerbate positive symptoms 

(hallucinations and delusions), whereas in the early phase of the introduction of 

neuroleptic medication, schizophrenics showed Parkinson-like signs of tremor, rigidity 

and akinesia. 3 – typical neuroleptics, compounds that are potent and effective in 

improving schizophrenia, are antagonists of dopamine receptors. 4 - neuroleptics (e.g. 

chlorpromazine and haloperidol) provoke an increase of catecholamine metabolites in 

the mouse brain, which is attributed to their blocking effect at dopamine receptor 

leading to a compensatory enhanced catecholamine turnover (Carlsson & Lindqvist, 

1963). 

 

The first studies concerning the action of neuroleptic molecules led several investigators 

to consider schizophrenia as being the exclusive reflection of a dopaminergic 

hyperactivity, as compounds like chlorpromazine and haloperidol were found to be 

dopaminergic antagonists, acting on the D2 receptor (Creese et al, 1976). More recently, 

it has been considered a dual dopaminergic dysfunction, namely a cortical hypoactivity 

and a sub-cortical hyperactivity (Davis et al, 1991). Indeed, a study in the rat showed 

that an induced cortical dopaminergic hypoactivity, provoked by the 6-

hydroxydopamine lesion of prefrontal dopaminergic endings, leads to a subcortical 

dopaminergic hypersensitivity, especially at the level of the accumbens nucleus and the 

striatum (Pycock et al, 1980). 

 

There are two main classes of dopamine receptors: the D1 (and D5) which is excitatory 

and stimulates adenylate cyclase, and the D2 (and D3 and D4) which is inhibitory and 

inhibits the adenylate cyclase. In the rat, D1 has been found in high concentrations in 

striatum, nucleus accumbens, islands of Calleja, olfactory tubercle and zona reticulata 

of the substantia nigra, cerebral cortex, amygdala, thalamus, suprachiasmatic nucleus, 

choroids plexus, claustrum, endopiriform nucleus, dorsal lateral geniculate and dentate 

gyrus (Wamsley et al, 1989). D2 is the typical site of action of neuroleptics and, in the 

rat, is mostly expressed in striatum, nucleus accumbens, islands of Calleja, olfactory 

tubercle and the zona compacta of the substantia nigra (very few in the zona reticulata), 

bed nucleus of the stria terminalis, hypothalamus, habenula, lateral mammillary 

nucleus, periaqueductal gray, inferior colliculus, intermediate lobe of the pituitary, 
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stratum lacunosum moleculare of the hippocampus, dorsal horn of the spinal cord and 

glomerular layer of the olfactory bulb (Wamsley et al, 1989), while D4 is expressed in 

frontal cortex and amygdala, two regions very implicated in the pathophysiology of 

schizophrenia. While most antipsychotics have lower affinity for D2 than for D4 

receptors the affinity of clozapine for the D4 site is 15 times higher than for D2 

(Reynolds, 1995). 

 

It has been proposed that the different dopaminergic pathways may be involved in the 

manifestation of schizophrenia symptoms, in various ways (Kandel et al, 2000) (Fig 

1.1) 

 

• The mesolimbic pathway, from the ventral tegmental area (A10 cell group) 

towards the nucleus accumbens, the septum, the olfactory tubercles, the 

amygdala and the hippocampus, which is believed to be essentially involved in 

mood, reward and motivational functions, is associated with positive symptoms. 

Hyperactivity of this path is supposed to be the origin of hallucinations and 

delusions, as well as thought disorganisation and aggressive behaviour. 

 

• The mesocortical pathway, from the ventral tegmental area (A10 cell group) 

towards the frontal and temporal cortices, involved in attentional processes and 

cognition, is associated with negative symptoms, as well as cognitive deficits, 

probably because of a dopaminergic deficit at the level of the limbic prefrontal 

cortex, and especially the dorsolateral prefrontal cortex. 

 

• The nigrostriatal pathway, from the substantia nigra (A8 and A9 cell group) 

towards the striatum, which is part of the extrapyramidal system involved in the 

control of the movements, but is also involved in cognition. 

 

• The tuberoinfundibular pathway, that controls the hormonal secretion from the 

pituitary. At this level, dopamine normally inhibits the release of prolactin. In 

fact, a hypoactivity of this pathway, provoked by neuroleptics that block the D2 

dopamine receptors, leads to an enhancement of prolactin release, and then may 

lead to the appearance of breast-swelling (gynecomastia in men), galactorrhea 

and amenorrhea in schizophrenic women. A role of dopamine in prolactin 
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release was proposed by Brown et al (1976) after they found 

haloperidol/dopamine receptors in the pituitary and not in the basal 

hypothalamus of the rat, leading them to postulate that in this region dopamine 

could serve as a prolactin release inhibiting factor. 

 

 

Fig 1.1 Schematic representation of dopaminergic pathways in the rat 

 

 
 

Abbreviations: A10, ventral tegmental area; A8-A9, substantia nigra; DS, dorsal striatum (neostriatum); 

PFC, prefrontal cortex; VS, ventral striatum (accumbens nucleus) (From Squire et al, 2003). 

 

 

Several substances, that produce a psychotic-like state by acting on dopamine receptors, 

have been studied, and especially drugs of abuse like cocaine or amphetamine. Those 

compounds provoke a certain type of behaviour that resembles some positive symptoms 

(enhancement of locomotor activity in rats, hallucinations in man) by leading to the 

enhancement of catecholaminergic, and especially dopaminergic, activity. This could 

implicate the nucleus accumbens, the prefrontal cortex and the striatum, that receive a 

dopaminergic input from the ventral tegmental nucleus (the frontal cortex is well known 

to be cortical the structure that has the most important number of dopaminergic 

receptors). In fact it is suggested that dopamine could be involved in the deficit of 

information processing, linked to the prefrontal cortex, in schizophrenia (Walters, 
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2002). Kapur (2003) gives an interesting point of view about the role of dopamine, and 

the structures that are targets of dopaminergic pathways, in the occurrence of psychosis 

(i.e. delusions, hallucinations, and their secondarily related behaviours). According to 

Kapur, the dopaminergic system, and especially the mesolimbic system, is implicated in 

the attribution of motivational salience to a particular event (i.e. “A process whereby 

events and thoughts come to grab attention, drive action, and influence goal-directed 

behaviour because of their association with reward or punishment”); hence, a 

hyperactivity of the dopaminergic system would cause aberrant assignment of salience 

to external objects and internal representations. This process, that would persist in 

absence of sustaining stimuli, would create delusions and hallucinations. 

 

Indeed, since the critical review of Robinson & Becker (1986), chronic amphetamine 

administration has been proposed to be a good animal model for psychosis, as it 

produces psychosis when intensively used in humans. Moreover, like the chronically-

treated animals, the amphetamine abusers also become hypersensitive to amphetamine. 

In rats, if amphetamine is injected at low acute dose, it produces an increase of forward 

locomotion, head movement, sniffing and rearing, mediated by 

mesolimbic/mesocortical dopamine release (Kelly et al, 1975). If amphetamine is 

repeatedly and intermittently administered, it produces an exacerbation of these 

symptoms, with a reduction of their time of onset, which is called sensitization. This 

enhancement of dopaminergic transmission involving mesolimbic and mesocortical 

pathways is then considered as a good model for amphetamine psychosis (Robinson & 

Becker, 1986). Indeed, it has subsequently been shown, by Abi-Dargham et al (1998) 

for example during PET studies on 15 untreated schizophrenics and 15 control subjects, 

that a challenge by amphetamine produced a significantly enhanced dopamine release, 

observed in the striatum, in schizophrenics. Moreover, this was associated with a 

transient emergence or worsening of psychotic symptoms. Finally, Laruelle et al (1999), 

in a PET study on 34 schizophrenics and 34 control subjects, showed that dopamine 

dysregulation was present at time of onset and relapses but not during remissions. 

 

An interesting hypothesis is stated by Gottesmann (2002) and aims at strengthening the 

link between dreams, dopamine and schizophrenia. During paradoxical sleep (rapid-eye 

movement sleep, REM-sleep), when dreams occur, the neurochemical profile of the 

brain is the following: the cerebral cortex is still activated by cholinergic inputs from 
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the brain stem, as during active waking, and the inhibitory influences exerted by 

histamine, noradrenaline and serotonin, that usually counterbalance the excitatory 

influences and thus rationalise the thought contents, become silent. At the same time, 

the inhibitory influence exerted by dopamine at the cortical level remains. According to 

Gottesmann, this could be a parallel between the dopaminergic pattern in schizophrenia 

and thus explain why schizophrenics have hallucinations and delusions, that resemble 

the content of dreams (cf the description of the psychological features of dreams content 

by Hobson (1998)). 

 

However, the view concerning dopamine dysfunction as being the only important 

neurochemical feature of schizophrenia has been reconsidered following several 

observations. For example, the blockade of the D2 receptors occurs immediately after 

the administration of neuroleptics, but the effects of the medication on the symptoms is 

clearly apparent only after several days or weeks; also, some schizophrenics are 

resistant to treatment by these drugs, and only experience side-effects (Hietala & 

Syvälahti, 1996). Moreover, it has never been clearly demonstrated that in 

schizophrenics the level of dopamine receptors was affected, and there are discrepant 

findings of an enhanced, or unchanged, number of D2 receptors in the striatum of 

schizophrenics. For example, studies often show that there is no change in the amount 

of D2 receptors in the brains of schizophrenics as revealed by PET scanning 

experiments (e.g. Zakzanis & Hansen, 1998). One of the major problems is that the 

findings from autoradiography and binding studies are made post-mortem, usually on 

brains of intensively medicated schizophrenics. In fact, it has been shown that a 6-week 

administration of haloperidol in rats leads to an increase of striatal and pallidal D2-like 

receptors (65 % and 95 % respectively), similar to what is observed in drug-treated 

schizophrenics (Reynolds, 1995). Another possibility is that, as there exists for both 

types of dopamine receptors a state of low affinity and a state of high affinity, 

schizophrenia involves a failure of D2 receptors to desensitize to a low-affinity state 

(Seeman, 1987). Nevertheless, an increased D1 receptor concentration, in the 

dorsolateral prefrontal cortex, in never medicated schizophrenics has been found (Abi-

Dargham et al, 2002). According to the authors, this could be due to an up-regulation of 

the number of receptors consecutive to a lack of stimulation of these receptors by 

mesocortical dopamine, which could lead to the working memory deficits encountered 

in schizophrenics. 
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However, as D2 receptor medication failed to completely cure schizophrenia, new 

dopaminergic targets have been considered. D3 and D4 receptors are highly present in 

cortical and limbic areas, but only sparsely represented in the striatum, and could thus 

be good candidates in order to treat cognitive and negative symptoms with only little 

effect on motor functions (Jardemark et al, 2002). For example, the D3 receptor, which 

is highly present in the shell of the nucleus accumbens and in the cerebral cortex, and is 

co-expressed with the D1 receptor (Sokoloff et al, 1998), is postulated to be involved in 

the pathology of schizophrenia, with probably an action during early brain development 

(Schwartz et al, 2000). It is envisaged to be a target for future compounds, as its 

antagonism does not seem to induce tolerance and side effects (Joyce, 2001). Similarly, 

new advances have been made concerning the D4 receptor, since it was found that the 

atypical antipsychotic clozapine, which produces much less side-effects than the typical 

ones, has a 10-fold higher affinity for D4 compared to D2 and D3 receptors; moreover, it 

has been found to be upregulated in brains of schizophrenics (Sanyal & Van Tol, 1997). 

Unfortunately, clinical studies showed that a potent, selective D4 antagonist was 

ineffective in a number of preclinical and clinical tests (Bristow et al, 1997; Kramer et 

al, 1997). 

 

I.1.8.2 Schizophrenia and glutamate 

The fact that antipsychotics that target dopamine receptors do not treat the broad set of 

symptoms of schizophrenia led many researchers to explore new avenues in order to 

explain schizophrenia. One of the potential candidates is glutamate (Moghaddam, 

1999). Indeed, molecules acting as antagonists of ionotropic glutamatergic NMDA-type 

receptors provoke psychoses equivalent to what is currently observed in schizophrenics 

(paranoia, agitation, auditory hallucinations, stereotyped behaviour, social withdrawal, 

apathy, poverty of thoughts, as well as cognitive symptoms such as working memory 

deficits). Such substances are drugs of abuse like phencyclidine (PCP, or “angel dust”) 

and ketamine, or dizocilpine (MK-801), which are non-competitive antagonists of the 

NMDA receptor. Moreover, Mohn et al (1999) found that genetically-modified mice 

with 95% reduction of the NR1 subunit, making the NMDA receptor inefficient, showed 

behavioural deficits similar to the symptoms observed in schizophrenia, including 

increased locomotor activity, stereotypies, and deficits in sexual behaviour as well as 

social withdrawal. Focussing on the ability of PCP to induce psychosis-like states in 

human, and using social behaviour in rats, Sams-Dodd (1996) created a model of 
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schizophrenia in rats, showing that PCP produces, in a dose-dependent manner, 

symptoms that are comparable to what is observed in schizophrenics: stereotyped 

behaviour and disturbances of the social behaviour. Moreover, these behavioural 

features were improved by haloperidol and clozapine, in doses equivalent that those 

administered in humans, the haloperidol improving negative-like symptoms, and 

clozapine improving positive-like, as well as negative-like symptoms. On the other 

hand, in order to test the NMDA antagonists model of schizophrenia, Adams & 

Moghaddam (2001) challenged a treatment with PCP in rats with a typical 

(haloperidol), and an atypical (clozapine) neuroleptic, as well as with a pure 5-HT2A 

antagonist (M100907), in order to verify their potency in reversing the increased 

prefrontal cortical glutamate release. In fact, none of the compounds were able to block 

the PCP-induced enhancement of glutamatergic transmission, showing that this model 

was not useful in predicting efficacy for conventional antipsychotics. 

 

According to some investigators, the effects of NMDA antagonists on the brain is not 

only as originally supposed, i.e. the induction of schizophrenia-like symptoms by the 

suppression of postsynaptic glutamatergic neurotransmission. In fact, it has been shown 

in the rat, for example, that a subanesthetic dose of ketamine (30 mg/kg) produces an 

increase of the release of glutamate in the prefrontal cortex of rats. It seems that 

ketamine, by antagonizing NMDA receptors, disinhibits the release of glutamatergic 

neurons by blocking the action of GABAergic interneurons (Moghaddam et al, 1997). 

Then, a new aspect is that NMDA antagonists lead to the enhancement of the release of 

glutamate which in turn acts at non-NMDA receptors. Takahata & Moghaddam (2000), 

by administering AMPA/kainate antagonist in the ventral tegmental area in rats, 

produced an increase of the release of dopamine in the nucleus accumbens, and a 

decrease in the prefrontal cortex, showing that, under normal conditions, glutamate, 

through NMDA/kainate receptors, exerts a tonic inhibition upon dopaminergic neurons 

projecting to the nucleus accumbens, and a tonic excitation on those projecting to the 

prefrontal cortex. This has subsequently been confirmed by Jackson et al (2001), who 

induced a decrease of the release of dopamine in the nucleus accumbens by stimulating 

the prefrontal cortex with a frequency equivalent to that encountered during cognitive 

tasks. According to the authors, glutamatergic neurons of the prefrontal cortex act either 

directly by activating GABAergic interneurons in the ventral tegmental area, or they 
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stimulate GABA neurons in the nucleus accumbens that control the dopaminergic 

neurons of the ventral tegmental area. 

 

Recent discoveries strengthen the view that some of the schizophrenic symptoms could 

be due to a concomitant alteration of the glutamatergic and the dopaminergic systems. 

For example, sub-chronic administration of PCP in rats induces a decrease of dopamine 

utilization in the prefrontal cortex, and induces cognitive deficits comparable to those 

observed in schizophrenia (Jentsch et al, 1997) (also see reviews by Goff & Coyle, 

2001; Tsai & Coyle, 2002). It has been proposed that a circuit involving the 

mesocortical and mesolimbic dopaminergic pathways, as well as the glutamatergic 

pathways from the frontal cortex towards the dopaminergic areas of the midbrain could 

be the main system altered in schizophrenia; this could involve the midbrain-cortex-

midbrain loop, in which altered dopaminergic regulation of prefrontal cortical neurons, 

especially glutamatergic (hypofrontality), could provoke schizophrenic symptoms by 

disturbing the descending glutamatergic efferent pathways towards the limbic system 

(dopaminergic ventral tegmental area, hippocampus, nucleus accumbens and amygdala) 

(Svensson, 2000). However, it has been shown by Kapur & Seeman (2002) that PCP 

and ketamine can act directly at the level of dopaminergic and serotonergic receptors as 

they have found equivalent affinities, for these compounds, at NMDA and D2 and 5-

HT2 receptors. Finally, Kegeles et al (2000) using the amphetamine challenge model 

(see above) during an imaging study (SPECT) on 8 healthy volunteers, showed that the 

amphetamine-induced increase of striatal dopamine release was exacerbated (greater 

than two-fold) by the administration of ketamine. These authors concluded that this is 

consistent with the view that alteration of dopamine transmission in schizophrenia 

results from a disruption of glutamatergic neuronal regulation. Thus several 

investigators propose that contrary to what is stated by the dopamine theory of 

schizophrenia, the dopaminergic system itself is not deficient, and it is the regulatory 

system (e.g. the glutamatergic system) which is dysfunctional. This dysfunction could 

take place within the corticolimbic loops that connect prefrontal cortex, amygdala, 

nucleus accumbens and ventral tegmental area. It has been postulated that, as the 

prefrontal cortex is involved in higher cognitive functions (i.e. motor planning and 

learning that involves an emotional component) in collaboration with subcortical 

structures such as hippocampus, amygdala and nucleus accumbens, a dysregulation of 

the circuitry linking those structures would lead to the appearance of some of the 
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symptoms of schizophrenia. Indeed, the nucleus accumbens receives information from 

frontal cortex (linked to goal-directed motor planning), subiculum (linked to the 

context) and amygdala (linked to the emotional valence). According to Grace (2000), 

and considering that hippocampus and amygdala gate cortical information from the 

prefrontal cortex to the nucleus accumbens, a dysfunction of the glutamatergic inputs to 

the nucleus accumbens would lead to impaired regulation of output pathways exerted by 

dopamine, inducing inappropriate responses to particular situations (Fig 1.2). This 

would take place because of the subsequent disturbance of the transmission of cortical 

information, through the nucleus accumbens, towards the ventral pallidum and the 

thalamus. Indeed, it has been shown that glutamatergic inputs to the nucleus accumbens 

were modulated by D1 dopaminergic receptors, strengthening the view that mesolimbic 

dopamine regulates information flow within the nucleus accumbens (Charara & Grace, 

2003). 
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Fig 1.2 Schematic representation of relevant glutamatergic pathways in the rat 

 

A

B

A

B

 
 

Top. Abbreviations: Acc, accumbens nucleus; CX, frontal cortex; HP, hippocampus; SN, substantia 

nigra; ST, striatum; TH, thalamus, VTA, tegmental ventral area. Bottom. Implication of glutamatergic 

inputs to the accumbens nucleus in schizophrenia, according to Grace (2000). 

 

 

Several researchers suggest that agonists or antagonists of the glutamatergic system 

could be potent antipsychotics, at least for some classes of symptoms that are not 

improved by dopaminergic drugs. For example, the metabotropic mGluR5 receptor, 
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which belongs to the group I of glutamate receptors, is highly present in many 

structures involved in schizophrenia (i.e. hippocampus, striatum, neocortex, nucleus 

accumbens, thalamus and lateral septum), and the mGluR2/3 autoreceptors, that belong 

to the group II of glutamate receptors, are highly present in cortex, hippocampus and 

cerebellar cortex. Moreover, mGluR5 and mGluR2 are abundant in the hippocampus and 

in the neurons of the nucleus accumbens that project to the ventral pallidum (Chavez-

Noriega et al, 2002). Thus, metabotropic receptors are considered as good candidates, at 

least to ameliorate cognitive symptoms. Either agonists of the mGluR5 subtype, which 

can enhance NMDA neurotransmission, or agonists of the mGluR2/3 autoreceptors, 

which have been found to block PCP-induced increased locomotion and stereotypies in 

rats (Moghaddam & Adams, 1998). Finally, another possible treatment of the cognitive 

symptoms of schizophrenia would be to act upon the ionotropic NMDA receptor and 

enhance its function; indeed D-cycloserine a partial agonist at the glycine recognition 

site of the NMDA receptor, as D-serine is a modulator of the NMDA receptor at the 

glycine site, has been shown to enhance cognitive symptoms in schizophrenia (Coyle et 

al, 2002). Moreover, D-cycloserine (50 mg/day) improved negative symptoms when 

added to the atypical antipsychotic risperidone (Evins et al, 2002). 

 

Even if altered glutamatergic neurotransmission, according to preclinical and clinical 

studies, seems to be a good candidate for the appearance of some of the symptoms of 

schizophrenia (i.e. negative and cognitive), deficiencies in the glutamatergic system still 

need to be strongly confirmed in schizophrenia itself, since for example genetic and 

receptor mapping studies present some discrepancies. Tsai et al (1995) found a lower 

amount of glutamate, as well as aspartate, in the prefrontal cortex and hippocampus in 

schizophrenics. They also found a higher concentration of N-acetylaspartylglutamate 

(NAAG), which is a precursor of glutamate and can also act post-synaptically as a 

NMDA antagonist, as well as a lower concentration of the enzyme that converts NAAG 

into glutamate. Concerning the ionotropic receptors, the GluR5-6-7 subunits of the 

kainate receptors have been found to be down regulated at the level of the pyramidal 

cells in the CA1, CA2 and CA3 regions of the hippocampus in schizophrenics (Benes et 

al, 2001). Also in the hippocampus, Porter et al (1997) found a lower expression of the 

mRNA of the GluR1 and GluR2 AMPA sub-units and of the GluR6 and KA2 kainate 

sub-units, and Gao et al (2000) found decreased concentration of the NR1 and increased 

concentration of the NR2B sub-units of NMDA receptor. However, a study by Martucci 
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et al (2003) did not show any difference in polymorphisms of the GRIN1 gene coding 

for the NR1 subunit of the NMDA receptor in schizophrenics compared to controls. 

Crook et al (2002) found no difference in the post-mortem immunoreactivity for 

metabotropic receptors of the type II class in Brodmann’s area 46 of the dorsolateral 

prefrontal cortex of medicated schizophrenics compared to controls. No polymorphisms 

were found in schizophrenics concerning the genes for the metabotropic receptors of the 

type III class (mGluR7 and mGluR8) which presynaptically inhibit glutamate (Bolonna 

et al, 2001; Bray et al, 2000). Also, in the German population, Marti et al (2002) did not 

find any variation in the expression of the GRM3 gene coding for the mGluR3 receptor, 

and Ohtsuki et al (2001) did not find any mutation in the GRM4 gene coding for the 

mGluR4 receptor in a Japanese cohort. Nevertheless, an interesting finding suggests an 

alternative analysis of such results, as Ohnuma et al (2000), studying the expression of 

genes coding for the mGluR5 receptor as well as for the excitatory amino acid 

transporter 2 (EAAT2) in the hippocampus, did not find any difference between 

schizophrenics and control, but when the ratio mGluR5/EAAT2 was compared, they 

found an enhancement in the parahippocampal gyrus, that could be the reflection of a 

hypo-glutamatergic transmission in this structure. 

 

I.1.8.3 Schizophrenia and serotonin 

The findings that hallucinogenic substances such as the indoleamines (e.g. lysergic acid 

diethylamide, or LSD) or the phenethylamines (e.g. mescaline) bound to serotonergic 

receptors led some researchers to consider the involvement of a defective serotonergic 

system in the occurrence of schizophrenia (Fig. 1.3). 
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Fig 1.3. Schematic representation of the serotonergic pathways in the rat 

 

 
 

Abbreviations: B4-B9, serotonergic cell groups in the raphé nuclei; DS, dorsal striatum (neostriatum); 

MFB, medial forebrain bundle; PFC, prefrontal cortex; VS, ventral striatum (accumbens nucleus) (From 

Squire et al, 2003). 

 

 

For example, the hallucinogenic properties of the LSD have been attributed to its 

binding to the 5-HT2C and 5-HT2A receptors. This supposition was later strengthen by 

the finding that atypical antipsychotics (e.g. clozapine) have elevated affinity for the 5-

HT2A and 5-HT2C serotonin receptors and a quite low in vivo occupancy for the D2 

dopamine receptor at therapeutic dose (Reynolds, 1995). These compounds cause less 

extrapyramidal side-effects than typical neuroleptics, and in the case of clozapine can 

alleviate symptoms in schizophrenics that do not respond to classical neuroleptics 

(Kane et al, 2001). Indeed, quetiapine, an atypical antipsychotic with minimal D2 

receptor occupancy, has been found, during a PET study on 12 schizophrenics, to bind 

to the 5-HT2A receptor, binding which was correlated with the improvement of clinical 

symptoms and to the absence of motor side-effects (Kapur et al, 2000). Also, 

risperidone efficacy has been shown to be associated with the 5-HT2A receptor 

polymorphism (Lane et al, 2002). 

 

In their review, Iqbal & Van Praag (1995) describe interactions between serotonergic 

and dopaminergic systems, and consider as simplistic the view that schizophrenia could 
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simply occur because of an elevation, even marked, of the level of serotonin 

transmission. In fact, antagonizing the serotonergic system generally affects 

dopaminergic transmission, in both mesolimbic and mesostriatal systems, and is 

proposed to contribute to the beneficial effects of atypical antipsychotics concerning 

extrapyramidal symptoms (EPS) like tardive dyskinesia and even negative symptoms. 

For example, 5-HT2 antagonists can act postsynaptically at the level of the substantia 

nigra, or presynaptically at the level of the striatum, and thus release dopamine from 

inhibition, leading to the decrease of EPS; the same effect can also be obtained by 

stimulating raphé 5-HT1A autoreceptors and thus inhibiting serotonin transmission, 

which in turn leads to the enhancement of dopamine transmission in the striatum. 

Moreover, 5-HT2A antagonists lead to the increase of dopamine release in the prefrontal 

cortex, which is proposed to be the mechanism by which they ameliorate negative 

symptoms (Lieberman et al, 1998). However, Ruiu et al (2000) have shown, on isolated 

frontal cortex synaptosomal fractions, that the 5-HT2 antagonist ritanserin inhibited 

dopamine re-uptake, suggesting that this mechanism, leading to an increased 

extracellular dopamine concentration, may be of importance. 

 

Aghajanian & Marek (2000) investigated the interactions between the serotonergic and 

glutamatergic systems, and proposed an alternative hypothesis to the serotonin 

hypothesis, based on the concomitant involvement of those two systems. These authors 

noted that hallucinogenic substances (i.e. indoleamines and phenethylamines) act 

through 5-HT2A receptor that are located in the prefrontal cortex (pyramidal layer V) 

and the locus cœruleus. In the former, they induce enhancement of the glutamatergic 

transmission, and, in the latter, they facilitate activation of the glutamatergic 

transmission by sensory stimuli (since noradrenaline enhances the signal-to-noise ratio 

of sensory information), through the enhancement of the glutamatergic transmission. It 

could be through these mechanisms that these substances disturb thalamocortical loops 

and induce schizophrenia-like symptoms. 

 

Abi-Dargham et al (1996), in a quite complete overview of the involvement of 

serotonin in schizophrenia, concluded that the studies did not give consistent results, 

whether serotonergic receptors or the serotonin transporter were investigated. For 

example, Serretti et al (2000) did not find any changes in the regional concentration of 

5-HT2A receptors in schizophrenics, and Okubo et al (1997), in a PET study, did not 
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find any difference in the binding for 5-HT2 receptors in any brain regions in 

schizophrenics, including drug-free patients, compared to controls. Concerning the 5-

HT2A receptor, a review by Dean (2003) revealed how hard it is to associate this 

receptor to schizophrenia. First of all, there have been many discrepant post-mortem 

and imaging studies that showed either a decreased or an increased binding in the 

prefrontal cortex of schizophrenics. In fact, it seems that the 5-HT2A receptor shows a 

down-regulation in reaction to both agonists and antagonists; thus, it is not clear if 

decreased binding is due to the administration of antipsychotics, some of which being 

antagonists of this receptor, or to the disease per se, which could be the reflection of an 

increased serotonergic tone. Van Oekelen et al (2003) postulated that an antagonistic 

action at both 5-HT2A and 5-HT2C receptors could lead to the phosphorylation of the 

receptors, their internalisation followed by their degradation in lisosomes. They propose 

a circuit in which such a mechanism could take place following the administration of 

drugs with a 5-HT2 antagonistic action, and which involves GABA-ergic and 

glutamatergic neurons of the frontal cortex and dopaminergic neurons of the ventral 

tegmental area that project on the former. According to them, this down-regulation 

could maintain the therapeutic action of the antipsychotics. 

 

Post-mortem studies showed that a property of the human serotonergic 5-HT2C receptor, 

which has also been investigated with respect to schizophrenia, is its RNA editing. This 

phenomenon leads, after the substitution of some nucleotidic bases in the mRNA 

sequence (adenosine-to-inosine) at five positions within the second intracytoplasmic 

loop, to receptor variants with distinct pharmacological properties (Sodhi et al, 2001). 

Discrepant findings have been found about this phenomenon: Sodhi et al (2001) showed 

that editing in the frontal cortex of schizophrenics that led to the predominant formation 

of the more active receptor to the detriment of the less active, and was considered to 

lead to the frontal disturbances seen in schizophrenia, and to the different responses to 

the various neuroleptics. On the other hand, a study by Niswender et al (2001) did not 

show any differences in the same region. However, in the latter case, they found 

enhanced editing at one site in the patients that committed suicide, suggesting that 

abnormal editing could play a role in this feature of any psychiatric diseases. This was 

confirmed in a post-mortem study by Iwamoto & Kato (2003) who extended this view 

to major depression in addition to suicide. Interestingly, this demonstrates that 

anomalies may occur not in terms of number of receptors, but in terms of receptor 

37 



Chapter I – General introduction 

properties, and shows why it is so hard, using conventional techniques (imaging or 

histological), to demonstrate the involvement of any receptors in pathologies such as 

schizophrenia. 

 

I.1.8.4 Schizophrenia and acetylcholine 

It is well-known that a majority of schizophrenics are smokers (between 70 and 80 %, 

compared to 30% in the general population), and this percentage is also the highest 

among psychiatric illnesses (Hughes et al, 1986). Given the fact that smoking 

withdrawal exacerbates some of the symptoms, it has been proposed that smoking could 

be a self-medication attempt. In fact, studying the impact of nicotine on schizophrenia, 

Smith et al (2002) found that administration of high dose of nicotine through cigarettes 

tended to reduce the severity of negative symptoms, while it had no effect by nasal 

spray administration; nonetheless, this was only efficient in heavy smokers. Having 

noticed that nicotine withdrawal worsened these symptoms, the authors concluded that 

nicotine could maintain negative symptoms at a basal level of severity. On measures of 

cognitive performance, cigarettes had no effect, whereas the nasal spray administration 

tended to improve the deficits during various tests (spatial processing, visual and verbal 

memory). Zammit et al (2003), in a longitudinal study between 1970 and 1996, 

performed with 50,087 young Swedish conscripts, found that those that had started 

smoking around 18-20 years old had a reduced risk for the appearance of schizophrenia. 

According to these authors, this study confirms the neuroprotective role of nicotine. 

 

Nicotinic acetylcholine receptors, which are ligand-gated ion channels, have been 

studied in schizophrenia and, because of their effects on cognition, nicotinic agonists 

are under development as possible treatment of cognitive deficits in schizophrenia. 

Nicotinic receptors are involved in higher cognitive functions such as attention, learning 

and memory, as shown extensively in rodents by the fact that nicotinic antagonists 

impair those functions, and that nicotinic agonists improve deficits-induced in attention 

or learning and memory (Levin & Simon, 1998). In the human brain these receptors are 

pentamers composed of a combination of 2 types of subunits [α(α2 to α7, α9) and β(β2 

to β4)], and there are two main sub-populations of them, α7 and α4β2. The receptors of 

the α7 type exhibit a low affinity for nicotine and are mainly located in cerebellum, 

thalamus (reticular nucleus and less pronounced in the lateral geniculate), in subfields 

of the hippocampus, in layers I-II of temporal cortex (Brodmann’s area 42), lateral 
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nucleus of the amygdala, nucleus basalis of Meynert, in the pons and in the deep 

cerebellar nucleus (Graham et al, 2002; Lena & Changeux, 1998). The receptors of the 

α4β2 type exhibit a high affinity for nicotine and are mainly located in the thalamus and 

the hippocampus, as well as in the striatum (Lena & Changeux, 1998; Graham et al, 

2002). An important fact concerning schizophrenia is that the α7 are mainly located in 

the reticular thalamic nucleus, which is known to be entirely composed of GABAergic 

interneurons and is responsible for inhibitory feedback control of thalamo-cortical 

pathways (Freedman et al, 2000). Thus, deficits in sensory gating, a role played by the 

thalamus, and represented by a defect in diminishing the magnitude of the P50 response 

to the second of two identical stimuli (= cortical evoked potential after repeated 

auditory stimuli), have been proposed to be due to an abnormal expression (Leonard et 

al, 1998), or a desensitization (Griffith et al, 1998) of the α7 receptor in schizophrenia. 

Whereas treatment with conventional neuroleptic does not improve this impairment, 

nicotine administration has been shown to correct it, as well as clozapine, but only in 

patients that show a good therapeutic response concerning other types of symptoms 

(McEvoy & Allen, 2002). Indeed, two genetic studies of the chromosome 15q14 site 

have revealed in schizophrenics promoter variants of the α7 receptor that could account 

for its decreased expression and is postulated to be at the origin of the sensory gating 

deficits (Leonard et al, 2002). Moreover, Freedman et al (1997) found that this defect 

on the chromosome 15 was shared by schizophrenics and their non-schizophrenic 

relatives, showing that this feature of the disease was inherited genetically. An 

interesting fact is underlined by Freedman et al (2000), and supports the view conceived 

by Benes & Berretta (2001) (see below). These authors postulate that a dysregulation of 

the inhibitory action of GABAergic interneurons could be at the origin of deficits in 

schizophrenia, including sensory gating deficits. Freedman et al (2000) pointed out that 

post-mortem studies of four different groups of researchers revealed a decrease of the 

density of α7 receptors, which were mainly colocalized with GABAergic interneurons 

in the hippocampus and in the thalamus. They also summarized evidence that this 

decrease could lead to a failure of activation of inhibitory interneurons, and then to 

sensory gating deficits encountered in schizophrenia. 

 

Concerning the α4β2 receptor, a post-mortem study by Durany et al (2000) has revealed 

a 30% decrease of its expression in the striatum of schizophrenics, and the authors 
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propose that nicotine consumption could then be a way to compensate this decreased 

number which leads to a decreased efficacy of cholinergic transmission. 

 

In fact, many studies have been performed on cholinergic function and some 

contradictory results did not allow any general agreement concerning that question (see 

review by Hyde & Crook, 2001). Nevertheless, a very interesting fact is that the 

cholinergic pathway, linking the basal forebrain and the prefrontal cortex (Fig. 1.4), is 

under the influence, from the accumbens nucleus, of GABAergic neurons that are 

themselves regulated by a dopaminergic inhibitory influence (Moor et al, 1999). 

 

 

Fig 1.4. Schematic representation of the cholinergic pathways in the rat 

 

 
 

Abbreviations: DR, dorsal raphé nucleus; HDBB, horizontal limb of the diagonal band of Broca; IP, 

interpeduncular nucleus; LC, locus coeruleus; MS, medial septum; NBM, nucleus basalis 

magnocellularis (Meynert in primates); PFC, prefrontal cortex; VDBB, vertical limb of the diagonal band 

of Broca. 

 

 

Thus, these authors propose that a dysregulation of the mesolimbic dopaminergic 

system could induce, because they are indirectly connected, a dysregulation of the 

cholinergic system, which could be the origin of the cognitive deficits encountered in 

schizophrenia (attention, learning and memory). This link between the cholinergic and 
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the dopaminergic system is very important and it has been stressed that, for example, 

nicotine, which stimulates dopamine release, could be used by schizophrenics, through 

smoking, to compensate the dysregulation of the dopaminergic system. George et al 

(2000), studying the effects of stress, which has been shown to exacerbate 

schizophrenic disorders, found that low, but not high, dose of repeated nicotine pre-

treatment attenuated the increased dopamine utilization in the medial prefrontal cortex, 

and the associated acute stress-induced immobility responses in rats. Together with its 

effects on cognition, this provides a basis for the view that in schizophrenics nicotine 

has a real beneficial role. 

 

Concerning the muscarinic receptors, it has recently been shown that the atypical 

antipsychotic clozapine acts as partial weak agonist of the post-synaptic excitatory 

muscarinic cholinergic receptors M1 and M4, the affinity being higher than for the D1 

and D2 dopaminergic receptors (Pavel et al, 1999). Also, olanzapine, another atypical 

antipsychotic, has been shown in vivo to be an M2 receptor antagonist (Raedler et al, 

2000). According to these authors, this could account for the low extrapyramidal effects 

observed with such a compound. Moreover, Raedler et al (2003) showed that a 

treatment with clozapine induced a decreased binding to muscarinic receptors in 8 

schizophrenics in cortex, striatum and thalamus. In fact, a post-mortem study has shown 

that the binding for M1 and M4 was reduced in the hippocampal formation of a cohort of 

schizophrenics (n=15 compared to 18 healthy control subjects), including dentate gyrus, 

subdivisions of Ammon’s horn (CA1 to CA4), subiculum and parahippocampal gyrus 

(Crook et al, 2000). Another study has shown a decreased population of M1 and M4 

receptor in the prefrontal cortex of 17 schizophrenics compared to 20 control subjects 

(Crook et al, 2001). 

 

I.1.8.5 Schizophrenia and GABA 

GABA is the main inhibitory neurotransmitter in the central nervous system, and the 

major transmitter of interneurons in cortical areas. There are two types of GABA 

receptors: the ionotropic GABAA receptor which also possesses a binding site for 

benzodiazepines, and the metabotropic GABAB receptor. Post-mortem studies have 

revealed changes in the GABA system of schizophrenics. Mizukami et al (2000) 

showed that the GABAB immunoreactivity was markedly reduced in the hippocampus 

of 5 schizophrenics compared to 3 control subjects, throughout all the CA fields, and 
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that it was also reduced in the pyramidal cells of the entorhinal cortex, throughout all 

layers, and in the inferior temporal cortex, in layer V. These authors consider that those 

results can be interpreted according to the view that some symptoms of schizophrenia, 

such as gating deficits, arise, at least partly, from disturbances within the hippocampus 

involving loss of inhibition upon the pyramidal cells by the GABA interneurons could 

easily contribute to cause hippocampal dysfunction. A highly replicated finding is up-

regulation of the GABAA subtype in the prefrontal cortex (Brodmann’s area 9 and 10), 

and hippocampus (CA2-4 region), in schizophrenia (Benes et al, 1996a,b; Dean et al, 

1999; Ohnuma et al, 1999). This enhanced number of GABAA receptors is postulated to 

occur in reaction to a decrease of the GABAergic tone that could participate in the 

hypofrontality characteristic of schizophrenia. These receptor binding changes were 

confirmed by Ohnuma et al (1999) who also found in the same region a decrease of the 

GABA content and a decrease of the expression of the GABA transporter messenger 

RNA. 

 

Benes & Berretta (2001), extending the above-mentioned post-mortem studies (cell 

counting, GABAergic endings labelling or specific labelling of the GABA receptors), 

concluded that some of the schizophrenic symptoms could occur because of 

dysregulation of the inhibitory/disinhibitory GABAergic system in the prefrontal cortex, 

as well as the dysregulation of the inhibitory role of GABA in the hippocampus. Indeed, 

they found a decreased number of non-pyramidal cells in prefrontal cortex (layer II), 

anterior cingulate cortex (layers II and IV) and hippocampus (CA2 region). As these 

regions receive input from the amygdala, they suggested that a hyperactivity of this 

amygdalar afferent pathway could lead to the changes observed in the GABAergic 

system. In fact, these authors are some of the pioneers of the hypothesis that the 

disturbances of the GABAergic system could appear during the early development of 

the cortex, and could be due to a default in the cellular migration, and in the formation 

of cell layers. These features could also be linked to a pre- or/and post-natal stress, as 

the GABAergic system has been shown to be highly sensitive to stress-induced 

physiological variations, especially affecting the glucocorticoid hormones, that intensify 

the cellular response mediated by the GABAA receptor (Lambert et al, 1987). More 

precisely, the fact that the changes in GABAA receptor appear essentially in layer II of 

the prefrontal cortex, is in favour of the statement that there could be a defect during the 
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perinatal development of the brain, as this layer is the last to appear and to be 

differentiated in the early development. 

 

Unfortunately, to date, no other in vivo study has brought solid data to confirm the 

changes in the GABA system in schizophrenics. Busatto et al (1997) and Abi-Dargham 

et al (1999) failed to find any difference at the cortical level using post-mortem 

benzodiazepine receptor binding, and if polymorphisms have been observed at the level 

of the GABAB gene in chromosome 6, there was no statistical confirmation that they 

could confer a particular vulnerability for schizophrenia (Imai et al, 2002). However, a 

study by Papadimitriou et al (2001) showed an association between schizophrenia and a 

polymorphism of the gene coding for the alpha 5 subunit of the GABAA receptor in a 

population of Greek late-onset schizophrenics. 

 

I.1.8.6 Is there a genetic susceptibility for schizophrenia ? 

Studies of mono- or dizygotic twins raised in the same or separate families, as well as 

studies of “high-risk” families, has shown a considerable genetic involvement in the 

appearance of schizophrenia. The probability to develop schizophrenia is 1 % in general 

population, and reaches 17 % in first-degree relatives and 50 % in monozygotic twins 

(Gottesman, 1991). Thus, there must be both genetic and environmental factors in the 

appearance of schizophrenia. Genetic studies have indicated many possible 

chromosomal effects (at chromosome 1, 2, 5, 6, 7, 8, 9, 10, 13, 15, 18, 22) (MacIntyre et 

al, 2003; Waterworth et al, 2002). According to Demirhan & Tastemir (2003), these 

chromosomic anomalies could give rise to a more pronounced risk to develop 

schizophrenia, in a non-specific manner, by disturbing embryogenesis of the nervous 

system. Most authors, in fact, believe that the appearance of schizophrenia requires the 

presence of several factors (multiple “hits”), including genetic predisposition, or 

“susceptibility genes”, that may confer vulnerability. Nonetheless, they do not exclude 

the involvement of environmental stressors, well formulated for example by Gottesman 

(1991). Some of these risk factors are postulated to essentially act during pregnancy and 

birth of the child, and can lead to certain anatomical anomalies. Cannon et al (2002), 

who performed a meta-analysis, underlined three different categories of complications, 

correlated with the appearance of schizophrenia: 1 - pregnancy complications (bleeding, 

diabetes, rhesus incompatibility). Concerning that point, Mallard et al (1999), after 

having performed intrauterine growth-restriction in female guinea pig during gestation, 
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observed in pups some of the anatomical anomalies observed in schizophrenics (see 

above): ventricular enlargement and decrease of the hippocampal, striatal and cortical 

volumes. 2 - foetal abnormal development (low weight at the time of birth, congenital 

malformations, reduced head circumference); more particularly, the schizophrenics that 

had a low weight at the time of birth have a lower rate of premorbid social adaptation, 

and the prematures have a higher risk to present neurodevelopmental abnormalities 

(Kunugi et al, 2001). 3 - delivery complications (uterine atonia, asphyxia, caesarean 

operation in emergency). 

 

Recently, new genetic targets have emerged, such as neuregulin (NRG1) (Stefansson et 

al, 2002, 2003; Williams et al, 2003, Yang et al, 2003; Corfas et al, 2004), the Ca2+-

activated potassium channel, SK3 (Dror et al, 1999; Miller et al, 2001), but also 

dysbindin (DTNBP1), G72, D-amino-acid oxidase (DAAO), regulator of G protein-

signaling-4 (RGS4), proline dehydrogenase (ProDH) and catecol-O-methyl transferase 

(COMT) (Tamminga & Holcomb, 2004). 
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The habenular complex, or habenula (Hb), is a limbic structure within the dorsal 

diencephalon that forms part of the epithalamus. The neuroanatomy of the Hb has been 

best studied in the rat. It consists of two distinct nuclei, the lateral habenular nucleus 

(LHb), and the medial habenular nucleus (MHb) (Gurdjian, 1925), the former being 

composed of 10 sub-nuclei and the latter being composed of 5 sub-nuclei in the rat 

(Andres et al, 1999). The LHb and the MHb are very distinct from both an anatomical 

and physiological standpoint. Moreover, each nucleus has very distinct efferent and 

afferent connections and there are few, if any interactions between them (Cuello et al, 

1978). From a neurochemical point of view, the MHb contains cholinergic (Eckenrode 

et al, 1987) as well as substance P-containing (Hökfelt et al, 1975) neurons, whereas the 

LHb contains almost exclusively glutamatergic neurons (Geisler et al, 2003) but also 

some GABAergic neurons (Contestabile et al, 1987). The major afferent pathways of 

both nuclei are contained in the stria medullaris, while the efferent connections leave 

the habenular complex through the fasciculus retroflexus (Pellegrino et al, 1979). The 

fibers stemming from the LHb form the periphery of the fasciculus retroflexus while 

those stemming from the MHb are situated at the core of the fasciculus retroflexus 

(Herkenham & Nauta, 1979). Those three entities (stria medullaris-Hb-fasciculus 

retroflexus) form the dorsal diencephalic conduction system (Sutherland, 1982). 

I.2 The habenular complex 

 

 

 

 

An overview of the connections of the habenular complex is shown in Fig 1.5. 
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Abbreviations: 5-HT, serotonin; Acb, accumbens nucleus; ACh, acetylcholine; CM, central medial thalamic nucleus; CPu, striatum; DBB, diagonal band of Broca; DR, dorsal 

raphé nucleus; DTg, dorsolateral tegmental nucleus; EP, entopeduncular nucleus; fr, fasciculus retroflexus; FrCx, frontal cortex; Glu, glutamate; IP, interpeduncular nucleus; 

LC, locus coeruleus; LH, lateral hypothalamic area; LPO, lateral preoptic area; MD, mediodorsal thalamic nucleus; MnR, median raphé nucleus; Pf, parafascicular thalamic 

nucleus; Pi, pineal gland; PnO, pontine reticular formation; SCh, suprachiasmatic nucleus; SFi, septofimbrialis nucleus; sm, stria medullaris; SN, substantia nigra pars compacta; 

SP, substance P; SuM, supramammillary nucleus; Tu, olfactory tubercle; VM, ventromedial thalamic nucleus; VTA, ventral tegmental area. Black bolded line: habenular 

afferent connections. Black dashed line: habenular efferent connections. White boxes: extrapyramidal system. Grey boxes: limbic system. Colored lines: serotonergic, 

dopaminergic and noradrenergic pathways altered by habenular manipulation in the rat or in the cat (stimulation or lesion). 
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Fig 1.5. Connections of the habenular complex in the rat and in the cat 
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I.2.1 Afferent connections to the habenular complex 

In her classical paper, Gurdjian (1925) using multiple histological techniques (brain 

sections cut in three dimensions, transverse, saggital and horizontal, and prepared with 

either the Ranson pyridine-silver method, Cajal’s silver method or stained with toluidine 

blue) described the dorsal diencephalon in the albino rat as follows. Firstly, the MHb, 

adjacent to the ependymal lining of the third ventricle, is divided into a ventromedial 

part, that shows compactly placed cells which form an irregular triangular mass, and a 

dorsomedial part, that was comprised of a group of more loosely packed cells. Secondly 

she described the LHb, which contains smaller, much more scattered cells than those 

seen in the MHb. Moreover, the Hb was shown to be the structure that receives the 

fibers included within the stria medullaris. These fibers arise from different regions of 

the forebrain and form different part of the stria medullaris: some fibers arise in the 

hippocampus, descend with the fornix columns in the region of the caudal one-third of 

the anterior commissure, are related to the MHb, and form the medial cortico-habenular 

tract; some fibers come from the ventromedial portion of the hemisphere, the pyriform 

lobe and the nucleus of the lateral olfactory tract to form the lateral cortico-habenular 

tract; fibers arise from the septum (= basal olfactory areas of the medial wall), and join 

the medial cortico-habenular tract to form the septo-habenular tract; some fibers come 

from the bed nuclei of the stria terminalis and the anterior commissure, from the caudal 

aspect of the tuberculum olfactorium and the rostral one-third of the preoptic area, to 

form the lateral olfacto-habenular tract; some fibers come from the medial portions of 

the preoptic area and the hypothalamic regions to form the medial olfacto-habenular 

tract. Later, Nauta (1958) emphasized that the stria medullaris-habenula-fasciculus 

retroflexus conduction system was one of the systems that serve to convey 

hippocampal, and also amygdalar, informations, via the septum and the lateral 

preoptic/hypothalamic area, towards the midbrain.  

 

I.2.1.1 Afferent connections to the medial habenular nucleus 

In the rat, the most prominent afferent connection of the MHb comes from two nuclei of 

the posterior septum, the n. fimbrialis septi and the n. triangularis septi, the former 

reaching the MHb at its rostral level, and the latter at its caudal level (Herkenham & 

Nauta, 1977; Parent et al, 1980). Interestingly, these septal nuclei receive their major 

input from the hippocampal formation (Nauta, 1958; Swanson & Cowan, 1979), 
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projections that were previously thought to reach the Hb (see above Gurdjian, 1925). 

Sperlágh et al (1998) have shown that this septal projection was the major source of 

ATP in the Hb that could be released by electrical stimulation. Kawaja et al (1990), who 

showed that this projection reaches the MHb to innervate the dendrites of substance P-

containing and cholinergic neurons, have proposed that the septum, by this pathway, 

could then exert a control upon the habenulo-interpeduncular tract. The MHb also 

receives a dopaminergic input from the interfascicular nucleus of the ventral tegmental 

area (Phillipson & Pycock, 1982), and two noradrenergic afferent connections from the 

superior cervical ganglion and from the locus coeruleus (Gottesfeld, 1983). Two minor 

inputs have been found to be sent by the median raphé nucleus and by the nucleus of the 

diagonal band of Broca, the latter being cholinergic and GABAergic (Contestabile & 

Fonnum, 1983; Gottesfeld & Jacobowitz, 1979; Herkenham & Nauta, 1977). Finally, 

Sim & Joseph (1991) found a projection from the arcuate (infundibular) nucleus. In the 

cat, (Parent et al, 1980) found that the major inputs comes from the lateral hypothalamic 

and the lateral preoptic areas. They also found two connections coming from the 

substantia innominata, the postcommissural septum, the diagonal band of Broca and the 

entopeduncular nucleus which is the internal portion of the globus pallidus in non-

primate mammals. Finally, a connection comes from the bed nucleus of the stria 

terminalis. Also, (Bobillier et al, 1976) found a projection from the median raphé 

nucleus in the cat. In the squirrel monkey, the projections to the MHb come from the 

anterior lateral hypothalamus, the internal portion of the globus pallidus, the diagonal 

band of Broca and the ventral tegmental area (Parent et al, 1980). 

 

I.2.1.2 Afferent connections to the lateral habenular nucleus 

In the rat, many afferent connections have been found to reach the LHb: GABAergic 

inputs come from the entopeduncular nucleus, the lateral hypothalamus and the lateral 

preoptic area (Araki et al, 1984; Garland & Mogenson 1983; Gottesfeld et al, 1977; 

Naguy et al, 1978; Vincent et al, 1982) and a cholinergic input comes from the 

entopeduncular nucleus (Moriizumi & Hattori, 1992). Some authors have also found 

afferent fibers that come from the medial frontal cortex (Greatrex & Phillipson, 1982), 

the ventrolateral septum, the diagonal band of Broca and the nucleus accumbens 

(Gottesfeld & Jacobowitz, 1979; Herkenham & Nauta, 1977; Mok & Mogenson, 1972). 

Sofroniew & Weindl (1978) found a projection which contains vasopressin/neurophysin 

from the suprachiasmatic nucleus to the lateral portion of the LHb, and several studies 
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have shown a dopaminergic projection from the ventral tegmental area (paranigral and 

interfascicular nuclei), towards the medial part of the LHb which has been shown to 

send fibers to the dorsal raphé nucleus and the substantia nigra (Phillipson & Pycock, 

1982; Reisine et al, 1984; Skagerberg et al, 1984). Finally, the LHb receives inputs 

from the median and dorsal raphé nuclei (Vertes et al, 1999) which have also been 

found in the cat (Bobillier et al, 1976) 

 

I.2.2 Efferent connections from the habenular complex 

I.2.2.1 Efferent connections from the medial habenular nucleus 

In the rat, substance P-containing as well as acetylcholine-containing projections have 

been found between the MHb and the interpeduncular nucleus (Artymyshyn & Murray, 

1985; Contestabile et al, 1987; Eckenrode et al, 1987; Herkenham & Nauta, 1979; 

Villani et al, 1983). The cholinergic and substance P-containing components of the 

habenulo-interpeduncular path have different origins. While the cholinergic neurons are 

located preferentially in the ventral two-third of the MHb, the substance P neurons are 

located in the dorsal part of the nucleus. There has been divergent opinion on the nature 

of the habenular source to the IPN: studies using small injections of the retrograde tracer 

horseradish peroxidase (HRP) into the IPN revealed that the major projection was from 

the MHb, with a smaller component from the LHb (Contestabile & Flumerfelt, 1981). 

Based on loss of acetylcholinesterase (AChE) staining after kainic acid lesions of the 

Hb these authors inferred the existence of a AChE-rich projection from the LHb to IPN 

(Flumerfelt & Contestabile, 1982). Since AChE is also contained in non-cholinergic 

neurons this pathway may not be cholinergic. Studies using more selective markers, in 

fact, strongly indicate that the MHb is the major source of the cholinergic input to the 

IPN. Thus, using [3H]choline as a neurotransmitter-specific retrograde transport label 

Villani et al (1983) found a high concentration of staining in the MHb after localized 

injections into the IPN. No label was found in the laterodorsal tegmental nucleus, nor in 

the triangular nucleus of the septum. Immunochemical studies of ChAT, which is 

specific for cholinergic neurons show that ChAT-stained neurons are present in the 

ventral portion of the MHb, whereas substance P-containing neurons were in the dorsal 

portion (Contestabile et al, 1987; Eckenrode et al, 1987). In the IPN substance P-

staining was in the peripheral subnuclei whereas ChAT staining was in the central core 

(Contestabile et al, 1987). Lesions of the Hb or the fasciculus retroflexus resulted in loss 
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of both substance P- and ChAT-staining from the IPN, whereas lesions of the stria 

medullaris caused only a modest loss of ChAT from the IPN (Eckenrode et al, 1987). 

Based on AChE staining Woolf & Butcher (1985), concluded that the main cholinergic 

afferents to the interpeduncular nucleus comes from the diagonal band of Broca, the 

magnocellular preoptic area and the laterodorsal tegmental nucleus just as from the 

medial septal nucleus, substantia innominata, nucleus basalis and pedonculopontine 

tegmental nucleus in a smaller proportion. The fact that AChE is contained in non-

cholinergic neurons may explain why this conclusion differs from the conclusions from 

studies in which more selective markers were used. Motohashi et al (1987) confirmed, 

by determining the reduction of [3H]hemicholinium binding in the IPN after lesions, 

that the Hb and the posterior septum are the two main cholinergic projections to the 

interpeduncular nucleus. In contradiction with many studies, Cuello et al (1978) found a 

substance P pathway to the ventral tegmental area, rather than to the interpeduncular 

nucleus which, according to them seems to receive only a small number of substance P 

fibers. They also demonstrated an intra-habenular substance P connection between the 

MHb and the LHb. Rønnekleiv & Møller (1979) found a link between the MHb and the 

pineal gland (see also Korf et al, 1997), and Rønnekleiv et al (1980) found that the 

stimulation of the MHb produced a response in a type of cells called “silent cells”, 

which are not influenced by light stimulation of the retina. Finally, Neckers et al (1979) 

found a decrease in substance P content in the dorsal raphé nucleus but not the median 

raphé nucleus after a bilateral lesion of the Hb (52% 24 hours after the lesion and 60% 

one week after), suggesting that the MHb, which contains the substance P nuclei, 

provides a substance P innervation to the dorsal raphé nucleus. 

 

I.2.2.2 Efferent connections from the lateral habenular nucleus 

One of the strongest efferent connections from the LHb is directed to the raphé nuclei 

(medial and dorsal), as first shown by Aghajanian & Wang (1977). Fibers have been 

demonstrated to reach the medial and dorsal raphé nuclei, the strongest connections 

being to the medial nucleus, as well as projections towards the hypothalamus (lateral, 

dorsomedial and posterior nuclei), the substantia innominata, the ventral tegmental area, 

the substantia nigra pars compacta and the oral part of the pontine reticular formation, 

and to various thalamic nuclei (mediodorsal, central medial, ventromedial), with only a 

few fibers projecting to the parafascicular nucleus (Araki et al, 1988; Herkenham & 

Nauta, 1979). Interestingly, other investigators did not find any efferent fibers from the 
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Hb to the lateral hypothalamus (Barone et al, 1981). Finally, sparse projections reach 

the pretectal area, the superior colliculus, the nucleus triangularis tegmenti pontis, the 

parabrachial nuclei and the locus coeruleus (Herkenham & Nauta, 1979). Phillipson & 

Griffiths (1985) found a link between the LHb and the nucleus accumbens, and Semba 

& Fibiger (1992) found a reciprocal link between LHb and the dorsolateral tegmental 

nucleus. Finally, Kiss et al (2002) found a strong projection, probably composed of 

glutamate or aspartate, between the LHb and the supramammillary nucleus. According 

to these authors, this pathway could participate in the generation of theta activity in the 

hippocampus, and in hippocampal activation. 

 

I.2.3  Neurochemistry of the habenular complex 

As we have seen above, the habenula receives many inputs, dopaminergic, serotonergic, 

GABAergic and glutamatergic. In this regard, one can find many receptors for all of 

these neurotransmitters. 

 

I.2.3.1 Cholinergic receptors 

The MHb, fasciculus retroflexus and the interpeduncular nucleus bind epibatidine, an 

agonist of the cholinergic receptor, with high affinity in the rat suggesting the presence 

of α4β2 receptors (Perry & Kellar, 1995). These structures also possess a strong 

immunostaining for the nicotinic receptor subunit β4 in the rat (Duvoisin et al, 1989) 

and mouse (Gahring et al, 2004). Moreover, the α3 subunit has been found in the Hb in 

the rat (Yeh et al, 2001), while the MHb lacks, or has very few, β2 subunits (Picciotto et 

al, 1995). Finally, the habenulo-interpeduncular path possesses a large population of 

α3β4 receptor (Zoli et al, 1998). These observations are consistent with findings that the 

habenulo-interpeduncular system contains α4β2, α3β2 and α3β4 receptors (Perry et al, 

2002). 

 

I.2.3.2 GABA receptors 

In the rat central nervous system, autoradiographic studies have shown that the Hb, and 

especially the MHb, is one of the brain regions that possesses the largest population of 

GABAB receptors (Charles et al, 2001; Li et al, 2003; Princivalle et al, 2000). Moreover 

GABAB(2) protein mRNA has also been found to be highly expressed in the MHb in the 
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rat central nervous system (Durkin et al, 1999). Interestingly, systemic administration of 

a mixed GABA agonist, progabide, leads to a 20 % decrease of the glucose utilization in 

the LHb in the rat (Cudennec et al, 1987). Finally, GABAA receptors have been found 

on cholinergic neurons of the Hb in the rat (Rodriguez-Pallares et al, 2001). 

 

I.2.3.3 Dopamine receptors 

Consistent with dopaminergic afferents to the Hb from the ventral tegmental area, there 

is in the Hb a moderate number of D1 (Savasta et al, 1986) and D2 receptors (Wamsley 

et al, 1989) in the rat as assessed by autoradiography studies. Immunohistochemical 

studies have also shown that DARPP-32, a dopamine and adenosine 3′,5′-

monophosphate-regulated phosphoprotein, which is present primarily in cells that 

receive a dopaminergic input and that express the dopamine D1 subtype receptor and 

which is not synthesized in dopamine-containing cells, was present in the MHb in the 

primate (Ouimet et al, 1992), in the rat (Schalling et al, 1990) and in the mouse (Ouimet 

et al, 1984), while relatively high levels of its mRNA expression was found in the 

mouse MHb (Perez & Lewis, 1992). 

 

I.2.3.4 Glutamate and ATP receptors 

Glutamate AMPA receptors are found in the habenulo-interpeduncular system (Petralia 

& Wenthold, 1992), as well as mRNA of the kainate receptor which was demonstrated 

in the MHb (Gall et al, 1990). This region also contains a large proportion of the subunit 

NR2B of the glutamate N-methyl-D-aspartate (NMDA) receptor in the rat (Khan et al, 

2000). No marked expression of metabotropic glutamate receptors in the habenula has 

been reported. But glutamate is not the only fast activating neurotransmitter present in 

the Hb, as adenosine triphosphate (ATP) receptors have been found in the MHb by 

Edwards et al (1992). The function of these receptors is not clear, but their presence 

seems logical as the MHb receives inputs from the septum that have been shown to 

contain ATP (Sperlágh et al, 1998).  

 

I.2.3.5 Serotonin receptors 

Initially mRNA coding for the 5-HT2C receptor was detected in the LHb in the rat, but 

no binding to this receptor was obtained in that nucleus (Mengod, 1990). A high level of 
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expression of the 5-HT2C mRNA has been confirmed in the LHb in the rat (Pompeiano 

et al, 1994). 5-HT2 receptors have also been detected in the MHb in the rat (Morilak et 

al, 1993), and a high level of expression of the 5-HT4 receptor mRNA has been 

observed in the MHb in the rat (Ullmer et al, 1996; Vilaro et al, 1996). Finally, 5-HT5 

receptors have been found in high concentration in the Hb in the mouse (Waeber et al, 

1998), while there has been found a large amount of 5-HT5B receptor in the Hb in the rat 

(Grailhe et al, 1999; Kinsey et al, 2001). 

 

I.2.4 Physiological implications of the position of the habenula within the 

central nervous system 

The main physiological aspect of the Hb is that it represents a crucial link between the 

forebrain and the midbrain. It is a place of convergence of the extrapyramidal system 

(striatum, globus pallidus, thalamus, substantia nigra and pedonculopontine nucleus) 

and the limbic system (frontal cortex, septum, hypothalamus, tegmental ventral area, 

raphé nuclei and locus coeruleus). In fact, the LHb is the principal actor of this dialogue 

between forebrain and midbrain nuclei, while the MHb function is mainly to convey 

informations towards the interpeduncular nucleus. The LHb is the point by which 

forebrain’s limbic and striatal structures modulate their monoaminergic afferents from 

the midbrain (Garland & Mogenson, 1983; Kalen et al, 1989; Nagy et al, 1978). Within 

the LHb, one can differentiate a medial subdivision, which receives afferent connections 

most exclusively from the limbic system and is called the limbic compartment, and a 

lateral subdivision, which receives afferent connections most exclusively from the 

globus pallidus and is called the pallidal compartment. The following sections describe 

the influences of the habenula on midbrain nuclei. 

 

I.2.4.1 Dopamine 

The Hb has a strong influence upon midbrain dopaminergic nuclei. Firstly, the Hb 

participates in the regulation of the neuronal activity within dopaminergic nuclei, as 

Christoph et al (1986) found after stimulation of the LHb in rats marked inhibition of 

the dopaminergic neurons in both the ventral tegmental area (84 % of the neurons 

tested) and the substantia nigra pars compacta (85-91 % of the neurons tested). The 

speculations concerning this pathway gave rise to different points of view, as some 

authors state that the influence upon the dopaminergic nuclei comes from the LHb 
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(Christoph et al, 1986), while others think that it arises in the MHb through substance P 

projection (Stinus et al, 1978; Nishikawa et al, 1986). The fact that Christoph et al 

(1986) recorded neurons showing inhibition followed by excitation after stimulation of 

the LHb has led to the proposition that the Hb could send inputs to the ventral tegmental 

area and the substantia nigra pars compacta which could be either directly projected 

onto dopamine neurons, or indirectly projected onto GABA interneurons. As both 

subnuclei of the Hb (LHb and MHb) have been shown to send projections to the ventral 

tegmental area, and considering that they have different neurotransmitter systems, we 

can suppose that they regulate differential effects upon the ventral tegmental area. In 

fact, this control is reciprocal and there is evidence of a regulation upon habenular 

activity by the dopamine system, injections of dopamine agonists producing a decreased 

(McCulloch et al, 1980) whereas dopamine antagonists produce an increased 

metabolism (Ramm et al, 1984) in the LHb. This is due to blockade of D2 rather than D1 

receptors. Also, it is interesting to note that Herve et al (1987) found serotonergic 

terminals in the ventral tegmental area, on dopaminergic and probably also non-

dopaminergic neurons. As the Hb is one of the strongest regulators of serotonergic 

activity, this leads to the possibility that the influence exerted by the Hb upon the 

ventral tegmental area could also be indirectly mediated by the raphé. Interestingly, 

Reisine et al (1984) found that a dopaminergic input to the LHb, coming from the 

ventral tegmental area, takes part in the control of serotonin release in the substantia 

nigra, but not in the striatum of cats. Finally, it has been found in rats and cats that the 

Hb participates in the control of dopamine release in the medial prefrontal cortex, the 

nucleus accumbens, the striatum and the olfactory tubercle, the overall effect of 

complete habenula lesion being to increase dopamine release (Lisoprawski et al, 1980; 

Nishikawa et al, 1986). Concerning this latter aspect, it is to be noted that while 

Lisopravski et al (1980) found an effect only on the mesocortical pathway, and not on 

the meso-accumbens and meso-striatal pathways, Nishikawa et al (1986) found also an 

effect on the meso-accumbens and meso-striatal pathways. These discrepant findings 

could be explained by the fact that, on the former case, the measurements were 

performed 6 days after bilateral electrical lesion, whereas on the latter case they were 

performed about 1 hour after infusion of tetrodotoxin. 
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I.2.4.2 Serotonin 

Stimulation of the Hb has been shown to induce an inhibition of the serotonergic 

neurons of the raphé nuclei in the rat (Stern et al, 1979; Wang & Aghajanian, 1977). In 

fact, the projection from the Hb to the raphé is excitatory and synapses on GABA 

interneurons, inducing inhibition of the serotonergic neurons of the raphé, especially the 

dorsal nucleus, as Speciale et al (1980) observed increased serotonergic metabolism in 

dorsal but not median raphé nucleus 16 hours as well as 1 week after lesion of the Hb 

(Ferraro et al, 1997; Kalen et al, 1986; Nishikawa et al, 1985; Speciale et al, 1980; 

Zagami et al, 1995b). This projection serves to control ascending and descending 

serotonergic transmission, mainly towards the striatum, the hippocampus and the 

substantia nigra, as shown in the cat (Reisine et al, 1982; Sabatino et al, 1991; Soubrie 

et al, 1981), and in the rat (Kalen et al, 1989; Zagami et al, 1995a). The excitatory 

pathway from the Hb was originally thought to be made by substance P fibers (Neckers 

et al, 1979), but recently Geisler et al (2002) described an input from the LHb to the 

raphé lacking in substance P and GABA, and composed of glutamate. Others (Kalen et 

al, 1986) also provided evidence for a glutamatergic Hb-raphé projection, as shown by 

D-[3H]aspartate tracing and loss of high-affinity glutamate uptake in the raphé after Hb 

lesion. Moreover, Sabatino et al (1991) revealed in the cat a synergistic action of the 

internal pallidum and the LHb upon serotonin release from the median raphé nucleus to 

the hippocampus, and Ferraro et al (1997) found that the habenular influence upon the 

hippocampus was mainly directed towards the CA1 field. Zagami et al (1995b) found in 

the rat that when a low-frequency current (1-3 Hz) was applied in LHb, the pyramidal 

cells of the hippocampus responded in different ways, as some were activated while 

others were inhibited. Moreover, when stimulation frequency was raised to 5-10 Hz 

some of the neurons inhibited at low frequency showed activation, and some that were 

activated at low frequency showed inhibition. However, as for habenular control upon 

dopamine transmission, the different studies gave rise to contradictory data due to 

different experimental designs, and the effect of Hb upon serotonergic transmission is 

still unclear. For example, while increased serotonin release in the striatum has been 

obtained in rats after stimulation of the LHb (Kalen et al, 1989), decreased serotonin 

release in both the striatum and the substantia nigra has been obtained after stimulation 

of the LHb in cats (Reisine et al, 1982). It is to be noted that in the case of Kalen et al 

(1989) high frequency stimulation (15 Hz) was applied, whereas in the case of Reisine 

et al (1982), low frequency stimulation was applied. 
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I.2.4.3 Noradrenaline 

There is limited information about the influence of the Hb on noradrenergic 

neurotransmission. In the rat, electrical stimulation of the LHb increases the release of 

noradrenaline in hippocampus (Kalen et al, 1989) and in medial prefrontal cortex, 

nucleus accumbens and striatum (Cenci et al, 1992). In the former study, as this 

increase was abolished by the transection of the dorsal noradrenaline bundle rostral to 

the locus coeruleus, we can conclude that the LHb acts directly on the locus coeruleus. 

This is supported by the fact that this effect was still present after complete lesion of 

both raphé nuclei, indicating that the action of the LHb upon the noradrenergic system 

does not require the serotonergic system. 

 

I.2.4.4 Acetylcholine 

Apart from the prominent efferent acetylcholine-containing projections between the Hb 

and the interpeduncular nucleus, the Hb plays further roles in cholinergic signaling. In 

the rat, Nilsson et al (1990) induced a 4-fold increase of the level of acetylcholine 

release in the hippocampus (dentate gyrus – CA1 area) after stimulation of the LHb. 

This increase was totally blocked by the transection of the fasciculus retroflexus, and 

was reduced by about 95% by a fimbria-fornix lesion. According to them, this could 

take place through an action upon the diagonal band of Broca or the reticular formation. 

Interestingly, Girod & Role (2001) have found that low doses of acetylcholine can lead 

to a long-term facilitation of glutamate transmission in the interpeduncular nucleus, 

through nicotinic receptors, whereas a short-lasting inhibition is mediated via 

muscarinic receptors. 

 

I.2.5 Habenula and behaviour 

I.2.5.1 Pain 

Various receptors involved in pain processes have been found in high concentration in 

the Hb in the rat. For example, the MHb has been shown to contain a high concentration 

of µ1 opiate (morphin/enkephaline) receptors (Goodman & Pasternak, 1985). Mezey et 

al (1999) have found in the Hb mRNA expression for vanilloid receptor subtype 1 

(VR1) which is postulated to be a molecular integrator of painful stimuli, but a binding 

study did not show any immunolabeling in the Hb for this receptor. High expression of 
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the mRNA for a receptor named LC132, which is an orphan opioid-like receptor, has 

been found in the Hb in rats (Bunzow et al, 1994). The heptadecapeptide orphanin FQ 

has been shown to be an agonist of this receptor, and also to be a functional anti-opiate 

peptide, as it reverses opiate-mediated stress-induced antinociception (Mogil et al, 

1996). 

 

The response to painful stimuli, and thus the study of pathways involved in nociception, 

is generally studied in rodent by means of either the formalin test, which consists on 

moderate, continuous pain generated by injured tissue after the injection of formalin in a 

hindpaw of the rodent (Tjolsen et al, 1992), or by different types of noxious stimulation: 

electrical (current shock), mechanical (tail pinch), chemical (intragastric injection of 

HCl) or heat (hotplate and tail-flick). The involvement of the Hb in pain/analgesia 

processes has been shown by several authors in rats. Fabian & Ableitner (1995), by 

means of the 2-deoxyglucose method, found an increased activation in the LHb after the 

injection of a µ receptor agonist. Benabid & Jeaugey (1989) found that two-third of the 

neurons of the LHb respond to peripheral noxious stimulation, the Hb being strongly 

activated by either tail pinch (Smith et al, 1997) or intragastric injection of HCl (Michl 

et al, 2001). It has been found that analgesia could be produced during the formalin test 

either by Hb stimulation (Cohen & Melzack, 1986), or by injecting morphine into the 

Hb (Cohen & Melzack, 1985). On the other hand, Ma et al (1992) found that naloxone 

injected into the Hb could reverse the analgesic effect of morphine injected into the 

periaqueductal gray in rabbits. An interesting fact, is that lesion of the Hb had no effect 

in such a test (Cohen & Melzack, 1993). These authors suggest that the Hb is one area 

where morphine can produce analgesia, but that is not tonically active in modulating 

pain or necessary for the analgesic effects of systemically administered morphine 

(Cohen & Melzack, 1993). Finally, Gao et al (1990, 1996) demonstrated that 

dopaminergic neurons in the substantia nigra pars compacta that are 

electrophysiologically influenced by tail pinch (either inhibition, 78% or excitation, 

15%) are also affected by stimulation or lesions of the LHb and postulate that the LHb 

is part of a nociceptive pathway involving the substantia nigra. 

 

I.2.5.2 Sexual and maternal behaviours 

A role of the Hb in sexual behaviour was demonstrated in rats by Modianos et al 

(1974), who showed that lesions of the Hb and the stria medullaris in females increased 
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the rate of rejection of males and decreased the rate of copulatory responses, but in 

males did not affect sexual behaviours. Interestingly, this contrasts with previous results 

concerning the role of the medial forebrain bundle in the same behaviours (Modianos et 

al, 1973), that indicated that lesions of the medial forebrain bundle affected the sexual 

behaviour of males, but not females. Thus, it seems that the dorsal diencephalic 

conduction system, to which the Hb belongs, is involved in female sexual behaviours, 

whereas the medial forebrain bundle is involved in male sexual behaviours. The 

reduction of female sexual behaviour after Hb lesion is not due to a disruption of the 

estrous cycle since lesions of the Hb induced a decrease in the mating behaviour of 

female rats, without affecting estrous cyclicity and spontaneous ovulation (Rodgers & 

Schneider, 1979). One factor facilitating sexual behaviour by acting on the Hb is 

progesterone, as Tennent et al (1982) showed that progesterone implants in the Hb, and 

especially the MHb and the medial portion of the LHb, facilitated sexual behaviours in 

ovariectomized female rats [i.e. receptivity (lordosis) and proceptivity (hopping, darting 

and ear wiggling)]. The Hb is also involved in a related behaviour, namely maternal 

behaviour. Matthews-Felton et al (1995) showed that a bilateral lesion of the LHb 

induced in female rats a severe disturbance of postpartum maternal behaviour: it 

induced a marked decrease of pup-retrieving after parturition, and a marked decrease of 

pup-cleaning, nursing and nest-building. Moreover, an experiment performed with 

sensitized female rats to pups showed that a lesion of the LHb induced severe deficits in 

pup-mediated retrieval and nest-building (Matthews Felton et al, 1998). Taken together, 

these findings show that the Hb, and more specifically the LHb, is essential in the 

hormonal onset of maternal behaviours and pup-mediated nonhormonal maintenance of 

maternal behaviours in the rat. Although Wagner et al (1998) found estrogen receptors 

in the LHb, estrogen implants alone in the LHb do not stimulate the onset of maternal 

behaviour in female rats (Matthews-Felton et al, 1999). 

 

I.2.5.3 Sleep 

As stated previously, the Hb is linked to regions such as interpeduncular nucleus, raphé 

nuclei, suprachiasmatic nucleus and pineal gland, that are involved in circadian rhythms 

and sleep (Aghajanian & Wang, 1977; Artymyshyn & Murray, 1985; Contestabile et al, 

1987; Herkenham & Nauta, 1979; Rønnekleiv & Møller, 1979; Rønnekleiv et al, 1980; 

Sofroniew & Weindl, 1978). In particular, the link with the serotonergic system would 

be of particular interest for a possible involvement in the sleep and waking processes, as 
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serotonin has been shown to be involved in the appearance of sleep, as a permissive 

factor (Gottesmann, 1999). Moreover, Inagaki et al (1988) have found histaminergic 

fibers in both the LHb and the MHb in the rat, while histamine from the posterior 

hypothalamus is involved in arousal. A small number of melatonin receptors was found 

in the medial portion of the LHb in rats (Weaver et al, 1989; Williams et al, 1995), and 

Goldstein & Psatta (1984) postulated that the Hb is part of a system involved in the 

regulation of sleep, in which a peptide arginine-vasotocin plays a key role, including the 

pineal gland and the dorsal raphé nucleus. In fact, the Hb is involved in the control of 

the release of a vasotocin-like peptide (Goldstein, 1983, 1985), which is associated with 

paradoxical sleep (Pavel et al, 1979). Interestingly, Haun et al (1992) reinstated a 

substance P-dependent component of sleep (atonia during paradoxical sleep) and also a 

cholinergic-dependent non paradoxical sleep aspect (sleep duration) by transplanting 

embryonic habenular cells near the interpeduncular nucleus in rats with a lesion of the 

fasciculus retroflexus. As the interpeduncular nucleus receives substance P and 

cholinergic inputs from the MHb (Artymyshyn & Murray, 1985; Contestabile et al, 

1987; Herkenham & Nauta, 1979) it is highly plausible that the disruption arose because 

of the interruption of such connections. Moreover, a reduction of the time spent in 

particular stages of sleep (i.e. intermediate stage and rapid-eye movement stage), while 

slow-wave sleep was spared, was observed following a lesion of the fasciculus 

retroflexus in rats (Valjakka et al 1998). If the influence of the Hb on sleep seems 

established, this influence may be reciprocal, as increased metabolism within the LHb 

has been found in rats after deprivation of paradoxical sleep or of total sleep (Landis et 

al, 1993; Peder et al, 1986).  

 

I.2.5.4 Anxiety and depression 

Lesions of the Hb in rats (Lee & Huang, 1988) or of the fasciculus retroflexus in female 

rats (Murphy et al, 1996) led to an elevated level of anxiety, as assessed by tests such as 

open-field or elevated plus-maze. Murphy et al (1996) found that the animals that were 

lesioned at 3 days of age were more anxious on the elevated plus-maze, while there was 

no difference in the open-field compared to the sham operated. On the other hand, rats 

that were lesioned at 70 days of age did not show more anxiety than controls in the 

elevated plus-maze, but showed more grooming and more locomotor activity in the 

open-field; moreover, both groups showed the same pattern of anxiety after an 

additional stress (24 h food deprivation and 5 days of social isolation). Thornton & 
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Davies (1991) using specific behavioural testing (a tank filled with water and separated 

into two different compartments, whose surrounding panels could be changed, and in 

which an escape platform could be placed and removed) showed that the Hb-lesioned 

animals were impaired in the acquisition of such a test, and that the Hb could be 

involved in the ability of animals to switch their response strategies under stress. 

Certainly stress affects the Hb. Stress-induced Fos-like immunoreactivity (FLI) has 

been found in the medial portion of the LHb in rats (Chastrette et al, 1991; Wirtshafter 

et al, 1994). Amat et al (2001) found, using inescapable and escapable shocks in the 

shuttle box on rats, that the lesion of the Hb suppressed in both cases the rise of 

serotonin that normally occurs in the dorsal raphé nucleus during a stressful situation. 

These authors postulate that the Hb is necessary for the stress-induced increase of the 

level of serotonin and that it plays a role in the induction of learned 

helplessness/behavioural depression. Finally, Shumak et al (2003) have found a marked 

elevation of the metabolism in the Hb (LHb + MHb) as well as within the 

interpeduncular nucleus in congenitally helpless rats, while there was a reduced 

metabolism in the ventral tegmental area, in the basal ganglia and in the basolateral and 

the central nuclei of the amygdala. 

 

I.2.5.5 Reward 

Sutherland & Nakajima (1981) showed that rats engaged in self-stimulation of the Hb, 

indicating that electrical stimulation of the Hb can induce a rewarding effect. They also 

showed that it requires the involvement of the median raphé nucleus. Thus the dorsal 

diencephalic conduction system represents a rewarding system, in addition to the medial 

forebrain bundle. In fact, stimulation of the medial forebrain bundle in rats leads to an 

increased metabolism in the LHb (Bielajew, 1991; Hunt & McGregor, 1998; Konkle et 

al, 1999). Ullsperger & von Cramon (2003), used magnetic resonance imaging (MRI) in 

humans during a task of error monitoring where they had to predict the appearance of an 

event, after which a rewarding (in case of correct answer = positive feedback) or a non-

rewarding (in case of incorrect answer = negative feedback) stimulus occurred. During 

this task, the Hb was selectively activated in the case of the negative feedback, while the 

nucleus accumbens was activated during the positive feedback. This is in agreement 

with the view that positive feedback involves dopamine release in the nucleus 

accumbens, while negative feedback does not, and with the fact that the Hb has been 
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shown to induce the inhibition of dopaminergic neurons within midbrain areas 

(Christoph et al, 1986). This is also in accordance with the results obtained by Park & 

Carr (1998) who observed a decreased metabolism in both the MHb and the LHb 

following the ingestion of palatable food in rats, and with the results of Smith et al 

(2002) who showed that palatable food regimen-induced obesity in rats led to an 

increased µ-receptor expression (40%) in the MHb in the high-weight gain group of 

animals. According to these authors, this phenomenon could reflect a decreased β-

endorphin production, in an attempt to reduce the effects of palatable food and 

counteract weight gain. Finally, ethanol consumption has been shown to produce a 

decreased metabolic activity in the Hb in rats with a history of ethanol consumption 

(Williams-Hemby et al, 1996). 

 

The above discoveries suggest that the Hb is affected by rewards, more than it 

influences reward-mediated behaviors. Consistent with such a view are findings that 

chronic stimulation with certain drugs of abuse exerts toxic effects on the Hb. For 

example, chronic administration of cocaine induces a marked selective degeneration of 

the LHb and fasciculus retroflexus (Ellison, 1992; Ellison & Switzer, 1993) and results 

in a decrease of the number of GABA immunolabeled terminals within the LHb 

(Meshul et al, 1998). According to the results obtained by Meshul et al (1998), the 

degeneration seems to arise from a decreased inhibition. Finally, chronic administration 

of nicotine also results in degeneration of both the MHb, which contains cholinergic 

neurons, and the fasciculus retroflexus, which conveys the cholinergic tract towards the 

interpeduncular nucleus (Carlson et al, 2001). 

 

I.2.5.6 Cognition 

1.2.5.6.1 Learning and memory 

Using a swim test with or without escape (a rope suspended vertically above the tank), 

Thornton & Evans (1982) showed that Hb-lesioned animals were impaired in escaping 

from the tank. These results reveal a deficit of attention and an inability to use new 

environmental elements in order to switch their strategy towards a more appropriate 

one. On the other hand, Vale-Martinez et al (1997) found no Hb lesion-induced 

differences in the acquisition of a two-way active avoidance test. Thornton et al (1990) 

found that rats lesioned with 6-hydroxydopamine in the Hb were impaired in the 
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acquisition of differential reinforcement of low rate of responding (DRL) operant 

behaviour, as they showed overesponsiveness and obtained less reinforcement. In 

general, and especially when we consider the experiments performed by Thornton et al 

(1990, 1994), it seems that Hb-lesioned animals show impairments during cognitive 

tests performed under stressful situations, and exhibit a lack of behavioural flexibility 

and plasticity. This is confirmed by an experiment by Thornton & Bradbury (1989), 

who found impaired acquisition on a one-way active avoidance test in Hb-lesioned rats 

only with a high level of stress. Finally, Tronel & Sara (2002) found an increased 

metabolism in the LHb of rats during the retrieval of an olfactory memory, and 

Villarreal et al (2002) found a decreased metabolism in the LHb of aged memory 

impaired rats in the Morris water-maze compared to young unimpaired rats. The results 

we obtained by studying the effects of Hb lesion on spatial memory, by means of the 

Morris water-maze, are presented in Chapter II. 

 

I.2.5.6.2 Attention 

As we have seen in the previous paragraph, Thornton & Evans (1982) postulated that 

lesion of the Hb could lead to deficits of attention. This suggestion has not been 

previously investigated with a well-accepted test of attention. The Hb certainly can 

influence brain regions involved in attention. For this reason, the effects of Hb lesion on 

attention were studied (see Chapter IV). 
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I.3 Introduction to the study 

As seen in the above paragraphs, schizophrenia is one of the most common and 

devastating psychiatric diseases, with a prevalence of 0.5 – 1 % in most societies and a 

well-known symptomatology (Gottesman, 1991). However, despite numerous findings 

from experimental research, coming for example from physiological and imaging 

studies, it has not yet been possible to clearly discover its exact origins. This failure is 

reflected in the fact that since the introduction of the neuroleptics in the 1950s’, several 

generations of treatments succeeded each other without being really able to cure or treat 

all the symptoms. Discovering more effective compounds requires several levels of 

investigation. Fundamental research is one of the most critical steps through this process 

because it may give the first clear indication about the pathology and aetiology of the 

disease. Experimental methodologies in preclinical research are numerous, ranging from 

animal behaviour after lesion or drug injection to imaging techniques and the 

elaboration of transgenic animals. One of the crucial points in the utilization of animal 

behaviour is the elaboration of a good animal model of the pathology studied, in order 

to have an adequate substrate on which the effect of potential new treatments can be 

tested. In the case of schizophrenia the elaboration of such model is particularly 

challenging when we consider the pathophysiology of schizophrenia, which is 

characterized by numerous symptoms sometimes almost diametrically opposed, as for 

example “positive” and “negative” symptoms (Kay et al, 1987). Despite this fact, 

undeniable progress has been made, and several animal models have been elaborated, 

either pharmacological such as those based on phencyclidine treatment (see Sams-

Dodd, 1996), or based on lesions during development, such as the neonatal ventral 

hippocampal lesion model (see Lipska, 2000) (Table 1.1). However, some structures 

that could be involved in schizophrenia have not received the attention that they should 

have had. This is the case for the epithalamus, composed of the pineal gland and the 

habenular complex, whose dysfunction could generate, according to several authors, 

some of the symptoms of schizophrenia [see reviews by Ellison (1994), Sandyk (1991) 

and Sutherland (1982)]. 
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Table 1.1 Different models of schizophrenia in rodents 

Pharmacological 
models 

Species Behavioural 
deficits 

Anatomical 
correlates 

Reference 

Glutamate NMDA 
receptor antagonist 

administration (PCP, 
ketamine, MK-801) 

- neonatal 
- withdrawal 

- acute 

Rat Working memory. 
Social interactions. 

Stereotypies, 
Prepulse inhibition, 
Latent inhibition, 

Hyperactivity. 

Reduced prefrontal 
cortical dopamine 

release. 

Bakshi et al, 
1999; Becker 
et al, 2003; 
Kilts, 2001;  
Moghaddam 
& Jackson, 

2003; Sams-
Dodd, 1996. 

Acute and chronic 
dopamine releaser 
(amphetamine) and 

receptor agonist 
(apomorphine) 
administration 

Rat Hyperactivity, 
Prepulse inhibition, 
Latent inhibition. 

 Sills, 1999; 
Tenn et al, 

2003. 

5-HT2 agonists 
administration 

Rat Latent inhibition, 
Prepulse inhibition. 

 Geyer, 1998; 
Hitchcock et 

al, 1997. 
Genetic models     
NMDA NR1 subunit KO Rat Sexual and social 

interactions, 
Hyperactivity, 
Stereotypies. 

 Mohn et al, 
1999. 

Dopamine transporter 
(DAT) reduced 

expression 

Mouse Hyperactivity, 
Impaired response 

habituation in novel 
environment. 

 Zhuang et al, 
2001. 

Other models     
Maternal deprivation Mouse Prepulse inhibition.  Ellenbroek et 

al, 2004. 
Neonatal excitotoxic 
ventral hippocampal 

lesion 

Rat Increased response to 
stress and to NMDA 

antagonists and 
dopamine agonists, 
Prepulse inhibition, 

Diminished 
sensitivity to 

rewarding stimuli, 
Social interactions, 
Working memory. 

Reduced cortical N-
acetylaspartate and 
glycogen synthase 

kinase-3ß; 
Reduced cortical 

glutamate 
transporter EAAC1; 

Reduced BDNF 
expression; 

Reduced GAD-67 
expression. 

Lipska, 2004. 

Maternal influenza Mouse Increased anxiety, 
Spatial reference 
memory (Morris 

water-maze), 
Prepulse inhibition, 

Exploratory 
behaviour, 

Social interactions. 
 

Loss of gene 
expression (RGS4 

and 
calcium/calmodulin-

dependent protein 
kinase IIα); 

Neurodegeneration 
in medial habenula 
and paraventricular 
thalamic nucleus. 

Beraki et al, 
2004; 

Mori et al, 
1999; 

Shi et al, 
2003. 
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I.3.1 A new hypothesis 

Recently, Kelly (1998), linking several facts concerning the epithalamus, comprised of 

the habenular complex and the pineal gland, suggested that its dysfunction, and 

particularly that of the habenular complex, could lead to the appearance of primary 

delusions in schizophrenics. The principal arguments are the following: 

 

• The events (dream-events) that occur in the dreams that we experience each 

night are not intended to enter long-term memory. In fact, the period of 

dreaming is around 90 minutes per night during paradoxical sleep (or rapid-eye 

movement sleep, REM-sleep), and if we sometimes remember about a dream, it 

is because we woke up during or just after it. According to this view dream-

events are not meant to be remembered, and certain mechanisms are involved in 

preventing long-term memories of them from being made. 

 

• The presence of vasotocin, or a molecule with vasotocin-like bioactivity, has 

been detected during paradoxical sleep in man. The experiment that 

demonstrated this was conducted by Pavel et al (1979), and consisted in 

sampling cerebrospinal fluid of people awakened during different stages of 

sleep. Only when the subjects were awakened during REM sleep or immediately 

after a REM sleep period was this activity detected. 

 

• Vasotocin is reported to inhibit memory formation. De Wied et al (1991), using 

the passive avoidance paradigm in rats, have shown that, when applied 

intracerebroventricularly, low doses of vasotocin (0.03-0.3 ng) disrupted 

memory formation, like oxytocin, whereas at a high dose (10 ng) it lost this 

action, and even facilitated memory formation in the same way as vasopressin. 

Thus if the REM sleep-related release of vasotocin-like compound were too high 

or too low, then the inhibition of dream-event memory formation would fail. 

 

• The vasotocin-like bioactivity is believed to be released from ependymal cells of 

a pineal region under the influence of the habenula, and both of these regions are 

reported to be excessively calcified in patients with schizophrenia. Several 

studies indicate that vasotocin bioactivity is released from ependymal cells of a 

region that includes the pineal organ, the pineal stalk and the subcommissural 
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organ (Benson et al, 1976; Pavel, 1971; Pavel et al, 1977). Moreover after 

lesions of the habenula the concentration of vasotocin bioactivity in the 

cerebrospinal fluid increased (Goldstein, 1985). In this regard it is interesting 

that imaging studies indicate a possible link between habenular and pineal 

pathology and schizophrenia. For example in computer tomography (CT) 

studies, Sandyk (1992) reported greater calcification of these regions in 

schizophrenics. Caputo et al (1998) also in a CT study confirmed that there was 

a larger calcification of the epithalamus as a whole in schizophrenics, and also 

found that this calcification was correlated to other encephalic abnormalities, at 

the level of the cerebral cortex and the ventricles. 

 

• As predicted if delusions arise from dream memories, there are marked 

similarities between the contents of dreams and the contents of delusions. Thus 

threat to the person or persecution is said to be the most common schizophrenic 

delusion (Sims, 1988) and is also frequent in dreams.. For example, in a sample 

of college students, the most common theme of recurrent dreams was of being 

threatened or pursued (Robbins & Houshi, 1983). Moreover, the occurrence of 

this theme is increased by stress, as shown by the fact that 86% of a sample of 

women undergoing a stressful event, divorce, reported in a single night at least 

one dream involving threat (Trenholme et al, 1984). Also, the delusional 

misidentification syndromes, which share the common theme that persons have 

been replaced by others or can change into others are common in schizophrenia 

(Ellis et al, 1994; Odom-White et al, 1995), corresponding to the fact that 

metamorphosis of one person into another occurs in about 1% of dreams 

(Domhoff, 1996; Hall & Van de Castle, 1966). Finally, the delusion of being 

younger than one is, a phenomenon that has been called “age disorientation”. 

Crow (1990) has reviewed a number of studies indicating that this delusion is 

fairly common among hospitalised or chronic schizophrenics. At least 

qualitatively, it is possible that this age delusion stems from memories of dream 

events, since dreams of the past are quite common (Domhoff, 1996; Hall & Van 

de Castle, 1966). In one particularly long series of dream reports the proportion 

of dreams exhibiting regression was fairly constant at 15-40% over several 

decades with these dreams showing on average 8-21 years of regression (Smith 

& Hall, 1964). 
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Through these observations, Kelly (1998) developed an hypothesis devoted to 

explaining the occurrence of primary delusions in schizophrenics: following the 

dysfunction of epithalamic structures responsible for the control of its release, a 

molecule similar to vasotocin could be released in a too high or too low amount during 

REM-sleep, from the pineal body into the cerebrospinal fluid, leading to the placement 

of dream contents in the usual memory store. Moreover, this inclusion of dream 

contents would lead to the long-term strengthening of erroneous neuronal connections, 

probably at cortical level, leading to the mixing of these dream contents and the 

‘normal’ memories, such that the schizophrenics would then not be able, during the 

waking state, to differentiate between dreamed facts and reality (Fig 1.6). 

 

 

Fig 1.6. The dream-events hypothesis 
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I.3.2 The goals of the study 

The above mentioned data concerning the epithalamus led us suppose that it could be 

involved in the disturbances that occur in schizophrenia. The goal of the present studies 

was to examine a prediction of the hypothesis that epithalamus dysfunction is involved 

in causing the symptoms of schizophrenia. The prediction is that lesions of epithalamus 

components should produce some behavioural deficits resembling those encountered in 

schizophrenia, a prediction which has the advantage of being accessible to testing by 

behavioural experiments. 

 

To this purpose bilateral electrolytic lesions of the habenula were made in adult rats, 

who were then subjects in different experiments devoted to exploring the behavioural 

features, and also some neurochemical features, relevant to schizophrenia. 

 

• First, after selective bilateral lesions of the habenula, or control lesions, rats 

performed a series of experiments that were destined to give a broad view of the 

behavioural effects of the lesion, focusing on tests generally employed in rodent 

to parallel deficits observed in schizophrenic patients. The prepulse inhibition 

test and the social interaction test were used: the former has an analogous 

version used in human studies and is devoted to analyzing sensory gating, which 

is disturbed in schizophrenia; the latter is a simple way to see if a lesion 

produces social isolation, which is among the negative symptoms of 

schizophrenia. Spatial learning in the Morris maze was used because memory 

impairment is now widely recognised as a feature of schizophrenia. 

 

• Second, we performed the exact same series of experiments, but examining 

animals with either a lesion of the pineal gland, or with a complete lesion of the 

epithalamus (habenula + pineal gland), in order to investigate whether pineal 

damage contributes to behavioural deficits, since imaging studies and studies of 

melatonin levels strongly suggest dysfunction of the pineal component of the 

epithalamus in schizophrenia. 

 

• Third, we performed a test of attention, the 5-choice serial reaction time task, in 

order to explore this other aspect of cognition that is impaired in schizophrenia. 
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• Fourth, to investigate in a direct way alterations in forebrain functioning after 

habenula lesions, regional cerebral blood flow was examined with magnetic 

resonance imaging (MRI) techniques. 

 

• Fifth, we assessed if the lesion of the habenula would induce changes in certain 

populations of receptors which are postulated to be involved in schizophrenia, 

i.e. the serotonergic 5-HT1A and 5-HT2A, the dopaminergic D1 and D2, the 

cholinergic nicotinic alpha-7 and the glutamatergic NMDA, in structures that 

have been postulated in man to be affected by the schizophrenia syndrome (e.g. 

frontal cortex, striatum, basal ganglia and temporal lobe). To this purpose, we 

used the autoradiographic technique. 
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"One second before awakening from a dream caused by the flight of a 
bee around a pomegranate" 

   Dali – 1944 
 

 

 



Chapter II - Initial characterisation of habenula lesion 

Chapter II - Effects of habenula lesion on social interactions, 
sensory gating and spatial memory 

 

II.1 Introduction 

The habenula, receiving inputs from forebrain structures and exerting influences on 

certain midbrain cell groups, is an evolutionarily conserved link between forebrain and 

midbrain (Sutherland, 1982). It is implicated in functions as diverse as maternal 

behaviour (Corodimas et al, 1993; Felton et al, 1998), pain (Cohen & Melzack, 1993), 

sleep (Haun et al, 1992; Valjakka et al, 1998), anxiety (Murphy et al, 1996), reward 

(Sutherland & Nakajima, 1981) and behavioural flexibility (Thornton & Evans, 1982), 

but its exact roles in these functions are not completely understood. One of its 

peculiarities is that it is the brain region most susceptible to damage by drugs of abuse, 

the lateral region by stimulants and the medial nucleus by nicotine (Carlson et al, 2000, 

2001; Ellison, 1994, 2002). 

 

In recent years several findings have suggested that pathology of the epithalamus, which 

is comprised of the habenula and the pineal organ, could be involved in the 

pathophysiology of schizophrenia. For example Sandyk (1992) reported that large 

calcifications of the pineal and habenula are more common in schizophrenics than 

normal controls. In a study where calcification of the epithalamus as a whole was 

evaluated Caputo et al (1998) also found a larger area of epithalamus calcification in 

schizophrenics compared to control subjects. That this may be mainly due to increased 

calcification of habenula, rather than of the pineal, is suggested by observations of no 

difference in size of pineal calcification in schizophrenics (Bersani et al, 1999). Based 

on several findings, particularly the fact that chronic treatment with cocaine or 

amphetamine severely damages the fasciculus retroflexus output pathway of the 

habenula in rats and results in a schizophrenia-like state in man, Ellison (1994) has 

proposed a role of habenula pathology in schizophrenia. Interestingly, drug abuse has 

been identified as a risk factor for schizophrenia (Kelly & Murray, 2000). Several 

mechanisms of how habenula dysfunction could result in the symptoms of 

schizophrenia have been proposed (Ellison, 1994; Kelly, 1998 Sandyk, 1991). 
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Despite these findings, there is a paucity of studies of the habenula in behaviours related 

to schizophrenia. If damage to the habenula is indeed involved in schizophrenia then 

lesions of the habenula are predicted to result in schizophrenia-like symptoms in 

experimental animals. This prediction is investigated in the studies presented here. We 

have made localized lesions of the habenula in rats, and examined their effects on 

several behaviours. As an important control for the possibility that the changes observed 

might be due to incidental damage to the overlying dorsal hippocampus, a control group 

with restricted lesions of this structure was included. The behaviours examined were 

social interaction, prepulse inhibition (PPI) and memory function since considerable 

evidence indicates that these functions are disturbed in schizophrenia (Braff et al, 1978, 

1992, 1999; Goldberg & Schmidt, 2001; Lieberman et al, 2001; McKenna et al, 1990; 

Meltzer & McGurk, 1999; Pilkonis, et al, 1980; Pillman et al, 2003). 
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II.2 Materials and methods 

II.2.1 Experimental series 

Two series of experiments were performed. In the first series sham-operated and 

habenula-lesioned animals were compared. The social interaction test was performed 

11-15 days, after lesioning, the PPI test 22-26 days post-lesion and the Morris maze 

starting on post-lesion day 37-41. This order of testing was chosen so that the tests 

judged to be more stressful for the animals were performed later. In animals of this 

series lesions were verified histologically, but not neurochemically. In the second series 

of experiments a hippocampal-lesioned group with restricted damage to the dorsal 

hippocampus lying above the habenula was included to address the question that the 

changes observed in habenula-lesioned animals might have been due to incidental 

damage to the hippocampus. Additionally, biochemical assay of choline 

acetyltransferase (ChAT) in homogenates of the interpeduncular nucleus (IPN) was 

performed to provide a biochemical index of damage to the habenulo-interpeduncular 

tract in addition to histological verification of lesions. In this series the social interaction 

test was performed 19-26 days, after lesioning, the PPI test 33-50 days post-lesion and 

the Morris maze starting on post-lesion day 39-56. 

 

II.2.2 Animals 

The experiments were carried out on male Sprague-Dawley rats (Iffa Credo, France) of 

body weight 250-300 g at the time of surgery. The animals were housed in individual 

cages (Macrolon, 42 × 26 × 15 cm) in a temperature-regulated (22 ± 2°C) animal room 

on a 12 h/12 h light/dark cycle (lights on at 06:00), with laboratory rat chow (Nafag AG, 

Switzerland) and water available ad libitum. The operations and behavioural tests were 

performed during the light period, at least one week after their arrival. All testing 

procedures were in accordance with the Swiss animal protection law for the care and 

use of animals and were approved by the Cantonal Veterinary Authority of the City of 

Basel. 
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II.2.3 Surgical procedures 

Animals were anaesthetized with sodium pentobarbital (60 mg/kg, i.p.) and placed in a 

stereotaxic frame with the tooth bar 5 mm above the ear bars to correspond to the 

stereotaxic atlas of Pellegrino et al (1979). Bilateral electrolytic lesion of the habenula 

nuclei (lateral plus medial) was performed with stainless steel electrodes (00 gauge 

insect pins, Emil Arlt, Vienna, Austria, insulated except at the tip) by passage of a DC 

current of 1 mA for 15 s through the anode in the brain and a saline-soaked cotton swab 

on the tail as cathode. Constant current was provided by a Heinzinger LNG 350-03 

power supply through a 100 kΩ series resistor, and was monitored by a current meter. 

The electrodes were inserted at a 10° angle in order to avoid the saggital sinus. Thus to 

position the electrode tip at the point AP -2.2 mm, ML 0.6 mm, 4.8 mm below dura 

(Pellegrino et al, 1979) the “lateral” displacement of the electrode carrier (still at an 

angle of 10° to the vertical) after positioning it at the midpoint of the saggital sinus at 

the desired AP coordinate was 1.5 mm, and the depth displacement of the electrode was 

4.9 mm along the 10° angle track. For the sham-operated animals, the electrode was 

inserted at the same coordinates for the same amount of time, but no current was passed. 

The coordinates for the small hippocampal lesions were as for the habenula lesions, 

except that the electrode was inserted only 4.0 mm below the surface of the brain, where 

a current of 0.5 mA for 5 seconds was delivered. After the animals awoke, they were 

injected (1 ml/kg s.c.) with an analgesic (0.3 mg/ml Temgesic®, Essex Chemie AG, 

Luzern) and returned to their home cage where they were allowed to recover for at least 

11 days. 

 

II.2.4 Behavioural procedures 

II.2.4.1 Social interaction test 

This test was adapted from the social memory test of Thor & Holloway (1982) and the 

social interaction test of File (1980). As an index of social interaction the amount of 

time the test animal spent investigating a novel juvenile male of the same strain was 

quantified. The test rat was placed with the juvenile conspecific weighing 100 – 130 g 

in a Macrolon cage (42 × 26 × 15 cm), whose floor was covered in bedding to a depth 

of 1-2 cm, for a 5-min test. A different juvenile was used for each test rat, and before 

testing the first animal, two naïve animals were allowed to explore the cage for 5 min so 
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that the bedding was already tainted by rat odours. Any investigation by sniffing 

directly at any point of the juvenile’s body was recorded and cumulated to obtain the 

total investigation time. 

 

II.2.4.2 Prepulse inhibition of the acoustic startle response 

Startle responses were measured with a commercially available startle system 

(Coulbourn Instruments, Allentown, PA, USA), modified such that the acoustic stimuli 

were presented to the animals via a single Visaton wide range tweeter (type DHT 9 

AW-NG) in the center of the roof of a ventilated, sound-attenuated test chamber. 

Responses were recorded with a quartz force sensor for measuring dynamic and 

quasistatic forces (Type 9203, Kistler Instruments AG, Winterthur, Switzerland) 

mounted directly below the animal enclosure, consisting of a plastic box covered with a 

metal grid, (16 x 8 x 8 cm). This sensor was connected to a charge amplifier (Kistler, 

type 5011). The output signal of the charge amplifier was digitized (sample rate 1 kHz 

for 200 msec, 8 bit) and stored on a microcomputer. 

 

The animals were placed in the startle apparatus one animal in each corner, each in an 

animal enclosure. From session to session, treatment groups were assigned to different 

startle-sensors (clockwise rotated), in order to rule out artifacts related to sensor and/or 

session differences. 

 

Once in the startle apparatus, an adaptation period of three minutes was given, before 

delivery of various auditory stimuli. After this period rats were exposed to three startle-

eliciting stimuli. These first stimuli were not included in the analysis, but presented in 

order to achieve a more stable level of startle reactivity for the remainder of the session. 

Following these first stimuli, subjects were exposed to pulse alone stimuli (PA: 105 dB, 

40 msec) and to prepulse-pulse stimuli (PPP). The prepulse had a duration of 20 msec 

and was initiated 100 msec prior to the startle-eliciting pulse. Sound pressure levels of 

the prepulses were +8, +12 or +16 dB above the continuous background noise of 62 dB. 

Stimuli were presented in 3 blocks (PA1, PA2 and PA3), which each contained 10 PA-

stimuli. In addition the second block contained PPP-stimuli (ten of each amplitude) to 

monitor PPI (prepulse inhibition). Within one block, stimuli were presented in a 
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randomized order and with a randomized interval between 9 and 21 sec. The whole 

session lasted 20 minutes. 

 

Startle amplitudes (g) recorded for each animal were averaged over the ten stimuli of 

the same type, within one block. Prepulse inhibition was computed according the 

formula 

 

% PPI = 100 x (ResponsePA - ResponsePPP) / ResponsePA, 

 

where ResponsePA is the response to the PA-stimuli in the block PA2 which included 

the PPP stimuli, and ResponsePPP is the response to PPP stimuli in the same block. 

 

Immediately after the startle session was completed, animals were transported to an 

adjacent room and placed singly in activity monitors for a period of 60 min for the 

measurement of locomotor activity. The activity monitors consisted of cages (53 x 33 x 

19 cm) in enclosures (60 x 40 x 50 cm) that each had a black-and-white video camera 

mounted centrally above the cage. Each second a single video frame was acquired with 

a monochrome frame grabber board (Data Translation Inc., Marlboro, MA; type 

DT3155). Using in-house developed software, digitized pixels of two successive frames 

were compared and the total number of pixels with altered intensity was counted 

(independently for pixels with increased and decreased intensity). This allowed the 

detection of the animal's position within the cage (the centre of pixels with increased 

intensity, because animals were light compared with background). Distance traveled 

(distance in cm between centers of activity when movement was > 10 % body size) was 

analyzed and stored every 5 min. 

 

II.2.4.3 Morris water maze 

The Morris water maze consisted of a circular black-plastic pool, 133 cm in diameter 

and 60 cm in depth, filled with water at room temperature (22 ± 1°C), standing on a 40 

cm high pedestal. A black-plastic circular escape platform (11 cm in diameter, covered 

with wire mesh) was submerged 2 cm below the surface of the water and located at the 

centre of one of the four quadrants. The movements of the rats were followed by a 
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computer-based video tracking system (VP200 advanced tracker, Water for Windows 

software, HVS Image, Hampton, UK). 

 

On the first day, the animals were given a practice swim, during which they were put in 

the pool without any platform, and allowed to swim for 60 seconds. 

 

Starting on the following day, the acquisition phase took place over five consecutive 

days during which the hidden escape platform remained in the same quadrant (south-

east; SE). On each test day the animals received a block of 4 trials: they were placed 

once at each starting position (north (N), south (S), east (E) and west (W) in a different 

randomized order each day), facing the wall of the pool, and were allowed 90 s to find 

the platform and climb onto it. After they successfully found the platform, they were 

allowed to stay on it for 30 s before the start of the next trial. In case of not finding the 

platform within 90 sec they were placed on it and left for 30 s before the start of the 

next trial. The time to reach the platform and the distance covered were recorded for 

every trial. On the sixth day the animals were given a retention test by administering a 

probe trial during which the platform was removed from the pool: the animals were 

placed in the pool, facing the wall at one of the four starting positions (which were 

randomized from rat to rat) and allowed to swim for 90 s during which the times spent 

in each of the quadrants were recorded [north-west (NW), south-west (SW), south-east 

(SE) or north-east (NE)]. 

 

On days 8-10 (experiment of first series) or day 8-9 (experiment of second series), to 

evaluate the performance of the animals in a visible platform condition, we 

administered on each day a four-trials session in which the position of the submerged 

platform was indicated by a white ball (3.7 cm in diameter), attached to it by a black 

wire, and positioned approximately 20 cm above the platform. The ball was capped by a 

piece of black plastic so that it was not tracked by the video system. On each of the four 

consecutive trials the starting position (N, S, E or W) and the platform position (NW, 

SW, NW or center) were randomly changed for each trial, and the distance swum and 

latency to find the platform were measured. 
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II.2.5 Histology 

Animals were sacrificed by decapitation, the interpeduncular nucleus quickly dissected 

out for assay of choline acetyltransferase, and the remaining brain was freeze-sectioned 

in a cryostat. Twenty five-micron slices were taken through the entire habenula, 

mounted on slides and stained with Toluidine blue. Lesions of the habenula were 

considered acceptable when surrounding regions (i.e. dorsal hippocampus and 

paraventricular, dorsomedial, lateral and parafascicular thalamic nuclei) were spared. 

 

II.2.6 Assay of choline acetyltransferase (ChAT) 

In order to have a neurochemical index of the lesion, the choline acetyltransferase 

(ChAT) activity of the interpeduncular nucleus (IPN) was assayed by a slight 

modification (Kelly & Moore, 1978) of the method of Fonnum (1975), using [14C]acetyl 

coenzyme A (Amersham, U.K.) as acetyl donor. This activity provides an index of the 

lesion of the medial habenula, which contributes the majority of the cholinergic 

innervation of the IPN (Contestabile et al, 1987; Eckenrode et al, 1987; Villani et al, 

1983). 

 

The IPN was dissected out and homogenized in ice-cold 10 mM EDTA, pH=7.4, 

containing 0.5 % Triton X-100. A final dilution of 1:400 was made from which 5 µl 

were added to 10 µl of an incubation mix and the assay performed as previously 

described (Kelly & Moore, 1978). 

 

II.2.7 Statistics 

The statistical significance of differences between treatment groups were analyzed by 

analysis of variance (ANOVA), followed by pairwise comparisons (Dunnett’s test, two-

tailed), using the SYSTAT software package (Version 10.2, SPSS Inc., Chicago, IL). 
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II.3 Results 

After exclusion of animals with unsatisfactory lesions, there were in the first series of 

experiments 12 sham-operated animals and 8 habenula-lesioned animals, and in the 

second series 16 sham-operated animals, 16 animals with small dorsal hippocampus 

lesions and 10 habenula-lesioned animals. 

 

II.3.1 Social interaction test 

The results are shown in Fig 2.1. In the experiment from the first series, one-way 

ANOVA showed no significant effect of lesion group (F2,29 = 0.52, p > 0.1) on social 

interaction time. Similarly in the experiment from the second series of animals there 

was also no significant effect of lesion group (one-way ANOVA, F2,39
 = 2.287, p > 0.1). 

 

Fig 2.1. Time spent in social interaction 
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Results (mean ± SEM, sec) are shown for the sham group (n=12) and the habenula-lesioned group (n=8) 

in the first experimental series (left panel), and for the sham group (n=16), the habenula-lesioned group 

(n=10) and the group with restricted dorsal hippocampal lesions (n=16) in the second experimental series 

(right panel). 

 

Les resultats (moyenne ± ESM, sec) sont indiqués pour le groupe sham (n=12) et le groupe habenulo-lésé 

(n=8) lors de la première série d’expériences (gauche), et pourle groupe sham (n=16), le groupe 

habénulo-lésé (n=10) et le groupe ayant subi une lésion partielle de l’hippocampe dorsal (n=16) lors de 

la seconde série d’expériences (droite). 
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II.3.2 Prepulse inhibition (PPI) of the auditory-evoked startle response 

The average magnitude of the startle response to pulse alone stimuli during the different 

trial blocks is shown in Table 2.1. For the experiment of the first series, two-factor 

ANOVA (group, trial block as repeated factor) revealed no difference between groups 

(F1,17 = 3.88, p > 0.05) and no group x trial block interaction (F3,51
 = 0.92, p > 0.1) but a 

significant effect of trial block (F3,51 = 12.0, p < 0.0001). Also in the experiment of the 

second series there was no significant effect of group (F2,39 = 1.29, p > 0.1), no 

significant group x trial block interaction (F6,117 = 1.29, p > 0.1) but a significant effect 

of trial block (F3,117 = 23.0, p < 0.0001). 

 

Table 2.1. Startle amplitude 

 

Group PA0 PA1 PA2 PA3 

First series 

Sham-operated 599 ± 75 371 ± 47 451 ± 60 486 ± 50 

Habenula-lesioned 809 ± 79 583 ± 80 570 ± 67 596 ± 78 

Second series 

Sham-operated 516 ± 47 389 ± 42 418 ± 46 439 ± 57 

Habenula-lesioned 702 ± 117 477 ± 76 437 ± 66 516 ± 56 

Dorsal hippocampus lesioned 705 ± 75 489 ± 81 516 ± 78 570 ± 64 

 

Amplitudes (mean ± SEM; grams) to the first three pulse alone stimuli (PA0) and to pulse alone stimuli 

during blocks 1, 2 and 3 (PA1, PA2 and PA3). 

 

Amplitudes (moyenne ± ESM; grammes) du sursaut en réponse au premier stimulus seul (PA0) ainsi 

qu’aux stimuli seuls durant les blocks 1, 2 et 3 (PA1, PA2 and PA3). 

 

The percentage PPI results are shown in Fig 2.2. In the first experiment two-factor 

ANOVA (factors: lesion group, prepulse intensity as a repeated factor) showed no 

effect of lesion group (F1,17 = 0.08, p > 0.1) and no interaction of lesion group with 

prepulse intensity (F2,34 = 0.55, p > 0.1), but the expected highly significant effect of 

prepulse intensity (F2,34 = 23.5, p < 0.0001). Also in the experiment of the second series 

the two factor ANOVA showed a significant effect of prepulse intensity (F2,78 = 136, p 

< 0.0001) but no significant effect of group (F2,39 = 1.29, p > 0.1) and no group x 

prepulse intensity interaction (F4,78 = 0.36, p > 0.1). 
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Fig 2.2. PPI as percentage of startle amplitude in absence of a prepulse 
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Results (mean ± SEM, %) are shown for the sham group (n=12) and the habenula-lesioned group (n=8) in 

the first experimental series (left panel), and for the sham group (n=16), the habenula-lesioned group 

(n=10) and the group with restricted dorsal hippocampal lesions (n=16) in the second experimental series 

(right panel). 

 

Les resultats (moyenne ± ESM, %) sont indiqués pour le groupe sham (n=12) et le groupe habenulo-lésé 

(n=8) lors de la première série d’expériences (gauche), et pourle groupe sham (n=16), le groupe 

habénulo-lésé (n=10) et le groupe ayant subi une lésion partielle de l’hippocampe dorsal (n=16) lors de 

la seconde série d’expériences (droite). 

 

II.3.3 Locomotor activity 

The results are shown in Fig 2.3. In the experiment from the first series two-factor 

ANOVA revealed a highly significant effect of time (F11,187 = 72.9, p < 0.0001) but no 

significant effect of group (F1,17 = 2.34, p > 0.1) and no significant group x time 

interaction (F11,187 = 1.71, p > 0.05). Nevertheless there was a strong suggestion that 

habenula-lesioned animals showed greater activity during the early phase of the test. In 

the second experiment during the first 5 minutes of the session the habenula-lesioned 

rats again showed hyperactivity compared to the two other groups.  
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Fig 2.3. Locomotor activity per 5-min 
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Results (mean ± SEM, cm) are shown for the sham group (n=12) and the habenula-lesioned group (n=8) 

in the first experimental series (left panel), and for the sham group (n=16), the habenula-lesioned group 

(n=10) and the group with restricted dorsal hippocampal lesions (n=16) in the second experimental series 

(right panel). * p < 0.05 vs sham (2-tailed Dunnett’s test). 

 

Les resultats (moyenne ± ESM, cm) sont indiqués pour le groupe sham (n=12) et le groupe habenulo-lésé 

(n=8) lors de la première série d’expériences (gauche), et pourle groupe sham (n=16), le groupe 

habénulo-lésé (n=10) et le groupe ayant subi une lésion partielle de l’hippocampe dorsal (n=16) lors de 

la seconde série d’expériences (droite). * p < 0.05 vs sham (test de Dunnett à deux bornes). 

 

Based on the results of the previous experiment a planned comparison of values during 

the first 5 minutes showed a significant effect of group (F2,39 = 5.55, p < 0.01) with the 

habenula-lesioned group differing significantly from the sham group (Dunnett’s test, p 

= 0.004, 2-tailed). Over the whole recording period two-factor ANOVA showed that 

there was no significant effect of lesion group (F2,39 = 1.61, p > 0.1) and no significant 

group x time interaction (F22,429 = 1.40, p > 0.1) but the expected highly-significant 

effect of time (F11,429 = 107, p < 0.0001). 

 

II.3.4 Morris water maze 

II.3.4.1 Practice swim 

One animal from the second series showed poor swimming and was withdrawn from 

the experiment. Otherwise one way ANOVAs revealed no differences between the 
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different groups in the distance swum during the practice swim (first series: F1,18 < 1, p 

> 0.1; second series: F2,39 = 1.6, p > 0.1) (results not shown). 

 

II.3.4.2 Hidden platform trials 

Escape latency. The results are shown in Fig 2.4. In the first experiment two-way 

ANOVA showed that there were significant effects of treatment group (F1,18 = 40.83, p 

< 0.0001) and trial block (F4,72 = 42.96, p < 0.0001), and a significant interaction of 

these factors (F4,72 = 6.64, p < 0.001). This interaction reflects the fact that the 

difference between groups declined over days. In the second experiment the two-way 

ANOVA revealed a significant effects of group (F2,39 = 16.013, p < 0.0001) and day 

(F4,156 = 73.71, p < 0.0001), but no significant interaction of group x trial block. In view 

of the significant effects of group, one-way ANOVAs at each time point were 

performed followed by pairwise comparisons with the 2-tailed Dunnett’s test, to see at 

which time points the groups differed. The results of these comparisons are shown in 

Fig 5. At no time point was there any difference between the sham group and the group 

with restricted hippocampal lesions. 

 

In summary, both experiments showed similar results in that the habenula-lesioned 

group took longer to find the platform at all time points. 
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Fig 2.4. Latency to find the hidden platform in the water maze as a function of trial block (4 trials 

per block) 
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Results (mean ± SEM, sec) are shown for the sham group (n=12) and the habenula-lesioned group (n=8) 

in the first experimental series (left panel), and for the sham group (n=16), the habenula-lesioned group 

(n=10) and the group with restricted dorsal hippocampal lesions (n=16) in the second experimental series 

(right panel). * p < 0.05, ** p < 0.01, *** p < 0.001 vs sham (2-tailed Dunnett’s test). 

 

Les resultats (moyenne ± ESM, sec) sont indiqués pour le groupe sham (n=12) et le groupe habenulo-lésé 

(n=8) lors de la première série d’expériences (gauche), et pourle groupe sham (n=16), le groupe 

habénulo-lésé (n=10) et le groupe ayant subi une lésion partielle de l’hippocampe dorsal (n=16) lors de 

la seconde série d’expériences (droite). * p < 0.05, ** p < 0.01, *** p < 0.001 vs sham (test de Dunnett à 

deux bornes). 

 

Distance swum before finding the platform. The results are shown in Fig 2.5, and in 

Fig 2.7 examples of sham and lesioned animals patterns of swimming are shown. In the 

first experiment two-way ANOVA showed that there were significant effects of 

treatment (F1,18 = 23.77, p < 0.001), trial block (F4,72 = 34.8, p < 0.0001), and a 

significant interaction of these factors (F4,72 = 6.66, p < 0.001). For the second 

experiment the analysis of the distance swum before finding the platform also revealed 

that the habenula lesioned rats swam a longer distance to find the platform than did rats 

from the other groups. Thus the two-way ANOVA showed a significant effect of group 

(F2,39 = 22.9, p < 0.0001), and of trial block (F4,156 = 8.96, p < 0.0001) but no significant 

interaction of group x trial block. One-way ANOVAs followed, in the case of a 

significant effect, by pairwise comparisons (Dunnett’s test, two-tailed) showed 

significant differences between the habenula lesion group and the sham group at each 

83 



Chapter II - Initial characterisation of habenula lesion 

time point, but no significant differences between the sham group and the group with 

small dorsal hippocampal lesions. 

 

Thus, both experiments showed similar results in that the habenula-lesioned group 

swam a longer distance before finding the platform on all days. 

 

Fig 2.5. Distance swum before finding the hidden platform in the water maze as a function of trial 

block (4 trials per block) 
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Results (mean ± SEM, cm) are shown for the sham group (n=12) and the habenula-lesioned group (n=8) 

in the first experimental series (left panel), and for the sham group (n=16), the habenula-lesioned group 

(n=10) and the group with restricted dorsal hippocampal lesions (n=16) in the second experimental series 

(right panel). * p < 0.05, ** p < 0.01, *** p < 0.001 vs sham (2-tailed Dunnett’s test). 

 

Les resultats (moyenne ± ESM, cm) sont indiqués pour le groupe sham (n=12) et le groupe habenulo-lésé 

(n=8) lors de la première série d’expériences (gauche), et pourle groupe sham (n=16), le groupe 

habénulo-lésé (n=10) et le groupe ayant subi une lésion partielle de l’hippocampe dorsal (n=16) lors de 

la seconde série d’expériences (droite). * p < 0.05, ** p < 0.01, *** p < 0.001 vs sham (test de Dunnett à 

deux bornes). 

 

Swimming speed. The results are shown in Fig 2.6. In the first experiment two-way 

ANOVA showed that the habenula-lesioned group swam faster during hidden platform 

trials (F1,18 = 5.74, p < 0.05). The effect of trial block was also significant (F4,72 = 5.46, 

p < 0.05), whereas the interaction of lesion group and trial block was not (F4,72 = 0.7, p 

> 0.1). In the second experiment there was a significant effect of group (F2,39 = 13.818, 
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p < 0.0001), no effect of trial block and a significant interaction of group x trial block 

(F8,156 = 2.341, p < 0.05). The consistent finding in both experiments, therefore, was 

that the habenula-lesioned animals swam faster than control animals. 

 

Fig 2.6. Swimming speed in the water maze as a function of trial block (4 trials per block) 
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Results (mean ± SEM, cm/sec) are shown for the sham group (n=12) and the habenula-lesioned group 

(n=8) in the first experimental series (left panel), and for the sham group (n=16), the habenula-lesioned 

group (n=10) and the group with restricted dorsal hippocampal lesions (n=16) in the second experimental 

series (right panel). * p < 0.05, ** p < 0.01, *** p < 0.001 vs sham (2-tailed Dunnett’s test). 

 

Les resultats (moyenne ± ESM, cm/sec) sont indiqués pour le groupe sham (n=12) et le groupe habenulo-

lésé (n=8) lors de la première série d’expériences (gauche), et pourle groupe sham (n=16), le groupe 

habénulo-lésé (n=10) et le groupe ayant subi une lésion partielle de l’hippocampe dorsal (n=16) lors de 

la seconde série d’expériences (droite). * p < 0.05, ** p < 0.01, *** p < 0.001 vs sham (test de Dunnett à 

deux bornes). 
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Fig 2.7. Swim patterns 

 

ShamLesioned ShamLesioned

 
 

Typical examples of swim patterns, on day 5, for a habenula-lesioned rat (left panel) and a sham rat 

(right panel). 

 

Exemples typiques de navigation, au cinquième jour d’apprentissage, d’un rat avec lésion de l’habénula 

(gauche) et d’un rat sham (droite). 

 

II.3.4.3 Probe trial 

The percentages of time spent in the quadrants of the pool during the probe trials are 

shown in Fig 2.8. Each group swam preferentially in the quadrant where was located the 

platform during the learning phase shown by a great effect of quadrant after two-way 

ANOVAs with quadrant as a repeated factor (first series: F3,87 = 164, p < 0.0001; 

second series: F3,117 = 121, p <0.0001). One-way ANOVA of the percentage of time 

spent in the target (SE) quadrant showed a significant effect of lesion group in the first 

series (F1,18 = 7.5, p < 0.05). In the second series a similar tendency of the habenula-

lesioned group to spend less time in this quadrant was not quite statistically significant 

(F2,39 = 1.5, p > 0.1). 
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Fig 2.8. Percentage of time spent in the four quadrants of the water maze during the probe trial. In 

the previous hidden platform trials the platform was located in the SE quadrant 
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Results (mean ± SEM, %) are shown for the sham group (n=12) and the habenula-lesioned group (n=8) in 

the first experimental series (left panel), and for the sham group (n=16), the habenula-lesioned group 

(n=10) and the group with restricted dorsal hippocampal lesions (n=16) in the second experimental series 

(right panel). * p < 0.05 vs sham (2-tailed Dunnett’s test after significant ANOVA). 

 

Les resultats (moyenne ± ESM, %) sont indiqués pour le groupe sham (n=12) et le groupe habenulo-lésé 

(n=8) lors de la première série d’expériences (gauche), et pourle groupe sham (n=16), le groupe 

habénulo-lésé (n=10) et le groupe ayant subi une lésion partielle de l’hippocampe dorsal (n=16) lors de 

la seconde série d’expériences (droite). * p < 0.05 vs sham (test de Dunnett à deux bornes suivant une 

ANOVA significative). 

 

II.3.4.4 Visible platform condition 

Escape latency. Results are shown in Fig 2.9. A two-way ANOVA, with block as a 

repeated factor showed no significant difference between each group [first series: no 

effect of group (F1,18 = 0.7, p > 0.1) but a significant effect of block (F2,36 = 11.5, p < 

0.001) and no group x block interaction (F2,36 = 0.5, p > 0.1); second series: no effect of 

group (F2,39 = 0.46, p > 0.1) but a significant effect of block (F1,39 = 15.8, p < 0.001) 

and no group x block interaction (F2,39 = 0.8, p > 0.1)]. 
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Fig 2.9. Performance in the visible platform condition. Latency to find the platform in the water 

maze as a function of trial block (4 trials per block) 
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Results (mean ± SEM, sec) are shown for the sham group (n=12) and the habenula-lesioned group (n=8) 

in the first experimental series (left panel), and for the sham group (n=16), the habenula-lesioned group 

(n=10) and the group with restricted dorsal hippocampal lesions (n=16) in the second experimental series 

(right panel). 

 

Les resultats (moyenne ± ESM, sec) sont indiqués pour le groupe sham (n=12) et le groupe habenulo-lésé 

(n=8) lors de la première série d’expériences (gauche), et pourle groupe sham (n=16), le groupe 

habénulo-lésé (n=10) et le groupe ayant subi une lésion partielle de l’hippocampe dorsal (n=16) lors de 

la seconde série d’expériences (droite). 

 

Distance swum before finding the platform. A two-way ANOVA, with block as a 

repeated factor showed no significant difference between each group [first series: no 

effect of group (F1,18 = 3.7, p > 0.05) but a significant effect of block (F2,36 = 6.97, p < 

0.01) and no group x block interaction (F2,36 = 2.13, p > 0.1); second series: no effect of 

group (F2,39 = 2.9, p > 0.05) but a significant effect of block (F1,39 = 12, p < 0.05) and 

no group x block interaction (F2,39 = 0.8, p > 0.1)] (results not shown). 

 

II.3.5 Histology 

As shown in Fig 2.10 habenula lesions destroyed a large proportion of both medial and 

lateral habenula without causing substantial damage to neighboring structures. In the 

group with small dorsal hippocampal lesions included in the second series of 
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experiments, the amount of hippocampal damage was greater than the incidental 

damage to the dorsal hippocampus in habenula-lesioned animals. 

 

Fig 2.10. Representation of the brain lesions in the different lesion groups 

 

 
 

Maximal (lightly-shaded areas) and minimal (heavily-shaded areas) extensions of the lesions. Left 

column: habenula-lesions from the first series. Middle column: habenula-lesions from the second series. 

Right column: restricted dorsal hippocampus lesions from the second series. Plates are modified from the 

atlas of Paxinos & Watson (1998). 

 

Etendues maximales (aires gris clair) et minimales (aires gris foncé) des différentes lesions. Gauche: 

lésion de l’habénula lors de la première série d’expériences. Centre: lésion de l’habénula lors de la 

seconde série d’expériences. Droite: lésion partielle de l’hippocampe dorsal lors de la seconde série 

d’expériences. Coupes modifiées depuis l’atlas de Paxinos & Watson (1998). 

 

II.3.6 ChAT assay 

ChAT assay was performed only for sham and habenula-lesioned animals of the second 

series. As shown in Table 2.2 animals with lesions of the habenula had a marked 

reduction, by 80 %, of ChAT in the interpeduncular nucleus. This result is consistent 

with those of previous neurochemical and histochemical studies (Contestabile et al, 

1987; Eckenrode et al, 1987; Villani et al, 1983) and indicates marked degeneration of 

the habenulo-interpeduncular tract. 
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Table 2.2. Choline acetyltransferase in homogenates of interpeduncular nucleus 

 

Group ChAT (µmoles/g wet wt/hr) 

Sham-operated 122.5 ± 6.5 

Habenula-lesioned 23.9 ± 3.2 (19.5 ± 2.6 %) ** 

 

 

Results (mean ± SEM; µmoles/g wet wt/hr) are shown for the sham group and the habenula-lesioned 

group of the first series of experiments. Values in parentheses are expressed as percentage of the sham 

value. ** p < 0.001 vs sham-operated (2-tailed t-test). 

 

Les resultats (moyenne ± ESM; µmoles/g de matière sèche/hr) sont indiqués pour le groupe sham et le 

groupe habenulo-lésé lors de la première série d’expériences. Les valeurs entre parenthèses sont 

exprimées en pourcentage des valeurs correspondantes issues du groupe sham. ** p < 0.001 vs sham 

(test t à deux bornes). 
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II.4 Discussion 

The aim of the present studies was to challenge the hypothesis that habenula damage 

plays a role in the generation of the symptoms of schizophrenia. To this end we 

examined a prediction of this hypothesis, namely that lesion of the habenula would 

cause schizophrenia-like changes in experimental animals. The schizophrenia-like 

changes examined were reduction of social interaction and prepulse inhibition and 

impairment in performance of a spatial memory task. In both series of experiments the 

results were very similar: there were no significant effects of habenula lesions on social 

exploration time or on prepulse inhibition, whereas clear impairment was observed in 

the Morris water-maze test of spatial memory. As an important control it was shown 

that restricted damage to the dorsal hippocampus immediately above the habenula, 

comparable to the incidental damage after habenula lesions, did not impair water maze 

performance. The results therefore indicate a role of the habenula in memory, and are 

consistent with the view that habenula dysfunction contributes to memory deficits. Our 

results do not support a major role of habenula pathology in reductions of social 

interaction and PPI in schizophrenia. 

 

Social interaction was examined since there is much evidence that individuals with 

schizophrenia are more socially withdrawn. Many schizophrenics feel anxious during 

social interactions and consider this a problem (Pilkonis et al, 1980). In self-report 

questionnaires schizophrenic patients receiving neuroleptics showed less extraversion 

than control patients with non-mental illness (Pillman et al, 2003), and more shyness 

and lower sociability than a control group of undergraduates (Goldberg & Schmidt, 

2001). Longitudinal studies suggest that even in the pre-schizophrenia phase patients 

with schizophrenia had difficulty establishing social relationships and may have avoided 

their peers more than other children (Auerbach et al, 1993; Cannon et al, 1997; Davies 

et al, 1998; Done et al, 1994; Jones et al, 1994; Nuechterlein, 1986). Also, ethological 

studies indicate that schizophrenics show less non-verbal expressions of social 

interaction (Pitman et al, 1987; Troisi et al, 1998). Although the present results do not 

indicate a role of habenula damage in social withdrawal it is possible that the test we 

used does not correspond closely enough to situations in which social withdrawal is a 

feature of schizophrenia. For example in the present test social interaction time is 

believed to be determined by the balance of fear and a tendency to explore a novel 

animal (File, 1980), whereas in social interactions over a longer time-scale other 

91 



Chapter II - Initial characterisation of habenula lesion 

motivations such as the pleasure of social contact may be more relevant. Certainly in 

another form of social behaviour, namely maternal behaviour, there is strong evidence 

that the habenula plays a role and that there is disturbance of this behaviour in 

schizophrenia. Thus, numerous studies of maternal behaviour in the rat (Corodimas et 

al, 1992, 1993; Felton et al, 1998; Matthews-Felton et al, 1995, 1998) have shown that 

the lateral habenula is necessary for not only the hormone-dependent onset of maternal 

behaviours, but also for their non-hormone-dependent maintenance. In this respect the 

lesion effect resembles schizophrenia, in that several studies have indicated that, on 

average, parental care is impaired in mothers with schizophrenia (Goodman, 1987; 

Ragins et al, 1975; Sobel, 1961, 1964). 

 

In neither series of our experiments was there a significant alteration of PPI of the 

acoustic startle response in habenula-lesioned animals. These results provide no 

evidence that habenula damage contributes to the often-described reduction of PPI in 

schizophrenics (Braff et al, 1978, 1992, 1999; Grillon et al, 1992). It should be noted, 

however, that in a recent study of PPI in never-medicated patients a deficit in PPI 

compared to controls was found with a 60 msec prepulse-pulse interval, but not with 

intervals of 30, 120 or 240 msec (Ludewig et al, 2003). Thus the impairment of PPI in 

never-medicated schizophrenics may not be as dramatic as previously observed in other 

groups of schizophrenics, and in further studies of habenula lesions it will be of interest 

to include the prepulse-pulse interval as a systematically varied parameter. 

 

In the water maze task of spatial memory, deficits were observed in both experiments in 

the habenula-lesioned group. In both experiments there were deficits of latency to find 

the hidden platform and distance swum before finding it. In the first experiment there 

was also impairment according to the search pattern in the probe trial, with the lesioned 

animals spending less time in the quadrant that previously contained the escape 

platform. The lack of a significant change in this measure in the second experiment may 

be attributed to a certain amount of overtraining, such that by the end of hidden platform 

training both groups were performing well. In the water maze visual platform condition 

there was no impairment in the habenula-lesioned animals. This indicates that these 

animals have the necessary motivation and perceptual and motor abilities to perform the 

task. Their impairment in the hidden platform task can be more likely attributed to a 

deficit of spatial memory. Their impairment cannot be attributed to the small amount of 
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incidental damage to the overlying hippocampus, since the hippocampal lesion group, 

with comparable hippocampal damage, showed no impairment. This is in keeping with 

other studies showing that impairment in the Morris maze was observed only when 

more than 20 % of the dorsal hippocampus was damaged (Moser et al, 1993). The 

experiments thus strongly indicate that memory deficit, a well-documented feature of 

schizophrenia (Calev, 1984a, b; Cutting, 1985; Elliot & Sahakian, 1995; Gold et al, 

1992; Goldberg et al, 1989; Meltzer & McGurk, 1999; McKay et al, 1996; McKenna et 

al, 1990; Sharma & Antonova, 2003; Tamlyn et al, 1992) can result from habenula 

damage. Spatial memory may be particularly pertinent to schizophrenia, since spatial 

learning tests in rodents are considered as model of declarative memory in humans 

(O’Keefe & Nadel, 1978), and declarative memory appears to be selectively impaired in 

schizophrenia (Perry et al, 2000). 

 

A further alteration of behaviour observed in both Morris maze hidden platform 

experiments was that habenula-lesioned animals showed an increase of swimming 

speed. The fact that they were also hyperactive during the early minutes of the 

measurement of locomotor activity may suggest that lesioned animals are hyper-reactive 

to stress, be this due to the frustration of failing to find the platform in the Morris maze 

or to the novelty of the locomotor activity apparatus.  

 

Although a relationship between the habenula and memory and cognition has not 

previously been emphasized, earlier studies are also consistent with this view. For 

example, Thornton & Evans (1982) reported that in a cylinder of water habenula-

lesioned rats showed fewer categories of behaviour than controls, indicating a reduction 

of behavioural plasticity. Moreover when a rope was hung so that it just touched the 

water surface at the centre of the cylinder most control animals escaped by climbing the 

rope, compared to only very few habenula-lesioned animals. The lesioned animals 

therefore seemed impaired in selecting behavioural strategies in a stressful situation. 

Further, Thornton & Bradbury (1989) showed that habenula-lesioned rats were impaired 

in learning a one-way active avoidance response when the intertrial-interval was short 

and shock level was moderate, but were unimpaired if shock levels were low and the 

inter-trial interval was long. They suggested that differences in stress and effort could 

account for previous variable findings on this task. Thornton & Davies (1991) in a 

spatial two-choice water maze task showed that habenula-lesioned rats were impaired in 
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acquiring and reversing a spatial discrimination. These studies are thus also consistent 

with a deficit in cognition after habenula lesions. 

 

A number of possible mechanisms could account for the memory impairment observed 

here. The habenula is a major link by which forebrain regions influence the activity of 

cell groups that project widely to the forebrain (Garland & Mogenson, 1983; Greatrex & 

Phillipson, 1982; Kalen et al, 1989; Nagy et al, 1978; Sutherland, 1982;). Through a 

habenulo-raphé pathway (Aghajanian & Wang, 1977) that is a major inhibitory 

influence on serotonergic cells of the dorsal raphé (Nishikawa & Scatton, 1985; 

Speciale et al, 1980; Wang & Aghajanian, 1977) it alters serotonergic activity in many 

structures including the striatum and substantia nigra (Reisine et al, 1982; Soubrié et al, 

1981) and the hippocampus (Ferraro et al, 1997; Sabatino et al, 1991). Similarly, other 

workers have found that the lateral habenula acts via a pathway to the locus coeruleus to 

influence the noradrenergic activity in the hippocampus, prefrontal cortex, striatum and 

the nucleus accumbens (Cenci et al, 1992 ; Kalen et al, 1989). Other studies, have 

shown that the lateral habenula projects directly to the ventral tegmental area and the 

substantia nigra, to influence mesocortical, mesostriatal and mesolimbic dopaminergic 

pathways (Christoph et al, 1986; Lisoprawski et al, 1980; Matsuda & Fujimura, 1992). 

Moreover habenula stimulation results in an increase release of acetylcholine in 

hippocampus (Nilsson et al, 1990). Thus there are multiple mechanisms by which 

habenula damage could result in dysfunction of the hippocampus, a structure that is 

important in spatial learning (Morris et al, 1982, 1990; Moser et al, 1993; Sutherland et 

al, 1983). It has been recently reported that the induction of long-term depression (LTD) 

in the hippocampus is prevented by the presence of serotonin (Chakalova et al, 2001). 

Since activity of the lateral habenula inhibits the activity of dorsal raphé neurons (Wang 

& Aghajanian, 1977) it is possible that in habenula-lesioned animals the dorsal raphé is 

never adequately inhibited, such that LTD is impaired. Other possible mechanisms for 

memory disturbance after habenula lesions are suggested by findings that vasotocin-like 

bioactivity is elevated in cerebrospinal fluid (CSF) shortly after habenula lesions 

(Goldstein, 1985) and that intraventricular vasotocin inhibits memory formation with a 

U-shaped dose-response curve (De Wied et al, 1991). Thus an elevation of a vasotocin-

like substance during waking could contribute to impairment of memory formation after 

habenula lesions. A further mechanism is suggested by the finding that vasotocin-like 

bioactivity is found in human CSF only during REM sleep (Pavel et al, 1979). Based 
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partly on the above observations it has been proposed that the habenula is part of a 

system that prevents REM-sleep neural activity (“dream-events”) being placed in the 

memory store and being treated as reality (Kelly, 1998). Habenula lesions, by causing 

REM sleep levels of vasotocin-like activity to deviate from the range that inhibits 

memory formation, would therefore result in dream-events being stored as normal 

memories. Cognitive disturbance after habenula lesions would then result from an 

accumulation of erroneously-strengthened neural connections that are the basis of these 

delusional memories, such that input into and retrieval from such a disorganized 

memory store containing incorrect information, would be inefficient and error-prone. 

 

In summary the present results provide evidence for a role of habenula damage in 

cognitive disturbances, and rule out incidental dorsal hippocampal damage as an 

explanation. Our results provide no support for a role of habenula damage in social 

withdrawal or deficits in PPI. It remains to be elucidated which of the several alternative 

mechanisms are involved in the memory disturbance observed. Moreover, since the 

habenula consists of at least fifteen subnuclei (Andres et al, 1999; Geisler et al, 2003), 

disturbance of multiple mechanisms may contribute to the pattern of behavioural 

disturbances, depending on the exact distribution of damage. 
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Chapter III - Characterisation of pinealectomy 

Chapter III - Effects of pineal lesion and complete epithalamic 
lesion on social interactions, sensory gating and 
spatial memory 

 

III.1 Introduction 

The epithalamus is a structure that belongs to the diencephalon and forms its dorsal 

posterior subdivision. It is composed of the pineal gland, the habenula and associated 

fiber bundles. The habenula has been shown to be involved in many behaviors such as 

olfactory guided behaviour, mating, control of behaviour by aversive stimuli, ingestion, 

anxiety, brain stimulation reward, sleep, behavioural flexibility as well as endocrine 

secretion (Cohen & Melzack, 1983; Corodimas et al, 1993; Felton et al, 1998; Haun et 

al, 1992; Murphy et al, 1996; Sutherland, 1982; Sutherland & Nakajima, 1981; 

Thornton & Evans, 1982; Valjakka et al, 1998), while the pineal gland is a major 

component of the photoneuroendocrine system, responsible for the release of the 

indoleamine melatonin, whose functions include regulation of circadian rhythms (Korf 

et al, 1998). 

 

A number of recent studies have suggested that there is dysfunction of the epithalamus 

in patients with schizophrenia. For example computer tomography (CT) studies have 

suggested that large calcifications of the habenula and of the pineal are more frequent in 

patients with schizophrenia than in age-matched controls (Sandyk, 1992). Other studies 

have revealed greater calcification of the epithalamus as a whole in schizophrenia 

(Caputo et al, 1998). Although some studies found increased calcification of the pineal 

in schizophrenia only in a restricted age subgroup (Bersani et al, 1999), further support 

for the view that pineal function is disturbed in schizophrenia is provided by several 

reports of reduced plasma melatonin concentrations in patients with schizophrenia 

(Fanget et al, 1989; Ferrier et al, 1982; Monteleone et al, 1992; Vigano et al, 2001), 

both in drug-free patients (Ferrier et al, 1982; Monteleone et al, 1992; Vigano et al, 

2001) as well as in patients receiving neuroleptics (Monteleone et al, 1992; Vigano et 

al, 2001). The fact that in these studies differences between patients and controls are 

most pronounced at the peak of melatonin secretion, near the middle of the dark phase, 

may explain why one study found no difference between schizophrenia patients and 
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controls in melatonin concentration in cerebrospinal fluid when collected in the morning 

(Beckmann et al, 1984). 

 

Such correlational studies, however, cannot indicate whether the reported dysfunction is 

causal or not in the symptoms of the disease. In order to shed more light on this 

question we have begun to investigate whether lesions of discrete components of the 

epithalamus in rats result in any schizophrenia-like symptoms (see Chapter II). The 

behaviours initially examined were social interaction, prepulse inhibition (PPI) and 

memory function, since many reports indicate that these behaviours are disturbed in 

schizophrenia (Braff et al, 78, 92, 99; Goldberg & Schmidt, 2001; Lieberman et al, 

2001; McKenna et al, 1990; Meltzer & McGurk, 1999; Pilkonis et al, 1980; Pillmann et 

al, 2003). The results showed that bilateral lesions of the habenula caused marked 

impairment of spatial memory in the Morris maze without alteration of social contact 

time in a brief social interaction test, and without alteration of PPI of an acoustic startle 

response (see Chapter II). To extend these studies to the other major component of the 

epithalamus, the pineal body, the present experiments examine social interaction, PPI 

and memory function in the Morris maze after pinealectomy alone, or after combined 

pinealectomy. 
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III.2 Materials and methods 

III.2.1 Experimental series 

Two series of experiments were performed; the first series comprised a sham-operated 

group and a group with a pinealectomy, whereas the second series was carried out on 

sham-operated animals and rats with an entire epithalamic lesion (habenula lesion plus 

pinealectomy). In both series the social interaction test was performed three weeks after 

completion of surgery, the PPI test was performed two weeks after the social interaction 

test, and the Morris maze started three weeks after the PPI test. This order of testing was 

chosen so that the tests judged to be more stressful for the animals were performed later. 

Additionally, biochemical assays of choline acetyltransferase (ChAT) in homogenates 

of the interpeduncular nucleus (IPN) were performed in the second series of 

experiments, to provide a biochemical index of damage to the habenulo-interpeduncular 

tract, and assay of melatonin in blood samples at day and night time-points was 

performed in the first series of experiments to verify the pinealectomy, in addition to 

histological verification of lesions. 

 

III.2.2 Animals 

The experiments were carried out on male Sprague-Dawley rats (Iffa Credo, France) of 

body weight 250-270 g at the time of surgery. The animals were housed in individual 

cages (Macrolon, 42 × 26 × 15 cm) in a temperature-regulated (22 ± 2°C) animal room 

on a 12 h/12 h light/dark cycle (lights on at 06:00), with laboratory rat chow (Kliba AG, 

Switzerland) and water available ad libitum. The operations and behavioural tests were 

performed during the light period, at least one week after their arrival. All testing 

procedures were in accordance with the Swiss animal protection law for the care and 

use of animals and were approved by the Cantonal Veterinary Authority of the City of 

Basel. 

 

III.2.3 Surgical procedures 

Pinealectomy. Animals were anaesthetized with sodium pentobarbital (60 

mg/kg, i.p.) and placed in a stereotaxic frame. A circular hole, 5 mm in diameter, was 

drilled in the skull using a trephine, centered above the position of the pineal gland. 

After the circular piece of skull was removed, the pineal gland was extracted by means 
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of a curved forceps. Then, the piece of skull was put back in place and the skin was 

sutured. Animals who received the sham pinealectomy procedure underwent the 

identical procedure except that the forceps were not inserted and the pineal gland was 

not removed. 

 

For the rats with a complete epithalamic lesion in the second series of experiments, 

pinealectomy and habenula lesions were performed with a three-week delay interval, the 

pinealectomy being performed first. 

 

Habenula lesion. The procedure has been previously described in Chapter II 

(page 69). 

 

III.2.4 Behavioural procedures 

Behavioural procedures were identical in both experiments, and have been previously 

described in Chapter II (pages 69-71), to the following exceptions: 

 

• concerning social interactions, in the second series of experiment the test 

lasted 10 minutes instead of 5. 

 

• in the present study the water-maze used was 180 cm in diameter, instead 

of 133 cm. Moreover, in the second series, the hidden platform 

experiment was performed only for 4 days. Finally, in the visible 

platform condition, a single session of 4 trials was performed for both 

series. 

 

III.2.5 Blood samples for melatonin radioimmunoassay 

In order to have an index of the reduction of melatonin secretion associated with the 

pinealectomy, assay of melatonin in blood samples was performed for each animal at 

the end of the first series of experiments. Blood samples were taken, from sham and 

pinealectomized animals, by intracardiac puncture under light isoflurane anesthesia 

(Forene®, Abbott, USA). A first sample was taken during the light period (two hours 

before the transition light/dark, and two other samples during darkness under dim red 

light (six and nine hours after the beginning of the dark period, respectively). Blood 
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samples were placed into heparinized tubes and were kept on ice until centrifugation 

(4°C, 9000 rcf, 10 min). Plasma was divided into several aliquots and stored at –20°C 

until used in assay. 

 

III.2.6 Melatonin radioimmunoassay 

Melatonin was extracted from plasma samples using dichloromethane, according to the 

method of Brown et al (1985). Plasma melatonin concentrations were determined in 

duplicate by radioimmunoassay (RIA), using rabbit antiserum (R19540, INRA, 

Nouzilly, France) and labeled [125I]-2-iodomelatonin (Amersham). Standards were 

extracted using the same procedure as for plasma samples. The RIA has been previously 

validated for rat plasma by parallelism and recovery studies (McKenna et al, 1990). The 

limit of sensitivity of the assay was 1 pg/tube. The inter-assay coefficients of variation 

were 4, 8, and 12% at the levels of 2, 10, and 20 pg/tube, respectively. The intra-assay 

coefficients of variation were 4, 3, and 3 % at the same levels, respectively. 

 

III.2.7 Histology 

Histological procedures for inspections of habenula lesions have been previously 

described in Chapter II (pages 72-73). Concerning pinealectomies, they were 

confirmed by visual inspection in both series of experiments. 

 

III.2.8 Assay of choline acetyltransferase (ChAT) 

The procedure has been previously described in Chapter II (page 73). 

 

III.2.9 Statistics 

The statistical significance of differences between treatment groups were analyzed by 

analysis of variance (ANOVA), followed by pairwise comparisons (Dunnett’s test, two-

tailed), using the SYSTAT software package (Version 10.2, SPSS Inc., Chicago, IL). 
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III.3 Results 
 

After exclusion of animals with unsatisfactory lesions, there were 9 sham-operated 

animals and 15 pineal-lesioned animals in the first series of experiments, and 9 sham-

operated animals and 11 animals with lesion of the epithalamus in the second series of 

experiments. In the second series of experiments, three rats were eliminated because of 

unsatisfactory habenular lesion, and two were removed because of cortical damages in 

the region of the pineal, made during the removal of the pineal gland. 

 

III.3.1 Social interaction test 

The results are shown in Fig 3.1. One-way ANOVA showed no significant effect of 

group on social interaction time in both series of experiments (first series: F1,21 = 0.31, 

p > 0.1; second series: F1,18 = 1.8 x 10-4, p > 0.1). 

 

Fig 3.1. Time spent in social interaction 
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Results (mean ± SEM, sec) are shown for the sham group (n=9) and the pinealectomy group (n=15) in the 

first experimental series (left panel), and for the sham group (n=9) and the group with entire epithalamic 

lesion (n=11) in the second experimental series (right panel). 

 

Les resultats (moyenne ± ESM, sec) sont indiqués pour le groupe sham (n=9) et le groupe pinéalectomisé 

(n=15) lors de la première série d’expériences (gauche), et pour le groupe sham (n=9) et le groupe ayant 

subi une lésion épithalamique totale (n=11) lors de la seconde série d’expériences (droite). 
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III.3.2 Prepulse inhibition (PPI) of the auditory-evoked startle response  

Baseline startle response. The average magnitude of the startle response to pulse alone 

stimuli during the different trial blocks is shown in Table 3.1. For both experiments, 

two-factor ANOVA (group, trial block as repeated factor) revealed no difference 

between groups (first series: F1,22 = 0.001, p > 0.1; second series: F1,18 = 3 x 10-4, p > 

0.1) and no group x trial block interaction (first series: F3,66 = 0.7, p > 0.1; second 

series: F3,54 = 0.2, p > 0.1). On the other hand, while there was a significant effect of 

trial block in the first series (F3,66 = 9.0, p < 0.0001), there was no effect of trial block in 

the second series (F3,54 = 0.4, p > 0.1). We have no explanation for this difference, 

except that it may be related to different batches of animals being tested at different 

times of the year, as well as the fact that all animals in the second series underwent two 

operations. 

 

Table 3.1. Startle amplitude 

 

Group PA0 PA1 PA2 PA3 

First series 

Sham-operated 569 ± 111 414 ± 106 371 ± 102 365 ± 106 

Pinealectomized 545 ± 60 363 ± 48 370 ± 60 430 ± 88 

Second series 

Sham-operated 512 ± 84 480 ± 94 550 ± 91 515 ± 87 

Lesioned 500 ± 78 530 ± 56 570 ± 75 544 ± 88 

 

Amplitudes (mean ± SEM, grams) to the first three pulse alone stimuli (PA0) and to pulse alone stimuli 

during blocks 1, 2 and 3 (PA1, PA2 and PA3). 

 

Amplitudes (moyenne ± ESM, grammes) du sursaut en réponse au premier stimulus seul (PA0) ainsi 

qu’aux stimuli seuls durant les blocks 1, 2 et 3 (PA1, PA2 and PA3). 

 

Prepulse inhibition. The percentage PPI results are shown in Fig 3.2. In the experiment 

from the first series two-factor ANOVA (factors: group, prepulse intensity as a repeated 

factor) showed no effect of group (F1,22 = 0.9, p > 0.1), no interaction of group with 

prepulse intensity (F2,44 = 0.14, p > 0.1), but a significant effect of prepulse intensity 

(F2,44 = 36.6, p < 0.0001). In the experiment from the second series a two factor 
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ANOVA showed a significant effect of prepulse intensity (F2,36 = 49, p < 0.0001), no 

significant effect of group (F1,18 = 0.02, p > 0. 1) but a group x prepulse intensity 

interaction (F2,36 = 7.2, p < 0.01). However at no individual prepulse intensity did the 

sham and epithalamus-lesioned groups differ significantly (2-tailed t-tests, p > 0.05). 

 

Fig 3.2. PPI as percentage of startle amplitude in absence of a prepulse 
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Results (mean ± SEM, %) are shown for the sham group (n=9) and the pinealectomy group (n=15) in the 

first experimental series (left panel), and for the sham group (n=9) and the group with entire epithalamic 

lesion (n=11) in the second experimental series (right panel). 

 

Les resultats (moyenne ± ESM, %) sont indiqués pour le groupe sham (n=9) et le groupe pinéalectomisé 

(n=15) lors de la première série d’expériences (gauche), et pour le groupe sham (n=9) et le groupe ayant 

subi une lésion épithalamique totale (n=11) lors de la seconde série d’expériences (droite). 

 

III.3.3 Locomotor activity 

The results are shown in Fig 3.3. In the experiment from the first series two-factor 

ANOVA revealed a significant effect of block (F11,242 = 82.8, p < 0.0001) but no 

significant effect of group (F1,22 = 0.77, p > 0.1) and no significant group x block 

interaction (F11,242 = 1.12, p > 0.1). In the experiment from the second series, during the 

first 5 minutes of the session the lesioned rats showed hyperactivity compared to the 

sham animals, as previously shown (see Chapter II). Indeed, a planned comparison of 

values during the first 5 minutes showed a significant effect of group (F1,18 = 20, p < 
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0.001). Over the whole recording period two-factor ANOVA showed that there was no 

significant effect of group (F1,18 = 1.5, p > 0.1) but a significant group x block 

interaction (F11,198 = 4.5, p < 0.001) and a significant effect of block (F11,198 = 73, p < 

0.0001). 
 

Fig 3.3. Locomotor activity per 5-min 

D
is

ta
nc

e 
(c

m
)

Minutes

0 10 20 30 40 50 60
0

200
400
600
800

1000
1200
1400
1600
1800

 Sham
 Pinealectomy

0 10 20 30 40 50 60
0

200
400
600
800

1000
1200
1400
1600
1800

 Sham
 Habenula lesion

         + Pinealectomy

**

D
is

ta
nc

e 
(c

m
)

Minutes

0 10 20 30 40 50 60
0

200
400
600
800

1000
1200
1400
1600
1800

 Sham
 Pinealectomy

0 10 20 30 40 50 60
0

200
400
600
800

1000
1200
1400
1600
1800

 Sham
 Habenula lesion

         + Pinealectomy

**

 
 

Results (mean ± SEM, cm) are shown for the sham group (n=9) and the pinealectomy group (n=15) in the 

first experimental series (left panel), and for the sham group (n=9) and the group with entire epithalamic 

lesion (n=11) in the second experimental series (right panel). * p < 0.05 vs sham (2-tailed Dunnett’s 

test). 

 

Les resultats (moyenne ± ESM, cm) sont indiqués pour le groupe sham (n=9) et le groupe pinéalectomisé 

(n=15) lors de la première série d’expériences (gauche), et pour le groupe sham (n=9) et le groupe ayant 

subi une lésion épithalamique totale (n=11) lors de la seconde série d’expériences (droite). * p < 0.05 vs 

sham (test de Dunnett à deux bornes). 

 

III.3.4 Morris water maze 

III.3.4.1 Practice swim 

One way ANOVAs revealed no differences between the different groups in the distance 

swum during the practice swim (first series: F1,22 = 2.7, p > 0.05; second series: F1,17 = 

0.7, p > 0.1) (results not shown). 
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III.3.4.2 Hidden platform trials 

Escape latency. The results are shown in Fig 3.4. In the experiment from the first series 

two-way ANOVA showed that there were no significant effects of group (F1,22 = 0.16, p 

> 0.1), there was a significant effect of trial block (F4,88 = 63.5, p < 0.0001), and no 

significant interaction of these factors (F4,88 = 0.8, p > 0.1). In the experiment from the 

second series the two-way ANOVA revealed a significant effect of group (F1,17 = 17.0, 

p < 0.01) and trial block (F3,51 = 14.0, p < 0.0001), but no significant interaction of 

group x trial block (F3,51 = 1.0, p > 0.1). 

 

Fig 3.4. Latency to find the hidden platform in the water maze as a function of trial block (4 trials 

per block) 
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Results (mean ± SEM, sec) are shown for the sham group (n=9) and the pinealectomy group (n=15) in the 

first experimental series (left panel), and for the sham group (n=9) and the group with entire epithalamic 

lesion (n=11) in the second experimental series (right panel). ** p < 0.01, *** p < 0.001 vs sham (2-

tailed Dunnett’s test). 

 

Les resultats (moyenne ± ESM, sec) sont indiqués pour le groupe sham (n=9) et le groupe pinéalectomisé 

(n=15) lors de la première série d’expériences (gauche), et pour le groupe sham (n=9) et le groupe ayant 

subi une lésion épithalamique totale (n=11) lors de la seconde série d’expériences (droite). ** p < 0.01, 

*** p < 0.001 vs sham (test de Dunnett à deux bornes). 

 

Distance swum before finding the platform. The results are shown in Fig 3.5. In the 

experiment from the first series two-way ANOVA showed that there were no significant 
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effects of group (F1,22 = 1.0, p > 0.1), a significant effect of trial block (F4,88 = 65.5, p < 

0.0001), but no significant interaction of these factors (F4,88 = 0.4, p > 0.1). In the 

experiment from the second series the analysis revealed that the lesioned rats swam a 

longer distance to find the platform than did rats from the sham-operated group. Thus 

the two-way ANOVA showed a significant effect of group (F1,17 = 13.0, p < 0.01), and 

of trial block (F3,51 = 19.0, p < 0.0001) but no significant interaction of group x trial 

block (F3,51 = 1.5, p > 0.1). 

 

Fig 3.5. Distance swum before finding the hidden platform in the water maze as a function of trial 

block (4 trials per block) 
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Results (mean ± SEM, cm) are shown for the sham group (n=9) and the pinealectomy group (n=15) in the 

first experimental series (left panel), and for the sham group (n=9) and the group with entire epithalamic 

lesion (n=11) in the second experimental series (right panel). ** p < 0.01, *** p < 0.001 vs sham (2-

tailed Dunnett’s test). 

 

Les resultats (moyenne ± ESM, cm) sont indiqués pour le groupe sham (n=9) et le groupe pinéalectomisé 

(n=15) lors de la première série d’expériences (gauche), et pour le groupe sham (n=9) et le groupe ayant 

subi une lésion épithalamique totale (n=11) lors de la seconde série d’expériences (droite). ** p < 0.01 

vs sham (test de Dunnett à deux bornes). 

 

Swimming speed. The results are shown in Fig 3.6. In the experiments from both series 

two-way ANOVA revealed no significant effect of group (first series: F1,22 = 3.3, p > 

0.05; second series: F1,17 = 0.1, p > 0.1). There was no effect of trial block (first series: 
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F4,88 = 2.0, p > 0.05; second series: F3,51 = 0.8, p > 0.1), and no interaction of these 

factors (first series: F4,88 = 1.6, p > 0.1; second series: F3,51 = 0.4, p > 0.1). 

 

Fig 3.6. Swimming speed in the water maze as a function of trial block (4 trials per block) 
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Results (mean ± SEM, cm/sec) are shown for the sham group (n=9) and the pinealectomy group (n=15) in 

the first experimental series (left panel), and for the sham group (n=9) and the group with entire 

epithalamic lesion (n=11) in the second experimental series (right panel). 

 

Les resultats (moyenne ± ESM, cm/sec) sont indiqués pour le groupe sham (n=9) et le groupe 

pinéalectomisé (n=15) lors de la première série d’expériences (gauche), et pour le groupe sham (n=9) et 

le groupe ayant subi une lésion épithalamique totale (n=11) lors de la seconde série d’expériences 

(droite). 

 

III.3.4.3 Probe trial 

The percentages of time spent in the quadrants of the pool during the probe trials are 

shown in Fig 3.7. In both experiments, each group swam preferentially in the quadrant 

where the platform had been located during the learning phase, as shown by a highly 

significant effect of quadrant after two-way ANOVAs with quadrant as a repeated factor 

(first series: F3,66 = 94.6, p < 0.0001; second series: F3,51 = 8, p <0.001). One-way 

ANOVA of the percentage of time spent in the target (SE) quadrant showed no 

significant effect of group in either series (first series: F1,22 = 2.37, p > 0.1; second 

series: F1,17 = 1.6, p > 0.1). 
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Fig 3.7. Percentage of time spent in the four quadrants of the water maze during the probe trial. In 

the previous hidden platform trials the platform was located in the SE quadrant 
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Results (mean ± SEM, %) are shown for the sham group (n=9) and the pinealectomy group (n=15) in the 

first experimental series (left panel), and for the sham group (n=9) and the group with entire epithalamic 

lesion (n=11) in the second experimental series (right panel). 

 

Les resultats (moyenne ± ESM, %) sont indiqués pour le groupe sham (n=9) et le groupe pinéalectomisé 

(n=15) lors de la première série d’expériences (gauche), et pour le groupe sham (n=9) et le groupe ayant 

subi une lésion épithalamique totale (n=11) lors de la seconde série d’expériences (droite). 

 

III.3.4.4 Visible platform condition 

The results are shown in Fig 3.8. Since in both experiments animals were swimming 

directly to the platform by the end of the first block of trials, the experiment was ended 

after this first block. In the experiment of the first series two-factor ANOVA (group, 

trial as repeated factor) showed no significant effect of group on the escape latency 

(F1,22 = 0.22, p > 0. 1), no effect of trial (F3,66 = 1.2, p > 0.1) and no interaction of these 

factors (F3,66 = 0.5, p > 0.1). Similarly, in the experiment of the second series there was 

no significant effect of group (F1,17 = 0.83, p > 0. 1), no effect of trial (F3,51 = 2.27, p > 

0.05) and no interaction of these factors (F3,51 = 0.25, p > 0.1). 

 

 

108 



Chapter III - Characterisation of pinealectomy 

Fig 3.8. Performance in the visible platform condition. Latency to find the platform in the water 

maze as a function of trial 
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Results (mean ± SEM, sec) are shown for the sham group (n=9) and the pinealectomy group (n=15) in the 

first experimental series (left panel), and for the sham group (n=9) and the group with entire epithalamic 

lesion (n=11) in the second experimental series (right panel). 

 

Les resultats (moyenne ± ESM, sec) sont indiqués pour le groupe sham (n=9) et le groupe pinéalectomisé 

(n=15) lors de la première série d’expériences (gauche), et pour le groupe sham (n=9) et le groupe ayant 

subi une lésion épithalamique totale (n=11) lors de la seconde série d’expériences (droite). 

 

III.3.5 Histology 

As previously shown (see Chapter II) habenula lesion destroyed a large proportion of 

both medial and lateral habenula without causing substantial damage to neighbouring 

structures. 

 

III.3.6 ChAT assay 

ChAT assay was performed for sham and lesioned animals of the second series. As 

shown in Table 3.2 animals with lesions of the habenula had a marked reduction, by 75 

%, of ChAT in the interpeduncular nucleus. This result is consistent with those of 

previous neurochemical and histochemical studies (Contestabile et al, 1987; Eckenrode 

et al, 1987; Villani et al, 1983) and indicates marked degeneration of the habenulo-

interpeduncular tract. 
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Table 3.2. Choline acetyltransferase in homogenates of interpeduncular nucleus 

 

Group ChAT (µmoles/g wet wt/hr) 

Sham-operated 78.3 ± 3.6 

Lesioned animals 19.9 ± 0.9 (25.4 ± 1.15)** 
 

Results (mean ± SEM; µmoles/g wet wt/hr) are shown for the sham group and the habenula-lesioned 

group of the second series of experiments. Values in parentheses are expressed as percentage of the sham 

value. ** p < 0.001 vs sham-operated (2-tailed t-test). 

 

Les resultats (moyenne ± ESM; µmoles/g de matière sèche/hr) sont indiqués pour le groupe sham et le 

groupe habenulo-lésé lors de la deuxième série d’expériences. Les valeurs entre parenthèses sont 

exprimées en pourcentage des valeurs correspondantes issues du groupe sham. ** p < 0.001 vs sham 

(test t à deux bornes). 
 

III.3.7 Melatonin assay 

Melatonin assay of plasma samples was performed for sham and pinealectomized 

animals of the first series. The results are shown in Table 3.3. Plasma melatonin 

concentrations in sham-operated animals were consistent with the typical light-dark 

rhythm, and in pinealectomized animals were markedly reduced. An ANOVA with 

sampling time as a repeated measure showed significant effects of group (F1,22 = 110.8, 

p < 0.00001), sampling time (F2,44 = 120.0, p < 0.00001) and a significant interaction of 

group x sampling time (F2,44 = 113.6, p < 0.00001). Comparisons between sham and 

pinealectomized animals at individual sampling times showed significant differences at 

midnight and 3 a.m. (2-tailed t-tests, p< 0.00001 in each case). 
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Table 3.3. Plasma melatonin concentration 

 

 At 4 p.m. At midnight At 3 a.m. 

Sham 4.8 ± 2.4 82.0 ± 8.4 80.3 ± 9.0 

Pinealectomy 2.0 ± 1.4 3.0 ± 2.2*** 3.1 ± 1.8*** 
 

 

Results (mean ± SEM; pg/ml) are shown for the sham group and pinealectomized group of the first series 

of experiments. Values in parentheses are expressed as percentage of the sham value. *** p < 0.00001 vs 

sham-operated (2-tailed t-test). 

 

Les resultats (moyenne ± ESM; pg/ml) sont indiqués pour le groupe sham et le groupe pinéalectomisé 

lors de la première série d’expériences. Les valeurs entre parenthèses sont exprimées en pourcentage des 

valeurs correspondantes issues du groupe sham. *** p < 0.00001 vs sham (test t à deux bornes). 
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III.4 Discussion 

The aim of the present experiments was to test the hypothesis that pineal damage 

contributes to the symptoms of schizophrenia. We tested whether loss of pineal function 

alone caused schizophrenia-like changes in social behaviour, memory function and 

prepulse inhibition. The results showed that none of these functions were altered by 

pinealectomy. To investigate whether pineal damage might interact with habenula 

damage such that more behavioural alterations would occur than after habenula damage 

alone, these behaviours were also examined in animals with combined habenula lesion 

plus pinealectomy. The results showed that pinealectomy superimposed on lesion of the 

habenula did not alter the qualitative pattern of behavioural alterations previously found 

after habenula lesions. The possibility of some quantitative alteration remains open 

however, since we did not directly compare habenula lesions and combined lesions in 

the same experiments. These points are discussed in more detail below. 

 

First, it is of interest to compare the lack of effect of pinealectomy on memory function 

observed here, with the results of previous studies. Among the earliest studies, Relkin 

(1970) studied prepubertal or postpubertal pinealectomy on maze performance for food 

reward in male rats. Neither number of runs to criterion, number of errors, nor running 

time was altered by pinealectomy in either bright or dim light conditions. The present 

results are therefore in good agreement with those obtained by Relkin (1970). Also, 

similar to these results, are those of Catala et al (1985), who investigated the effects of 

pinealectomy on light-signaled two-way active avoidance in male rats. During the dark 

phase there was no difference between pinealectomized and sham-operated animals in 

speed of acquisition, whereas during the light phase pinealectomized rats actually 

conditioned more rapidly. Appenrodt & Schwarzberg (2003) also found no effect of 

pinealectomy on the acquisition of a conditioned active avoidance response, though 

pinealectomy prevented the prolongation of extinction produced by vasopressin. 

Moreover, in a test of social recognition memory, pinealectomy had no effect on 

performance, but affected the modulation of this memory by intraseptal vasopressin 

(Appenrodt et al, 2002). Similarly, in passive avoidance learning in rats pinealectomy 

alone had no effect on performance, but blocked the increase of retention latency caused 

when vasopressin was injected before the retention test (Juszczak et al, 1996). Thus our 

results are in agreement with most previous results from a variety of memory tests that 
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indicate, that baseline memory function is not impaired after pinealectomy. The effect 

of the combined habenula lesion and pinealectomy confirms the previously observed 

effects of habenula lesion alone (see Chapter II). Memory impairment was clearly 

shown by latency to find the platform and distance swum before finding the platform, 

whereas in the probe trial the difference between lesioned and sham animals in time 

spent in the target quadrant tended to show worse performance in the lesioned animals 

but was not statistically significant. Whereas in our previous study there was some 

reduction of latency in habenula-lesioned animals over the first 4 blocks of trials, there 

was almost no such change in the present studies. However direct comparison is 

complicated by the use of a larger maze in the present studies, so that further experiment 

would be necessary to determine if this represents a quantitatively greater impairment 

produced by pinealectomy in habenula-lesioned rats. 

 

Neither pinealectomy alone, nor in combination with bilateral habenula lesions, had any 

effect on PPI of the acoustic startle response, and to our knowledge the effect of 

pinealectomy on PPI has not previously been studied. The results therefore provide no 

support for an effect of pineal dysfunction on PPI or in having any effect on PPI in 

animals with habenula damage. 

 

In the case of social behaviour we found no effect of pinealectomy on the time spent in 

social contact during a brief exposure to a juvenile of the same strain. Neither did 

pinealectomy combined with habenula lesion result in any alteration of social 

exploration in this situation. There have been relatively few previous studies of social 

behaviour in pinealectomized animals. In examining aggressive encounters between 

mice McKinney et al (1975) found that during 15 min pairings, latency to initiation of 

fighting was increased twofold and duration of fighting was reduced approximately 40 

percent if the pair contained at least one pinealectomized animal. Pinealectomized and 

sham-operated mice were equally likely to initiate aggression, but sham males were 

ranked as dominant in 75 percent of pairings of a sham and a pinealectomized animal. 

Also, melatonin is reported to facilitate aggression in mice (Paterson & Vickers, 1981). 

Thus, although pinealectomy may not affect the earliest aspects of social encounters it 

does appear to impair aggressive behaviour. Therefore positive evidence for a role of 

the pineal in social behaviour may be more likely to be obtained in longer social 

encounters than those examined here. Some further support for a role of the pineal in 
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aggressive behaviour under certain conditions is provided by a study of female hamsters 

showing that animals maintained under short photoperiod exhibited the highest level of 

offensive behavior and the lowest level of defensive behavior, and that pinealectomy 

eliminated these effects of short photoperiod (Fleming et al, 1988). Thus further study 

of the effect of pinealectomy on social behaviour in situations more refined than a 

simple short encounter could be of interest. In that patients with schizophrenia are 

generally less effective in competing with their peers, i.e. they are over-represented in 

the lower socioeconomic groups, it is a topic for further research whether this 

corresponds to reduced aggression due to pineal dysfunction. 

 

Although the present experiments suggest no direct involvement of pineal dysfunction 

in spatial memory, social behaviour or PPI, further considerations must be taken into 

account in considering whether pineal dysfunction might play a role in the symptoms of 

schizophrenia in man. One consideration is that the rat has a superficial and a deep 

pineal, whereas humans have only a deep pineal (Vollrath, 1992). The location of the 

deep pineal of the rat is located in very close proximity to the habenula, considerably 

removed from the superficial portion, so that the pinealectomy performed here removed 

only the superficial pineal. Thus it remains possible that damage to the deep pineal 

might play a role in schizophrenia-like behavioral changes. This question could 

probably best be approached by studies in an animal with a more prominent deep pineal 

than the rat. A further consideration is that the pineal hormone melatonin is antioxidant 

and neuroprotective in a variety of situations (Iacovitti et al, 1997; Kondoh et al, 2002; 

Raghavendra & Kulkarni, 2001; Reiter, 1998), whereas pinealectomy can potentiate 

neurotoxicity (De Butte et al, 2002). Since patients with schizophrenia show indices of 

greater oxidant stress (Dakhale et al, 2004; Sirota et al, 2003) lack of melatonin might 

amplify the neurotoxic effects of this oxidant stress. Such an effect would not have been 

revealed in the present experiments because of the relatively short duration of the 

pinealectomy, and because the animals were not subjected to any enhanced oxidant 

stress. 

 

In summary, in agreement with previous studies in different memory tests, 

pinealectomy had no effect on memory function in the Morris maze. It also did not 

affect social contact in a brief encounter with a juvenile conspecific, although evidence 

from previous studies of aggression indicates that pinealectomized animals are less 
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aggressive under certain conditions. Pinealectomy also did not affect PPI of an acoustic 

startle response. Thus there appear to be no direct effects of short-term pinealectomy on 

memory formation or PPI. By analogy with previously published effects on aggression, 

effects on other social behaviours deserve further attention. Also in human diseases, 

such as schizophrenia, involving oxidant stress or neurodegeneration, possible indirect 

effects due to reduction of the protective effects of melatonin must be considered. 

 

Finally, considering the lack of effects of the pinealectomy, we decided after this series 

of experiments to focus on habenula lesions and not to perform pinealectomy anymore 

in the following studies. 
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Chapter IV – Habenula and attention 

Chapter IV - Attentional performances of habenula-lesioned 
rats assessed by the 5-choice serial reaction 
time task 

 

IV.1 Introduction 

The anatomical connections of the habenula indicate that it is a link between forebrain 

areas and midbrain cell groups such as the locus coeruleus, raphé nuclei, substantia 

nigra and ventral tegmentum that project widely to most brain regions (Sutherland, 

1982). Consistent with such widespread influences it is implicated in diverse functions 

including anxiety (Kurumaji et al, 2003; Murphy et al, 1996), stress (Amat et al, 2001; 

Sica et al, 2000), analgesia (Cohen & Melzack, 1993), maternal behavior (Corodimas et 

al, 1993; Felton et al, 1998), sleep (Haun et al, 1992; Valjakka et al, 1998), behavioral 

flexibility (Thornton and Evans, 1982), reinforcement (Sutherland & Nakajima, 1981) 

and spatial memory (see Chapter II). The recent description of fifteen subnuclei within 

the habenula (Andres et al, 1999; Geisler et al, 2003) should eventually be of great 

assistance for future research aimed at elucidating the particular circuits that mediate 

these specific behaviors. 

 

Recently a number of findings have begun to suggest that pathology of the habenula 

could be involved in some of the symptoms of schizophrenia. Thus Sandyk (1992) 

reported that large calcifications of the habenula are more frequent in schizophrenia 

patients. The epithalamus as a whole, comprising habenula plus the pineal organ, has 

also been shown to exhibit greater calcification in schizophrenia patients than controls 

(Caputo et al, 1998). A role of habenula pathology in schizophrenia has been proposed 

by Ellison (1994) based on several lines of evidence, particularly the findings that 

chronic administration of amphetamine or cocaine to rats causes degeneration in the 

fasciculus retroflexus output pathway of the habenula, and in man can elicit a 

schizophrenia-like state. Several hypotheses of how habenula pathology could generate 

symptoms of schizophrenia have been proposed (Sandyk, 1991; Ellison, 1994; Kelly, 

1998). If as suggested, habenula pathology does contribute to the symptoms of 

schizophrenia then habenula lesions in experimental animals should produce behavioral 

changes resembling those in schizophrenia. Recently, we began to examine this 

prediction by investigating the effects of habenula lesions on functions that are impaired 
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in schizophrenia, namely memory performance, prepulse inhibition (PPI) and social 

interaction. Our results showed that habenula-lesioned rats exhibited a deficit in spatial 

learning in the Morris water maze, but no change of prepulse inhibition (PPI) or of 

social exploration, implicating habenula pathology particularly in memory impairment 

(see Chapter II). 

 

Another frequent neurocognitive abnormality in schizophrenia, noted already by 

Kraepelin (1919/1971) and Bleuler (1911/1950) is disturbed attention. The concept of 

attention nowadays encompasses several aspects, such as sustained attention or the 

continuous allocation of sensory processing resources for the detection of rare events, 

divided attention, to monitor and respond to several different sensory channels, and 

selective attention, the ability to focus sensory processing resources on certain types of 

stimuli, while ignoring others (Robbins, 2002). Introspective reports from patients with 

schizophrenia (McGhie & Chapman, 1961), such as “I can’t concentrate. It’s diversion 

of attention that troubles me”, indicated problems in selective and sustained attention. 

Quantitative studies of sustained attention have mostly used the continuous performance 

task (CPT), in which the subject must respond to a target stimulus whenever it appears 

in a rapid succession of non-target stimuli. In this task, and versions of it that either 

increase the working memory load by requiring a sequence of stimuli to be detected, or 

increase the sensory processing burden by degrading the stimuli, numerous studies have 

shown that patients with schizophrenia have, on average, impaired performance 

(Cadenhead & Braff, 2000; Nestor & O’Donnell, 1998; Orzack & Kornetsky, 1966). 

Such deficits are indicated not only by hit rate and errors, that are influenced by 

responses bias, but also by changes in the information processing sensitivity index, d’, 

which is independent of responses bias. A recent meta-analysis has shown that worse 

performance by patients with schizophrenia in this task, assessed by d’, correlates with 

negative symptoms (Nieuwenstein et al, 2001). Similar effects in a substantial 

proportion of non-affected siblings of patients with schizophrenia (Chen & Faraone, 

2000; Finkelstein et al, 1997) suggest that attention deficit may be a marker of genetic 

susceptibility to schizophrenia. 

 

To further test the hypothesis that habenula lesions in experimental animals should 

produce behavioral changes resembling those in schizophrenia the present studies 

examine if habenula lesions modify performance in a well-studied attention task, the 5-
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choice serial reaction time task (5-CSRTT) in which a rat must attend to one wall of a 

Skinner box containing five recesses. The rat must quickly respond to a brief light 

stimulus that appears randomly in one of these recesses in order to obtain reinforcement 

(Carli et al, 1983; Robbins, 2002). This task allows changes in different aspects of 

attentional performance such as choice accuracy, premature responding and 

perseverative responding to be determined in the same test. Moreover a considerable 

amount has been discovered about the physiology and pharmacology of this task 

(Robbins, 2002), so that the results obtained may be integrated with this knowledge. 
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IV.2 Materials and methods 

IV.2.1 Animals 

The experiments were carried out with 24 male Lister-Hooded rats (Iffa Credo, France) 

housed in pairs in Macrolon cages (42 × 26 × 15 cm) in a temperature-regulated (22 ± 

2°C) animal room on a 12 h light/dark cycle (lights on at 0600). Lister-Hooded rats 

were chosen because they are the best performers in such a test. Drinking water was 

available ad libitum. Rats performed the test daily, except that during the pre-lesion 

training they were not run at weekends. On testing days the animals received 15 - 16 g 

of food (Nafag 890 Rat Chow, Provimi Kliba, Switzerland) per day per rat, given 

immediately after the test (equally distributed in two opposite corners of the cage). 

When no tests were performed at the weekend lab chow was available ad libitum from 

Friday evening until 11 a.m. on Sunday morning. The experiments were approved by 

the Cantonal Veterinary Authority of the City of Basel. Animals were acclimatized to 

the animal quarters for at least a week before starting the experiments, which took place 

during the light phase. 

 

IV.2.2 Surgical procedures 

Lesions of the habenula or sham operations were performed as previously described 

(see Chapter II, page 69) except that the animals were anesthetized with isoflurane 

(Forene®, Abbott, USA)  

 

IV.2.3 Apparatus 

Six nine-choice serial reaction time task chambers (Med Associates, Vermont, USA) 

were used during this study. Each rat was run in the same chamber during the entire 

series of experiments. Five of the nine nose-poke recesses were used (numbers 1, 3, 5, 7 

and 9), the others were blocked by screwed-on metal plates. The chambers were 

equipped with a dim house light, a stimulus light inside each recess and a pellet 

dispenser in the wall opposite to the stimulus recesses. Nose-pokes into the stimulus 

light recesses or into the food pellet well were registered by photocell beam assemblies. 

The chambers were housed in sound-insulated and ventilated enclosures. 
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IV.2.4 The 5-choice serial reaction time test 

The test was as originally described by Carli et al (1983). All experimental 

contingencies and collection of data were controlled by a computer program written in 

the MED-PC language (Med Associates, Vermont, USA). The test began by the 

switching on of the house light and delivery of a food pellet into the feeder. When the 

rat retrieved a pellet from the feeder a 5-sec intertrial interval (ITI) was initiated, 

followed by switching on a stimulus light in one of the stimulus recesses. If the animal 

nose-poked into the correct recess during the stimulus or within an immediately-

following limited hold period, a reward (45 mg Noyes pellet, Bilaney AG, Frankfurt, 

Germany) was delivered into the feeder (see Fig 4.1). Throughout the experiment the 

parameters analyzed were the following: 

 

Correct responses. A correct response was recorded when the first nose-poke 

after the stimulus onset within the time allowed (stimulus duration + limited hold) was 

into the recess where the stimulus appeared. 

 

Incorrect responses. An incorrect response was recorded when the first nose-

poke after the stimulus onset within the time allowed (stimulus duration + limited hold) 

was into a recess where the stimulus did not appear. 

 

Response omissions. An omission was recorded when no recess was nose-poked 

within the time allowed (stimulus duration + limited hold). 

 

Premature responses. A premature response was recorded for every nose-poke 

response (i.e. into any stimulus recess) made in the intertrial interval (ITI) between the 

animal retrieving a pellet and the onset of a stimulus (i.e. responses made after initiating 

a trial but before the appearance of the stimulus). 

 

Perseverative responses. Responses made after a correct or incorrect response in 

the same or any other recess before nose-poking the food-reward well. 

 

Latency to collect the food pellet. The time from a correct response to nose-

poking the food-reward well to collect the food pellet, averaged over the session. 
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Latency of correct responses. The time from onset of the stimulus light until a 

correct nose-poke response, averaged over the session. 

 

Latency of incorrect responses. The time from onset of the stimulus light until 

an incorrect nose-poke response, averaged over the session. 

 

Whereas correct responses were rewarded by delivery of a food pellet, incorrect 

responses were followed by a timeout (TO) when the house light was switched off until 

the rat nose-poked into the pellet feeder well, which ended the TO and started another 5-

sec ITI before stimulus presentation. Premature responses during the ITI caused a 5-sec 

TO, during which any further premature responses reset the TO to the beginning. 

Moreover, if the animal made no nose-poke into any recess within the duration of the 

stimulus and limited hold then this “missed response” also initiated an unlimited TO, 

from which the only means of exit was a nose-poke into the food well. 

 

Percent correct responses, the measure of choice accuracy, and percent omissions were 

calculated daily to determine if a rat should progress to a higher level of difficulty. 

Percent correct responses was calculated as correct responses / (correct responses + 

incorrect responses) x 100. Percent omissions was calculated as response omissions / 

(correct responses + incorrect responses + response omissions) x 100. 

 

One test was given per day, lasting 30 minutes or 100 reinforcements, whichever came 

first. During each session, the stimulus light was presented approximately an equal 

number of times in each of the five holes, chosen randomly. 

 

The animals were operated after at least 4 weeks at level 6, and their allocation into the 

two surgery groups was conducted in a counterbalanced manner based on their pre-

operative baseline performance. Animals that did not reach level 6 were not included in 

the experimental analysis. However, so that each cage contained either two lesioned or 

two sham-operated animals that were treated identically, they were operated 

appropriately and performed the test daily, receiving the same drug treatment as their 

cage partners. In this way variability between cages, in terms of number of rats per cage 

and number of drug-treated rats per cage, was reduced. 
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IV.2.5 Pre-operative training 

Before starting training rats were food-deprived (15 – 16 g of rat chow per day) and 

allowed to eat the food pellets in their home cages for 2 days, in order to habituate them 

to this new food. On the next day the rats were placed singly in the test chambers with 3 

food pellets in the food well and each stimulus light recess, and allowed to explore the 

box and eat the pellets. The following day automatic training was initiated at the easiest 

level of difficulty, level 1. Whenever an animal met on two consecutive days criteria of 

>80 % correct responses and <20 % omissions, as defined below, it was progressed on 

the following day to the next level of difficulty (see Table 4.1). 

 

Table 4.1. Stimulus and Limited hold durations across the 6 levels of difficulty 

 

Levels Stimulus duration (sec) Limited hold duration (sec)
1 30 30 
2 15 15 
3 5 15 
4 2 10 
5 1 10 
6 0.5 5 

 

 

IV.2.6 Post-operative evaluation 

The postoperative evaluation of the lesioned and sham operated control animals was 

comprised of the following phases: 

 

Phase 1: Baseline performance 9-20 days post-surgery 

Post-operative testing began 9 days after surgery. Of eleven animals that 

received lesions four were excluded because of not satisfying the criteria of substantial 

bilateral damage to the medial and lateral habenula with only minimal damage to 

neighboring structures. The sham group was composed of nine rats. To assess the effect 

of the lesion on baseline performance shortly after lesion the animals performed the task 

at level 6 once per day for twelve successive days. 
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Phase 2: Effect of d- amphetamine on task performance 

To evaluate the response of the rats to an enhancement of dopaminergic 

transmission, a single dose of amphetamine (0.2 mg/kg s.c., 30 minutes before the 

session), was administered to the animals in a crossover design that allowed sensitive 

within-subjects statistical comparisons. On the first day every rat received a vehicle 

injection (0.9% NaCl, 1 ml/kg s.c., 30 min before the session) to accustom them to 

being injected. On the second day, half the animals (alternate animals) were given drug 

and half vehicle. On the third day, all rats received vehicle. On the fourth day, the 

animals that had previously received drug received vehicle, and those that had 

previously received vehicle received drug. The data collected in the tests of the second 

and the fourth day were used for statistical comparisons. 

 

Phase 3: Baseline performance 41-52 days post-surgery 

Following the amphetamine experiment, the animals were not tested for a week, 

after which they were returned to the baseline task and tested drug-free for a further 

twelve days. 

 

Phase 4: Effect of haloperidol on task performance 

On the day immediately following the previous phase the animals were injected 

with vehicle (1% lactic acid, pH 4.5, i.p., 30 min before the session), and on the 

following day all of them received an acute injection of haloperidol (0.1 mg/kg in 1% 

lactic acid, pH 4.5, i.p., 30 min before the session). It was clear that after 0.1 mg/kg 

haloperidol most animals responded very little in this task. Therefore, the rats were 

returned to baseline drug-free for four consecutive days, and then were tested with two 

lower doses of haloperidol or vehicle in a Latin square design. The treatments were 

vehicle (1% lactic acid, pH 4.5) or haloperidol (0.01 mg/kg and 0.03 mg/kg). All 

treatments were administered i.p. 30 minutes before the session. Between treatment 

days, to allow elimination of drug, the animals performed the task after vehicle 

treatment during three consecutive days. 

 

Phase 5: Baseline performance 77-84 days post-surgery 

Following the haloperidol experiment, the animals were not tested for a week, 

after which they were returned to the baseline task and tested drug-free for a further 

eight days. 
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Fig 4.1. The five-choice serial reaction time task 

 

 
 

(Left) The rat must nose-poke in the correct recess where the stimulus light appears. (Right) Once the 

nose poke is made, the rat must collect the food pellet which is automatically delivered in the food well in 

the opposite wall of the Skinner box. 

 

(Gauche) Le rat doit placer son museau au niveau de l’ouverture dans laquelle est apparu le stimulus 

lumineux. (Droite) Ensuite, il doit récupérer la pastille de nourriture automatiquement délivrée dans la 

mangeoire se situant dans le mur opposé. 

 

IV.2.7 Drugs 

All solutions were prepared fresh on the day of use. D-amphetamine sulfate (Siegfried, 

Zofingen, Switzerland) was dissolved in 0.9% NaCl and injected in a volume of 1 

ml/kg. Haloperidol (Sigma, St Louis, MO, USA) was dissolved in 1% lactic acid, 

brought to pH 4.5 by addition of 1 M and 0.1 M NaOH and injected in a volume of 1 

ml/kg. Vehicle-treated animals received the same volume of the corresponding vehicle. 

 

IV.2.8 Assessment of the lesions 

The procedures (histology and ChAT assay) have been previously described in Chapter 

II (pages 72-73). 
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IV.2.9 Statistics 

Concerning the post-operative drug-free performances, average values of the various 

performance parameters were calculated per rat for each of the three drug-free blocks of 

trials that comprised the phases 1, 3 and 5 described in the Methods, and these were 

analyzed by two factor ANOVA with lesion group as one factor and trial block as a 

repeated factor. In the case of a significant effect of lesion group or a significant lesion 

group x session interaction, the data of the two groups in individual trial blocks were 

compared by one-way ANOVA to see when the differences occurred. Within the sham 

and lesion groups comparisons of the data from block 1 to that from later blocks were 

made by paired t-tests. Data from the amphetamine and haloperidol experiments were 

analyzed by ANOVA with drug treatment as a repeated factor to correspond to the use 

of crossover and Latin square designs in these experiments. In the case of a significant 

effect of lesion group or a significant lesion group x drug treatment interaction, the data 

of the two groups at individual dose levels were compared by one-way ANOVA. Within 

the sham and lesion groups comparisons of individual doses to the vehicle control 

condition were made by paired t-tests. All statistical analyses were performed by means 

of the SYSTAT software package (Version 10.2, SPSS Inc., Chicago, IL, USA). 
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IV.3 Results 

After exclusion of animals with unsatisfactory lesions there were 7 lesioned animals and 

9 sham-operated animals. From the 24 rats at the beginning of the training session, 4 

failed to reach the criterion and were not included in the statistical analysis. From the 11 

lesioned animals, 4 did not have a satisfactory lesion and were also eliminated from the 

statistical analysis. Moreover, treatment with 0.1 mg/kg of haloperidol did not allow any 

analysis by ANOVA, as this dose markedly reduced responding, probably due to effects 

on the motor system, sham and lesioned animals making only 3.9 ± 1.3 and 3.4 ± 1.5 

(mean ± SEM) total responses respectively. Otherwise no data was excluded from 

analysis. 

 

IV.3.1 Choice accuracy 

Effects of bilateral habenula lesions on drug-free performance 

Two factor ANOVA showed a significant difference between groups (F1,14 = 5.27, p < 

0.05), a significant effect of trial block (F2,28 = 15.98, p < 0.0001) and a significant 

interaction of these factors (F2,28 = 5.42, p < 0.01). These results confirm statistically the 

conclusion that can be drawn from inspection of Fig 4.2, that lesioned animals 

performed less accurately than control animals, and that the difference between control 

and lesioned animals was greater as training progressed. In fact in comparisons between 

the groups during the individual trial blocks, a significant difference between the control 

and lesion groups occurred only in the third block. 
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Fig 4.2. Percent correct across the 3 blocks of baseline performances 
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Choice accuracy (mean ± SEM) is shown during blocks of drug-free performance on post-operative days 

9-20 (block 1), 41-52 (block 2) and 77-84 (block 3). Columns and bars show the means ± SEM of sham-

operated (n=9) and bilateral habenula-lesioned subjects (n=7). * p < 0.05 compared to the sham group at 

the same time point (one-factor ANOVA); + p < 0.05, ++ p < 0.01 vs same group at block 1 (2-tailed 

paired t-test). 

 

Les performances de base (moyenne ± ESM) du groupe sham (n=9) et du groupe habénulo-lésé (n=7), 

concernant le pourcentage de réponses correctes, sont indiquées en fonction des trois sessions de 

mesures, soit du jour 9 au jour 20 après l’opération (session 1), du jour 41 au jour 52 après l’opération 

(session 2) et du jour 77 au jour 84 après l’opération (session 3). * p < 0.05 comparé aux performances 

du groupe sham au cours de la même session (ANOVA à un facteur); + p < 0.05, ++ p < 0.01 comparé 

aux performances du même groupe au cours de la session 1 (test t à deux bornes). 

 

Effects of d-amphetamine treatment 

There was no effect of lesion group on the percentage of correct responses (F1,14 = 2.4, 

p > 0.1). Neither was there a significant effect of drug treatment (F1,14 = 0.007, p > 0.1) 

nor any significant interaction of lesion group x drug treatment (F1,14 = 1.9, p > 0.1) 

(Fig 4.3). 
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Fig 4.3. Effects of d-amphetamine treatment 
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Choice accuracy (mean ± SEM) is shown during sessions where the rats received saline (NaCl 0,9 %, s.c.) 

or d-amphetamine (0.2 mg/kg, s.c.) 30 minutes before testing. Columns and bars show the means ± SEM 

of sham-operated (n=9) and bilateral habenula-lesioned subjects (n=7). 

 

Les performances (moyenne ± ESM) du groupe sham (n=9) et du groupe habénulo-lésé (n=7), 

concernant le pourcentage de réponses correctes, sont indiquées suite à une injection de solution saline 

(NaCl 0,9 %, s.c.) ou de d-amphétamine (0,2 mg/kg, sc) 30 minutes avant le test. 

 

Effects of haloperidol treatment 

The results are shown in Fig 4.4. There was no significant effect of lesion group on the 

percentage of correct responses (F1,14 = 0.3, p > 0.1). Neither was there a significant 

effect of drug treatment (F2,28 = 3.2, p > 0.1), but the interaction of lesion group x drug 

treatment was significant (F2,28 = 3.8, p < 0.05). Inspection of the data showed that the 

0.03 mg/kg dose of haloperidol impaired choice accuracy in sham, but not lesioned 

animals. Post-hoc comparison in the sham group between the 0.03 mg/kg dose of 

haloperidol and vehicle treatment showed a difference that was not quite significant 

(paired t-test, p = 0.055), so this effect is currently best considered to be a strong 

tendency. 
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Fig 4.4. Effects of haloperidol treatment 
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Choice accuracy (mean ± SEM) is shown during sessions where the rats received lactic acid (1% pH 4.5, 

i.p.) or haloperidol (0.01 or 0.03 mg/kg, i.p.) 30 minutes before testing. Columns and bars show the 

means ± SEM of sham-operated (n=9) and bilateral habenula-lesioned subjects (n=7). 

 

Les performances (moyenne ± ESM) du groupe sham (n=9) et du groupe habénulo-lésé (n=7), 

concernant le pourcentage de réponses correctes, sont indiquées suite à l’injection d’une solution d’acide 

lactique (1% pH 4.5, i.p.) ou d’halopéridol (0,01 et 0,03 mg/kg, i.p.) 30 minutes avant le test. 

 

IV.3.2 Premature responses 

Effects of bilateral habenula lesions on drug-free performance 

Two-factor ANOVA showed significant effects of lesion group (F1,14 = 12.28, p < 

0.005), trial block (F2,28 = 13.96, p < 0.001) and a significant interaction of these factors 

(F2,28 = 4.73, p < 0.05). These results are consistent with the conclusion that premature 

responses were increased in habenula-lesioned animals and that, in contrast to the 

change in choice accuracy, this effect declined in magnitude over trial blocks (see Fig 

4.5). 

 

 

 

 

 

129 



Chapter IV – Habenula and attention 

Fig 4.5. Premature responses across the 3 blocks of baseline performances 
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Premature responses are shown during blocks of drug-free performance on post-operative days 9-20 

(block 1), 41-52 (block 2) and 77-84 (block 3). Columns and bars show the means ± SEM of sham-

operated (n=9) and bilateral habenula-lesioned subjects (n=7). * p < 0.05 compared to the sham group at 

the same time point (one-factor ANOVA); + p < 0.05, ++ p < 0.01 vs same group at block 1 (2-tailed 

paired t-test). 

 

Les performances de base (moyenne ± ESM) du groupe sham (n=9) et du groupe habénulo-lésé (n=7), 

concernant le nombre de réponses prépaturées, sont indiquées en fonction des trois sessions de mesures, 

soit du jour 9 au jour 20 après l’opération (session 1), du jour 41 au jour 52 après l’opération (session 2) 

et du jour 77 au jour 84 après l’opération (session 3). * p < 0.05 comparé aux performances du groupe 

sham au cours de la même session (ANOVA à un facteur); + p < 0.05, ++ p < 0.01 comparé aux 

performances du même groupe au cours de la session 1 (test t à deux bornes). 

 

Effects of d-amphetamine treatment 

Two-factor ANOVA showed significant effects of lesion group (F1,14 = 11.69, p < 0.01) 

and amphetamine treatment (F1,14 = 10.34, p < 0.01), but no significant interaction of 

lesion group x drug treatment (F1,14 = 0.1, p > 0.6). Thus premature responses were 

higher in lesioned animals, and were increased by amphetamine (see Fig 4.6). 
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Fig 4.6. Effects of d-amphetamine treatment 
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Premature responses are shown during sessions where the rats received saline or d-amphetamine (0.2 

mg/kg s.c.) 30 minutes before testing. Columns and bars show the means ± SEM of sham-operated (n=9) 

and bilateral habenula-lesioned subjects (n=7). * p < 0.05 compared to corresponding sham group data 

(one-factor ANOVA); + p < 0.05 vs same group saline condition (2-tailed paired t-test). 

 

Les performances (moyenne ± ESM) du groupe sham (n=9) et du groupe habénulo-lésé (n=7), 

concernant le nombre de réponses prématurées, sont indiquées suite à une injection de solution saline 

(NaCl 0,9 %) ou de d-amphétamine (0,2 mg/kg, s.c.) 30 minutes avant le test. * p < 0.05 comparé aux 

performances du groupe sham dans les mêmes conditions (ANOVA à un facteur); + p < 0.05 comparé 

aux performances du même groupe après injection de la solution saline (test t à deux bornes). 

 

Effects of haloperidol treatment 

There was a significant effect of lesion group on the mean number of premature 

responses (F1,14 = 8.8, p < 0.05), and a significant effect of drug treatment (F2,28 = 4.4, p 

< 0.05), but no significant interaction of lesion group x drug treatment (F2,28 = 1.1, p > 

0.1). These results confirm the impression from inspection of the data that premature 

responses were elevated in habenula-lesioned animals, and that haloperidol reduced the 

number of premature responses (see Fig 4.7). 
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Fig 4.7. Effects of haloperidol treatment 
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Premature responses are shown during sessions where the rats received lactic acid (1% pH 4.5, i.p.) or 

haloperidol (0.01 or 0.03 mg/kg i.p.) 30 minutes before testing. Columns and bars show the means ± SEM 

of sham-operated (n=9) and bilateral habenula-lesioned subjects (n=7). * p < 0.05 compared to the sham 

group after the same drug treatment (one-factor ANOVA); + p < 0.05 vs same group saline condition (2-

tailed paired t-test). 

 

Les performances (moyenne ± ESM) du groupe sham (n=9) et du groupe habénulo-lésé (n=7), 

concernant le nombre de réponses prématurées, sont indiquées suite à l’injection d’une solution d’acide 

lactique (1% pH 4.5, i.p.) ou d’halopéridol (0,01 et 0,03 mg/kg, i.p.) 30 minutes avant le test. * p < 0.05 

comparé aux performances du groupe sham dans les mêmes conditions (ANOVA à un facteur); + p < 

0.05 comparé aux performances du même groupe après injection de la solution saline (test t à deux 

bornes). 

 

IV.3.3 Response omissions  

Effects of bilateral habenula lesions on drug-free performance 

Two-factor ANOVA of the percentage omissions showed a significant effect of trial 

block (F2,28 = 8.46, p < 0.005) but no effect of lesion group (F1,14 = 1.09, p > 0.1) and no 

interaction of these factors (F2,28 = 0.34, p > 0.1) (see Table 4.2). 

 

Effects of d-amphetamine treatment 

The percentage of omitted responses was not affected by lesion group (F1,14 = 0.2, p > 

0.1). Neither was there any significant effect of drug treatment (F1,14 = 1.3, p > 0.1) nor 
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any significant interaction of lesion group x drug treatment (F1,14 = 1, p > 0.1) (see 

Table 4.3). 

 

Effects of haloperidol treatment 

There was a significant effect of lesion group on the percentage of omitted responses 

(F1,14 = 4.63, p < 0.05), as well as a significant effect of drug treatment (F2,28 = 11.6, p < 

0.01), but there was no significant interaction of lesion group x drug treatment (F2,28 = 

2.03, p > 0.1) (see Table 4.4). 

 

IV.3.4 Perseverative responses  

Effects of bilateral habenula lesions on drug-free performance 

As for response omissions there was no effect of lesion group and no lesion group x trial 

block interaction. Two-factor ANOVA showed a significant effect of trial block (F2,28 = 

3.74, p < 0.05) but no effect of lesion group (F1,14 = 0.005, p > 0.1) and no interaction of 

these factors (F2,28 = 0.005, p > 0.1) (see Table 4.2). 

 

Effects of d-amphetamine treatment 

Lesion group exerted no significant effect on the mean number of perseverative 

responses (F1,14 = 2.2, p > 0.1). There was also no effect of drug treatment (F1,14 = 1.64, 

p > 0.1) and no significant interaction of lesion group x drug treatment (F1,14 = 1.3, p > 

0.1) (see Table 4.3). 

 

Effects of haloperidol treatment 

There was no significant effect of lesion group on the mean number of perseverative 

responses (F1,14 = 0.02, p > 0.1). However, there was a significant effect of drug 

treatment (F2,28 = 14.3, p < 0.0001) reflecting a reduction of perseverative responses at 

the higher dose. There was no significant interaction of lesion group x drug treatment 

(F2,28 = 1.56, p > 0.1) (see Table 4.4). 

 

IV.3.5 Response latencies 

Effects of bilateral habenula lesions on drug-free performance 

Two-factor ANOVA on latencies of correct responses showed a significant effect of 

trial block (F2,28 = 5.96, p < 0.01), no effect of lesion group (F1,14 = 1.96, p > 0.1) and 

133 



Chapter IV – Habenula and attention 

no significant interaction of these factors (F2,28 = 3.23, p > 0.05). The significant effect 

of trial block reflects a trend for latencies to become slightly longer in the later trial 

blocks (see Table 3.2). Two-factor ANOVA on latencies of incorrect responses, in 

contrast, showed a significant effect of lesion group (F1,14 = 10.3, p < 0.01). There was 

no effects of trial block (F2,28 = 2.76, p > 0.05) and no interaction of the factors (F2,28 = 

0.25, p > 0.1) (see Table 4.2). 

 

Thus the main conclusion that can be drawn concerning response latencies is that 

habenula-lesioned animals had shorter latencies on incorrect trials, and that this 

difference was constant over trial blocks. 

 

Effects of d-amphetamine treatment 

Lesion group exerted no significant effect on the mean latency of correct responses 

(F1,14 = 0.9, p > 0.1). Neither was there a significant effect of drug treatment (F1,14 = 

2.35, p > 0.1) nor a significant interaction of lesion group x drug treatment (F1,14 = 3.65, 

p > 0.05) (see Table 4.3). There was no significant effect of lesion on the mean latency 

of incorrect responses (F1,14 = 1.22; p > 0.1). However there was an effect of drug 

treatment (F1,14 = 5; p < 0.05) but no significant interaction of lesion group x drug 

treatment (F1,14 = 0.05, p > 0.1) (see Table 4.3). 

 

Effects of haloperidol treatment 

The analysis showed no significant effect of lesion group on the mean reaction time of 

correct responses (F1,14 = 3.18; p > 0.05). There was no effect of drug treatment (F2,28 = 

3.03, p > 0.05), and no significant interaction of lesion group x drug treatment (F2,28 = 

0.74, p > 0.1) (see Table 4.4). Lesion group exerted no significant effect on the mean 

latency of incorrect responses (F1,14 = 0.004, p > 0.1). There was no effect of drug 

treatment (F2,28 = 0.5, p > 0.1), and no significant interaction of lesion group x drug 

treatment (F2,28 = 1.9, p > 0.1) (see Table 4.4). 

 

IV.3.6 Latency to collect the food pellet 

Effects of bilateral habenula lesions on drug-free performance 

According to two-factor ANOVA habenula-lesioned animals showed significantly 

shorter latencies to collect the food pellet (F1,14 = 26.24, p < 0.001). There was also a 
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There was no significant effect of lesion group (F1,14 = 1.12, p > 0.1), no significant 

effect of drug treatment (F2,28 = 1.45, p > 0.1), and no significant interaction of lesion 

group x drug treatment (F2,28 = 0.03, p > 0.1) on the mean latency to collect the food 

pellet (see Table 4.4). 

Lesion group had a significant effect on the mean latency to collect the pellet (F1,14 = 

11.8, p < 0.01), but there was no effect of drug treatment (F1,14 = 1.98, p > 0.1) and no 

significant interaction of lesion group x drug treatment (F1,14 = 0.41, p > 0.1) (see Table 

4.3). 

 

 

 

 

significant effect of trial block (F2,28 = 3.51; p < 0.05), but no significant interaction of 

these factors (F2,28 = 0.52, p > 0.5) (see Table 4.2). 

Effects of d-amphetamine treatment 

 

Thus habenula-lesioned animals collected the food pellet with a shorter latency than 

controls, an effect which was constant over trial blocks. 

 

Effects of haloperidol treatment 
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Table 4.2. Performance parameters of sham control and habenula-lesioned animals during drug-free phases 

 

 

Block 1 Block 2 Block 3  
Parameters Sham Lesioned   Sham Lesioned Sham Lesioned

% Omissions 17.0 ± 2.3 15.2 ± 1.7 20.1 ± 3.1 16.1 ± 1.4 24.1 ± 2.9 20.3 ± 2.1 
Perseverative responses 22.6 ± 2.5 22.7 ± 2.8 19.7 ± 2.4 19.7 ± 3.4 16.8 ± 1.9 17.2 ± 2.7 
Latency, correct responses 0.86 ± 0.04 0.88 ± 0.05 0.87 ± 0.04 0.97 ± 0.05 0.89 ± 0.03 1.03 ± 0.08 
Latency, incorrect responses 2.09 ± 0.09 1.81 ± 0.10 2.26 ± 0.08 1.92 ± 0. 09 2.18 ± 0.07 1.92 ± 0.08 
Latency, pellet 2.30 ± 0.13 1.59 ± 0.14 2.28 ± 0.13 1.62 ± 0. 15 1.96 ± 0.08 1.45 ± 0.09 

 

 

The table shows % omissions, total perseverative responses per session, and latencies in seconds. All values are shown as mean ± SEM. 

 

Tableau indiquant, pour chaque session, le pourcentage de réponses omises, le nombre total de réponses persévératives et les latences en secondes. Toutes les valeurs sont des 

moyennes (± ESM). 

 

 
 

 



 

 

 

 

Table 4.3. Performance parameters of sham control and habenula-lesioned animals after a treatment with either saline or amphetamine (0.2 mg/kg) 

 

 

Sham  Lesioned 
Parameters Saline Amph  Saline Amph

% Omissions 14.17 ± 3.59 14.36 ± 3.87 10.66 ± 1.48 14.13 ± 2.47 
Perseverative responses 29.77 ± 4.55 29.22 ± 7.28 24.42 ± 4.13 15.00 ± 3.30 
Latency, correct responses 0.77 ± 0.05 0.78 ± 0.04 0.91 ± 0.07 0.79 ± 0.07 
Latency, incorrect responses 1.95 ± 0.18 1.67 ± 0.14 1.72 ± 0.10 1.49 ± 0.16 
Latency, pellet 3.35 ± 0.63 2.28 ± 0.47 1.66 ± 0.20 1.26 ± 0.09 

 

 

The table shows % omissions, total perseverative responses per session, and latencies in seconds. All values are shown as mean ± SEM. 

 

Tableau indiquant pour chaque groupe, en fonction du traitement, le pourcentage de réponses omises, le nombre total de réponses persévératives et les différentes latences en 

secondes. Toutes les valeurs sont des moyennes (± ESM) 

 

 

 



 

 

  

 

 

 

Table 4.4. Performance parameters of sham control and habenula-lesioned animals after treatment with either vehicle or haloperidol (Hal) (0.01 or 0.03 mg/kg) 

 

 

Sham Lesioned 
Parameters Vehicle    Hal, 0.01

mg/kg 
Hal, 0.03 

mg/kg 
Vehicle Hal, 0.01

mg/kg 
Hal, 0.03 

mg/kg 
% Omissions 33.20 ± 10.69 22.63 ± 4.32 50.06 ± 10.36 14.05 ± 2.14 13.13 ± 2.58 26.09 ± 4.17 
Perseverative responses 15.77 ± 1.80 23.00 ± 4.67 6.22 ± 2.98 19.71 ± 3.96 17.28 ± 2.30 6.42 ± 1.64 
Latency, correct responses 1.12 ± 0.20 0.82 ± 0.03 0.67 ± 0.15 1.24 ± 0.16 1.04 ± 0.10 1.10 ± 0.16 
Latency, incorrect responses 2.14 ± 0.14 2.21 ± 0.08 1.97 ± 0.40 1.85 ± 0.16 1.99 ± 0.13 2.52 ± 0.27 
Latency, pellet 2.03 ± 0.53 2.40 ± 0.40 1.76 ± 0.58 1.39 ± 0.24 1.88 ± 0.58 1.29 ± 0.04 

 

 

The table shows % omissions, total perseverative responses per session, and latencies in seconds. All values are shown as mean ± SEM. 

 

Tableau indiquant pour chaque groupe, en fonction du traitement, le pourcentage de réponses omises, le nombre total de réponses persévératives et les différentes latences en 

secondes. Toutes les valeurs sont des moyennes (± ESM). 
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IV.3.7 Histology 

As illustrated in Fig 4.8, habenula lesions destroyed a large proportion of both medial 

and lateral habenula without causing significant damage to neighboring structures. Only 

animals with such lesions were included in the analysis of behavioral effects. 

 

Fig 4.8: Typical sections through the habenula region of a sham-operated rat and a bilateral 

habenula-lesioned rat 

 

 
 

Only animals with similar lesions, showing large destruction of the habenula without significant damage 

to neighboring structures, were included in the analysis of behavioral effects. Abbreviations: mHb, 

medial habenula; lHb, lateral habenula; dHipp, dorsal hippocampus. 

 

Seuls les animaux ayant des lesions circonscrites à l’habénula et n’affectant pas ou très peu les structures 

avoisinantes furent incluses dans les analyses statistiques. Abréviations: mHb, noyau médian de 

l’habénula; lHb, noyau latéral de l’habénula; dHipp, hippocampe dorsal. 

 

IV.3.8 Assay of choline acetyltransferase (ChAT) 

As shown in Table 4.5, rats with lesions of the habenula had a marked reduction, by 78 

%, of ChAT activity of the interpeduncular nucleus, compared to the sham-operated 

animals. This result is consistent with those of previous neurochemical studies (Villani 

et al, 1983; Contestabile et al, 1987; Eckenrode et al, 1987) and indicates marked 

degeneration of the habenulo-interpeduncular cholinergic tract. 
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Table 4.5. Choline acetyltransferase in homogenates of interpeduncular nucleus from sham and 

habenula-lesioned animals.  

 

Group ChAT (µmoles/g wet wt/hr) 
Sham-operated 83.5 ± 6.6 

Lesioned 18.5 ± 9.6 (22.1 ± 11.5 %) ** 
 

 

Results (mean ± SEM; µmoles/g wet wt/hr) are shown for the sham group and the habenula-lesioned 

group. Values in parentheses are expressed as percentage of the sham value. **p < 0.001 vs sham-

operated (2-tailed t-test). 

 

Les resultats (moyenne ± ESM; µmoles/g de matière sèche/hr) sont indiqués pour le groupe sham et le 

groupe habenulo-lésé. Les valeurs entre parenthèses sont exprimées en pourcentage des valeurs 

correspondantes issues du groupe sham. **p < 0.001 vs sham (test t à deux bornes). 
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IV.4 Discussion 

The aim of the present studies was to examine whether bilateral lesions of the habenula 

would cause deficits in performing the 5-CSRTT, a task in which attention plays an 

important role. The results clearly showed that multiple deficits resulted from such 

lesions, and to our knowledge are the first data to demonstrate a role for the habenula in 

the performance of a test of attention. 

 

The major behavioral consequences after the habenula lesion in the 5-CSRTT are a 

marked increase of the number of premature responses and alterations in accuracy. 

Interestingly, the deficits observed during the task can be distinguished in terms of their 

time-course. At one extreme increased premature responses appeared immediately upon 

reinstating testing after the lesion, and thereafter declined in magnitude. At the other 

extreme choice accuracy was not significantly altered in the first test sessions upon 

reinstating testing, and became progressively worse in the habenula-lesioned animals as 

testing progressed. Falling between these two extremes were shortened latencies for 

incorrect responses and for retrieving the food pellet in lesioned animals, that appeared 

already in the first block of post-operative test sessions and then remained stable. Given 

that the habenula consists of fifteen subnuclei (Andres et al, 1999; Geisler et al, 2003) it 

is understandable that alterations with different properties exist. Elucidating the circuits 

involved in these various alterations will clearly require further experiments. Here we 

restrict ourselves to considering the possible role of elevated dopamine in the changes 

of premature responses and choice accuracy. 

 

Concerning first the increase of premature responding occurring shortly after the lesion, 

one possible behavioral explanation is that this increase reflects an impaired ability to 

focus attention only on the most relevant aspect of the task, namely the occurrence of a 

stimulus light. Instead, the stimulus recesses themselves, that have become associated 

with reward during training, elicit an inappropriate level of responding. As only a slight, 

short-lasting increase of locomotor activity is present in habenula-lesioned animals (see 

Chapter II) it is unlikely that the increase of premature responding is merely a reflection 

of generalized hyperactivity. Moreover it seems unlikely that the increased premature 

responding could be explained by a motor effect of the lesion to non-specifically 

facilitate responding in the stimulus alcoves, since there was no increase at all of 
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perseverative responding caused by the lesion. It is currently difficult to conclude 

whether the increase in premature responses in habenula-lesioned rats corresponds to a 

particular aspect of the behavior of patients with schizophrenia. Premature responding 

has been considered to represent some aspect of impulsivity (Winstanley et al, 2004), 

which is a troubling symptom of a proportion of schizophrenics (Hoptman et al, 2002; 

Spivak et al, 1997, 2003). Future pharmacological characterization of this behavior in 

rats and of the various measures of impulsivity in man will be invaluable in deciding 

how well these behaviors correspond to each other. 

 

It has been emphasized (Chudasama et al, 2003; Robbins, 1998) that the ability to 

inhibit inappropriate responses in a complex situation such as the 5-CSRTT is an 

important aspect of executive control, probably involving frontal cortical regions 

(Duncan & Owen, 2000). One candidate as a likely neural mechanism responsible for 

this effect, that is consistent with previous findings and the present data, is increased 

release of dopamine in mesolimbic or mesocortical dopaminergic pathways. The 

habenula exerts an inhibitory influence on dopaminergic cells of the ventral tegmentum 

(Christoph et al, 1986). Correspondingly, acute interruption of impulse flow in the 

habenula increases the turnover of dopamine in mesolimbic and mesocortical regions 

(Nishikawa et al, 1986) while chronic lesions of habenula produce a long-lasting 

increase of dopamine turnover selectively in frontal cortex (Lisoprawski et al, 1980). 

Cole & Robbins (1989) showed that the marked increase of premature responding 

evoked by amphetamine was greatly attenuated by 6-hydroxydopamine-induced lesions 

of the nucleus accumbens that damage mesolimbic dopamine terminals and 

mesocortical dopamine axons running through that region. This evidence is consistent 

with the view that lesions of the habenula result in increased mesolimbic/mesocortical 

dopamine release, which then causes the observed increase in premature responding. 

The effects of the dopamine antagonist, haloperidol, observed here are consistent with 

this view, as the effect of haloperidol on premature responding was to reduce it. The 

fact that haloperidol clearly reduced premature responding in non-lesioned animals 

suggests that there is some dopamine release in control animals that contributes to 

premature responding. For comparison, one previous study reported no significant effect 

of haloperidol on premature responding (Carli & Samanin, 1992) without showing the 

absolute data. Conceivably the possibility of obtaining a reduction was limited by a 

“floor effect”. A further study showed a tendency to reduced premature responses after 

142 



Chapter IV – Habenula and attention 

the dopamine D2 antagonist, sulpiride, and a significant reduction after the dopamine D1 

antagonist SCH23390 (Harrison et al, 1997). It is possible that both a reduction in the 

secondary-reinforcing properties of the stimulus alcoves and some motor disturbance 

contribute to these effects of haloperidol. However, arguing against any pronounced 

motor disturbance, response latencies and latencies to collect food pellets were not 

lengthened. In agreement with previous studies in intact animals (Cole & Robbins, 

1987, 1989) amphetamine, an enhancer of dopamine release, increased premature 

responses in sham-operated animals. The effect of amphetamine does not seem to be 

due to any motor effect that generally increases nose-poking into the stimulus alcoves 

since perseverative responding was completely unaltered. 

 

Since global depletion of brain serotonin by 5,7-dihydroxytryptamine increases 

premature responding in this task (Harrison et al, 1997; Winstanley et al, 2004) it 

should be considered whether increased premature responding after amphetamine or 

habenula lesions might be due to reduced serotonin release. Concerning amphetamine, 

this seems unlikely since the effect of amphetamine on serotonin release is facilitation , 

albeit at doses a hundred-fold higher than those that affect catecholamine release 

(Rothman et al, 2001). Moreover no effect of serotonin depletion on increased 

premature responses provoked by low amphetamine doses was observed (Harrison et al, 

1997). Concerning the habenula lesion effect, with the exception of Nishikawa & 

Scatton (1985), the majority of studies indicate an inhibitory influences of habenula 

activity on serotonergic neurons (Reisine et al, 1982; Speciale et al, 1980; Wang & 

Aghajanian, 1977) such that the effect of lesions would be elevated serotonin release 

which would be predicted to decrease premature responding. 

 

In contrast to premature responding, choice accuracy was not significantly altered 

shortly after habenula lesion, but was impaired at later times. Whereas a degree of 

behavioral recovery often occurs after other brain lesions, we are not aware of another 

example of a progressive deficit after a restricted brain lesion in an adult animal. This 

different time-course compared to that of the elevation of premature responding 

suggests that different neural mechanisms are involved. Also, unlike premature 

responding, this lesion-induced deficit was not ameliorated at all by haloperidol. Neither 

was choice accuracy worsened by d-amphetamine, in agreement with  the effects of 

comparable doses in several previous studies (Cole & Robbins, 1987, 1989; Harrison et 
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al, 1997; Muir et al, 1995). Theoretically, sensitization of dopaminergic transmission by 

prolonged hyperactivity (Vanderschuren et al, 1999, 2000), until it exceeded a threshold 

level could be a possible explanation of the time course of impairment of choice 

accuracy. However the lack of effects of haloperidol and d-amphetamine in doses that 

exerted effects on premature responding in the same experiment indicates that elevated 

dopaminergic transmission does not appear to play a role in this impairment. Alternative 

explanations include the possibility of some progressive neural degeneration after 

habenula lesion. While we have not observed any obvious neural degeneration, further 

studies are necessary to examine this possibility in detail. Finally, there remains the 

possibility of a mechanism according to which habenula dysfunction results in a 

progressive accumulation of delusional memories, so that cognitive functions are 

progressively disturbed by the accumulation of wrongly-strengthened synaptic 

connections that are the neural substrate of these delusional memories (Kelly, 1998). 

The progressive deficit in choice accuracy is consistent with such a mechanism, but of 

course does not prove it. Further, we can reasonably eliminate the possibility that this 

late-occurring impairment of choice accuracy arises from an impairment of visual 

ability, since in a different cognitive task, the Morris water-maze, rats with a lesion of 

the habenula performed the visible platform condition of the test as well as sham-

operated controls, although they were impaired in finding the hidden platform (see 

Chapter II). 

 

The effects of habenula lesions observed here in the 5-CSRTT do not appear to be 

caused by a lesion-induced increase in food motivation. A consistent finding from 

several laboratories is that when food motivation is reduced by pre-feeding then there is 

an increase of “percentage omissions”, the percentage of stimuli that elicit no response 

(Bizarro & Stolerman, 2003; Carli & Samanin, 1992; Grottick & Higgins, 2000, 2002; 

Harrison et al, 1997). In none of these studies was choice accuracy altered by 

manipulating food motivation. In the present studies the lesion resulted in a delayed 

reduction in choice accuracy and no alteration of percentage omissions with the 

exception of an overall lesion effect in the haloperidol experiment. This latter result is 

difficult to explain currently. Thus, the lesion-induced changes cannot readily be 

accounted for by an alteration of motivation. Moreover, previous lesion evidence 

suggests that the habenula is not involved in food intake (Mok et al, 1973). 
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Even if attention deficits in schizophrenia are due to habenula dysfunction it is not 

necessarily the case that animals with habenula lesions are a model of attentional deficit 

in schizophrenia in the pharmacological sense that chronic treatment with neuroleptics 

is expected to improve measures such as choice accuracy. It may be, for example, that 

the marked effect of neuroleptics on activity of the habenula (McCulloch, 1982; 

Palacios & Wiederhold, 1985; Room et al, 1991) is necessary for their improvement in 

attentional performance when administered chronically (Orzack et al, 1967; Spohn & 

Strauss, 1989). In this case animals with complete habenula lesions would be a model of 

patients who are non-responders to neuroleptics concerning their attentional choice 

accuracy deficit. Moreover, although in many studies of patients with schizophrenia 

attentional performance was improved by chronic neuroleptic treatment, there are other 

studies in which such treatment had no significant beneficial effect (Allen et al, 1997; 

Liu et al, 2000; review: Blyler & Gold, 2000). Factors contributing to such different 

outcomes may include the exact nature of the test, concomitant medication with the 

anticholinergic agent benztropine, sample size and duration of the medication-free 

period before baseline assessment. It is beyond the scope of this discussion to consider 

all the possible factors that may contribute to such different outcomes. However, 

consistent with a progressive loss of the substrate for beneficial effects of neuroleptic 

treatment on attention, it is interesting that better effects were found in younger patients 

compared to older patients (Harvey et al, 2003a, b) and no positive effects were found 

in a patient population that comprised a high proportion of patients that were 

neuroleptic-non-responders with respect to other symptoms (Epstein et al, 1996). 

 

The present results are relevant to the hypothesis that habenula dysfunction is involved 

in the cognitive symptoms of schizophrenia. This hypothesis is based on several lines of 

evidence. For example, excessive calcification of the habenula or of the epithalamus, 

comprising the habenular nuclei plus the pineal organ, is observed in schizophrenia 

patients (Caputo et al, 1998; Sandyk, 1992). Moreover, chronic stimulant exposure 

selectively damages the lateral habenula and its fasciculus retroflexus output pathway in 

experimental animals (Ellison, 1992), and in man can lead to a schizophrenia-like state 

(Satel & Edell, 1991; Sato et al, 1983). In examining the prediction that habenula 

lesions would therefore cause schizophrenia-like symptoms in rats we recently found 

that such lesions produced cognitive disturbance in the Morris water maze spatial 

reference memory task (see Chapter II) that is thought to be analogous to declarative 
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memory (O’Keefe & Nadel, 1978) which is impaired in schizophrenia (Cirillo & 

Seidman, 2003; Perry et al, 2000). In the same series of studies we found no deficit of 

prepulse inhibition (PPI) of a startle response, a phenomenon that is impaired in 

schizophrenia patients (Braff et al, 1978, 1992, 1999). Interestingly however a deficit in 

PPI in habenula-lesioned mice has recently been described which was not initially 

present, but which appeared after the experience of fear-conditioning (Heldt & Ressler, 

2004). Similar to the deficit in choice accuracy observed here, this deficit resulting from 

habenula lesion is therefore experience-dependent. 

 

In the present experiments the prediction that habenula lesions would cause 

schizophrenia-like symptoms was further tested by examining performance in a test of 

attentional mechanisms, since numerous studies have emphasized that disturbances of 

attention are common in schizophrenia (Barr, 2001; Bleuler, 1950; Chen & Faraone, 

2000; McGhie & Chapman, 1961). Our results showed that habenula lesions caused 

multiple deficits in an attention task that is modeled after the continuous performance 

test of attention (Chudasama & Robbins, 2004), that schizophrenia patients are impaired 

on. Thus a prediction of the hypothesis that habenula lesions contribute to cognitive 

impairments in schizophrenia was confirmed, so that the hypothesis withstood this 

challenge. The results add to accumulating evidence that the hypothesis that habenula 

dysfunction contributes to cognitive impairment in schizophrenia deserves further 

consideration. 
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Chapter V – MRI experiment 

Chapter V - Influence of habenula lesion on brain structures 
activity, with or without stimulation of monoamine 
systems: A regional brain blood flow magnetic 
resonance imaging study 

 

V.1 Introduction 

The results from the studies in the previous chapters indicate that in some respects the 

behavioural changes, particularly cognitive aspects, produced by bilateral lesions of the 

habenula resemble those in schizophrenia. Thus two major cognitive dysfunctions of 

schizophrenia, dysfunction of memory (see Chapter II) and dysfunction of attention 

(see Chapter IV), were clearly produced in rats by bilateral habenula lesions. 

 

As part of the basis for these alterations, because the habenula is a major influence on 

ascending serotonergic pathways (Nishikawa & Scatton, 1985; Speciale et al, 1980; 

Wang & Aghajanian, 1977), noradrenergic pathways (Cenci et al, 1992; Kalen et al, 

1989) and nigrostriatal, mesolimbic and mesocortical dopaminergic pathways 

(Christoph et al, 1986; Lisoprawski et al, 1980; Matsuda & Fujimura, 1992; Sasaki et 

al, 1988, 1990) that project widely throughout the brain, it was argued that lesions of the 

habenula may cause marked alteration of forebrain function. Particularly of interest for 

at least two reasons is the possibility that such lesions might alter the functioning of the 

frontal cortex, first because frontal cortical regions are important in performance of 

attentional tasks (Chudasama et al, 2003; Muir et al, 1996) and spatial learning in the 

Morris maze (Dallison & Kolb, 2003; Vafaei & Rashidy-Pour, 2004; Wright et al, 

2003) and, second, there is extensive evidence of impaired functioning of frontal 

cortical regions in schizophrenia (Davidson & Heinrichs, 2003; Hill et al, 2004; 

Weinberger & Berman, 1988). 

 

Therefore the purpose of the present experiments was to investigate using a direct 

method, the measurement of cerebral blood flow by magnetic resonance imaging (MRI, 

see Fig 5.1), whether there were any marked alterations of cerebral functioning, 

particularly of the frontal cortex, after habenula lesions. 
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In addition to lesions, subchronic amphetamine treatment was included as a factor in the 

experimental design. The rationale for this is that some evidence suggests that 

continuously-elevated dopamine release might contribute to schizophrenia-like 

functional brain changes in man (Laruelle et al, 1999) and animals (Joseph et al, 2000; 

Tenn et al, 2003). Moreover, chronic amphetamine or cocaine intake has been found to 

produce schizophrenia-like state in healthy people, and to worsen the state of 

schizophrenic patients (). Therefore it was investigated whether there could be an 

interaction between habenula damage and subchronic amphetamine. 

 

Finally, in addition to baseline blood flow, amphetamine-stimulated cerebral blood flow 

was also measured, since differences between schizophrenics and controls in frontal 

cortex blood flow may be seen if the frontal cortex is activated, for example by a 

cognitive task, rather than under baseline conditions (Berman et al, 1986; Cohen et al, 

1987; Volkow et al, 1987; Weinberger et al, 1986a, 1988). 
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V.2 Materials and methods 

V.2.1 Animals 

The experiments were carried out on male Sprague-Dawley rats (Iffa Credo, France). 

The animals arrived with a body weight of 120-140 g and were housed in individual 

cages (Macrolon, 42 × 26 × 15 cm) in a temperature-regulated (22 ± 2°C) animal room 

on a 12 h/12 h light/dark cycle (lights on at 06:00), with laboratory rat chow (Nafag AG, 

Switzerland) and water available ad libitum. The operations and behavioural tests were 

performed during the light period, and were in accordance with the Swiss animal 

protection law for the care and use of animals and were approved by the Cantonal 

Veterinary Authority of the City of Basel. 

 

V.2.2 Surgical procedures 

One week after their arrival, the rats were operated, and divided in two groups: 

habenula-lesioned (n = 12) or sham-operated (n = 12). Lesions of the habenula or sham 

operations have been performed as previously described (see Chapter II, page 69). 

However, a difference was that, at the time of operation, the animals weighed between 

150 and 160 g, so that the atlas of König & Klippel (1963) for small rats was used. Thus 

to position the electrode tip, from interaural line, at the point AP 4.2 mm, ML 0.5 mm, 

3.7 mm below dura (König & Klippel, 1963) the “lateral” displacement of the electrode 

carrier (still at an angle of 10° to the vertical) after positioning it at the midpoint of the 

saggital sinus at the desired AP coordinate was 1.3 mm, and the depth displacement of 

the electrode was 4.0 mm along the 10° angle track. 

 

V.2.3 Food deprivation 

Because of the fixed size of the animal holder for the MRI apparatus the growth of the 

animals had to be slowed so that they would fit into the apparatus for a second MRI, 12 

weeks after the first. Therefore, starting on the seventh day following the operation, a 

modest food deprivation procedure began. To be maintained at constant body weight the 

rats received 17 g of food each day throughout the experiment, with water available ad 

libitum. 
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V.2.5 Drug preparation 

All solutions were freshly prepared on the day of use. D-amphetamine sulphate 

(Siegfried, Zofingen, Switzerland) was dissolved in 0.9% NaCl and injected in a volume 

of 1 ml/kg. Saline-treated animals received the same volume of saline (0.9% NaCl). 

 

V.2.4 Drug administration 

Three days after the beginning of the food deprivation, the rats were placed in the MRI 

apparatus for the first measurement (MRI 1). Three days later, the subchronic drug 

pretreatment began. The rats were divided in four groups: sham-operated animals 

pretreated with either saline (NaCl 0.9%, 1 ml/kg/day s.c., n = 6) or amphetamine (2.5 

mg/kg/day, s.c., n = 6), and habenula-lesioned animals pretreated with either saline 

(NaCl 0.9%, 1 ml/kg/day s.c., n = 6) or amphetamine (2.5 mg/kg/day, s.c., n = 6). 

During the pretreatment procedure, all animals received a daily injection of the 

corresponding treatment (saline or amphetamine) during four consecutive days. On the 

following day, i.e. one week after MRI 1, the second measurement (MRI 2) was 

performed. During both MRI measurement, 1 mg/kg amphetamine was injected i.v. 

through an indwelling catheter after completion of baseline measurements. 

 

V.2.6 MRI 

Rats were anaesthetized with isoflurane (2%) in a mixture of oxygen and nitrous oxide 

(1:2). Cannulae were inserted into the tail vein (for injection of contrast agent). The 

rectal temperature was monitored with a thermistor and was maintained at 37.5 °C by 

ventilation with warm air (Fig 5.2). The first MRI experiment (MRI 1) was made 3 days 

after the beginning of food deprivation, i.e. 10 days after surgery, and the second MRI 

experiment (MRI 2) was made on the fifth day of subchronic drug (or saline) treatment. 

 

Each MRI experiment comprised two measurements: measurement of relative cerebral 

blood flow (rCBV) and measurement of rCBV-change induced by intravenous injection 

of 1mg/kg amphetamine. 
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V.2.6.1 MRI-protocol and data analysis to measure rCBV 

rCBV maps were derived from MRI data sets acquired using a T2-weighted 3D fast-

spin-echo sequence (3D-FSE) with the following imaging parameters: repetition delay 

TR = 900 ms, echo delay TE = 60 ms, RARE-factor = 16, field-of-view FOV = 

3.28×3.00×2.5cm, data matrix = 96 × 80 × 42, number of acquisitions NEX = 2. 

Readout direction was anterior-posterior. An oversampling-factor of 2 was used in 

readout direction to avoid aliasing. Total acquisition time was 6min 28sec. Slices were 

oriented horizontally and reconstructed to a matrix of the dimension 128 × 128 × 64. 

 

After acquisition of a pre-contrast scan, 0.7 ml of Endorem (AMI-25, Guerbet, Paris) 

were injected into the tail vein of the animal. Acquisition of a post-contrast data-set was 

started approximately 20 seconds after injection thereby avoiding effects due to the first 

pass of the contrast agent CA16. 

 

Image processing and analysis was carried out using BioMAP software (M. Rausch, 

Novartis). In brief, data sets from all animals were co-registered with a rat brain 

template, smoothed and analyzed using the general linear model. Modeling was carried 

out on a pixel-by-pixel basis. The atlas of Paxinos & Watson (1998) was used to 

identify anatomical structures. Regions of interest (ROI) analysis was used in addition 

to assess rCBV changes on a more global level, while the calculation of parametric 

maps allowed identifying smaller foci of CBV change, including sub-areas of larger 

brain structures. A height threshold of p < 0.05 and an extent threshold of 27 pixels was 

applied to the probability maps, which were overlaid onto the brain template for further 

analysis. Significance of rCBV change was determined by using the two-tailed t-test. 

 

V.2.6.2 MRI-protocol and data analysis to measure rCBV changes 

after pharmacological stimulation with amphetamine 

Dynamic T2-weighted images were acquired using a 3D- FSE sequence with the 

following imaging parameters: repetition delay TR = 736 ms, echo delay TE = 55 ms, 

RARE-factor = 16, field-of-view FOV = 3.28 × 3.00 × 2.5cm, data matrix = 96×64×42, 

number of acquisitions NEX = 1. Readout direction was anterior-posterior. An 

oversampling-factor of 2 was used in readout direction to avoid aliasing. Total 
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acquisition time was 2 min 31 sec. Slices were oriented horizontally and reconstructed 

to a matrix of the dimension 128 × 64 × 64. Sixteen of these volume data sets were 

acquired consecutively. Amphetamine was injected after acquisition of 5 baseline 

volumes. To be able to calculate fractional changes in rCBV, one additional volume was 

acquired before administration of Endorem. 

 

Data analysis comprised the following steps: 

 

Calculation of the relative change in blood volume on a pixel-by-pixel basis using  
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Here, S(t) is the signal intensity of a voxel at time point t, S0 the mean baseline 

intensity derived from the first 4 volumes and Spre the signal intensity of the dataset, 

which was acquired before administration of contrast agent. 

 

The responsiveness to amphetamine was defined as the area-under-the-curve (AUC). 

Volumes 5 to 10 were included into this calculation. 

 

The response-map was resliced to the reference brain using the coordinates determined 

from the high-resolution 3D-FSE maps. 
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Fig 5.1. The MRI scanner 

 

 

 

 

 

Fig 5.2. Rat placed in the coil of the scanner 

 
 

One can see the rectal electrode for temperature monitoring, as well as the electrode placed on the 

abdomen of the rat which monitors pCO2 and the mouth catheter for the artificial ventilation. 

 

On peut apercevoir l’electrode rectale servant à mesurer la temperature du rat, l’electrode de mesure de 

la pCO2 placée sur l’abdomen ainsi que le cathéter placé dans le museau et servant à la ventilation 

artificielle. 
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V.3 Results 
 

Because the MRI procedure is highly constraining for the rats (deep anaesthesia + 

paralysis + intubation), several of them died, either during the first or the second MRI. 

Thus, statistical analysis were performed with 7 lesioned and 6 sham for the first MRI 

(MRI 1), which were divided as follow for the pretreatment procedure and the second 

MRI (MRI 2): 4 sham-operated (Sh/Cont) and 4 lesioned (Les/Cont) rats which were 

subchronically treated with saline during the pretreatment procedure, and 2 sham-

operated (Sh/Sens) and 3 lesioned (Les/Sens) rats which were subchronically treated 

with amphetamine during the pretreatment procedure. 

 

V.3.1 Habenula lesion 

The habenula lesion was clearly detectable on T2-weighted FSE scans: it was 

characterized by heterogeneous structure consisting of hyperintense edema and dark 

structures representing hemorrhagic transformations (Fig 5.3). No signal abnormalities 

were visible in this area in sham-operated animals. 

 

Fig 5.3. Localisation of the lesion 

 

 
 

The figure shows a data set from an individual animal. The white arrow shows the localization of the 

habenula where one can distinguish oedema small hemorrhagic transformations around and within the 

lesion. 

 

La figure montre un exemple de lesion. La flèche blanche indique la zone dans laquelle est située 

l’habénula, où l’on peut distinguer des traces d’oedéme ainsi que de légères traces d’hémorragie. 
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V.3.2 Comparison of blood volume in the habenula region during MRI 1 

baseline measurement between sham-operated and lesioned animals 

Measurement of baseline blood volume in sham and lesioned animals during MRI 1 

revealed clear differences between the two groups. The baseline blood volume was 

reduced in the area covering the lesion by around 44%. Visual inspection of the rCBV 

maps revealed no abnormalities in rCBV for the sham operated animals (Fig 5.4). 

 

Fig 5.4. Baseline rCBV during the first measurement (MRI 1) 

Sham

Lesion

 
 

Comparison of rCBV maps from sham and lesioned animals. The rCBV maps including the habenula 

represent the average baseline over all animals belonging to one of the two groups, which were recorded 

before treatment onset during MRI 1. The black arrow indicates the position of the habenula. The signal 

intensity, which reflects the blood flow, increases according to the following set of colors: purple < blue < 

green < yellow < orange < red. 

 

Sur cette figure est représentée la moyenne, pour chacun des deux groupes (sham et lésés), du flux 

sanguine de base avant le traitement à l’amphétamine durant le premier IRM (IRM 1) sur des coupes 

incluant l’habénula. La flèche noire indique la position de cette dernière, et l’on peut observer une baisse 

marquée de l’intensité du signal chez les animaux lésés par rapport aux animaux shams. L’intensité du 

signal, qui reflète le flux sanguin, croît selon le code de couleur suivant: violet < bleu < vert < jaune < 

orange < rouge). 
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V.3.3 Activation by amphetamine during MRI 1 in sham animals 

Regions activated by acute amphetamine treatment (1 mg/kg) in sham animals are 

represented in Fig 5.5. 

 

Fig 5.5. Regions activated by acute amphetamine (1 mg/kg) in sham animals 
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Structures activated by amphetamine in sham animals during MRI 1. Structures indicated in the figure 

are: Th, Thalamu; PrL, Prelimbic cortex; FrA, Frontal association cortex; PRh/Ect, Ectorhinal/perirhinal 

cortex; M1/M2, Primary/secondary motor area; Pir, Piriform cortex; CPu, Caudate Putamen. 

 

Figure représentant les aires du cerveau actives par le traitement à l’amphétamine chez les animaux 

sham Durant le premier IRM (IRM 1). Les structures indiquées sont: Th, Thalamu; PrL, cortex 

prélimbique; FrA, cortex associatif frontal; PRh/Ect, cortex ectorhinal/perirhinal; M1/M2, aires motrices 

primaire/secondaire; Pir, cortex piriform; CPu, néo-striatum (noyau caudé/putamen). 

 

V.3.4 rCBV results 

V.3.4.1 Frontal cortex 

The results are shown in Fig 5.6 

 

MRI 1. Two factor ANOVA (lesion as between subjects factor, acute drug treatment as 

a repeated factor) showed a significant effect only of drug (F1,11 = 11.9, p < 0.005). 
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MRI 2. Three factor ANOVA (lesion and subchronic treatment as between subjects 

factors, acute drug treatment as a repeated factor) showed a significant effect of lesion 

(F1,9 = 5.80, p < 0.05) and a significant lesion x drug interaction (F1,9 = 5.81, p < 0.05). 

Inspection of the results shows that the activation by amphetamine was markedly 

blunted in the lesioned animals, and even reversed. The fact that there was a lesion 

effect at the second, but not the first MRI, suggests that the effect of lesion was 

increasing with time. However this could not be shown with by 4-factor ANOVA 

(between subjects factors: lesion, subchronic treatment; nested within subjects factors: 

MRI number and acute drug treatment). This analysis showed significant effects only of 

lesion (F1,9 = 8.27, p < 0.05) and a lesion x drug interaction (F1,9 = 8.28, p < 0.05). 

 

Fig 5.6. rCBV measurements in the frontal cortex 
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Relative cerebral blood flow (arbitrary units) before and after amphetamine (1 mg/kg, i.v.) during the first 

MRI (Left) and the second MRI (Right). Animals, either sham (Sh) or with habenula lesion (Les), were 

treated subchronically (4 days) with saline control (Sh/Cont, n=4; Les/cont, n=4), or with amphetamine 

2.5 mg/kg/day to induce sensitization (Sh/Sens, n=2; Les/Sens, n=3) between the first and the second 

MRI. *p<0.05 vs baseline blood flow of same group (2-tailed paired t-test following significant 

ANOVA); # p<0.05 vs same acute treatment in corresponding sham group (2-tailed t-test following 

significant ANOVA). 

 

Flux sanguin cerebral relatif (unite arbitraire) avant et après amphétamine (1 mg/kg, i.v.) durant le 

premier IRM (Gauche) et le second IRM (Droite). Les animaux, soit sham (Sh) soit avec lésion de 

l’habénula (Les), reçurent un traitement subchronique (4 jours) de liquide physiologique (Sh/Cont, n=4; 

Les/cont, n=4), ou d’amphétamine 2.5 mg/kg afin d’induire une sensibilisation (Sh/Sens, n=2; Les/Sens, 

n=3) entre le premier et le second IRM. *p<0.05 comparé au flux sanguine de base du même groupe (test 

t à deux borned=s suivant une ANOVA significative); #p<0.05 comparé au groupe sham dans les mêmes 

conditions (test t à deux borned suivant une ANOVA significative). 
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V.3.4.2 Cingulate cortex 

The results are shown in Fig 5.7 

 

MRI 1. Two factor ANOVA (lesion as between subjects factor, acute drug treatment as 

a repeated factor) showed no significant effect of group (F1,11 = 0.063, p > 0.8), no 

effect of drug treatment (F1,11 = 3.612, p = 0.084) and no interaction between these two 

factors (F1,11 = 0.062, p > 0.8). 

 

MRI 2. Three factor ANOVA (lesion and subchronic treatment as between subjects 

factors, acute drug treatment as a repeated factor) showed no significant effect of any of 

the parameters, nor of any of the interactions, analyzed. 

 

Fig 5.7. rCBV measurements in the cingulate cortex 
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Relative cerebral blood flow (arbitrary units) before and after amphetamine (1 mg/kg, i.v.) during the first 

MRI (Left) and the second MRI (Right). Animals, either sham (Sh) or with habenula lesion (Les), were 

treated subchronically (4 days) with saline control (Sh/Cont, n=4; Les/cont, n=4), or with amphetamine 

2.5 mg/kg/day to induce sensitization (Sh/Sens, n=2; Les/Sens, n=3) between the first and the second 

MRI. 

 

Flux sanguin cerebral relatif (unite arbitraire) avant et après amphétamine (1 mg/kg, i.v.) durant le 

premier IRM (Gauche) et le second IRM (Droite). Les animaux, soit sham (Sh) soit avec lésion de 

l’habénula (Les), reçurent un traitement subchronique (4 jours) de liquide physiologique (Sh/Cont, n=4; 

Les/cont, n=4), ou d’amphétamine 2.5 mg/kg afin d’induire une sensibilisation (Sh/Sens, n=2; Les/Sens, 

n=3) entre le premier et le second IRM. 
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V.3.4.3 Parietal cortex 

The results are shown in Fig 5.8 

 

MRI 1. Two factor ANOVA (lesion as between subjects factor, acute drug treatment as 

a repeated factor) showed no significant effect of group (F1,11 = 1.334, p = 0.273), no 

effect of drug treatment (F1,11 = 0.782, p = 0.396) and no interaction between these two 

factors (F1,11 = 1.343, p = 0.271). 

 

MRI 2. Three factor ANOVA (lesion and subchronic treatment as between subjects 

factors, acute drug treatment as a repeated factor) showed no significant effect of any of 

the parameters, nor of any of the interactions analyzed. 

 

Fig 5.8. rCBV measurements in the parietal cortex 
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Relative cerebral blood flow (arbitrary units) before and after amphetamine (1 mg/kg, i.v.) during the first 

MRI (Left) and the second MRI (Right). Animals, either sham (Sh) or with habenula lesion (Les), were 

treated subchronically (4 days) with saline control (Sh/Cont, n=4; Les/cont, n=4), or with amphetamine 

2.5 mg/kg/day to induce sensitization (Sh/Sens, n=2; Les/Sens, n=3) between the first and the second 

MRI. 

 

Flux sanguin cerebral relatif (unite arbitraire) avant et après amphétamine (1 mg/kg, i.v.) durant le 

premier IRM (Gauche) et le second IRM (Droite). Les animaux, soit sham (Sh) soit avec lésion de 

l’habénula (Les), reçurent un traitement subchronique (4 jours) de liquide physiologique (Sh/Cont, n=4; 

Les/cont, n=4), ou d’amphétamine 2.5 mg/kg afin d’induire une sensibilisation (Sh/Sens, n=2; Les/Sens, 

n=3) entre le premier et le second IRM. 
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V.3.4.4 Caudate-Putamen 

The results are shown in Fig 5.9 

 

MRI 1. Two factor ANOVA (lesion as between subjects factor, acute drug treatment as 

a repeated factor) showed no significant effect of group (F1,11 = 0.52, p = 0.486), no 

effect of drug treatment (F1,11 = 0.716, p = 0.416) and no interaction between these two 

factors (F1,11 = 0.519, p = 0.486). 

 

MRI 2. Three factor ANOVA (lesion and subchronic treatment as between subjects 

factors, acute drug treatment as a repeated factor) showed no significant effect of any of 

the parameters, nor of any of the interactions analyzed. 

Fig 5.9. rCBV measurements in the caudate-putamen 
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Relative cerebral blood flow (arbitrary units) before and after amphetamine (1 mg/kg, i.v.) during the first 

MRI (Left) and the second MRI (Right). Animals, either sham (Sh) or with habenula lesion (Les), were 

treated subchronically (4 days) with saline control (Sh/Cont, n=4; Les/cont, n=4), or with amphetamine 

2.5 mg/kg/day to induce sensitization (Sh/Sens, n=2; Les/Sens, n=3) between the first and the second 

MRI. 

 

Flux sanguin cerebral relatif (unite arbitraire) avant et après amphétamine (1 mg/kg, i.v.) durant le 

premier IRM (Gauche) et le second IRM (Droite). Les animaux, soit sham (Sh) soit avec lésion de 

l’habénula (Les), reçurent un traitement subchronique (4 jours) de liquide physiologique (Sh/Cont, n=4; 

Les/cont, n=4), ou d’amphétamine 2.5 mg/kg afin d’induire une sensibilisation (Sh/Sens, n=2; Les/Sens, 

n=3) entre le premier et le second IRM. 
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V.3.4.5 Hippocampus 

The results are shown in Fig 5.10 

 

MRI 1. Two factor ANOVA (lesion as between subjects factor, acute drug treatment as 

a repeated factor) showed no significant effect of group (F1,11 = 0.176, p = 0.683), no 

effect of drug treatment (F1,11 = 3.799, p = 0.077) and no interaction between these two 

factors (F1,11 = 0.175, p = 0.684). 

 

MRI 2. Three factor ANOVA (lesion and subchronic treatment as between subjects 

factors, acute drug treatment as a repeated factor) showed no significant effect of any of 

the parameters, nor of any of the interactions analyzed. 

Fig 5.10. rCBV measurements in the hippocampus 
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Relative cerebral blood flow (arbitrary units) before and after amphetamine (1 mg/kg, i.v.) during the first 

MRI (Left) and the second MRI (Right). Animals, either sham (Sh) or with habenula lesion (Les), were 

treated subchronically (4 days) with saline control (Sh/Cont, n=4; Les/cont, n=4), or with amphetamine 

2.5 mg/kg/day to induce sensitization (Sh/Sens, n=2; Les/Sens, n=3) between the first and the second 

MRI. 

 

Flux sanguin cerebral relatif (unite arbitraire) avant et après amphétamine (1 mg/kg, i.v.) durant le 

premier IRM (Gauche) et le second IRM (Droite). Les animaux, soit sham (Sh) soit avec lésion de 

l’habénula (Les), reçurent un traitement subchronique (4 jours) de liquide physiologique (Sh/Cont, n=4; 

Les/cont, n=4), ou d’amphétamine 2.5 mg/kg afin d’induire une sensibilisation (Sh/Sens, n=2; Les/Sens, 

n=3) entre le premier et le second IRM. 
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V.3.4.6 Medulla 

The results are shown in Fig 5.11 

 

MRI 1. Two factor ANOVA (lesion as between subjects factor, acute drug treatment as 

a repeated factor) showed no significant effect of group (F1,11 = 0.474, p = 0.505), no 

effect of drug treatment (F1,11 = 0.259, p = 0.621) and no interaction between these two 

factors (F1,11 = 0.466, p = 0.509). 

 

MRI 2. Three factor ANOVA (lesion and subchronic treatment as between subjects 

factors, acute drug treatment as a repeated factor) showed no significant effect of any of 

the parameters, nor of any of the interactions analyzed. 

 

Fig 5.11. rCBV measurements in the medulla 

-5
-4
-3
-2
-1
0
1
2
3
4
5

Sh/Cont     Sh/Sens   Les/Cont   Les/Sens

MRI 2

-5
-4
-3
-2
-1
0
1
2
3
4
5

R
el

at
iv

e 
C

BV

 Baseline
 Amphetamine (1 mg/kg)

Sham                       Lesioned

MRI 1

-5
-4
-3
-2
-1
0
1
2
3
4
5

Sh/Cont     Sh/Sens   Les/Cont   Les/Sens

MRI 2

-5
-4
-3
-2
-1
0
1
2
3
4
5

R
el

at
iv

e 
C

BV

 Baseline
 Amphetamine (1 mg/kg)

Sham                       Lesioned

MRI 1
 

Relative cerebral blood flow (arbitrary units) before and after amphetamine (1 mg/kg, i.v.) during the first 

MRI (Left) and the second MRI (Right). Animals, either sham (Sh) or with habenula lesion (Les), were 

treated subchronically (4 days) with saline control (Sh/Cont, n=4; Les/cont, n=4), or with amphetamine 

2.5 mg/kg/day to induce sensitization (Sh/Sens, n=2; Les/Sens, n=3) between the first and the second 

MRI. 

 

Flux sanguin cerebral relatif (unite arbitraire) avant et après amphétamine (1 mg/kg, i.v.) durant le 

premier IRM (Gauche) et le second IRM (Droite). Les animaux, soit sham (Sh) soit avec lésion de 

l’habénula (Les), reçurent un traitement subchronique (4 jours) de liquide physiologique (Sh/Cont, n=4; 

Les/cont, n=4), ou d’amphétamine 2.5 mg/kg afin d’induire une sensibilisation (Sh/Sens, n=2; Les/Sens, 

n=3) entre le premier et le second IRM. 
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V.4 Discussion 

The results of the present study can be considered preliminary, since the group sizes 

were quite small, because of unexpected deaths of animals between the first and second 

MRI experiment. Nevertheless certain statistically significant results were obtained. 

 

The main finding was that bilateral habenula lesion caused a type of “hypofrontality” in 

the sense that the frontal cortex was less markedly activated by amphetamine in 

lesioned animals than in sham-operated animals. In fact, at least qualitatively, 

amphetamine caused a decrease in relative cerebral blood flow in lesioned animals, in 

contrast to the increase that it caused in sham-operated animals. This result bears strong 

resemblance to the results from several studies of regional brain metabolism and blood 

flow in schizophrenia, that indicate physiological hypoactivity of the prefrontal cortex 

(see review by Weinberger & Berman, 1988) particularly during the performance of 

behavioural tasks that activate the prefrontal cortex of controls (Berman et al, 1986; 

Cohen et al, 1987; Volkow et al, 1987; Weinberger et al, 1986a, 1988). 

 

In other cortical areas similar results were obtained, but were not statistically 

significant. The amphetamine-induced reduction of blood flow in cerebellum and 

superior colliculus are new findings, and were unaltered by habenula lesion. 

 

In comparing the effects of amphetamine in the present study to previous findings it is 

most relevant to compare them to imaging studies, in which anesthesia was used, rather 

than to deoxyglucose experiments in the freely-moving animal. Such studies are 

relatively few, but in general the present results are similar to them. For example, using 

a much higher dose of amphetamine (20 mg/kg, i.p.) in rats Silva et al (1995) observed 

the greatest increase in blood flow in frontal cortical regions, and a reduction in the 

hippocampus, which was also a statistically non-significant tendency in the present 

studies. An increase in the caudate-putamen was also obtained in the study of Silva et al 

(1995). In the present study this effect was not observed. One possible reason for this 

discrepancy is the marked difference in amphetamine doses used. Chen et al (1997) also 

used an amphetamine dose (3 mg/kg, i.v.) considerably higher than that used here. 

Activation of cortical regions was highly similar to that found in the present study in 

that frontal cortex was activated more than cingulated cortex, and parietal cortex was 

activated the least. At this dose the striatum was also activated. Apart from the 
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difference in amphetamine dose, another factor that may partly account for the apparent 

difference in effects on striatal blood flow, is regional variation within the striatum. For 

example in one deoxyglucose study in mice (Miyamoto et al, 2000), regions within the 

striatum activated by amphetamine can clearly be seen, whereas in the region as a whole 

no overall effect was obtained. Such an explanation may also apply to the finding here 

of activated regions in the medulla, but not of activation of the medulla as a whole. 

 

It is possible that the hypoactivation of the frontal cortex could contribute to elevated 

subcortical dopamine release, resulting in the increase of premature responding in the 5-

choice serial reaction time task shown by rats with such lesions (see Chapter IV). 

Supporting such a suggestion are, for example, studies that show that lesion of the 

frontal cortex potentiates amphetamine-induced behaviours (Iversen, 1971) such as 

locomotor activity and stereotypy that are mediated by mesolimbic and nigrostriatal 

dopamine release (Kelly, 1977). In agreement with such a view other studies show that 

activation of the frontal cortex decreases dopamine release in nucleus accumbens 

probably via projections to the dopaminergic cell bodies of the ventral tegmental area 

(Jackson et al, 2001). Moreover the frontal cortex is involved in acquisition of the 

Morris water-maze spatial memory task, as shown by lesion and functional inactivation 

studies (Dallison & Kolb, 2003; Vafaei & Rashidy-Pour, 2004) as well as by the fact 

that indices of neuronal plasticity are increased in frontal cortical regions after Morris 

maze training (Wright et al, 2003). Thus the frontal cortex changes observed here may 

also contribute to the impairment of Morris water-maze learning caused by habenula 

lesion. 

 

Future mechanistic studies are clearly required to determine the intermediate steps 

leading from habenula lesion to diminished frontal cortex response to amphetamine. 

The numerous habenula-brainstem nucleus-frontal cortex pathways are obvious 

candidates for further study. Since there was a tendency in lesioned/sensitized animals 

for amphetamine to decrease blood flow in areas receiving little or no dopaminergic 

innervation such as the occipital cortex and hippocampus, or no noradrenergic 

innervation, such as the caudate-putamen, serotonergic mechanisms, which innervate all 

of these regions, seem to deserve investigation. 

 

164 



Chapter V – MRI experiment 

Finally it is not presently possible to decide whether in schizophrenia there is a blunting 

of the amphetamine-induced activation of frontal cortex, which would be a similarity to 

the effects of habenula lesion observed here. The reason for this is that previous studies 

of the effects of amphetamine on cerebral metabolism or cerebral blood flow in 

schizophrenia have used doses that have an inhibitory effect in controls (Wolkin et al, 

1987, 1994). Interestingly there was a tendency for the inhibitory response in frontal 

cortex to be blunted in schizophrenia patients. Only recently has it been shown that 

slightly higher doses of amphetamine cause more pronounced stimulatory effects on 

glucose utilization in several brain regions including anterior cingulate cortex 

(Vollenweider et al, 1998). Hopefully in the future there will be a study in 

schizophrenics compared to controls where similar doses are used, and where blood 

flow is measured rather than glucose utilization, which would be more comparable to 

the study reported here. It would also be more comparable to perform the study in 

anaesthetized subjects, if this is acceptable from safety and ethical viewpoints, since 

anesthesia markedly activates the habenula (Herkenham, 1981), such that these 

conditions may be optimal to observe lesion-induced effects. 

 

Because of the preliminary nature of the present results it will be important to confirm 

them, and to extend them by finer regional analysis, as well as following the time-

course for longer times after lesioning of the changes observed. 

 

In summary, the present results demonstrate that activation of the frontal cortex by 

amphetamine is blunted in rats with bilateral lesions of the habenula. Since this cortical 

region is involved in attention and spatial memory this “hypofrontality” might 

contribute to the deficits in these behaviours caused by habenula lesion, if a similar 

reduction of activation by a behavioural task, rather than amphetamine, occurs. The 

similarity of these results to mechanisms in schizophrenia cannot be directly compared, 

since there have not been directly similar studies of amphetamine performed in 

schizophrenics compared to controls. However in a general way they are similar to 

extensive evidence of hypofrontality in schizophrenia. 
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Chapter VI – Autoradiographic study 

Chapter VI - Does habenula lesion alter populations of 
receptors linked to schizophrenia ? An 
autoradiographic study 

 

VI.1 Introduction 

It has been shown in rodents and cats that habenular manipulation, by either lesion or 

stimulation, leads to marked variations of the release of several neurotransmitters 

(Garland & Mogenson, 1983; Greatrex & Phillipson, 1982; Kalen et al, 1989; Nagy et 

al, 1978; Sutherland, 1982). More precisely, through a habenulo-raphé pathway 

(Aghajanian & Wang, 1977), which is a major inhibitory influence on serotonergic cells 

of dorsal raphé (Nishikawa & Scatton, 1985; Speciale et al, 1980; Wang & Aghajanian, 

1977), habenula activity alters serotonergic activity in striatum and substantia nigra 

(Reisine et al, 1982; Soubrié et al, 1981), and the hippocampus (Ferraro et al, 1997; 

Sabatino et al, 1991). Similarly, it has been found that the lateral habenula acts directly 

on locus coeruleus to positively influence the noradrenergic activity in hippocampus, 

prefrontal cortex, striatum and nucleus accumbens (Cenci et al, 1992 ; Kalen et al, 

1989). Other studies have shown that the lateral habenula projects directly to the ventral 

tegmental area and substantia nigra to negatively influence mesocortical, mesostriatal 

and mesolimbic dopaminergic pathways (Christoph et al, 1986; Lisoprawski et al, 1980; 

Matsuda & Fujimura, 1992). Moreover habenula stimulation results in an increased 

release of acetylcholine in the hippocampus (Nilsson et al, 1990). 

 

In previous chapters it was shown that complete bilateral lesion of the habenula resulted 

in marked cognitive deficits. First of all, using the Morris water maze, we have found 

that the lesion impaired spatial memory, as attested by greater latency and distance to 

find the hidden platform (see Chapter II). Second the lesion induced marked attention 

deficits that were twofold: first, the lesioned rats showed marked immediate 

enhancement of the number of premature responses, an index of impulsivity, which 

decreased with time and was antagonized by haloperidol treatment; second, the lesioned 

rats showed a late-appearing impairment of choice accuracy in this attention test, that 

worsened with time and was not improved by haloperidol treatment (see Chapter IV). 

The latter results led us to consider that lesion of the habenula provokes two distinct 

deficits: a short-term deficit that seems to involve dopaminergic and possibly other 
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monoaminergic systems, and a long-term deficit, that seems to be independent of those 

monoaminergic systems, but may be due to cumulative erroneous changes in synaptic 

connectivity that are postulated to account for the appearance of delusions in 

schizophrenics (Kelly, 1998). Finally, in an MRI study, we observed blunted response 

to amphetamine, represented by blunted increase of relative cerebral blood flow, in rats 

with lesion of the habenula (see Chapter V). 

 

In an attempt to correlate our behavioural and imaging findings with possible changes at 

the synaptic level, we examined here the impact of bilateral habenula lesion on several 

receptors by means of the autoradiography technique. This technique, using labelled 

ligand binding of either agonists or antagonists, is a very useful tool for quantifying a 

population of receptors in any region of the brain. We therefore investigated the 

consequence of the lesion upon the serotonergic 5-HT1A and 5-HT2A, the dopaminergic 

D1 and D2, the glutamatergic NMDA and the cholinergic nicotinic alpha-7 receptors, as 

those receptors have been intensively shown to be involved in schizophrenia. For 

example, potent antipsychotics bind to the dopaminergic D2, for the typical, and the 

serotonergic 5-HT2A, for the atypicals, receptors. The cholinergic nicotinic alpha-7 and 

the glutamatergic NMDA receptors have been associated with the cognitive deficits of 

schizophrenia. Several cortical and sub-cortical regions of the brain have been 

investigated, as they have been intensively shown to be implicated in the aetiology of 

schizophrenia (see Chapter I), as well as structures directly influenced by habenular 

efferent pathways. Autoradiography was performed at two time-points on two different 

groups of rats, either one week or twelve weeks after the lesion, in order to investigate 

the possible short- and long-term effects of the lesion, as we have noted during our 

attention test that the lesion induced both immediate and delayed deficits (see Chapter 

IV). 
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VI.2 Materials and methods 

VI.2.1 Animals 

The experiments were carried out with 24 male Sprague-Dawley rats (Iffa Credo, 

France) housed by groups of four in Macrolon cages (60 x 37 x 20 cm) in a 

temperature-regulated (22 ± 2°C) animal room on a 12 h light/dark cycle (lights on at 

06:00). Food and water were available ad libitum. The experiments were approved by 

the Cantonal Veterinary Authority of the City of Basel. Animals were acclimatized to 

the animal quarters for at least a week before starting the experiments, which took place 

during the light phase. 

 

VI.2.2 Surgical procedures 

Lesion of the habenula or sham procedure were performed as previously described (see 

Chapter II). After completion of the operation, rats were housed four to a cage, two 

lesioned and two sham-operated rats. 

 

VI.2.3 Receptor autoradiography 

VI.2.3.1 Serotonergic 5-HT1A receptor 

After 30 min of preincubation in buffer containing 170 mM Tris-HCl pH 7.6, 4 mM 

CaCl2, 0.01% ascorbic acid, 1 µM pargyline and 1 µM fluoxetine at room temperature, 

the sections were incubated for 60 min at room temperature in the same buffer 

supplemented with 2 nM [3H]-8-OH-DPAT (229 Ci/mmol; Amersham). Non-specific 

binding was determined in a set of adjacent slides by incubation in the presence of 10 

µM 5-HT. The washing of labelled sections was carried out as follows: two 5 min 

washes in ice-cold incubation buffer and a brief dipping in ice-cold water to remove 

salts. Finally the sections were dried under a stream of cold air. Autoradiograms were 

generated by apposing the labelled tissues to BioMax MR Films (Eastman Kodak 

Company, Rochester, New York 14650) during 3 weeks. 
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VI.2.3.2 Serotonergic 5-HT2A receptor 

After 1 min of preincubation in a buffer (50 mM Tris-HCl pH 7.4, 4 mM CaCl2, 0.1% 

ascorbic acid, 0.1 % BSA and 10 nM mesulergine) at room temperature, the sections 

were incubated at room temperature for 90 min in the same medium supplemented with 

0.2 nM [125I]-(±)DOI ((±)-1-(2,5,-dimethoxy-4-[125I]iodophenyl)-2-aminopropane; 2200 

Ci/mmol; Perkin-Elmer, NEN). Non-specific binding was determined in a set of 

adjacent slides by incubation in the presence of 10 µM 5-HT. The labelled sections were 

washed as follows: two 10 min washes in the former buffer (without ligand) was 

followed by a brief dipping in ice-cold distilled water to remove salts. The sections were 

then dried under a stream of cold air. The autoradiograms were generated by apposing 

the [125I]-(±)DOI labelled tissues at 4°C to BioMax MR Films (Eastman Kodak 

Company, Rochester, New York 14650) during 2 weeks. 

 

VI.2.3.3 Nicotinic acetylcholine receptor alpha-7 

Receptor autoradiography was performed according to the procedure of Verbois et al 

(2000). After 30 min of preincubation at room temperature in KRH buffer: Krebs-

Ringer HEPES buffer containing 20 mM HEPES (2-[4-(2-Hydroxyethyl)-1-piperazinyl] 

ethanesulfonic acid) pH 7.4, 118 mM NaCl, 4.8 mM KCl, 2.5 mM CaCl2, 1.2 mM 

MgSO4 and 10 mM NaOH, the sections were incubated for 2 hours at room temperature 

in KRH buffer, supplemented with 0.05 mg/ml BSA (bovine serum albumin) and 2.5 

nM [125I]α-Bungarotoxin (136 Ci/mmol, Perkin Elmer). Non-specific binding was 

determined in a set of adjacent slides by incubation in the presence of 10 mM (-)-

Nicotine. The washing of labelled sections was carried out as follows: three 20 min 

washes in the ice-cold KRH buffer (without ligand), 20 sec in ice-cold 10 times diluted 

KRH buffer and a brief dipping in ice-cold distilled water to remove salts. Finally the 

sections were dried under a stream of cold air. Autoradiograms were generated by 

apposing the labelled tissues to BioMax MR Films (Eastman Kodak Company, 

Rochester, New York 14650) at 4oC for 1 week. 

 

VI.2.3.4 Glutamatergic NMDA receptor 

Receptor autoradiography was performed according to the procedure of Giraldez & 

Girardi (1998): after 1 hour of preincubation at 4oC in buffer containing 50 mM Tris-
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HCl pH 7.5, the sections were incubated for 45 min at room temperature in 50 mM Tris-

HCl pH 7.5, 10 µM glutamate, 10 µM glycine and 1 mM spermidine, supplemented 

with 10 nM [3H]-MK801 (17.1 Ci/mmol, Perkin Elmer). Non-specific binding was 

determined in a set of adjacent slides by incubation in the presence of 0.1 mM MK801. 

The washing of labelled sections was carried out as follows : three 1 min washes in the 

preincubation buffer (without ligand) and two brief dippings in ice-cold distilled water 

to remove salts. Finally the sections were dried under a stream of cold air. 

Autoradiograms were generated by apposing the labelled tissues to BioMax MR Films 

(Eastman Kodak Company, Rochester, New York 14650) at 4oC for 5 weeks.  

 

VI.2.3.5 Dopaminergic D1 receptor 

Receptor autoradiography was performed according to the procedure of Lillrank et al 

(1999). After 20 min of preincubation at room temperature in buffer containing 50 mM 

Tris-HCl pH 7.4, the sections were incubated for 90 min at room temperature in 50 mM 

Tris-HCl pH 7.4, 120 mM NaCl, 5 mM KCl, 2 mM CaCl2, 1 mM MgCl2 and 1 µM 

mianserin, supplemented with 5 nM [3H]-SCH23390 (75.5 Ci/mmol, NEN). Non-

specific binding was determined in a set of adjacent slides by incubation in the presence 

of 10 µM dopamine. The washing of labelled sections was carried out as follows: a brief 

dipping in ice-cold distilled water followed by two 10 min washes in the ice-cold former 

buffer (without ligand) and a brief dipping in ice-cold distilled water to remove salts. 

Finally the sections were dried under a stream of cold air. Autoradiograms were 

generated by apposing the labelled tissues to BioMax MR Films (Eastman Kodak 

Company, Rochester, New York 14650) at 4oC for 2 weeks.  

 

VI.2.3.6 Dopaminergic D2 receptor 

Receptor autoradiography was performed according to the procedure of Coronas et al 

(1997). After 15 min of preincubation at room temperature in buffer containing 50 mM 

Tris-HCl pH 7.4, 120 mM NaCl, 5 mM KCl, 1 mM CaCl2, and 1 mM MgCl2 the 

sections were incubated for 30 min at room temperature in the same buffer 

supplemented with 0.1 nM [125I]-Iodosulpride (2000 Ci/mmol, Amersham). Non-

specific binding was determined in a set of adjacent slides by incubation in the presence 

of 1 µM spiperone. The washing of labelled sections was carried out as follows: a brief 

dipping in ice-cold distilled water followed by two 2 min washes in the ice-cold former 
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buffer (without ligand) and a brief dipping in ice-cold distilled water to remove salts. 

Finally the sections were dried under a stream of cold air. Autoradiograms were 

generated by apposing the labelled tissues to BioMax MR Films (Eastman Kodak 

Company, Rochester, New York 14650) at 4oC for 2 days. 

 

VI.2.4 Histology 

Twenty five-micron slices were taken through the entire habenula, mounted on slides 

and stained with Toluidine blue. Lesions of the habenula were considered acceptable 

when a large proportion of the habenula was destroyed and surrounding regions (i.e. 

dorsal hippocampus and paraventricular, dorsomedial, lateral and parafascicular 

thalamic nuclei) were spared. 

 

VI.2.5 Data analysis 

Data from binding were analyzed by optic densitometry of BioMax MR Films using a 

computerized image analysis system (MCID, Imaging Research, St Catherines, Ontario, 

Canada). For a given labelled region, the optic density (O.D.) corresponding to the total 

binding and non specific binding was measured. For each brain region, two sections 

measuring total binding and two sections measuring nonspecific binding were analyzed 

for each animal; means of the values from the two “total binding” sections were used 

for total binding for that animal and similarly for nonspecific binding. Specific binding 

was calculated by subtracting the value for nonspecific binding for each animal from the 

value for total binding for that animal. Both right and left hemispheres were analyzed 

and the value used for that brain region was the mean of values for the two hemispheres. 

 

The statistical significance of differences between treatment groups at the two different 

time-points were analyzed by analysis of variance (ANOVA), using the SYSTAT 

software package (Version 10.2, SPSS Inc., Chicago, IL). 
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VI.3 Results 

The statistical analysis was performed with 3 sham-operated and 4 lesioned animals. As 

some slides were damaged by the optic densitometry film technique, there have been 

animals that lacked some regions for some receptors. In case of too few animals for one 

of the two groups, the regions were not analyzed in each groups. 

 

VI.3.1 Serotonergic 5-HT1A receptor 

The results are presented in Fig 6.1. 

 

One week. One-way ANOVA showed a significant effect of the lesion in the CA3 field 

of the hippocampus, the receptor binding being lower in the lesioned animals (F1,5 = 

7.05, p < 0.05). One-way ANOVA also showed a tendency for the lesioned animal to 

have a decreased binding in the CA1-2 field of the hippocampus (F1,5 = 2.97, p > 0.1), 

and in the amygdala (F1,5 = 4.95, p > 0.05), and a tendency for an increased binding in 

the dorsal raphé nucleus (F1,5 = 2.75, p > 0.1). On the other hand, one-way ANOVA 

showed no effect of lesion in any of the other regions studied. 

 

Twelve weeks. The results are presented in Fig 6.2. One-way ANOVA showed no 

significant effect of the lesion for any of the regions studied. 
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Fig 6.1. Specific binding on the serotonergic 5-HT1A receptors 

12 weeks post-surgery
  Pf     AO   LS    MS   DG  CA1-2 CA3 Amy  DRn  Ent    Rs 

0

50

150

100

200

250

 

Sp
ec

ifi
c 

[3 H
]-8

-O
H

-D
P

AT
 b

in
di

ng
fm

ol
/m

g 
tis

su
e

 Sham
 Lesioned

50

100

150

200

Pf       AO    LS    MS   DG CA1-2 CA3 Amy DRn   Ent   Rs 
0

*

250

1 week post-surgery 12 weeks post-surgery
  Pf     AO   LS    MS   DG  CA1-2 CA3 Amy  DRn  Ent    Rs 

0

50

150

100

200

250

 

Sp
ec

ifi
c 

[3 H
]-8

-O
H

-D
P

AT
 b

in
di

ng
fm

ol
/m

g 
tis

su
e

 Sham
 Lesioned

50

100

150

200

Pf       AO    LS    MS   DG CA1-2 CA3 Amy DRn   Ent   Rs 
0

*

250

1 week post-surgery

 
Results (mean ± SEM; fmol/mg tissue) are shown for the sham and the lesioned groups. * p < 0.05. 

Abbreviations: Pf, prefrontal cortex; AO, anterior olfactory nucleus; LS, lateral septum; MS, medial 

septum; DG, dentate gyrus; CA1-2, CA1-2 fields of the hippocampus; CA3, CA3 field of the hippocampus; 

Amy, amygdala; DRn, dorsal raphé nucleus; Ent, entorhinal cortex; Rs, retrosplenial cortex. 

 

VI.3.2 Serotonergic 5-HT2A receptor 

The results are presented in Fig 6.2, and in Fig 6.3 are shown examples of 

autoradiograms at the level of the frontal cortex one week post-surgery. 

 

One week post-surgery. One-way ANOVA revealed a marked effect of the lesion, as 

lesioned animals showed increased specific binding in prefrontal cortex (F1,4 = 24.73, p 

< 0.05), anterior olfactory nucleus (F1,4 = 12.50, p < 0.05), neostriatum (caudate-

putamen) (F1,4 = 16.74, p < 0.05), ventral striatum (accumbens nucleus) (F1,4 = 14.22, p 

< 0.05), piriform cortex (F1,4 = 15.46, p < 0.05), claustrum (F1,4 = 49.7, p < 0.01), 

cingulate cortex (F1,4 = 12.06, p < 0.05), interpeduncular nucleus (F1,4 = 17.94, p < 

0.05) and raphé nuclei (F1,4 = 12.46, p < 0.05). On the other hand, one-way ANOVA 

showed no effect of lesion in olfactory tubercle (F1,4 = 0.42, p > 0.1), septum (F1,4 = 

2.27, p > 0.1), posterior hypothalamus (F1,4 = 1.43, p > 0.1) and dentate gyrus (F1,4 = 

1.63, p > 0.1). 

 

Twelve weeks post-surgery. One-way ANOVA showed that the significantly increased 

binding in lesioned animals remained in only one region, i.e. cingulate cortex (F1,3 = 
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21.49, p < 0.05). One-way ANOVA revealed no significant difference between the two 

groups in any of the other regions studied. 

 

Fig 6.2. Specific binding on the serotonergic 5-HT2A receptors 
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Results (mean ± SEM; fmol/mg tissue) are shown for the sham and the lesioned groups. Abbreviations: 

Pf, prefrontal cortex; AO, anterior olfactory nucleus; CPu, caudate-Putamen, Acb, accumbens nucleus; 

Tu, olfactory tubercle; Pir, pyriform cortex; Cl, claustrum; Cg, cingulate cortex; Sp, septum; PH, 

posterior hypothalamus; DG, dentate gyrus; IP, interpeduncular nucleus; Rn, raphé nuclei. 
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Fig 6.3 Autoradiograms of the serotonergic 5-HT2A receptors one week post-surgery 

 

 
 

Autoradiograms are shown of a lesioned rat (top left) and a sham rat (top right). At the bottom is 

represented the non-specific binding at the same level. 

 

Autoradiogrammes à partird’un rat lesé (partie supérieure gauche) et d’un rat sham (partie supérieure 

droite). La partie inférieur représente le marquage non-spécifique au même niveau. 
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VI.3.3 Nicotinic acetylcholine receptor alpha-7 

The results are presented in Fig 6.4. 

 

One week post-surgery. One-way ANOVA showed no significant effect of the lesion in 

any of the regions studied. 

 

Twelve weeks post-surgery. One-way ANOVA revealed no significant effect of the 

lesion in any of the regions considered at both tome-points. 

 

Fig 6.4. Specific binding on the cholinergic nicotinic alpha-7 receptors 
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Results (mean ± SEM; fmol/mg tissue) are shown for the sham and the lesioned groups. Abbreviations: 

Pf, prefrontal cortex; AO, anterior olfactory nucleus; VP, ventral pallidum; PH, posterior hypothalamus; 

SuM, supramammillary nucleus; CA13, CA1-3 fields of the hippocampus; DG, dentate gyrus; SN, 

substantia nigra; Amy, amygdala; DRn, dorsal raphé nucleus; Ent, entorhinal cortex, IP, interpeduncular 

nucleus  
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VI.3.4 Glutamatergic NMDA receptor 

The results are presented in Fig 6.5. 

 

One-way ANOVA showed no significant effect of the lesion in any of the regions 

studied at both time points, one week and twelve weeks post-surgery. 

 

Fig 6.5. Specific binding on the glutamatergic NMDA receptors 
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Results (mean ± SEM; pmol/mg tissue) are shown for the sham and the lesioned groups. Abbreviations: 

Pf, prefrontal cortex; CA13, CA1-3 fields of the hippocampus; DG, dentate gyrus; Amy, amygdala; Ent, 

entorhinal cortex; AO, anterior olfactory nucleus. 
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VI.3.5 Dopaminergic D1 receptor 

One week. The results are presented in Fig 6.6. One-way ANOVA revealed a 

significant effect of the lesion in the substantia nigra, where the lesioned animals 

showed an increased binding (F1,5 = 10.99, p < 0.05). On the other hand, no significant 

effect of the lesion was detected in any of the other regions studied. 

 

Twelve weeks. One-way ANOVA showed no effect of the lesion in any of the regions 

studied. 

 

Fig 6.6. Specific binding on the dopaminergic D1 receptors 
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Results (mean ± SEM; pmol/mg tissue) are shown for the sham and the lesioned groups. Abbreviations: 

Pf, prefrontal cortex; AO, anterior olfactory nucleus; Cg, cingulate cortex; CPu, caudate-Putamen, AcbC, 

core region of accumbens nucleus; AcbS, shell region of accumbens nucleus; SN, substantia nigra; Med 

Ent, medial part of the entorhinal cortex. 
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VI.3.6 Dopaminergic D2 receptor 

The results are presented in Fig 6.7. 

 

One-way ANOVA revealed no significant effect of the lesion in any of the regions 

studied at both time-points, one week and twelve weeks post-surgery. 

 

Fig 6.7. Specific binding on dopaminergic D2 receptors one week after the lesion 
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Results (mean ± SEM; pmol/mg tissue) are shown for the sham and the lesioned groups. Abbreviations: 

Pf, prefrontal cortex; CPu, caudate-Putamen, AcbC, core region of accumbens nucleus; AcbS, shell 

region of accumbens nucleus; VTA, ventral tegmental area; SNc, substantia nigra pars compacta; SC, 

superior colliculus; PAG, periaqueductal gray; DRn, dorsal raphé nucleus; mp, mammillary peduncle. 
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VI.4 Discussion 

The aim of the present study was to investigate the effects of bilateral lesion of the 

habenula on receptors that have been postulated to play a role in the pathophysiology of 

schizophrenia, namely the dopaminergic D1 and D2, the serotonergic 5-HT1A and 5-

HT2A, the glutamatergic NMDA and the cholinergic nicotinic alpha-7 receptors. To this 

aim, we have used the autoradiography technique in which labeled ligands that bind 

specifically to a receptor are incubated with brain slices to allow the detection and 

subsequent quantification of receptor binding. Since we have previously shown that 

lesion of the habenula induced distinct immediate and delayed deficits in a cognitive 

task of attention (see Chapter IV) which resembled the cognitive deficits encountered 

in schizophrenic patients, we investigated the effects of the lesion at two different time 

points, a short-term evaluation one week after the lesion, and a second long-term 

evaluation twelve weeks after the lesion. Moreover, as during any behavioural testing 

animals are strongly stimulated, we grouped our rats by cages of four from the time they 

were lesioned until the autoradiography was performed, in order they were in a 

stimulating environment which could partly mirror behavioural testing conditions that 

may affect receptor populations in the brain. 

 

The results obtained were the following. Although there was no significant differences 

between the two groups at both time points for the dopaminergic, glutamatergic, 

cholinergic and serotonergic 5-HT1A receptors, we observed a marked effect of the 

lesion on the serotonergic 5-HT2A receptor at the first time point, i.e. one week after the 

lesion was performed. Indeed, the habenula lesion induced a marked increase of the 

concentration of the 5-HT2A receptor in frontal cortical areas, namely prefrontal cortex, 

pyriform cortex, cingulate cortex and claustrum, but also in sub-cortical areas such as 

the striatum (caudate-putamen and accumbens nucleus), the interpeduncular nucleus and 

the raphé nucleus. On the other hand, at the second time point there were no significant 

differences with the exception of the cingulate cortex where the lesioned animals still 

showed an increased binding on 5-HT2A receptors. At this time there were still marked 

tendencies for an increased binding in lesioned animals compared to sham, in frontal 

cortex and claustrum. 
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The reasons we particularly investigated these receptors reside in the fact that many 

researchers have postulated their implication in the pathophysiology of schizophrenia 

(see Chapter I for more details). In summary, for example, serotonin receptors have 

been first postulated to be involved in the pathology of schizophrenia when it was 

discovered that fact that hallucinogenic substances, such as lysergic acid diethylamide 

(LSD) or mescaline, bind to 5-HT2A and 5-HT2C receptors. It is now known that they are 

agonists at these receptors. Moreover, clozapine, which belongs to the atypical class of 

antipsychotics, is an antagonist of the 5-HT2A receptor (see Chapter I). Dopamine was 

also hypothesized to be involved in schizophrenia according to similar reasons, as 

amphetamine, which provokes the release of dopamine, or cocaine, which inhibits its 

reuptake, provoke a schizophrenia-like psychosis including hallucinations, when 

chronically used. Moreover, the typical neuroleptics haloperidol or chlorpromazine are 

potent antagonists of dopaminergic D2 receptor. Also, glutamate is increasingly 

investigated in schizophrenia because NMDA receptor antagonists, such as PCP or 

ketamine, produce paranoia and hallucinations. On the other hand, in the case of 

acetylcholine, this may be linked to cognitive deficits of schizophrenia, since in animal 

models cognitive deficits are provoked by antagonizing muscarinic or nicotinic 

cholinergic transmission. Also, the fact that the majority of schizophrenics are heavy 

smokers strengthens the idea of some cholinergic alterations, nicotine being thought to 

relieve some of the symptoms. Moreover, rivastigmine, a reversible acetylcholinesterase 

inhibitor, has been shown to improve quality of life of schizophrenics, through an action 

on cognitive but also negative symptoms (Lenzi et al, 2003), and has also been shown 

to improve cognitive deficits of elderly patients suffering of comorbid schizophrenia 

and dementia (Mendelsohn et al, 2004). 

 

However, although animal experimentation gave interesting results in trying to replicate 

schizophrenia symptomatology by acting on the above-mentioned receptors, human 

studies, either post-mortem histological studies, imaging investigations or genotyping, 

have given mostly discrepant findings and did not allow, to date, a clear demonstration 

of alteration of any of those receptors in schizophrenics. While imaging studies revealed 

striatal alteration of dopaminergic transmission, after amphetamine challenge but not 

under baseline conditions, in schizophrenics or patients with schizotypal personality 

disorder (Abi-Dargham et al, 1998, 2004), attempts to demonstrate changes in 

dopamine receptors in schizophrenics have given discrepant findings of an enhanced, or 
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unchanged, number of D2 receptors in the striatum of schizophrenics. For example, 

studies often show that there is no change in the amount of D2 receptors in the brains of 

schizophrenics as revealed by PET scanning experiments (e.g. Zakzanis & Hansen, 

1998), while Abi-Dargham et al (2002) found an increased D1 receptor concentration in 

the dorsolateral prefrontal cortex in never medicated schizophrenics. Concerning 

glutamate receptors, subunits of kainate receptors have been found to be down regulated 

in the hippocampus in schizophrenics (Benes et al, 2001), while Gao et al (2000) found 

decreased concentration of the NR1 and increased concentration of the NR2B subunits of 

NMDA receptor, also in the hippocampus. Concerning serotonin receptors, a review by 

Abi-Dargham et al (1996) revealed that none of the studies gave consistent results. 

Serretti et al (2000) did not find any changes in the regional concentration of 5-HT2A 

receptors in schizophrenics, and Okubo et al (1997), in a PET study, did not find any 

difference in the binding for 5-HT2 receptors in any brain regions in schizophrenics. On 

the other hand, studies of cholinergic receptors in schizophrenia gave the most 

consistent findings, as decreased binding for the alpha-7 receptor has been found in 

schizophrenics, as well as in frontal cortex and reticular nucleus of the thalamus 

(Freedman et al, 2000). 

 

It has been shown in the rat and in the cat that habenula lesion induced an increased 

release of dopamine in frontal cortex, accumbens nucleus and neo-striatum, but there 

seems to be a difference in the time-course of the effects regarding the different regions. 

Indeed, while Nishikawa et al (1986) found an enhanced release of dopamine in frontal 

cortex, nucleus accumbens and neostriatum 6 hours after injection of tetrodotoxin in the 

habenula, Lisopravski et al (1980) found an enhanced release of dopamine only in 

frontal cortex 6 days after lesion of the habenula. It is then somewhat surprising that no 

changes occurred in dopaminergic receptors after habenula lesion, because even if 

effects in striatum seem to be short-lasting, at least effects in frontal cortex are much 

longer. An interesting aspect of the effects of habenular manipulation on dopamine 

activity which may be relevant, is the fact that lateral habenula stimulation in the rat 

activates some neurons of the ventral tegmental area while inhibiting others (Christoph 

et al, 1986). 

 

Concerning serotonin, it seems that the influences of habenula manipulation are as 

complicated as those exerted upon the dopamine systems. Indeed, Speciale et al (1980) 
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observed increased serotonergic metabolism in dorsal but not median raphé nucleus 16 

hours as well as 1 week after the lesion of the habenula. Soubrié et al (1981) found 

increased serotonin release in substantia nigra and striatum after infusion of KCl in the 

lateral habenula. According to these authors, these results are consistent with the view 

that lateral habenula normally inhibits raphé cells, and they consider that the infusion of 

KCl produced a blockade of lateral habenula neurons through an excessive depolarizing 

action. Nishikawa & Scatton (1985) found decreased serotonin release in striatum, 

substantia nigra, hypothalamus and hippocampus after electrolytic habenula lesion in 

the rat. In the hippocampus, Zagami et al (1995a,b) found in the rat that when a low-

frequency current (1-3 Hz) was applied in lateral habenula, the pyramidal cells 

responded in different ways, as some were activated while others were inhibited. Thus it 

seems that habenular influence upon serotonergic neurons of the raphé is exerted in both 

ways. According to these authors, and considering that the serotonergic pathway from 

the raphé to the hippocampus is inhibitory, low frequency stimulation of the habenula, 

by releasing only a small amount of neurotransmitter, might excite only the small 

GABA interneurons of the raphé and thus cause an inhibition of the serotonergic 

neurons resulting in excitation of hippocampal pyramidal cells by subsequent 

disinhibition; on the other hand, high frequency stimulation, releasing more 

neurotransmitters, might directly activate the serotonergic raphé neurons and thus 

induce inhibition of hippocampal pyramidal cells. Concerning the striatum and the 

substantia nigra, when lateral habenula was stimulated, serotonin release was 

significantly lowered in both structures, whereas when picrotoxin was applied in the 

lateral habenula, serotonin was unchanged in the substantia nigra with picrotoxin 

concomitantly applied in the dorsal raphé while serotonin release was still decreased in 

the striatum. It seems thus that regulation of serotonin release in both structures by the 

lateral habenula is exerted in different manners (Nishikawa et al, 1986). 

 

Indeed, even if, according to current views, an increased receptor binding is a 

compensatory response to a decreased neurotransmission, the discrepant findings 

obtained by the different studies, as well as the bimodal action of habenula upon 

serotonin raphé cells, make our results very difficult to explain. Moreover, regulation of 

5-HT2A receptors is paradoxical since down-regulation of 5-HT2A receptors with chronic 

treatment of either agonists or antagonists is observed (Gray & Roth, 2001). As the 

influence of habenula upon serotonin release in frontal cortical areas has not been 
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studied to date, we can hypothesize that the short-term effect of habenula lesion, i.e. 

increased number of 5-HT2A receptors at frontal cortical level, is a consequence of a 

decreased serotonergic flow from the raphé, in accordance with the results obtained by 

Nishikawa & Scatton (1985). The discrepancies of the different findings concerning the 

habenulo-raphé pathway could be explained by several factors. The size of the lesion 

may differ from one study to the other, and it is also important to consider both nuclei 

that can be more or less affected. The impact of the lesion on the substance 

P/acetylcholine ratio could be crucial, as the interpeduncular nucleus, which receives its 

major influence from the medial habenula, sends one of its most important efferent 

pathways to the raphé nuclei (Groenewegen et al, 1986; Montone et al, 1988). 

Moreover, it has been shown that the projection from the interpeduncular nucleus to the 

median raphé nucleus is excitatory (Maciewicz et al, 1981). We should then consider 

the effects of habenula lesion on raphé activity not only through the disruption of direct 

connections from the lateral habenula, but also through the disruption of the habenulo-

interpeduncular pathway that originates in the medial habenula. Another explanation for 

the discrepant findings would be that, when stimulation studies were performed (Ferraro 

et al, 1997; Kalen et al, 1989; Sabatino et al, 1991; Wang & Aghajanian, 1979), the 

electrodes were implanted in the lateral habenula without any regard to their specific 

localization, while we know now that it is composed of 10 subnuclei (Andres et al, 

1999), which may have different mode of action upon their target areas. 

 

In human post-mortem studies the results are the opposite of what we have obtained. 

Indeed, Burnet et al (1996b) found, during a post-mortem study, decreased 5-HT2A 

binding in prefrontal areas in schizophrenics. The fact that chronic treatment with 

clozapine in the rat leads to a decreased binding as well as gene expression (mRNA) of 

the 5-HT2A receptor, which is paradoxical given post-mortem results, while haloperidol 

has no effect, suggests that human data are difficult to interpret, and should take into 

account the effects of medication (Burnet et al, 1996a). Indeed, Gurevitch & Joyce 

(1997) found decreased binding on 5-HT2A receptors in frontal cortical areas in 

schizophrenics that were medicated at the time of death, compared to healthy subjects, 

whereas there was no significant difference with healthy subjects when the 

schizophrenics were off drug at the time of death. According to Burnet et al (1996b), 5-

HT2A decreased binding seen in schizophrenic patients may reveal an attempted 
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compensatory response to primary pathophysiological events, i.e. enhanced serotonin 

transmission, furthered by clozapine. 

 

From a behavioural point of view, if the increased binding on 5-HT2A receptors reflects 

a decreased serotonin release consecutive to lesion of the habenula, this is consistent 

with the increase of premature responding, induced by habenula lesion, that we 

observed during the 5-choice serial reaction time task (see Chapter IV). In fact, while 

Harrison et al (1997) obtained an increased number of premature responses in rats with 

global serotonin depletion, Winstanley et al (2004) decreased premature responding 

with a 5-HT2A antagonist treatment. According to the latter results, and considering that 

the lesion seems to decrease serotonin neurotransmission, the subsequent increased 

impulsivity could therefore be partly due to a loss of a serotonergic mechanism that 

reduces impulsivity. Interestingly, one possibility is an action through 5-HT2C receptors 

(Winstanley et al, 2004), but there might be others. 

 

The fact that 12 weeks after the lesion levels of receptor were no longer different 

between sham and lesioned animals could explain that at this stage, the long-term 

effects of the lesion on attention are no more due to effects at the level of monoamine 

receptors, but shifted to another mechanism that could be changes in synaptic 

connectivity, inducing another type of deficit. This could explain why, during the 

attention test, the long term effects of the lesion were to decrease choice accuracy, 

which was not present shortly after the lesion, while increased premature responding 

was present immediately after the lesion and then progressively normalized. 

 

Finally, concerning our MRI data (see Chapter V), i.e. a decreased excitatory response 

to amphetamine at frontal cortical level, it is difficult to conclude whether changes in 

serotonin receptors and neurotransmission are involved in this, given that there have 

been paucity of studies investigating the effects of selective serotonin ligands on frontal 

cortical blood flow. However, opposite effects of serotonergic agonist compounds on 

impulsivity in the attention test when applied to frontal cortex suggest that there are 

multiple serotonin mechanisms in this region. One can site a study by Underwood et al 

(1992) who investigated cortical blood flow in rats following dorsal raphé stimulation. 

They found that brief stimulation of the dorsal raphé elicited an increase of the blood 

flow at cortical level. Moreover, stimulation of the rostral dorsal raphé elicited a 
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decreased blood flow, while sustained intermittent stimulation of the caudal dorsal 

raphé elicited an increased blood flow at cortical level. 
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"La vie de chaque homme est un chemin vers soi-même, l’essai d’un 
chemin, l’esquisse d’un sentier. Personne n’est jamais parvenu à être 
entièrement lui-même; chacun, cependant, tend à le devenir, l’un dans 
l’obscurité, l’autre dans la lumière, chacun comme il le peut. Chacun 
porte en soi, jusqu’à sa fin, les restes de sa naissance, les dépouilles, 
les membranes d’un monde primitif. Beaucoup ne deviennent jamais 
des hommes, mais demeurent grenouilles, lezards ou fourmis. Tel 
n’est humain que dans sa partie supérieur, et poisson en bas. Mais 
chacun de nous est un essai de la nature, dont le but est l‘homme. 
Tous nous sortons du même sein, mais chacun de nous tend à émerger 
des ténèbres et aspire au but qui lui est propre. Nous pouvons nous 
comprendre les uns les autres, mais personne n’est expliqué que par 
soi-même." 
 
 
 

Hemann Hess – "Demian" 
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Chapter VII – General discussion 
 

The role in behaviour of the habenula, an epithalamic structure, has been sparsely 

investigated. Influences of the habenula on electrophysiological and neurochemical 

aspects of brain functioning are now quite well known, but very few studies have been 

performed in animals to investigate the behavioural consequences of its dysfunction. 

While the role of the habenula has been clearly established concerning the reaction to 

stressful events, pain, mating and maternal behaviour, very little was previously known 

about its role in higher brain functions, such as cognition. For over a decade, since the 

findings by Sandyk (1992) and Caputo et al (1998) of a higher degree of habenula 

calcification in schizophrenics compared to healthy subjects, the habenula has been 

postulated to be involved in the pathophysiology of schizophrenia (Ellison, 1994; Kelly, 

1998; Sandyk, 1991). Indeed, dysfunction of the habenula in schizophrenics has been 

postulated to lead to the memorization of “dream-events” which would lead to the 

introduction of wrong connections at cortical level and the mixing of those wrong 

connections, related to the dreams, with the normal memory store. This would be the 

basis of the appearance of primary delusions in schizophrenics. Moreover, this 

phenomenon is further hypothesized to worsen with time, by accumulation of those 

connections (Kelly, 1998). To date, no studies in rodents had been performed in order to 

investigate the consequences of a defective habenula on behaviors linked to this 

schizophrenia. Traditionally in science hypotheses are challenged by testing whether 

predictions of the hypothesis are supported by experiment. If a prediction is not 

confirmed by experiment then it is wrong and the hypothesis must be discarded or 

modified. If the prediction of the hypothesis is confirmed then it becomes more likely 

that the hypothesis is correct. Many predictions can be made from the above-mentioned 

hypothesis. By analogy with the progress that was made in treating Parkinson’s disease 

once it became clear that this involved a deficit of dopaminergic neurons, or with the 

progress in Alzheimer’s disease after a dysfunction of cholinergic neurons was 

demonstrated, we felt that determining the neural system involved in schizophrenia 

would be very valuable for future research. Therefore the prediction was made that, 

according to the hypothesis, lesions of the epithalamus, i.e. habenula and pineal body, 

should result in schizophrenia-like symptoms in experimental animals. The present 

study was therefore devoted to exploring the behavioural consequences of an 
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electrolytic lesion of the habenula in rats, and to further investigating its possible role in 

the appearance of some of the symptoms of this disorder. 

 

To study the effects of habenula lesions on behaviour linked to schizophrenia, we have 

used tools allowing parallels between animal behaviour and human pathology, as 

several tests utilized in man to assess the severity of schizophrenia symptoms have been 

adapted to animal research. The prepulse inhibition of the startle reflex (PPI), is a test 

used in man to explore sensory gating deficits. The social interaction test, derived from 

the social memory test of Thor & Holloway (1982), is a rather simple way to evaluate 

the degree of interactions of a rat with a conspecific, which can be related to a 

parameter of socialization and compared to the often observed lack of communication 

and social involvement in schizophrenic patients. To assess cognitive functioning we 

have analyzed spatial reference memory ability, which is postulated to be a good model 

of human declarative memory (O’Keefe & Nadel, 1978), with the Morris water-maze, 

and we have explored attention abilities by means of the 5-choice serial reaction time 

task, which is mirrored by the continuous performance test used in man, and allows the 

separate analysis of choice accuracy and impulsive behaviour (Robbins, 2002). 

 

The goal of the first study was to characterize habenula lesion effects using tests related 

to schizophrenia symptoms: prepulse inhibition, social interaction and Morris water-

maze. While prepulse inhibition and social interaction time were unaffected by the 

lesion, the Morris water-maze experiment revealed marked deficits in the lesioned 

group. Indeed, the habenula-lesioned animals showed greater latency, as well as greater 

distance swum, before finding the hidden platform. Moreover, as electrolytic lesion of 

the habenula can damage a small portion of the dorsal hippocampus, which has been 

shown to be involved in spatial reference memory a control group with small dorsal 

hippocampal lesion, identical to that resulting from habenula lesion, was included in a 

second series of experiments using the same tests. Rats with restricted dorsal 

hippocampal lesion showed no impairment during the Morris water-maze task, leading 

us to conclude that memory deficits were only due to habenula lesion. Finally, in visible 

platform conditions the habenula lesioned rats performed at the same level as sham-

operated controls, which confirms the fact that the deficits are due to memory alteration. 

The conclusion of the first study was that the habenula appeared to be involved in 
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memory impairments in schizophrenia. Under the conditions used no role in social 

behaviour or prepulse inhibition was demonstrated. 

 

As human imaging studies have shown concomitant alterations of habenular and pineal 

structures, the two components of the epithalamus, it has been postulated that the 

epithalamus as a whole could be involved in the manifestation of schizophrenia 

symptomatology (Sandyk, 1992). Therefore, the goal of the second study was first to 

determine whether pineal damage could lead to the same deficits encountered with 

habenula lesion, and second to assess the consequences of a complete epithalamic lesion 

(electrolytic habenula lesion + pinealectomy), in order to assess if combined lesions 

would worsen the deficits encountered with habenula lesion. To this purpose we 

performed the same experiments as during our first study, except that the lesion was 

either a pinealectomy or a habenula lesion plus pinealectomy. The results were that 

pinealectomy alone did not produce deficits in any of the tests, while complete 

epithalamic lesion led to the same pattern of deficits as habenula lesion alone, i.e. 

spared prepulse inhibition and social interaction, and marked visual reference memory 

impairments. The conclusion of the second study was that, while the epithalamus as a 

whole may show pathological changes in schizophrenia, habenula dysfunction alone 

accounts for the appearance of cognitive deficits. Therefore, in the subsequent studies, 

we focussed on the effects of habenula lesion alone. 

 

The third study was designed to test the hypothesis that habenula lesion would produce 

attention deficits, as postulated by Thornton & Evans (1982), using the 5-choice serial 

reaction time task. We obtained two kinds of habenula lesion-induced impairments, 

distinct by their nature and also by their time-course. One week after receiving a 

habenula lesion, the rats showed a marked increase of the number of premature 

responses, which is an index of impulsivity, while response accuracy, a different aspect 

of attentional performances, was unaffected. Subsequently, over two months of testing, 

lesioned animals showed a progressive decrease of the number of premature responses, 

which tended to normalize, while at the same time choice accuracy progressively 

decreased. Moreover, treatment with haloperidol, a dopamine antagonist, significantly 

reduced the number of premature responses, while it was ineffective concerning choice 

accuracy. If we refer to the diagram proposed by Robbins et al (1998) (Fig 7.1), we can 

notice that many areas involved in the arousal processes, i.e. frontal cortex, thalamus, 
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striatum, globus pallidus, raphé nuclei, tegmental ventral area, substantia nigra and 

locus coeruleus, share connections with the habenula. 

 

Fig 7.1: Neuronal substrates of arousal 

 
 

Abbreviations: PFC = prefrontal cortex; Se = sensory thalamus; Ns = nonspecific thalamic nuclei; Mo = 

motor thalamus; GP = globus pallidus; NBM = nucleus basalis magnocellularis; PPN = pedonculopontine 

nuclei; SN = substantia nigra, pars compacta; VTA = ventral tegmental area; ACh = acetylcholine; DA = 

dopamine; NA = noradrenaline; 5-HT = 5-hydroxytryptamine; LC = locus coeruleus. (From Robbins et 

al, 1998). 

 

In particular, the habenula is a regulator of the dopaminergic activity from the ventral 

tegmental ventral area to the frontal cortex and from the substantia nigra to the striatum, 

the serotonergic activity from the raphé nuclei to the striatum and the noradrenergic 

activity from the locus coeruleus to the striatum and the frontal cortex. Thus, these 

different results led us to conclude that if the elevated premature responding may at 

least partly due to increased dopamine activity (Robbins, 2002), the results obtained 

here probably reflecting an increased mesolimbic and/or mesostriatal dopamine 

transmission, which has been previously shown in habenula-lesioned animals 

(Lisoprawski et al, 1980; Nishikawa et al, 1986). Moreover, the autoradiographic study 

revealed that the lesion induced an enhancement of the number of serotonergic 5-HT2A 

receptors, which could probably be the reflection of a decreased serotonergic 

transmission. Thus, increased premature responding may also be produced by this 

decreased activity, as shown by Harrison et al (1997) in serotonin depleted animals. The 
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concomitant action of those two processes, increased dopamine activity and decreased 

serotonergic activity could explain the strength of this phenomenon and its duration, as 

premature responses are still high in lesioned animals when serotonin receptor levels are 

back to normal. On the other hand, as haloperidol had no effect on choice accuracy, the 

impairment of this latter parameter seems to be the consequence of dysfunction of 

mechanisms independent of direct alteration of monoamine transmission. Indeed, this 

progressive impairment of choice accuracy is, to our knowledge, the first example of a 

progressive cognitive deficit after a restricted brain lesion. While there is generally 

compensation for lesion effects, a cumulative mechanism such as the accumulation of 

delusional memories (Kelly, 1998) could account for such a progressive impairment. 

 

In order to investigate the possible changes of brain activity and neurotransmitter 

receptors that may be the consequence of habenula lesion throughout the brain, we 

performed two experiments. First we explored regional brain activation by means of 

functional MRI. Moreover, amphetamine was administered to the rats, both acutely and 

chronically, in order to determine if the lesion of the habenula would induce a particular 

sensitivity to alteration of the dopamine system, as is the case for schizophrenics. 

Second, we investigated possible changes in populations of receptors that belong to 

systems involving the habenula, and which have been postulated to have a role in the 

pathophysiology of schizophrenia, using the autoradiographic technique. These two 

experiments allow us to isolate a structure that may be involved in the behavioural 

deficits observed in our study, namely the frontal cortex. Indeed, amphetamine 

treatment induced particular changes in lesioned animals, i.e. a poorer response in 

frontal cortical regions, which could be a parallel to frontal hypofunctioning observed in 

schizophrenics during cognitive tasks requiring this area. Also the autoradiographic 

study revealed a short-term enhancement of the number of 5-HT2A receptors in the 

frontal cortex, that may reflect a decreased serotonergic transmission subsequent to 

habenula lesion. Whether these phenomena are the basis of the cognitive impairments 

observed during our study is very difficult to know. Interestingly, 5-7-

dihydroxytryptamine-induced lesion of the serotonin system has recently been shown to 

induce deficits in the Morris water-maze in a test were rats were pre-trained before the 

lesion and retested two days after the lesion during five consecutive days (Mogensen et 

al, 2003). 
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The conclusion that can be drawn from these experiments is, therefore, that the 

prediction of the hypothesis was partly confirmed. Lesions of the habenula caused 

schizophrenia-like changes in memory and attention, but did not cause changes in social 

interaction time or PPI. Thus, the hypothesis was not proven wrong, but was limited to 

the cognitive changes in schizophrenia. From the different results obtained, we can 

hypothesize that primary effects of the lesion could be due to alterations of ascending 

monoamine systems, and that long-term effects could occur through secondary 

processes that may take place in cortical areas. Moreover, the effects of the lesion seem 

to be “experience dependent” as we observed a progressive deterioration of the 

performances in the attention task. 

 

As we have seen above (see Chapter I), the habenula is the node of a reciprocal route 

of communication between limbic and extrapyramidal structures of the midbrain and the 

forebrain. Moreover, the habenula has been shown to take part in the regulation of the 

ascending monoaminergic pathways, comprising the dopaminergic, serotonergic and 

noradrenergic systems. Even if, as found by Mok & Mogenson (1974), stimulation of 

the habenula influences 15% of the neurons recorded in the upper brain stem (midbrain 

reticular formation, midbrain central gray area, ventral tegmental nucleus of Gudden, 

ventral tegmental area of Tsai, interpeduncular nucleus), while stimulation of the lateral 

hypothalamus influences 41% of the neurons recorded, thus demonstrating a weaker 

influence of the former, it is not to be neglected. Moreover, the habenula is composed of 

15 sub-nuclei (Andres et al, 1999), which renders the evaluation of its functions 

difficult, and suggests a tight compartmentalization of its functions. For example, 

Corodimas et al (1993) found disruption of mating behaviour in rats with an almost 

complete lesion of the lateral habenula (95-98 %), whereas in rats with an incomplete 

lesion (74 %) this behaviour was preserved. It would then be very interesting in future 

investigations to perform studies with restricted lesion of either the medial habenula, or 

the lateral habenula, in order to investigate which route is essential in specific functions 

of the habenula and which could be particularly relevant for the pathophysiology of 

schizophrenia. Thus, because of its action on monoaminergic systems, its link with 

structures involved in various illnesses, and its averred involvement in behaviours such 

as maternal and mating behaviour, sleep, reward and cognition, studying the habenula 

may help us better understand the genesis of psychiatric diseases, such as schizophrenia 

or mood disorders. Indeed, several lines of evidence strengthen this statement, and we 
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can envisage many ways, that need to be confirmed, by which the habenula could 

influence brain functioning. For example, as serotonin has recently been shown to be 

essential at the level of the prefrontal cortex for cognitive flexibility in monkeys (Clarke 

et al, 2004), it would be interesting to clearly establish the effect of habenular 

manipulation on serotonergic flow in this region. Through its indirect influence upon 

the activity of hippocampal pyramidal cells, the habenula could be implicated in the 

genesis of cellular plasticity by influencing the generation of long term potentiation 

(LTP) and long-term depression (LTD). We have seen during this study that habenula 

lesion does not modify sensory gating, nor social interaction. Maybe it would be 

relevant for the study of schizophrenia, to elaborate a model that would take into 

account several different aspects of such pathology. For example, coupling ventral 

hippocampal lesion (cf Lipska, 2000) and lesion of the habenula could make a stronger 

model for schizophrenia. As certain genetic risk factors for schizophrenia can also be 

expected to preferentially affect habenula function, recently discovered targets seem 

interesting to investigate as they have been shown to be strongly linked to 

schizophrenia. For example, in several populations, genetic polymorphisms of 

neuregulin 1 have been linked to schizophrenia (Stefansson et al, 2002, 2003; Williams 

et al, 2003, Yang et al, 2003; Corfas et al, 2004). Neuregulin plays an important role in 

growth and cell differentiation (Carraway & Burden, 1995; Burden & Yarden, 1997) 

and, interestingly, erbB4, a major receptor for neuregulin, has been shown to be highly 

expressed in the medial habenula, in addition to dopaminergic cell body areas, 

hippocampus and cortex (Steiner et al, 1999). Another genetic link to schizophrenia 

concerns the Ca2+-activated potassium channel, SK3. An association of longer CAG 

repeats in the gene for SK3 was found in Israeli Ashkenazi Jews (Dror et al, 1999). This 

has been further confirmed in some populations, but not others (see Miller et al, 2001 

for review). The localization of this channel is highest in medial habenula, as well as the 

ventral tegmental area, raphé nuclei and hippocampus (Stocker & Pedarzani, 2000). 

Finally, another gene that has been linked to schizophrenia (Millar et al, 2000; Ekelund 

et al, 2001) is DISC1 (disrupted in schizophrenia-1). The highest level of expression of 

this gene in the primate brain is the dentate gyrus, but one of the few brain regions 

showing moderately high expression is the interpeduncular nucleus (Austin et al, 2003), 

so that alteration of this gene can be expected to alter habenulo-interpeduncular 

function. We have seen that effects of habenula lesion may be different in their time-

course, and Murphy et al (1996) who showed different effects on anxiety if the lesion 
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was performed neonatally or in adult rats. It would then be interesting, in view of a 

neurodevelopmental model, to study the effects of neonatal lesion on the tests used 

during this study. It would be interesting to explore the changes that occur in habenula-

lesioned animals within the progression of a test, to determine if changes are not 

dependent of the task and its time-course. Also, as the receptor number is not the only 

parameter that varies when a neurotransmitter pathway is affected, studies of sensitivity 

of the receptors could be done, and secondary messengers could be targeted, GTP 

gamma-S for example, in order to have an idea of the consequences of the lesion at the 

level of the receptors functionality. Finally, it would be interesting to study the effects 

of typical and atypical neuroleptics in the Morris maze experiment, and, as serotonin 

may be involved in the deficit of attention, at least in the enhancement of premature 

responses, to study the effects of neuroleptics that target the serotonergic system, e.g. 

clozapine, in such a test. 
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- "Vous avez beau dire, y'a pas seul’ment que d’la pomme, y'a aut’chose. Ca s’rait pas des 
fois d’la betterave ? Hein ?"   

   
- "Si ! Y'en a aussi." 
 
 

                 
∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼ 
 

 

 
 

- "Non, mais t'a déjà vu ça ? En pleine paix. Y chante et puis crac, un bourre pif ! 
Mais il est complètement fou ce mec ! Mais moi, les dingues, j’les soigne. J'vais lui faire une 
ordonnance, et une sévère ... J'vais lui montrer qui c'est Raoul. Aux quat' coins d'Paris 
qu'on va l'retrouver éparpillé par petits bouts, façon puzzle. Moi, quand on m'en fait trop 
j'correctionne plus: j'dynamite, j'disperse, j'ventile..." 
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