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Résumé:  
 

Compte tenu des évolutions techniques concernant les nouveaux appareils de stockage 

personnels et de l’émergence des connexions hauts débit facilitant l’accès à une grande 

quantité de contenus multimédia sur Internet, les consommateurs veulent de plus en 

plus pouvoir gérer de façon intuitive et ordonnée ces très grandes collections de vidéos. 

Les données vidéo brutes contenues dans ces contenus ne fournissent pas 

d’informations appropriées pour un accès sémantique (métadonnées). Or l'utilisateur a 

besoin de données de plus haut niveau afin de pouvoir caractériser au mieux sa base 

de données vidéo, pour cela il faut ainsi générer des métadonnées qui décrivent chaque 

élément de contenu au niveau non seulement de ses propriétés mais aussi de sa 

sémantique. Les consommateurs, par exemple, désirent accéder rapidement à des 

sous-évènements individuels d’un contenu multimédia. Cette thèse présente une 

méthode de segmentation du contenu audiovisuel en sections significatives, appelées 

scènes. Par analogie avec les chapitres d’un livre, les scènes contiennent une partie de 

l’histoire et représentent elles-mêmes un événement à part entière. 

 

Dans cette thèse, nous présentons d’abord une architecture de système distribué qui 

accueille chaque module de connaissance du contenu. Cela se fait par la création de 

composants dans une architecture plus large qui exploite efficacement les 

caractéristiques et les possibilités d’un grand nombre de périphériques intelligents 

(smart devices) (tels que les organiseurs).  

Dans une seconde partie, nous donnons un aperçu de l’état de l’art que nous utilisons 

comme base de notre travail.  

Plusieurs modules de bas et moyen niveau permettant de créer une connaissance du 

contenu sont présentés dans une troisième partie, notamment un détecteur de 

changements de plans très robuste.  

Comme la segmentation en entités sémantiques est porteuse d’information ne repose 

pas uniquement sur des décisions objectives, nous présentons la technique de 

production de films et les règles de grammaire habituellement appliquées. Grâce à la 

connaissance de ces règles, nous décrivons un détecteur permettant d'identifier des 
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séquences narratives liées, telles que le cross-cutting et les dialogues. Ce détecteur est 

appelé détecteur de plans parallèles; il permet de regrouper jusqu'à 70% des plans de 

contenu narratif en plans parallèles. 

Enfin, nous présentons diverses méthodes de détection de changement de scènes pour 

classifier les plans qui n'ont pas été fusionnés par la méthode précédente. Les résultats 

obtenus sont encourageants (prometteurs) et atteignent des pourcentages de détection, 

c'est-à-dire des résultats de rappel et précision, de l’ordre de 80% pour les séries et de 

66% pour les films.   
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Abstract:  
 

Technical attributes of new consumer storage devices, but also broadband connectivity 

to Internet video portals, increased consumers’ desire to be able to manage intuitively 

and hassle free large private or commercial video archives. Raw video data of those 

archives do not provide the appropriate semantic access data (metadata). Hence, the 

market requires context-awareness creating metadata describing the individual content 

items not only on feature level, but preferably also at a semantic level. Consumers, for 

example, desire to have fast access to the individual sub-events embedded in a content 

item. This thesis presents a method to segment the audiovisual content item into 

meaningful chapters, also called scenes. The latter have an analogy to chapters of a 

printed book. They both contain a part of the story, but in itself they contain one story 

event.  

In this work we present first a distributed system architecture to host individual modular 

content-awareness creating components in a larger framework exploiting efficiently the 

attributes and capabilities of a larger set of smart devices.  

Hereafter, an overview of the state-of-the-art is given, which is used as basis for our 

own work.  

Subsequently several low- and mid-level content-awareness-creating modules are 

presented, such as a very robust shot boundary detector.  

Knowing that the segmentation into meaningful semantic entities not only relies on 

objective decisions, the art of film production is introduced and commonly applied film 

grammar rules are presented. Exploiting the knowledge of film grammar we present a 

detector identifying interleaved narrative sequences, such as cross-cuttings and 

dialogues, further called parallel shot detector. The latter clusters up to 70% of all shots 

of narrative content into such parallel shots.  

Finally we present in this work various methods to identify semantic audiovisual scene 

boundaries within the remaining parts, i.e. after parallel-shot-based clustering. The 

results achieved for automatic semantic segmentation are encouraging reaching 

detection rates, i.e. recall and precision, of 80% for series and 66% for movies.  
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Résumé prolongé:  
 
L’évolution constante des caractéristiques techniques des appareils de stockage 

domestique tels que les magnétoscopes ou bien caméscopes permettent aujourd’hui 

aux utilisateurs de générer une grande quantité de contenus multimédia. En 

conséquence de quoi les consommateurs d’aujourd’hui veulent avoir la possibilité de 

gérer leurs archives vidéo autant que possible intuitivement et sans grand effort. Les 

données vidéo brutes des contenus multimédia ne contiennent pas suffisamment 

d’informations sémantiques nécessaires à leur gestion de manière intuitive, de la même 

manière qu’un DVD propose un accès interactif à chaque chapitre d’un film. A l’aide de 

ces accès le consommateur peut, ainsi, facilement et intuitivement naviguer à travers le 

film. Pour offrir la même possibilité de gestion des contenus privés la génération de 

métadonnées descriptives au niveau sémantique est nécessaire. 

 

Cette thèse présente un système et une méthode de segmentation des données 

audiovisuelles en chapitres sémantiques, appelées scènes. Ces scènes sont 

assimilables aux chapitres d’un livre. Les scènes représentent une partie de vidéo 

homogène au sens de la sémantique. 

Dans ce travail nous décrivons d’abord les tendances techniques et commerciales, qui 

influencent le marché des hautestechnologies destiné au grand public. Parmi ces 

innovations technologiques nous avons : l’expansion des capacités de calcul, la 

croissance des capacités d’enregistrement ou bien encore l’élargissement des bandes 

de transmission. La connaissance approfondie de ces évolutions techniques ainsi que 

la demande du marché sontà la base de la création d’une plate-forme d’analyse et 

d’indexation des contenus multimédia.  

Dans ce travail nous avons opté pour l’utilisation d’un Service Oriented Architectur SOA, 

à savoir une architecture distribuée d’analyse du contenu composé de plusieurs 

modules appelés System Units SU. Cette architecture contient de nombreux 

composants individuels nécessaires à la connaissance du contenu i.e. les algorithmes 

d’analyse du contenu pourront être utilisés de manière indépendante et spécifiques 

(traitement audio et vidéo) et exploiter, ainsi, pleinement les capacités du système. 



  
viii  

L’architecture que nous avons développée  peut être assimilée à un ensemble 

d’appareils domestiques. Chaque composant analysant le contenu contient un 

algorithme spécifique pour une modalité, par exemple pour l’audio. Chaque composant, 

contenant un algorithme est intégré dans une unité Service Unit, qui peut communiquer 

avec le système à l’aide d’interfaces d’entrée/sortie standardisées. Le système 

considère les Services Units comme une boite noire, c’est-à-dire que le système ne 

connaît pas les processus internes de l’unité Service Unit, mais il peut l’utiliser avec 

l’aide des interfaces. De plus, le système contient une composante additionnelle qui 

permet d’utiliser efficacement les capacités de calcul et d’enregistrement. Cette 

composante est appelée Connection Manager. Une autre composante, le Health 

Monitor, est lui responsable de la robustesse du système. Avec cette composante l’état 

individuel du Service Unit est surveillé et réparé en cas de nécessité. 

 

Dans le premier chapitre, nous présentons un ensemble des techniques de 

segmentation sémantique puis nous présentons une étude des travaux actuellement en 

cours. Cette dernière inclus les méthodes que nous avons développées dans cette 

thèse.  

Ensuite, nous exposons les descripteurs de bas et moyen niveau  développés dans ce 

travail. De plus, dans le but de proposer un système robuste de détection des 

Commercial Block (publicités), nous avons développé de nombreux descripteurs vidéo 

de bas et moyen niveau tels que: Monochrome Frame Detector, Progressive-Interlaced 

Classifier, un Letterbox Detector et un Shot Boundary Detector. Explicitement pour le 

Shot Boundary Detector nous avons analysé d’abord les profiles des différents groupes 

de consommateurs afin de proposer un corpus de test adapté composé d’un ensemble 

d’extraits vidéo de genre divers et provenant de plusieurs pays. Après quoi, nous avons 

analysé et développé trois types de Shot Boundary Detectors, à savoir les Marcoblock 

Correlation Cut Detector, le Field Difference Cut Detector et finalement le Colour 

Segmentation Cut Detector. Ces trois détecteurs ainsi qu’un détecteur issu de la 

littérature ont été testé avec notre corpus afin d’en évaluer les performances. Les tests 

ont montré, que le Field Difference Cut Detector donnait de meilleurs résultats. En 

utilisant des algorithmes d’analyse supplémentaires nous avons pu améliorer ces 

résultats, pour cela, nous avons appliqué les technologies Feature Points et les 

analyses rétrospectives. Les résultats, en termes de rappel et précision, sont de 98,3 % 

et sont supérieurs aux détecteurs publiés dans la littérature. En conséquence, nous 

avons utilisé les détecteurs que nous avons développés dans cette thèse. Une 

amélioration finale consiste en l’intégration d’un détecteur décrit dans la littérature, le 
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Gradual Transition Detector, en y ajoutant quelques étapes d’analyse supplémentaires 

nous avons obtenu une meilleure précision dans les résultats. 

Dans l’étape suivante, nous avons examiné plusieurs paramètres audio de bas et 

moyen. Notre but est de combiner les paramètres audio et vidéo pour créer un 

détecteur de publicité plus robuste que ceux présentés dans la littérature. Nous avons 

construit un détecteur de silences détecteur qui utilise des données d’entrée audio 

compressées au format MPEG-1 layer 2 et AC3. Nous avons étudié les performances 

propres de chacun des divers descripteurs audio et vidéo développés au cours de notre 

travail. Avec les résultats que nous avons obtenus nous avons décidé de combiner 

notre Monochrome Frame Detector avec notre détecteur de silence de publicité. 

Utilisant notre corpus pour nos tests, nous avons obtenu une précision de 99,93 % et un 

rappel de 91,4 %. Nous avons implémenté ce détecteur comme un Service Unit et nous 

l’avons intégré dans notre système global, nous avons ainsi éliminé un des segments 

de vidéo tels que les passages contenant des réclames publicitaires qui étaient sources 

de fausses alarmes. 

 

Il est nécessaire de prendre en considération que la segmentation en unités 

sémantiques doit respecter non seulement les règles objectives mais aussi les règles 

appliquées dans la production de films (post-production, montage, collage, …). La 

connaissance de ces règles nous a permis d’analyser des méthodes différentes qui 

permettent de classifier des séquences complexes et ensuite de les classifier en 

séquences cohérentes. On appelle ces séquences les Parallel Shots, chaque unité 

représente une partie singulière sémantique. Elles ont la caractéristique de ne contenir, 

par définition, aucun changement de scène. Ainsi, une grande partie du contenu du film 

peut donc être classifié dans différents sous-genres de Parallel Shots. Cette 

classification précède la classification des scènes sémantiques. 

 

Les Parallel Shots peuvent être répartis en deux groupes : les Cross-Cuttings et les 

Shot-Reverse-Shots. Les plans de montage vidéo sont utilisés comme unité de base de 

la segmentation. En général environ 70 % de tous les plans de montage vidéo des 

contenus audiovisuels tels que les films ou bien les séries, peuvent être classifiées en 

Parallel Shots. Pour la pré-segmentation nous avons étudié et développé plusieurs 

techniques d’analyse de similarité des images de la vidéo. Parmi ces méthodes, nous 

avons les méthodes a) HSV ressemblance b) HY ressemblance c) ScaFT ressemblance 

et d) SIFT ressemblance. Une comparaison des résultats de classification a montré que 

les méthodes les plus simples – HSV et HY – donnent des résultats meilleurs, comparé 

avec les méthodes de calcul plus complexes que sont les méthodes ScaFT et SIFT. Les 
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résultats de la méthode HSV et de la méthode HY étaient plus ou moins identiques, 

nous avons donc décidé d’utiliser la méthode HSV dans la suite de ce travail de thèse, 

cette méthode se caractérise aussi par une implantation plus simple. Les résultats de 

pré-segmentation sont de 75 % pour le rappel et presque 90 % pour la précision. 

 

Après avoir éliminé tous les segments de vidéo qui ne correspondent pas à notre 

contenu grâce à notre détecteur de publicité et ayant classifie presque 70 % de tous les 

Shots en Parralel Shots nous avons essayé de chercher dans cette partie restant du 

film les changements de scène sémantique. Tout d’abord nous avons construit un 

détecteur de non ré-assemblage basé sur la méthode HSV. Avec ce détecteur nous 

avons obtenu des résultats de détection des changements sémantiques de scène avec 

une qualité de 85 % pour le rappel et de l’ordre de 50 % pour la précision. Pour 

améliorer ces performances nous avons construit des détecteurs supplémentaires pour 

le flux audio et de durée du Shot. La combinaison HSV et durée du Shot a donné des 

résultats très acceptables. Ce détecteur combiné de classification de changement de 

scène a donné des résultats à hauteur de 80 % pour les séries et 66 % pour les films - 

rappel et précision sont identiques en termes de valeurs. Prenant en considération les 

problèmes subjectifs et donc la difficulté de cette classification avec un détecteur de 

changement de scène ont peut accepter ces résultats comme représentatifs et aptes à 

l’intégration dans des appareils domestiques. 
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CHAPTER 1 

1 INTRODUCTION  

1.1 Introduction (in English) 
 

Our, the consumer’s, live can be divided in general in our work live and our private 

leisure live, during which we aim to enjoy and to relax as much as possible. In 

interaction terms we talk either about lean-forward, i.e. work-based, or lean-backward, 

i.e. entertainment-based, activities. Consumer Electronics CE manufacturers are mainly 

aiming to provide solutions for the entertainment related part of our lives and, hence, 

strive to invent lean-backward oriented applications and services. Various technology 

breakthroughs in the domain of processing, memory and connectivity eroded the price 

levels for these particular technologies in the last decade changing them into commodity 

solutions. As expected, shortly after new processing- and memory-powerful consumer 

electronic devices conquered the market, such as Digital Versatile Disc DVD recorders 

and Hard Disk HDD recorders. Moreover, more and more consumer electronics devices 

embed connectivity units resulting in In-Home networks i.e. interconnected CE devices, 

and CE devices with broadband connection to the Internet.         

 

 

Figure 1. Content analysis for CE devices at Philips Research1. 

                                                 
1 Personal image of the author. 
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Nevertheless, more storage space on a consumer storage device, such as on an HDD 

recorder, not necessarily leads automatically to a pure advantage. If enabling 

consumers, i.e. all of us, to store and archive whatever we like onto the hard disk of our 

HDD recorder, naturally this leads to a ‘searching for the needle in the haystack’ 

retrieval problem. More seems to be less in this case. This problem in combination with 

the available processing power gave the content analysis community another outlet for 

their work. Many consumer electronics manufacturers realized this as a threat, but at 

the same time as an opportunity and started with own research projects, as e.g. the 

project Cassandra at Philips Research, with its abstract semantic visualized in Figure 1. 

One of the project’s aims is to enrich unstructured recorded content stored e.g. on an 

HDD recorder with content awareness, i.e. content descriptors, by applying content 

analysis. These content descriptors, also called metadata, should be created by 

dedicated content analysis software components or integrated circuits. These 

descriptors should be stored with the content in a standardized way onto the storage 

medium, e.g. DVD, as claimed by us in [1] and [2]. But why are these descriptors of 

such relevance one may ask?   

Today’s consumers are used to browse and navigate through purchased commercial 

DVDs in a non-linear fashion using embedded chapter information. These chapter 

markers have been provided by the content providers and these markers segment the 

content into semantic meaningful entities. No need to say that consumers would like to 

have a comparable semantic chaptering solution as well for their recorded broadcast 

content. Hence, one of the expressed consumer desires is to browse and navigate 

intuitively and in a non-linear way through individual recorded content items and 

archives. With this market value proposition we decided to research new automatic 

audiovisual content segmentation solutions applicable for consumer devices, such as 

HDD recorder, but also Internet services using AV archives.  

 

Hence, the main aim of this work was to research an automatic and semantic chaptering 

solution, i.e. converting recorded content-unaware broadcast of private content into 

content-aware audiovisual content augmented by semantic segmentation. The solution 

had to be suited for the implementation into e.g. DVD or HDD based CE storage 

devices. One of the first challenges was identifying the technology and consumer trends 

to secure providing the market with the appropriate technology and consumer solution 

at the appropriate time. In the second chapter of this work we present these underlying 

fundamental consumer and technology trends, which served as basis when choosing 

appropriate technologies throughout our work.  
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Because of the semantic nature of our task we faced soon the issue that we needed 

syndicating many single modality content analysis solutions into one overall system. For 

efficiency, complexity and transparency reasons each single modality analysis solution 

had to be embedded into one component. The trend towards distributed system 

architectures and modularity based solutions motivated us to select a Service-Oriented 

Architecture SOA as preferred choice. In the second half of chapter two we describe our 

approach towards an SOA based distributed content analysis prototyping framework. 

Each analysis solution was embedded into a container component called Service Unit, 

each communicating with the system through standardized interfaces. Nevertheless, we 

faced some robustness and maintenance issues, which we researched in more detail. 

As a result of this, we elaborated dedicated components such as a Health Monitor and a 

Connection Manager, which helped us to solve some of the identified issues. Finally, in 

the end of chapter two we introduced a set of selected individual content analysis 

Service Units, which syndicated together, formed our envisioned semantic content 

segmentation application. 

 

In order to avoid redundant work we studied thoroughly a selected group of state-of-the-

art technologies, which we expected to become relevant for our semantic segmentation 

application. For each technology block we collected the available information and 

evaluated the state-of-the-art solutions on their suitability for our application, on their 

maturity and on their robustness. In chapter three we described the studied state-of-the-

art technologies and summarized our analysis results. Special attention was given in 

this analysis to segmentation-related works such as shot and scene segmentation. The 

results of this state-of-the-art study served as basis for the decision, which technologies 

required further research and development to achieve our aim of a semantic 

segmentation solution. 

 

In our analysis we unveiled that broadcast content items contain non-content related 

inserts, i.e. commercials, which could deteriorate the results of any automatic chaptering 

solution. In the state-of-the-art analysis we retrieved several interesting solutions for 

commercial block detection, but none of them satisfied our requirements. Hence, we 

researched, starting at the bottom of the content analysis pyramid as sketched in Figure 

2, several compressed domain video low-level and mid-level features specially designed 

for a dedicated video compression hardware unit, which was at our availability. These 

features ranged from Monochrome Frame Detector, Progressive-Interlaced Detector, 

Letterbox Detector to Shot Boundary Detector, as described in the first part of chapter 

four. Especially for the latter we faced the challenge that none of the benchmark corpora 
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available from academia or industry served our purpose, i.e. consisting of a variety of 

genres and of a variety of cultures. To establish a representative corpus we researched 

the consumer behaviour of our target consumer group and established accordingly our 

benchmark corpus, which we applied to test and benchmark our solutions, such as the 

Shot Boundary Detector. Especially the latter was of importance, because shots are an 

important atomic entity in video content and the robustness of the latter is of utmost 

importance for all subsequent analysis steps. Because the state-of-the-art solutions did 

not achieved the detection results required we researched three Shot Boundary 

Detectors, i.e. Marcoblock Correlation Cut Detector, Field Difference Cut Detector and 

Colour Segmentation Cut Detector, and benchmarked them using our own corpus 

against each other and against one detector derived from academia. The latter we used 

as objective reference because it participated in the TRECVid benchmark. The winner 

of our benchmark, i.e. Field Difference Cut Detector, was selected and we further 

researched improvements to even further boost the robustness by e.g. applying 

processing steps using Feature Points and Backward Analysis. Furthermore, we 

implemented an inherited, from academia, Gradual Transition Detector and improved 

it’s robustness with post-processing steps, as described in the first part of chapter four. 

 

 

 

Figure 2. Content analysis feature pyramid – layers of semantics1. 
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Due to the multi-modal nature of our audiovisual content we researched, subsequently, 

strong audio low-level and mid-level features, such as a dedicated compressed domain 

commercial silence detector. During the state-of-the-art analysis we retrieved only 

general purpose silence detection solutions, which did not fulfil our requirements. 

The results of our compressed domain commercial silence detector were summarized in 

the second section of chapter four.  

 

The latter we then combined with a variety of selected video low-level and mid-level 

features to derive a dedicated genre detector, i.e. a commercial block detector. Our 

research unveiled that the combination of our commercial silence detector and 

Monochrome Frame Detector performed best and outperformed robustness-wise those, 

which we analysed during the state-of-the-art analysis. We summarized our research on 

this detector in the fourth section of chapter four. Finally, we implemented this 

Commercial Block Detector as Service Unit into our analysis framework, which here 

after automatically eliminated all non-content related inserts, i.e. commercial blocks 

inserted by the broadcasters. 

As early spin-out of this work we implemented a commercial skip application. We did 

this due to the strong customer and market request we witnessed during our research 

work. 

 

Being aware of the subjectivity of our semantic content segmentation task we decided to 

research the art of film production, trying to extract common objective film grammar 

production rules, which we could apply to cluster and further segment our audiovisual 

content. The analysis of the state-of-the-art of chapter three unveiled some clustering 

techniques and our aim was to understand the underlying production rules enabling us 

to extract objective common rules. The latter we intended to apply to build an 

appropriate robust clustering solution. Our study showed that in narrative content 

clusters of interleaved narrative sequences, so-called Parallel Shots, are commonly 

applied. The latter form semantic sub-entities and they can be divided into two classes, 

i.e. Cross-Cuttings or Shot-Reverse-Shots. By definition these Parallel Shots do not 

contain any scene boundaries. We researched several techniques for Parallel Shot 

Detection, which allowed us to pre-cluster a substantial amount of shots into such 

narrative semantic sub-entities. We described this work in more detail in the fifth section 

of chapter four. 
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After clustering a substantial part of the narrative content into sub-entities, which shared 

audiovisual commonalities following certain film grammar rules, we researched methods 

to identify semantic meaningful discontinuities, i.e. Scene Boundaries, in the remaining 

parts of the content. We described this work in the fifth section of chapter four. During 

this research we identified several shortcomings of colour discontinuity methods, which 

we retrieved during the state-of-the-art analysis. In subsequent steps we eliminated 

some of these shortcomings by applying our film grammar knowledge. The robustness 

achieved with the resulting colour-based boundary detector was reasonable. 

Nevertheless, we researched independent boundary detection methods, such as audio-

based class transition detection and shot-length based boundary detection. The 

combination of our colour-based and shot-length-based boundary detection methods 

resulted in a robust Scene Boundary Detector fulfilling finally our requirements. Hence, 

in this work we achieved the goal to group interleaved narrative sequences and to 

identify strong audiovisual discontinuities in the remaining parts of the narrative content. 

A subsequent step towards real semantic characterization of audiovisual content, not 

covered in this work, using our segmentation method enabling users to search intuitively 

at a semantic level would be to attach cognitive descriptions, i.e. semantic tags, to 

individual scenes and sub-elements.  

 

In the last chapter, i.e. chapter five, we concluded our work, summarized our 

conclusions and gave some perspectives. 
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1.2 Introduction (en Français) 
 

Nos activités quotidiennes se décomposent en tâches professionnelles et en tâches 

privées. Nous attribuerons les termes techniques suivants pour qualifier ces deux 

tâches: lean-forward, tâches professionnelles et lean-backward, désigne l’activité 

dédiée aux loisirs. Les producteurs d’équipements domestiques essayent d’offrir des 

solutions à l’écoute du grand public. En effet, ils s’orientent plus ou moins vers le 

secteur lean-backward. Avec les progrès rapides liés aux nouvelles technologies en 

termes de performances de calcul, de capacité de stockage, de largeur de bande de 

transmission les prix des technologies ont largement baissé permettant ainsi de s’ouvrir 

à un public plus large et  que ces produits ont rapidement conquis le marché grand 

public, par exemple en ce qui concerne les enregistreurs DVD et HDD. De plus en plus 

la plupart de ces équipements peuvent être interconnectés, créant ainsi un réseau 

domestique relié à l’Internet, offrant par la même occasion un accès important aux 

contenus audiovisuels. 

 

 

Figure 3. Analyse du contenu pour équipement domestique chez Philips Research1. 
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Cependant, cette avancée n’offre pas que des avantages, mais, au contraire peut 

génère de nouveaux problèmes. En effet, l’accès facilité à une plus grande quantité de 

données audiovisuelles implique la nécessité de pouvoir organiser ces dernières Un 

domaine d’activité avantageux et prospectif s’ouvrait alors à la communauté des 

chercheurs de l’industrie et des sciences. En effet, ils doivent se pencher sur des 

solutions de gestion des grandes quantités de données. Les grandes compagnies ont 

très rapidement localisé le problème, et elles ont rapidement trouvé des solutions, 

comme par exemple avec le projet de recherche Cassandra développé par Philips 

Research. Le diagramme abstrait du projet Cassandra est présenté en Figure 3. Le but 

du projet consiste en l’analyse des vidéos enregistrées, par exemple par un enregistreur 

HDD, permettant ainsi la génération de métadonnées liées au contenu. Les 

descripteurs du contenu, aussi appelées métadonnées sont crées par un logiciel 

analysant le flux audio ou vidéo qui est peut aussi être traité par un analyseur matériel 

(hardware). Les descripteurs sont enregistrés en temps-réel en même que le contenu 

lui-même voire [1] et [2]. Les descripteurs ainsi obtenus permettent, entre autres, à 

l’utilisateur de naviguer a travers le contenu en modus  lean-backward et de rechercher 

les passages désirés. 

Le consommateur veut avoir la possibilité de naviguer à travers le contenu intuitivement 

et sans barrières linéaires. Ils ont l’habitude de naviguer à travers les DVD 

commerciaux selon leur volonté avec l’aide des index des chapitres existants. Les index 

des chapitres sont mis à la disposition au consommateur par le propriétaire de 

l’information, par exemple la société du film. Le contenu est segmenté en unités 

sémantiques cohérentes, les chapitres. Les utilisateurs attendent naturellement une 

solution adéquate pour classifier le contenu qu’ils ont enregistré. Cette ouverture du 

marché évidente nous a persuadés de nous engager dans la recherche de solutions de 

segmentation automatiques pour les médiums audiovisuels, appliqués aux équipements 

domestiques, mais aussi sous formes de services Internet afin de traiter des archives 

audiovisuelles. 

 

L’objectif de ce travail est de trouver une solution de segmentation automatique et 

sémantique avec laquelle il sera possible de transformer un contenu neutre télédiffusé, 

ou vidéo privées, en matériel audiovisuel enrichi d’index sémantiques autrement dit en 

chapitres. Cette solution devrait être de telle sorte que l’utilisateur doit pouvoir 

enregistrer toutes les informations présentes dans son  équipement domestique. 

D’abord, nous avons analysé en détail les développements techniques ainsi que le 

marché grand public pour avoir la possibilité d’offrir les meilleures solutions 

technologiques aux consommateurs. Dans le chapitre suivant nous présentons  les 
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études  des méthodes et du marché qui nous ont aidé à choisir la technologie la mieux 

adaptée. 

 

Considérant la qualité sémantique de notre sujet de recherche nous avons très vite 

réalisé qu’il fallait incorporer plusieurs modules indépendants d’analyse du contenu 

dans un système commun et interactif. Chaque unité du module indépendante à sa 

propre tâche dédiée, transparence et complexité, il est donc nécessaire de les traiter 

comme unité indépendante dans un système commun. Cette nécessité de respecter 

l’architecture du système et la solution basée sur des modalités orientés  nous ont 

amené à choisir pour notre travail une solution de Service Oriented Architecture SOA. 

Dans la deuxième partie du chapitre 2, nous donnons les détails sur notre approche 

basée sur cette  solution: une approche menant a un prototype d’un système analysant 

le contenu. Chaque composante, module indépendant, a été incorporé dans un 

conteneur appelé Service Unit SU. Nous avons rapidement réalisé que nous allons 

avoir des problèmes de robustesse et de maintenance. Cherchant à maitriser ces 

problèmes nous avons développé des solutions appropriées – le Health Manager et le 

Connection Manager. Une solution définitive  de la méthode correcte d’analyse 

sémantique est décrite à la fin du second chapitre, il s’agit d’une solution contenant 

plusieurs Service Units. 

 

Dans le but d’éviter les redondances nous avons examiné en détail un ensemble de 

techniques que nous avons préalablement sélectionné dans la littérature pour notre 

application de segmentation afin de les rangées sous forme de famille. Dans le cas de 

groupes ne contenant qu’un seul élément, nous les avons regroupé en tenant comptes 

de toutes les informations et nous avons évalué les différentes techniques selon leur 

qualification pour notre application : robustesse et niveau de développement. Dans le 

troisième chapitre, nous avons étudié l’état de l’art pour chaque technologie, puis nous  

faisons un résumé des résultats de l’analyse. Ainsi, nous avons pu formuler  un 

ensemble de propositions de solutions pour la segmentation d’un contenu multimédia 

audio et vidéo. Les résultats de cette analyse sont décisifs pour les activités futures, 

surtout pour décider quelles technologies devraient être examinées plus en détail pour 

aboutir à une solution satisfaisante pour la segmentation sémantique. 

 

Dans notre analyse, nous avons découvert que les émissions de télévision contiennent 

une grande quantité de passages secondaires, comme par exemple les réclames, qui 

peuvent influencer négativement sur les solutions de segmentation. Nous avons trouvé 

une variété de solutions modernes de détecteurs de réclames, mais malheureusement 
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aucune n’est satisfaisante selon nos exigences. Notre analyse prenant départ au bout 

de la pyramide, – voir Figure 4, la première étape consiste en  l’examen des 

descripteurs de bas et moyen niveau pour le flux vidéo compressé. Les descripteurs 

sont rangés en commençant par le Monochrome Frame Detector, le Progressive-

Interlaced Detector, ensuite le Letterbox Detector, allant jusqu’au Shot Boundary 

Detector. Tous ces détecteurs sont décrits en détail dans la première section du 

chapitre 4. 

Concernant le Shot Boundary Detector nous avons constaté que les corpus utilisés  

dans les différentes applications industrielles et dans les applications scientifiques 

n’étaient pas satisfaisant  puisque aucun d’entre eux ne contenaient pas plusieurs 

genres de vidéos, ou bien ne provenaient i pas de plusieurs stations d’émission et/ou 

différents pays. 

 

Afin d’obtenir un ensemble de test audiovisuel le plus représentatif de la population 

actuelle, nous avons tout d’abord analysé l’habitude des consommateurs par tranche 

d’âge, ainsi, avec les informations  obtenues nous sommes en mesure de proposer  une 

base de données de test qui est satisfaisante  pour notre Shot Boundry Detector. 

 

 

Figure 4. Classement des attributs selon l’analyse du contenu – hiérarchie sémantique1. 
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Ce détecteur est particulièrement important, puisque les chapitres d’un film et les Shots 

dont ces derniers dépendent sont une partie élémentaire d’un film et sont la base de 

toutes les étapes suivantes de l’analyse. 

Les solutions présentées ailleurs ne donnent pas une précision suffisante, nous avons 

donc été obligés de proposer des améliorations. Nous avons examiné trois solutions : le 

Marcoblock Correlation Cut Detector, le Field Difference Cut Detector, et le Colour 

Segmentation Cut Detector. Nous avons analysé ces trois détecteurs à l’aide de notre 

base de test vidéo. Ensuite, nous avons comparé les résultats avec un détecteur 

appliqué en industrie, un détecteur qui a été utilisé lors de la campagne d’évaluation 

TRECVid. Selon notre étude, le Field Difference Cut Detector donne de meilleurs 

résultats. Nous avons donc sélectionné ce détecteur pour la suite de notre travail et 

nous avons essayé de faire des corrections additionnelles pour améliorer sa 

robustesse, en y ajoutant par exemple le ‘Feature Points’ et l’analyse rétrospective. 

Ensuite, nous avons développé un moderne Gradual Transition Detector, avec des 

corrections de notre part en vue de d’améliorer sa robustesse – voir la première section 

du chapitre 4. 

 

Nos sources audiovisuelles sont multimodales, ce qui nous amène à examiner des 

détecteurs de bas et moyen niveau ad-hoc, par exemple le détecteur de silence dans le 

domaine compressé. Le détecteur commun appliqué normalement avait des 

performances  acceptables pour notre travail. Nous donnons les résultats de notre 

détecteur de silence nous permettant ainsi de localiser les publicités dans nos contenus 

dans le domaine compressé,  dans la seconde section du chapitre 4. 

Ce détecteur de silence pour les  publicités est combiné  à un ensemble de descripteurs 

vidéo de bas et moyen niveau constituant ainsi notre détecteur spécial, nous l’appelons 

le détecteur de publicités. La combinaison de notre détecteur de silence de publicité 

avec notre Monochrome Frame Detector donne de  meilleurs résultats et dépasse 

largement la robustesse des détecteurs communs. Dans la quatrième section du  

chapitre 4 un aperçu des étapes de recherche est donné. Nous avons finalement 

intégré ce détecteur de publicité comme Service Unit dans notre système global. Cette 

unité a permis d’éliminer automatiquement toutes les séquences qui ne sont pas propre 

au contenu lui-même, comme par exemple les publicités intercalées au cours d’un. 

L’élimination des réclames est une réussite immédiate de notre travail, puisque cette 

application est vivement recherchée par le marché du grand public. 

 

Puisque le sujet principal de notre recherche – le film – apporte une segmentation 

subjective en scènes sémantique nous avons étudié les règles communes de la 
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production d’un film, afin de pouvoir plus correctement appliquer les solutions de 

segmentation. Evidement quelques solutions sont connues, mais notre but est 

d’examiner les règles objectives et d’acquérir de la connaissance des 

interdépendances, ce qui devrait améliorer les solutions concernant leur robustesse. 

Notre recherche montre que dans les contenus narratifs il y a beaucoup de  séquences 

associées les unes avec les autres. On appelle ces séquences communes les Parallel 

Shots. Elles forment des unités de base et des sous-unités, normalement scindées en 

deux groupes : les Cross-Cuttings et les Shot-Revers-Shots. Par définition les groupes 

ne comprennent aucun changement de scène. Nous avons - profitant de cette 

caractéristique – examiné plusieurs solutions de Parallel Shot Detection, ce qui nous a 

permis de ranger en sous-catégories la majorité de l’information, donc en séquences 

narratives sémantiques. Nous donnons les détails de cette recherche dans la cinquième 

section du chapitre 4. 

Ayant classifié la majorité des informations en sous-groupes il faut maintenant classifier 

et analyser le reste de l’information. Pour ce faire nous devons normalement 

caractériser les changements de scène qu’ils sont susceptibles de contenir. Nous 

décrivons les recherches en détail dans la cinquième section du chapitre 4. Les 

méthodes permettant de caractériser les changements de scène basée sur l’étude des 

couleurs que nous avons trouvées dans la littérature  présentent quelques défauts. 

Nous avons appliqué des corrections provenant de notre étude sur les règles de 

production d’un film. La robustesse atteinte avec notre détecteur est acceptable. 

Néanmoins, nous avons apporté des corrections en ajoutant des détecteurs 

indépendants pour le flux audio et des détecteurs de durée du Shot, dans le but 

d’améliorer la robustesse. La combinaison de notre détecteur couleur et notre détecteur 

de durée du Shot donne un détecteur de changement de scène très robuste. 

Dans le dernier chapitre, nous faisons un résumé de notre travail et donnons quelques 

perspectives pour les recherches à venir. 
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CHAPTER 2 

 

2  PROBLEM OF AV SEGMENTATION AND 
ARCHITECTURE APPLIED 

2.1 Aim of ‘Semantic AV Content Item Segmentation’ 
The ultimate aim of the work done in this PhD is ‘Semantic AV Content Item 

Segmentation’ of commercial content acquired by consumers e.g., through recording 

analogue or digital broadcast content. This means to automatically segment 

unstructured content into semantic entities, meaningful to the final user.  

2.1.1 Relevant technology and consumer trends 

Semantic content segmentation is an example for semantic content-awareness creation, 

which gained importance due to several consumer and technology trends, observed 

during the last decade. These trends include: 

• the exponential growth of processing power. Moravec’s prediction [4] is that 

individual 1000,- €  consumer devices will reach processing-wise, not 

intellectual-wise, human capabilities by mid of this century, as published in [3] / 

[4] and shown in Figure 5. Seen realistically this seems to be optimistic, but as 

IBM’s Deep Blue won against Kasparov in chess, other intellectual challenging 

domains will follow soon.  

• the increase of available storage on individual consumer devices outperforming 

human memory during this century and, hence, potentially augmenting it, as 

stated in [3] / [4] and shown in Figure 5. 

• the strong growth of bandwidth, which finally connects transparently all these 

individual powerful processing and memory units together into one distributed 

system architecture, such as a grid or a smart In-home Network. 
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Figure 5. Technology trends: evolution of processing, memory and connectivity1. 

As may be expected, the availability of new technology solutions influences individual 

consumers’ content consumption behavior resulting in several new consumer trends. 

Some of these consumer trends are: 

• the smooth shift from push-model based passive content consumption to pull-

based active content selection enabled e.g. by Electronic Program Guides EPG 

in combination with hard-disk-based Personal Video Recorders PVR. 
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Figure 6. Technology trend stimulated consumer trends1. 

 

• that today’s consumers replace more and more commercially produced content by 

consumer self-created content shared e.g. within user communities (Web2.0) or 

through proprietary Internet services / portals, which maintain huge AV archives. 

• that technology-aware consumers desire to consume content appropriately to the 

context, such as the consumers current mood and location. 

• the desire to enhance the experience through replacing e.g. passive rendering 

devices by active devices, e.g. Philips’ AmbiLight TV as shown in Figure 6, or letting 

the content itself become smart, i.e. pro-active self-aware content items. 

• the wish to augment the experience by replacing single-sense stimulating solutions 

by a plethora of well-conducted sense stimuli. The latter are expected to create 

experiences perceived as pleasant and harmonious by using e.g. smart 

environments, i.e. Ambient Intelligence. 

These technology and consumer trends have great impact on the content distribution 

business models, as sketched in Figure 7. The traditional uniform broadcast push 

model, i.e. viewer-agnostic broadcast channels (Figure 7, left) well suited when 

frequency-spectra were limited, loses market share to hybrid push-pull-based solutions 

(Figure 7, centre). Representatives of the latter are Internet Protocol TV IPTV based 

Video-on-Demand VOD or Personal Video Recorders PVR in combination with 

Electronic Program Guides EPG enabling individual users to ‘cherry pick’ content of 

desire. But finally, fully personalized pull-based solutions (Figure 7, right) are going to 

conquer the market. Examples of the latter are proprietary (‘Web2.0’ based) Video 

Internet Services maintaining own AV archives. AV service interface standardization will 

finally lead to personalized ‘Web3.0’ portals enabling (for the user) transparent access 

to diverse AV archives, as shown in Figure 7 (right).     
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For Consumer Electronics CE this means, when analyzing these trends and following 

the vision of Ambient Intelligence AmI, that CE solutions should be sensitive, adaptive 

and responsive to consumer and context, but also anticipatory to consumer’s desires. 

But - in order to achieve this vision - smart, personalized and interconnected systems 

are required, which are ubiquitous and transparent hiding the underlying system 

complexity. The underlying system needs to be therefore anticipative, personalized, 

adaptive, self-organizing, distributed and content- / context-aware. Thus, in the 

remainder of this chapter, we will investigate first an appropriate architecture for a 

multimedia content analysis and segmentation system. 

 

2.1.2 Semantic AV content segmentation – content-awareness creation 

The before mentioned technology and consumer trends and omni-present business 

models exploiting AudioVisual AV content, e.g. through AV search engines and 

services, justify the effort to think about new concepts of content-awareness creation. 

 

 

 

Figure 7. Content distribution trends [5] resulting from consumer and technology trends. 
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Personalization, intuitive access and experience enhancement require content 

awareness, especially when aiming for interaction at a semantic human communication 

like level. 

The consumer-oriented application solution, researched in this PhD thesis, is therefore 

aiming to segment acquired AV content item, e.g. streaming video or a video file, into 

semantically coherent entities, so called scenes. The contents chosen for this PhD 

project are recordings captured by consumers by means of their Consumer Electronics 

CE home storage devices such as hard-disc-enhanced Digital Versatile Disk DVD-

recorders, hard-disc-enhanced Set Top Boxes STB, hard-disc-enhanced Media Centre 

Personal Computers, i.e. PCs with hard-disc and AV broadcast recording capability.  

Unfortunately, today’s AV broadcast of Internet AV content contains little or no metadata 

i.e., data describing the AV content, which would help to segment it into semantic 

coherent chapters. This shortcoming applies not only for proprietary solutions, e.g. used 

by company ‘Gemstar’ [6], but also for AV services using mostly standardized solutions, 

e.g. British Broadcast Corporation BBC [7]. The reasons for missing metadata are 

various, but mainly it is related to the difficulties broadcasters and service providers are 

facing to develop the necessary profitable business models. Multiple standards for 

metadata are available, such as TV-Anytime [8], MPEG-7 (Moving Picture Expert 

Group) [9] and DVB-SI (Digital Video Broadcast Service Information) [10], enabling to 

transmit, e.g., auxiliary information, such as Electronic Program Guide EPG [11] 

metadata, to the regular broadcast signal. For example, MPEG-7 forms a normative 

framework for multimedia content descriptors, user preferences and usage history. But 

missing business models are the reason that those data also required for segmentation 

are provided only incidentally and then they are often inaccurate or inconsistent or in a 

proprietary format. This led to the conclusion, that the intermediate solution to provide 

users with ’Semantic AV Content Item Segmentation’ is an automatic content 

segmentation running at the receiver, i.e. consumer, side in CE devices, as sketched in 

Figure 8. 

 

Figure 8. Consumer Electronics devices with content-awareness creation. 
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This is even more attractive for CE device vendors, because this enables them to 

promote their devices with differentiating, appealing and, consequentially, turnover 

increasing applications. The specification of the final application solution, researched 

and developed in this PhD thesis, has been thoroughly discussed and elaborated with a 

representative group of potential consumers, CE device marketers and CE device 

product managers. The final conclusion was that the application should consist of the 

several building blocks as listed hereafter. 

(a) Firstly, low-level audio and video features have to be extracted from the received AV 

signal, as shown in Figure 9, and elaborated in sections 4.1.1 and 4.2.1. 

(b) Secondly, various audio and video mid-level features are required, as described in 

sections 4.1.2 and 4.2. As example, for semantic AV segmentation it is to chop up 

the AV content item into its individual video shots, which themselves are semantic 

meaningful given the underlying production rules as described in section 4.5.1. The 

required Shot Boundary Detectors SBD, i.e. video editing points, are further 

presented in section 4.1.2.  

(c) Thirdly, before starting with the semantic scene boundary detection non-content 

related inserts, i.e. advertisements further referenced as Commercial Blocks CBs, 

have to be detected and excluded from the subsequent steps. The latter is required 

because inserts deviate from the semantic flow of the content item itself and, hence, 

would mislead the algorithms applied for Scene Boundary Detection ScBD. The 

Commercial Block Detector CBD is described in section 4.4 and is also applied to 

enable consumers to fast browse through commercial blocks or to automatically skip 

them. The latter is a very demanded feature of HDD recorders.  

 

 

Figure 9. Building blocks applied in the context of this work. 
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(d) Fourthly, remaining content item shots are clustered into semantic meaningful 

coherent entities, i.e. film-grammar-based parallel shots as described in section 4.5. 

An appropriate Parallel Shot Detector PSD is researched and developed, which is 

able to detect and categorize Shot-Reverse-Shots SRS and CrossCuttings CC, are 

described in sections 4.5.2 and 4.5.3, respectively. In this way between 50% and 

80% of all shots can be clustered together, depending on the genre of the content 

item, as described in detail in section 4.5.4. 

(e) Finally, the discontinuities at all shot boundaries, which are not embedded within a 

parallel shot sequence, are analyzed, quantified and used as parameter for Scene 

Boundary Detection ScBD. The developed methods of this work are described in 

section 4.6. The achieved results for automatic chaptering of the AV content into 

semantic coherent chapters are summarized in section 4.7. 

The results of this work have been further applied to elaborate the author’s application 

idea of Content Item Boundary Detection CIBD, described in detail in the author’s patent 

applications [12]/[13]. The CIBD clusters coherent chapters, i.e. scenes, together and 

identifies discontinuities, which are indicative for e.g. the start and end of a movie. 

Hence applied in consumer devices, this enables consumers to obtain a clean recording 

of e.g. recorded broadcast content. Furthermore, with the results of this work meaningful 

key-frame-based summaries, i.e. Table of Contents TOC, have been generated, and the 

shot- and scene-based key-frames have been applied in a User Interface UI to 

implement the author’s concept of intuitive editing, as presented in the author’s patent 

application in [14]. 

 

2.1.3 Definition of audiovisual scenes 

The task of scene boundary detection can be seen as a reverse engineering of the 

director’s or producer’s intended story unit concept, which is of high semantic nature as 

one can imagine and, hence, also subjective. Many authors proposed, because of the 

task’s relevance, definitions for scenes and scene boundaries. Beaver, for example, 

defines in [15] a scene as “usually composed of a small number of inter-correlated 

shots, that are unified by location or a dramatic incident”. Bordwel states in [16] that 

“feature films are usually divided into three acts, each of which consists of about a half-

dozen scenes”. He also writes that scenes of narrative content contain often one or 

several interleaved narrative events and can be bordered by introduction and conclusion 

shots. Hence, with this we know that scenes can contain one of multiple interleaved 

narrative events, further called parallel shots, but parallel shots by definition never cross 

a scene boundary because they form a story entity.  
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In general, a semantic scene conveys a special message or meaning to the audience to 

understand the flow of the story. Hence, we define for the moment a scene with 

following set of rules: 

• Scenes consist of one or more shots conveying one single, consistent underlying 

semantic or narrative element; 

• Scenes may incorporate one or more interleaved narrative events, i.e. cross-

cuttings, or dialogues, i.e. shot reverse shots. Scene boundaries may not appear 

inside a parallel shot sequence; 
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2.2 System Architecture – the prototyping framework 
2.2.1 Multimedia content analysis prototyping framework 

The technology and consumer trends of section 2.1 showed that a terabyte of storage 

capacity on individual Consumer Electronics CE devices, and several terabytes of 

storage with massive processing capabilities and connectivity bandwidth within In-Home 

networks, no longer belong to the realm of fiction. Ubiquitous and pervasive content 

creation CE devices, such a mobile phones and cameras, boost the production of 

private content. The latter is stored together with commercially produced content in a 

scattered fashion across available enormous memory resources distributed across 

networked In-Home devices. The massive acquisition stir consumers into the dilemma 

of multimedia retrieval and management, a problem, which can be resolved by 

augmenting the material with content- and to some extend context-awareness. 

Fortunately, distributed, but connected processing and memory faculties of future CE In-

Home networks provide sufficient computational resources to perform the required 

content-awareness creating multimedia content analysis and to memorize the generated 

content-awareness-creating content descriptors. It is, therefore, natural to consider 

future In-Home CE networks efficiently and transparently sharing their functionalities, 

content and resources (memory, processing). The latter is of importance, because, as 

the consumer trends in section 2.1 unveiled, users desire to interact with devices in an 

intuitive way, e.g. on a semantic level. The here for required semantic metadata cannot 

be extracted by only applying isolated mono-disciplinary content analysis algorithms, but 

instead this requests for a syndication of results from multiple modalities, i.e. content 

analysis results from independent content-awareness creating algorithms each e.g. 

exploiting one sensorial signal in isolation, as we state in our publication [17].  

Such a federation of smart content analysis engines leads, naturally, to increased 

software (SW) complexity, which demands new software architectures and development 

frameworks efficiently exploiting the capabilities and information available across 

autonomous and heterogeneous peers within the network. Several teams are already 

working on such advanced distributed processing architectures. Defence Advanced 

Research Projects Agency’s (DARPA) ‘Hypersmart Computer Systems’ project 

develops systems that can maintain itself, assess its performance and adapt itself 

context dependent, as Halal describes in [17]. In addition, IBM’s ‘Automatic Computing’ 

project develops computer networks that are able to solve network problems 

dynamically and autonomously to accomplish undefined goals similar to a human 

organism [17]. Huhns goes even further in [19] and foresees that a network of 
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computing entities will become soon conscious and sentient. Huhns differentiates here 

for in [19] between ‘outwardly perceiving non-mental entities’, i.e. knowledge about 

external system parameters e.g. input-output data, and ‘inwardly perceiving own mental 

entities’. The latter includes, based on Huhns definition in [19], system self-

consciousness and self-awareness, i.e. knowledge of ongoing internal processes, of 

internal states of system, e.g. buffers, connections and system usage. Moravec, in 

additions, foresees that computing systems will grow soon beyond human capabilities to 

manage them, as described in his work in [20]. Therefore, he predicts that those 

systems soon need to have several additional features. The latter are (a) self-

optimization, i.e. being able to automatically manage available resources, (b) self-

configuration, i.e. dynamically arrange itself based on the given requirements and 

circumstances, (c) self-healing, i.e. being able to determine system problems and 

recover accordingly, further referenced as auto-recovery, and (d) self-protection, i.e. 

being able to defend itself against e.g. unauthorized access.  

The complexity of the task of our work forces us to consider as well developing a 

distributed modular content analysis framework. It should admit self-organization, self-

awareness, dynamic resource management for efficient workload distribution of modular 

processing tasks and, on the long run, a transparent cooperation of connected 

heterogeneous CE devices e.g. for real-time semantic content-awareness creation. But, 

especially the product development, assessment and evaluation cycle demands for 

such a framework, because many independent expert engines need to be syndicated in 

an efficient, quick and hassle-free way. Such a product-concept assessment contains 

four phases, i.e. (a) the imagination-, (b) the invention-, (c) the implementation- and (d) 

the inspection-phase, as published by us in [21]/[22] and sketched in Figure 10 for the 

application of Advanced Content Navigation.  

 

 

Figure 10. Product concept evaluation based on multimedia content analysis example. 
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Firstly, one envisions a new product or application, for example an Advanced Content 

Navigation feature for PVRs, which cleans the content from non-content related inserts, 

such as commercials, and adds semantic meaningful chapter markers throughout the 

recorded content item. In the next stage one invents the enabling technologies required 

to realize the envisioned application such as a Shot Boundary Detector, a Commercial 

Block Detector and Scene Boundary Detector. In the implementation stage, one looks 

for available technology solutions and prototypes critical parts to learn more about their 

technical requirements and limitations. Finally in the inspection phase, one checks the 

system behaviour, measures important characteristics and checks with the final user the 

attractiveness and intuitiveness of the product concept. If the concept fails the circle has 

to be restarted. But in almost all case, because of the fact the applied technical features, 

e.g. content analysis algorithms, are often in their infancy they are often subject of 

frequent changes. Hence, the prototyping framework should offer during the 

development time a transparent implementation of each feature as-is, i.e. non-optimized 

and hence processing demanding, into the framework. This requires a very processing 

powerful and performance-scalable prototyping framework allowing transparent 

integration of e.g. new content analysis modules and a seamless upgradeability of 

existing ones.  

For our prototyping framework, which we aim to use to evaluate, test and verify our 

results in real-time, we decided to use an inhereted simple PC network solution, where 

each PC simulates a processing and memory node in a grid and data stream across the 

grid. For example, for a simple video streaming application realized e.g. on one PC one 

requires three software components, i.e. an encoder, database and decoder. These 

three components have to be controlled by a control instance preferably using a 

standardized interface to guarantee interoperability and extensibility, as sketched in 

Figure 11.  
    

 

Figure 11. Streaming application with control interfaces – local processing.   
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For our framework we chosed together with the co-author of [21] as control Application 

Programming Interface API the especially for CE In-Home networks deployed Universal 

Home API UHAPI, as specified in [23] and published in [21]. For the independent 

streaming API, which is required to pass streaming audiovisual data from component to 

component, sketched in Figure 11 as horizontal data path, we choose the especially 

deployed streaming interface YAPI [25]. For streaming the audiovisual data between the 

components over the network we apply TCP/IP sockets. But, although we describe here 

our real-time streaming prototyping framework the concept and the interfaces are as 

well applicable for an offline implementation of the application running on a consumer 

device. 

As stated in Figure 10, we do not intend to optimize algorithmic components during the 

Implementation and Inspect stages, at least as long the application was not evaluated, 

hence, the individual components are still quite processing demanding. Therefore, each 

single processing unit, i.e. here a PC, is often not enough to assess the combined multi-

component functionality and, therefore, the components run at different units, i.e. PCs, 

in the network. To be able to control and set-up components remotely each component 

is extended with a networking functionality, as sketched in Figure 12 and published by 

us in [24]. For each logical component a proxy is introduced at the client control site and 

a stub are introduced at the real logical component, e.g. dedicated hardware. As 

communication control and notification protocol we choose Universal Plug and Play 

UPnP [26], because it established itself as standard for PC and CE In-Home networks 

and other for our framework useful functionalities.  

 

 

Figure 12. Streaming application with control interfaces – distributed processing. 
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It enables an UPnP control point e.g. to automatically discover new UPnP devices, i.e. 

physical components, in a network, to execute remote procedure calling and remote 

control of UPnP devices and their embedded UPnP services. Automatic discovery, i.e. 

dynamic service discovery, is started as soon as either an UPnP control point or an 

UPnP device is added to the network. In the first case the control point actively 

searches for UPnP devices and in the second the UPnP device broadcasts its presents, 

as further described in [24]. Furthermore, UPnP devices and services dynamically 

propagate their internal state to the UPnP control point and, hence, the system is self-

aware what concerns the state of its components. Setting-up specific applications, here 

called use cases, e.g. Advanced Content Navigation requires a dedicated component 

here for, a connection manager. The latter contains an UPnP control point, establishes 

for every discovered UPnP device a device proxy and connects UPnP devices 

accordingly to the predefined use case, i.e. application, as sketched in Figure 13 and 

described in [24]. Through the framework’s modular nature using UPnP devices running 

on remote processing nodes, i.e. PCs, adding new functionality such as new content 

analysis components only requires to add an additional processing node to the 

framework, as sketched in Figure 14. Each content analysis component, i.e. content 

analysis algorithm, is now encapsulated by an UPnP device layer, which communicates 

with the control point and other UPnP devices through the standardized interfaces and 

exposes its capabilities as service to the network. 

 

 

Figure 13. Application with Connection Manager for distributed streaming system. 
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Each content analysis component, further referenced as Service Unit SU,  is seen by 

the framework as black-box with an defined input and output. Hence, algorithm 

developers can here with transparently upgrade, i.e. replace, their solutions and our 

Service-Unit-approach allows to clearly split system-architecture-related work from 

algorithm-related work. Furthermore, the usage of an standardized control API 

controlling logical components allows the application middleware to be unaware of the 

real implementation, i.e. real components such as hardware or software building blocks, 

and, hence, implementation-independent and portable to other platforms. Raw content 

data are stored within the framework in a real-time-file-system-based database. The 

descriptor data, i.e. metadata, are stored in a central SQL database. But for the future, 

we envision transparent data management across connected heterogeneous peers 

applying an Ambient DB data management layer logically interlinking the underlying 

databases and DataBase Management Systems DBMS, as we summarize in [27]. 

Finally, our distributed service-oriented analysis framework hosts a multitude of 

disciplinary–independent analysis algorithms developed and integrated by independent 

specialists with fluctuating programming capabilities, resulting in a high software failure 

probability. Hence, because of our frameworks complex and Service-Oriented 

Architecture SOA nature and its high probability of software failure we include as well a 

health monitor component in our framework, which monitors the health status of 

individual UPnP devices in a hybrid way, i.e. central-watchdog- and distributed 

heartbeat-message-approach, as we present as well in [28].  

 

 

Figure 14. Scalability of prototyping framework. 
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The self-healing and auto-recovery mechanisms of the health monitor masks the errors 

and, hence, make the error recovery process transparent to the application 

guaranteeing the required Quality Of Service QoS, as we also mention in [29]. In 

addition, we also include a self-optimization component, which efficiently exploits the 

networks resources applying dynamic load balancing, also stated in [30].  

Finally, we include as well a Use Case Manager Graphical User Interface GUI, as 

shown in Figure 15, which visualizes a selected group of Service Units SU required for a 

specific application, i.e. use case.  The use case manager GUI enables the selection of 

required service units, in Figure 15 in blue, and the appropriate definition of data 

connections between these service units for a specific use case. The raw data flow 

connections, in Figure 15 in pink, and metadata flows, in Figure 15 in green, are 

established and the auto-configuration component, i.e. load balancing, distributes the 

service units according to their resource requirements across the available network 

nodes. During execution time a dedicated Health Monitor and Fault Recovery UPnP 

control point monitors the behaviour of all Service Units, i.e. UPnP devices and 

services, and reacts accordingly in the case of misbehaviour, i.e. informing dependent 

service units of the unavailability of crashed service units, but also the recovery of 

crashed service units at the same or a different node and, subsequently, re-establishing 

of connections after re-healing. 

 

 

Figure 15. Use case manager graphical user interface showing service unit network. 
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In Figure 16 we sketch a possible set-up for the desired use case application Advanced 

Content Navigation, which we will elaborate in more detail throughout this work. 

Our framework offers now all of the attributes we needed for fast prototyping exploiting 

the resources of a network efficiently, i.e. upgradeability flexibility, extensibility, self-

configuration, self-awareness, self-adaptation and self-healing.  

 

 

 

Figure 16. Envisioned set-up of Use Case Advanced Content Management. 
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2.3 Service units in distributed content analysis 
prototyping framework  

 

In section 2.2.1 we presented the product concept evaluation cycle, as sketched in 

Figure 10. In the first phase we invent the application product. For this work we first 

selected one application out of a range of possible ones. The potential application are 

‘Zap Circle’ and ‘Intelligent Channel Zapping’, where multiple channels are analyzed 

simultaneously and channels are provided to the consumer in a clustered way, e.g. by 

genre, while zapping through, as published in our patents [12]/[31]/[32]. Another one is 

‘Clean Recording Movie Enhance’, where non-content related inserts such as 

commercials are removed from the content items and subsequently the clean recording 

is stored onto DVD, as claimed in our patents [33]/[34]. Finally, we decided to elaborate 

an extension of application ‘Clean Recording’, i.e. ‘Advanced Content Navigation’. The 

latter not only removes non-content related inserts, but also segments the content into 

semantic meaningful entities, so called scenes or chapters. Because of the applications 

semantic level multiple modality independent content analysis features need to be fused 

together to reach semantic content-awareness. The complexity of the required fusion 

framework and the heterogeneity of expertise required syndicating multiple content 

analysis modalities are the main reason that only few fusion examples are available so 

far. For our work we used our in section 2.2 described content analysis prototyping 

framework enabling independent expert teams to integrate their audio-, speech, image- 

or video content analysis (expert) algorithms into Service Units in a time efficient, 

transparent and effortless way. The resulting service-oriented application-generic but 

domain-specific for the moment content analysis engine, as described in detail in our 

publication in [35], hosts now a multitude of disciplinary-independent analysis algorithms 

allowing the fusion reaching semantic levels. The latter allows reaching human-

communication-like content-awareness, allowing human-like search queries or 

interaction with the system. 

 

2.3.1 Audio and video service units for Advanced Content Navigation 

During the invention phase we identified several disciplinary-independent content 

analysis service units required for our intended application ‘Advanced Content 

Navigation’. Firstly, audio- and video feature extraction, i.e. low-level features, is 

required for the higher-level analysis engines. These extracted features are provided to 

audio- and video mid-level content analysis blocks such as a video shot boundary 
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detector and an audio silence detector, as sketched in Figure 17. Subsequently, the 

output results of these mid-level units are fused to e.g. identify scene boundaries. In our 

simple case these scene boundaries are detected by the temporal correlation of audio 

silences and video shot boundaries, as we describe in more detail in [36]. Hence, with 

this schema we have reached a first concept, which concludes our first invention phase. 

 

To allow an objective development and benchmarking of the individual service unit 

algorithms led we aim to split the problems of the individual service units from each 

other. Hence, each service unit will be evaluated and benchmarked against its own 

ground truth. Nevertheless, the latter is used for subsequent dependent service units as 

input. In this way the development of individual service unit algorithms has no influence 

on the results of subsequent service units and, therefore, objective benchmarks are 

possible. In addition, in the end of this work a brief evaluation was given on the impact 

of the real robustness on the individual Service Units on the final segmentation results. 

 

 

 

Figure 17. Application ‘Advanced Content Navigation’ with required service units1. 
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2.4 Conclusions 
 

The analysis of consumer and technology trends of this chapter unveiled that the 

massive technology capabilities scattered across our processing- and memory powerful 

inter-connected and broadband connected consumer In-Home devices demanded to 

consider new concepts. Exploiting the distributed resources in an efficient way and to be 

able to cope with complexity of the software and hardware architecture stimulated 

applying Service-Oriented Architectures SOA concepts and to exploit grid-computing-

like technologies. The complexity of multimodality content analysis engines, i.e. fusing 

the results of disciplinary-orthogonal content analysis expert teams, motivated to 

elaborate a content analysis prototyping framework. In the latter the individual mono-

modal content analysis components were embedded in Service Units, which were 

realized by UPnP devices and services. An UPnP control point, here a connection 

manager, initiated the individual Service Units required for a specific use case, i.e. 

application, connected the Service Units according to the use case’s specification and 

controled the behaviour of the units hereafter. Flexibility, upgradeability and portability 

were guaranteed by using standardized interfaces within the framework, i.e. UHAPI / 

UPnP for the vertical control interfaces and YAPI / TCP/IP for the orthogonal horizontal 

streaming interfaces. Stability and QoS were secured by dynamic self-configuration and 

self-healing components such as the Health Monitor. Hence, our prototyping framework 

provided a good platform to implement and test selected applications in an efficient and 

transparent way. Following the product concept evaluation circle we imagined and 

invented a specific application, i.e. ‘Advanced Content Navigation’, requiring various 

modality-independent content analysis modules. Our framework served as prototyping 

platform for this application. 

Hence, in this PhD work we will investigate research and develop existing and new 

concepts and methods for our service units, which will allow us to accomplish the task of 

semantic content segmentation. First of all, we will present in the next chapter the state-

of-the-art of potential concepts and methods, which we consider as useful for our 

application task. 
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CHAPTER 3 

 

3 STATE-OF-THE-ART AV SEGMENTATION 
METHODS 

In the previous chapter we introduced the concept of Service Units SU and a related 

distributed architecture for the task of semantic segmentation of audiovisual content and 

in particular for the application ‘Advanced Content Navigation’. We specified that each 

SU is in charge of one task of content analysis or segmentation, which can be either 

low-level, mid-level or high-level. Now the goal is to fill all these service units with a 

specific algorithm to accomplish the application task.  Hence, before we can propose a 

solution and design a method for each SU, we will present, in this chapter, the state-of-

the-art in AV segmentation methods. First of all, the shot boundary detection task is of 

primary importance. Mainly because shots are the elementary units of video content, i.e. 

individual recordings, which have been concatenated together during the post-

production editing cycle. At a higher semantic level, clusters of correlated shots form 

meaningful entities, so called scenes or chapters. Many attempts have been published 

to identify those meaningful transition instances. Therefore in the second part of this 

chapter, we will give as well an overview of audio related segmentation work and, 

thereafter, an overview of relevant video segmentation works published by various 

teams active in this specific content analysis domain.  
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3.1 Video mid-level features for AV segmentation  
Digital audiovisual content can be considered as a combination of two signals. One is a 

temporal signal a(t) representing the audio stream. The second one is a 2D signal, i.e. 

video stream. In order to perform AV content segmentation various low-level audio 

and/or video based features can be exploited, as for example Louis explains in [37]. In 

our work we will concentrate on mid-level and high-level features, which consider low-

level features as basic descriptors, which can be extracted from compressed or raw AV 

signal. Contrary to most low-level features, e.g. colour histograms, mid-level features 

already contain semantically meaningful audiovisual information. These visual based 

mid-level features span from 

• shot boundaries,  

• specific object identification including text and faces,  

• camera motion to  key frames.  

Nevertheless, our video mid-level feature set is not exhaustive, but the most prominent 

ones required for our selected application are covered here.    

3.1.1 Shot Boundary Detection 

The production of content is elaborated as a process following generally predefined 

production rules. Before a content item is produced a (shooting) script is written 

describing the story’s flow. Subsequently a storyboard is drawn to visualize the 

individual elements of the story. Simultaneously during the shooting multiple cameras, 

as sketched in Figure 18 (left), capture the scenery and the target objects or people 

each called a continuous take, which is repeated on average four times resulting in four 

takes per camera position.  

 

 

Figure 18. Shot-based editing of camera takes and various camera positions during 

takes.  
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Subsequently, based on a continuation script, the editor chooses the best sub-

sequences from the multiple takes and concatenates them - further referred to as shots 

- as shown in Figure 18 (right), each comprising a sequence of consecutive frames. The 

ratio between takes and final edited content is on average 12:1, according to [16]. Shot 

Boundary SB analysis is an essential element since video shots can be seen as 

fundamental to a multitude of mid-level and high-level applications based on content 

analysis. During the editing process the editor can either concatenate two shots, which 

results in an abrupt instantaneous frame-to-frame cut transition, as shown in Figure 19 

(middle), or he can use an artistic continuous transition spanning several frames 

creating a smooth gradual transition, which includes wipes, fade-ins, fade-outs or 

dissolves, as shown in Figure 19 (right). Both types are clustered into the group of shot 

boundaries. 

Automatically identifying, i.e. retrieving, theses editing instances, i.e. shot boundaries, 

can be seen largely as a reverse engineering of this editing process. Shots are 

consistent entities and their individual data contents, but also the intercorrelation 

between them provide valuable insights about the contents’ message and story line. A 

reliable shot boundary detector is, therefore, of utmost importance for our work. The 

detector used to retrieve temporal video segmentation of this type is called a shot 

boundary detector SBD, and it consists of a cut detector CD and a gradual transition 

detector GTD, as shown in Figure 19 (left). 

Shots, which described by Brunelli in [38] as the basic unit of video structure, can be 

further segmented by means of camera motion activities such as zooming, tilting and 

panning, which is not dealt with here in this work.  

 

 

 

Figure 19. Shot boundary examples – cut and gradual transitions1. 
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Nonetheless, shot boundaries themselves are essential for various video technologies, 

such as efficient video coding in MPEG-2 or H.264, where the first frame of a shot could 

be encoded as an I-frame. Moreover, shot boundaries are required for enhanced video 

algorithms such as 2D-to-3D content conversion when the processes of segmentation, 

calibration and depth estimation require reinitiating. In addition, shot boundary detection 

is used for high-level applications such as audiovisual chaptering, where multiple shots 

are clustered into semantically meaningful scenes, as described in [36], and which is the 

aim of this PhD. 

Since the last decade, extensive research has been conducted in search of an efficient 

SBD algorithm due to its significance in the domain of video content analysis VCA. 

Despite the large number of proposed cut detectors reported in e.g. [39], [40], [41] and 

TRECVid [42], a superior algorithm, capable of detecting all possible transitions, highly 

accurate and entirely independent of the video sequencing properties, has not yet been 

discovered as summarized in [41]. Therefore, we will research and evaluate promising 

cut detectors and gradual transitions detectors separately from each other in this work.  

 
Cut Detection 
In general, the process of cut detection is common to all of them and can be divided into 

three stages as presented in [43], (a) the extraction of an appropriate video feature, (b) 

a metric–based frame-to-frame consistency measure (inter-frame correlation coefficient) 

followed (c) by a metric inconsistency evaluation instance, which indexes instances as 

cuts once a certain threshold is exceeded.  

Various solutions for (a) and (b) were published dealing with robust and reliable metric-

based frame-to-frame consistency measure for both the compressed as well the 

uncompressed video domain. 

For the uncompressed domain, e.g., Luo used in [44] and Kikukawa in [45] pixel-based 

consistency values by summing up the absolute intensity changes of corresponding 

pixels, but this method is sensitive to camera and object motion. Successively, Zhang 

improved in [46] this method by adding a pre-processing stage. Shahrara further 

improved the system in [47] by adding a block-based motion estimator succeeded by a 

block-by-block comparer. 

Another common method is based on histogram consistency, also called the histogram 

intersection method, which is less sensitive to weak camera and object motion, but 

more sensitive to illumination conditions, as Yeo describes in [48]. For this, the red-

green-blue RGB colour space is divided into B discrete colours, called bins, and the 

number of pixels members of each discrete colour bin is counted. Hereafter, the 

normalized sum of the absolute difference of corresponding bins, as presented in [49], 
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which is the normalized intersection Sє{0,..1} of the resulting histograms HSTi and HSTj 

of two images F(n=i) and F(n=j), respectively, is calculated by  
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where HSTi,k represents the value of HSTi in the k-th bin. S gives an indication of the 

amount of pixels of F(n=i) and F(n=j) with similar colour. For cut detection the dissimilarity 

value  

 ( ) ( )jiji HST ,HSTS-1HST ,HSTD =
 

(3-2),

has been applied. In general, various colour-histogram-based models can be used for 

this approach as Gargi summarizes in [50] by comparing YIQ, L*a*b* and Munsell 

colour spaces. An enhanced version of this method consists in including the spatial 

colour distribution, by e.g. dividing the frames into equal sized regions or blocks as 

Nagasaka describes in [51] using X2 test on regional histograms. Nevertheless, the 

reliability of histogram-based methods is limited by camera motion and the fact that 

different frames can share similar histograms even though the content is completely 

different. 

Besides pixel-intensity- and histogram-based cut detectors, various segmentation-based 

cut detectors have also been introduced e.g. by Zabih in [52] and Yusoff in [53]. Based 

on the theory that at cut instances the new edges appear relatively far from the old 

edges of the previous shot, the number of non-matching edge pixels is counted. In 

addition, motion compensation is applied to make the algorithm motion insensitive, 

increasing the computational expenses of those methods. Unfortunately, edge-based 

methods have problems with fast moving objects. They also heavily dependent on the 

accuracy of the applied edge detection algorithm. 

 

In parallel, various compressed-domain cut detection solutions have been developed for 

processing-constraint environments, as summarized in [40] by Koprinska. One example 

of this is a DC-image- and macroblock-based method using the number of intra-, 

forward- and backward-coded MBs to decide on cut instances as described by Meng in 

[54]. Using only the DC information of I-frames Patel presented another example for 

compressed domain analysis in [55]. Three histograms – a global-, a row- and a 

column-based one – of two successive I-frames were compared to one another using a 

Chi-square X2 test to identify discontinuities in the video stream. In [56] another 

compressed domain shot boundary detector was introduced, further referenced as 

rough indexing cut detection RI CD, which is based on I-, P-frame and global camera 
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motion features. As the detector was benchmarked on the TRECvid 2004 corpus, we 

consider applying this detector as objective benchmark for our own cut detectors in this 

work.  The method is based on two assumptions: presence of (a) motion changes, 

which does not always hold in real content but is realistic in MPEG encoded motion, and 

(b) spatial content changes at cut instances. The method consists of two cooperative 

processes running on an MPEG stream: change detection in P-frames and I-frames. In 

P-frames, it is supposed that macroblock motion vectors (dxi, dyi)T follow a single affine 

motion model for the frame: 
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with (xi,yi) representing the coordinates of individual macroblock centres. Hereafter, the 

normalized absolute differences of estimated motion parameters for consecutive P-

frames ∆*am(n) and an absolute difference of the number of intra-coded macroblocks 

∆Q(n) form a multiplicative mixture D(n) used to detect a cut transition: 

 ββ −

=
∑ ∆++∆= 1

6

1

* ))(1()1)(()(
n

m nanQnD
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with βє{0..1}, and set to 0.8 by default. Supposing a Gaussian distribution N(µ,σ) of D(n) 

inside each shot, a shot–adaptive detection threshold λ=µ(D,W)+Tσ(D,W) is trained 

during the W first P-frames. A shot boundary is indexed at instance n where D(n)>λ and 

D(n)/D(n-1)>α with a consistency check of the sign of ∆Q. For the parallel I-frame path, 

the change detection is based on spatial content matching. DC representations of 

consecutive I-frames are warped using motion-estimation-based compensation. After 

warping, a weighted mean squared error WMSE(k) with 
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(3-5),

is applied as a similarity measure, which is weighted by the inverse of the energy of the 

local image gradient w(x’p,y’p) in order to reduce the contribution of errors on image 

contours. Then, instances fulfilling WMSE(k)>Τh∗µ(WMSE,W) trigger to insert a shot 

boundary index prior to the related I-frame I(tk+1). 

After the calculation of a metric-based frame-to-frame consistency value, either simple 

fixed-threshold-based or more advanced variable-threshold-based methods can be 

applied to make the final cut detection decision. In general, most of the abrupt transition 

detectors use some kind of an adaptive threshold mechanism, meaning that the 

threshold value is computed locally for each frame, when considering the nature of past 

and future frames. The detector is therefore able to distinguish low consistency values 

inside a shot from those at the shot boundaries. In [53], in this regard, Yusoff has given 

an overview and performance evaluation of common threshold methods. 
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Gradual Transition Detection  
The problem of gradual transition detection and classification is much more complex. 

During gradual transitions the contribution of one signal – pictures of shot shN – 

decreases whilst that of another signal – pictures of shot shN+1 – increases as shown in 

Figure 19 (right). Where the pictures of shN are solid in colour, the process is called 

fade-in and when the pictures of shN+1 are solid it is known as fade-out. In the case of 

non-solid colours the process is called dissolve (Figure 19 right), resulting in the video 

signal Sn(x,y). Other progressive effects are possible such as store or wipe or local 

dissolves, where a change is observed inside a region of an image known as 

compositing effect [57]. As fade-ins, fade-outs and dissolves are the most frequent 

transition effects, we will analyse here the detection of a linear dissolve. The model of 

intensity / colour signal in such a transition can be presented as follows [58],   
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(3-6), 

where fn(x,y)and gn(x,y) are the pictures of shN and shN+1, respectively, and L1, W and L2 

the length sequences of shN  alone, the dissolve and the total length, respectively, as 

presented by Fernando in [58]. Under the assumption that the video sequences are 

ergodic processes the mean µ and variance σ expose a linear and quadratic behaviour, 

respectively, with 
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(3-8), 

with ξ=(σf
2+ σg

2)/W2, but in reality the process is not always ergodic due to motion. 

Fernando presents further in [58] a combination of the two parameter mean µ and 

variance σ2 to identify gradual transitions, represented through sequences during which 

the ratio of the second derivative of the variance curve to the first derivative of the mean 

curve is a constant. Fade-ins and fade–outs are detected accordingly leaving the 

pictures of one sequence solid in colour.  
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Due to processing restrictions a simpler but also very efficient spatiotemporal block 

based gradual transition method of Naci, presented in [59], was applied. Another reason 

for this choice was that this method was benchmarked in TrecVid [60] and scored very 

well. After block based motion estimation, similar to the MAD method  (see section 

4.1.2), Naci applied a spatiotemporal block based analysis both in time direction and in 

the estimated motion direction on the intensity value blocks Ii,j,k(m,n,f), with i,j,k 

corresponding the indices of the spatiotemporal block (k indexes the time) and m,n,f 

corresponding the pixel position within each block. Dissolves and fades are 

characterized by monotonously changing luminance values during a gradual transition. 

Naci detected the luminance flow monotonousness of a block (i,j,k) with 
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(3-9),

by applying the absolute cumulative luminance change 
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and average luminance change 
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 and hence, representing monotonous changing sequences by 11 ≈F . In addition, the 

smoothness (gradualness) of the dissolves / fades was specified by  
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(3-12),

using in addition the maximum luminance change 
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where 
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expressed the time wise expansion of the gradual, e.g. with 12 ≈F  for a very smooth 

transition. Naci used the multiplication of F1(i,j,k) and F2(i,j,k) as the confidence value of 

gradual transition in the corresponding block. The average of all the block based 

confidence values with the same time index k=K is a measure for the probability of 

gradual transition in the video in the Kth time interval.  Due to a very limited set of 

complex computer generated wipes in Naci’s AV corpus (in total only 2 computer 

generated wipe-like gradual transitions), wipes have been ignored in his work. 
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Benchmark parameter for cut and gradual transition detection 
The objective evaluation of various temporal video segmentation methods demands 

objective benchmark parameters using (a) a sufficiently heterogeneous reference 

benchmark corpus, (b) a manually (and therefore to some extent subjective) annotated 

algorithm-independent reference ground truth and (c) objective “quality measure” 

criteria.  

An audiovisual benchmark corpus with manually annotated ground truth required for this 

work will be presented in section 0. Ruiloba summarizes the “quality measure” criteria in 

[61] comparing various solutions. The basic parameters for such a performance 

evaluation are NCorrect, NMissed and NFalse, which represent the number of correctly 

detected instances, missed instances (missed detections, also called false negatives) 

and falsely detected instances (false detection, also referenced as false positives or 

over-segmentation), respectively, as sketched in Figure 20.  Herewith the   
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as proposed by Corridoni in [62] can be calculated, but none of the above take the 

complexity of the video sequence nor its size into consideration. 

Hence, the most frequently used benchmark criteria, e.g. used by the benchmark 

competition TRECVid [42], is recall Re and precision Pr of Nagasaka described in [51], 

they will also be used in this work. Recall Re represents the percentage of correctly 

detected examples, here cut instances, in relation to all existing cut instances are further 

defined by  
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(3-16).

On the contrary, precision Pr is the percentage of all correctly detected cut instances in 

relation to all detected cut instances, as calculated with    

 

 

Figure 20. Description of Ncorrect, NFalse and NMissed. 
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(3-17).

Also other evaluation metrices were used for video indexing as well, such as those 

based on the intersection of shots, i.e. ARGOS metric of Joly [63] and the F-measure,  
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 (3-18).

Nevertheless, we limit ourselves to the classical metrices recall and precision, as they 

remain the most widely applied ones, e.g. in TRECVid. We apply them to specify the 

performance of three own cut detectors (section 0). 

 

3.1.2 Motion estimation and camera motion  

Other MPEG-7-defined mid-level video parameters are motion trajectories and camera 

motion. The latter represents background motion, i.e. pure camera motion, which 

implies that foreground motion, i.e. motion of foreground objects, is excluded. Solutions 

described in literature can be categorized in three camera motion analysis methods, (a) 

a feature-based [64], (b) intensity-based [65] and (c) a method for estimating camera 

motion from initially estimated motion vector fields, e.g. applying MPEG-2 macroblock 

vector fields [66]. The feature-based method (a) identifies and tracks a set of features 

through a video sequence, here a video shot, whose movements are fitted into a motion 

model. The intensity-based method (b) uses derivatives of image intensities of selected 

image points, which is followed by a gradient-descent-based error-minimizing step to 

estimate motion vectors. The general case of motion estimation, which covers 

foreground and background motion, is an essential parameter for video compression 

e.g. as used for MPEG-2 video codecs, see annex 1. Background motion, i.e. camera 

motion, is required to create e.g. two/three-dimensional models of a scene, also called 

mosaicing as intended to be used in MPEG-4. On contrary, foreground motion, i.e. the 

motion of objects, is needed to incorporate virtual objects into a scene, e.g. as used in 

MPEG-4 object layers.  

 

Transformation and motion methods 

The available solutions described in literature are initially based on a general net motion 

(estimation) method, which includes foreground and background motion, and in a 

subsequent step background- is separate from foreground motion. The simplest 

transformation is probably the rotation, which may be represented as x’=HRx, where 

x=(x,y) and x’=(x’,y’) represent the original and the transformed 2D coordinates, 

respectively, of an image point with rotation matrix    
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 wherein θ represents the rotation angle. Removing restrictions on the matrix elements 

leads to the general case of a linear transformation, and by applying homogeneous 

coordinates of projective geometry, as described in [67], individual points may be 

represented by triplets of x=(x,y,1). This increase of the transformation matrix to size 

3x3 enables the incorporation of translation, which leads to the affine transform x’=HAx, 

wherein x and x’ are represented in their homogeneous form and the transformation 

matrix HA, which, through further generalization, results in the projective transform 

matrix H with    
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Here a11..a22 are affine deformation parameters and tx, ty are translation parameters. 

Finally, the projective transformation, also known as homography or homographic 

transform, can be represented with x’=Hx with the homogeneous representations of x 

and x’ or with the non-homogeneous coordinates  
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(3-21).

Hence, one, as in the case of HR, to eight parameters, as in the case of H, can be 

recovered from the underlying motion method. Most estimation methods use middle 

between those two extremes and in [67] a hierarchical overview of those 

transformations is given. 

 

Feature-based camera motion analysis methods 

The feature-based camera motion estimation methods detect and track a set of selected 

image points through a video sequence. Farin provides in [64] a comparative evaluation 

of four representative detectors suited for this method, which are Shi-Thomasi, SUSAN, 

Moravec and Harris, wherein the latter is identified as the best performing one. The 

detected and tracked points provide a set of correspondences, which are required to 

estimate the motion parameters using a selected motion method. In the case of an 

eight-parameter projective method (each correspondence provides two equations) at 

least four points have to be tracked to allow a unique solution for H, but, because 

usually more points are tracked, least-squares methods are used to solve the over-

determined equations.  
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Intensity-based camera motion analysis methods 

The intensity-based method, also often referenced as direct or optical flow method, is 

based on directional derivatives of image intensities, e.g. luminance Y-values, at 

individual selected image points to retrieve the required motion parameters by mean of 

a gradient-descent-based error-minimizing step. Applying, for example, a three-

parameter motion method, i.e. two images I(n) and I(n+m) differ only by a translation- 

(panning, a and b) and a scaling (zoom, s) factor, the relation between the images can 

be expressed by 

 )),,(),,( mnsybsxaInyxI +++=
 

(3-22),

with x and y representing the pixel position in the image. The problem is, in this 

example, reduced to retrieve the best corresponding values for a, b and s, whereby 

most papers assume that initial estimates of the parameters are available and finding 

the incremental changes is done by minimizing an error criterion, as for example for 
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(3-23),

  wherein the right side is expanded using a Taylor series,  
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The equation has to hold for all image points of F(n), and the resulting set of equations 

can be written in matrix form using the Jacobian matrix M*∆u=e containing the partial 

derivatives of I(n+m) and a vector ∆u containing the parameter updates, which can be 

subsequently solved by least-square methods. Hager revealed in [65], that the Jacobian 

matrix could be expressed in terms of derivatives of I(n) instead of I(n+m) reducing the 

complexity of the equation drastically.  

 

 

 

 

Figure 21. Line fitting methods for camera motion analysis. 
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Separation of foreground and background motion 

The problem with camera motion analysis is, that foreground object motion has to be 

separated from the background motion, i.e. camera motion, a non-trivial problem. For 

feature-based camera motion analysis methods dominant motion can be separated from 

other motion by means of Random Sample Concensus (RANSAC) algorithm, as 

described by Hartley in [67]. The presence of highly deviant outlier, e.g. fast moving 

foreground objects, can affect the least-square method significantly, as shown in Figure 

21, whereas RANSAC eliminates the outliers by approximating the result fitting the 

largest number of samples (in this case samples represent motion vectors and 

foreground motion would result in outliers).  

 

A random set of samples is used to instantiate the method – here the homography – 

and the fit is defined by number of samples, which conform to the homography. 

Subsequently, the homography with the best fit will be selected.  

For intensity-based camera motion analysis methods other techniques such as coarse-

to-fine processing or M-estimators are used to recover the dominant motion as 

described by Iran in [68]. 

The problem of separation of foreground and background motions in a compressed 

stream was also addressed in [66] and further developed in [69]. Here the initial macro-

block vectors of MPEG2 flow (see Annex 1) represent observed data. They are 

supposed to follow a global 6-parameter affine model similarly to HR of equation (3-19). 

The estimation of a global model by a robust estimator, i.e. Tuckey function, allows 

removing outliers corresponding to foreground objects. The results the authors obtained 

for the camera motion characterisation task in the Trec Video evaluation campaign, as 

published in [70], show that the compressed stream motion descriptors can be used for 

estimation of a global model subject to application of a robust statistical estimator in 

order to filter the estimation noise.  

 

Comparison of feature- and intensity-based camera motion analysis methods 

Feature-based methods track features well in slow-moving scenes, but fail during rapid 

motion sequences and have difficulties with occlusions. On contrary, intensity-based 

methods are sensitive to illumination changes and noise. Optimally, the two methods 

are combined, as for example, the parameters computed for feature-based approach 

may be used to initialize the gradient-descent procedures used for least-square 

minimization of the intensity-based approach. 
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3.2 Audio features for segmentation 
 

When considering content segmentation it is usual to try to extract meaningful 

information primarily from the video signal, but combinations with audio analysis are the 

natural extension to it.  The awareness and willingness to apply the orthogonal modality 

of audio for content segmentation grows and, hence, audio cues are either applied to 

supplement or to complement visual cues in segmenting the audiovisual material. Even 

more, often coherence or dissimilarity of audio cues help to aggregate or separate 

visual shots, which would be difficult or even impossible when applying visual cues only. 

Film directors, for example, often connect visual dissimilar shots through coherent audio 

in the background to express the semantically connection. Furthermore, a specific audio 

signal, i.e. speech, contains high-level audio cues, i.e. spoken text extracted by 

Automatic Speech Recognition (ASR), which can be used for semantically segmentation 

by applying mature text analysis solutions. But also audio classification, often applied as 

pre-processing step for audio segmentation, provides valuable insights about 

segmentation boundaries. Especially, classifying temporal audio sequences into one of 

the main audio classes, i.e. speech, music, silences, background and crowd noise, 

helps to identify audio scene boundaries, because they often correlate with such a class 

transition. In this section we study audio topics relevant or related to audio-based 

segmentation, i.e. audio silences, audio classification and audio segmentation.  

3.2.1 Audio silences 

The discontinuity-like nature of a scene boundary mostly is achieved and augmented by 

using a temporally correlating audio silence at the boundary between two scenes. 

Several studies, therefore, concentrate on this topic. Speech / silence discrimination, for 

example, as studied extensively to improve ASRs, determine boundaries of words and, 

hence, sentences using signal energy / zero-crossing thresholds schemes, as described 

by Rabiner in [71] and Biatov in [72]. In the latter speech / non-speech discrimination is 

applied as pre-processing step to silence detection, where low-level features are 

extracted from zero-crossing intervals within overlapping 20ms frames, forming the input 

for a multivariate Gaussian classifier. A segmentation algorithm is then applied to 

smooth the results of the frame level classification reporting a silence detection rate of 

93.4%.  

Another method, as described by Pfeiffer in [73], is based on a classification process 

based on perceptual loudness measure, which is extracted directly from MPEG-1 layer 

2 audio parameters. It aims to detect relative silences between dominant foreground 
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audio, enabling the detection of silences even during noisy background instances, which 

is difficult when applying conventional energy thresholding. The loudness feature is 

extracted from consecutive 10ms frames, which are classified using an adaptive 

threshold and a sliding window concept. The adaptive part sets the threshold to a 

certain percentage of the maximal loudness in the window at a given time. 

Subsequently silent frames are clustered into longer silence intervals with minimum 

duration (mind) and maximum tolerated interruption (maxi). We restrict our overview to 

these examples. 

3.2.2 Audio classification 

The segmentation by silence can be preceded, as already mentioned, by audio 

classification as pre-processing step. Several methods are available to categorize audio 

instances into one of the five general audio classes, i.e. speech, music, silences, 

background and crowd noise, and then further into e.g. music related sub-classes. Most 

of the known classification methods use as pre-processing an audio feature extraction 

unit and, here after, an audio classification unit. McKinney provides in [74] an extensive 

overview of distinct audio features for feature extraction with regard to their feature 

strength for classification. The resulting selected features applied in [74] within the 

feature extraction unit are: (a) low-level signal properties, (b) mel-frequency spectral 

coefficients (MFCC), (c) psychoacoustic features including roughness, loudness and 

sharpness, and (d) an auditory model representation of temporal envelope fluctuations. 

The classification unit used these features to classify the audio signal into five general 

groups, i.e. speech, classical music, popular music, background noise and crowd noise. 

The four individual feature extraction stages are evaluated using the same classification 

stage, i.e. Gaussian-based quadratic discriminate analysis. The classification 

performance is measured in terms of probability, i.e. standard error. The detection rates 

for the general classes reach about 93.2%. The papers’ conclusion is that temporal 

modulation in combination with audio perception features performs most effective.  

Kim publishes another comparison in [75], where he compares the strength of mel-

frequency spectral coefficients and MPEG-7 Audio Spectrum Projection (ASP) for 

different classification and segmentation tasks. The conclusion is that MFCC 

outperforms the ASP features in respect to performance and computational complexity. 

Pfeiffer presents in [76] another classification framework applying low-level and psycho-

acoustical features, such as volume, frequency, pitch, psycho-acoustical onset / offset, 

frequency transition maps, fundamental frequency and beat. 10ms audio frames are 

used as input for the feature extraction unit. Loudness is used to identify silences, as 

described by Li in [77], and loudness with pitch is applied to differentiate between 
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speech and music. Finally, characteristic overtone and rhythmic patterns are used to 

distinguish between speech and environmental noise. 

In [78] Li describes a framework for real-time TV broadcast content segmentation and 

classification applying the audio signal. The incorporated features include signal energy, 

average zero-crossing rate and fundamental frequency spectral peak track. For the 

segmentation and classification a heuristic rule based procedure is applied based on 

morphological and statistical analysis. The classification results in the general groups, 

i.e. speech, music, song, speech with music, environmental noise and silence. The 

precision rates reported span from 84% for songs to 94.5% for music and the achieved 

recall rates are 89.6% for speech with music to 100% for silences.  

Audio classifiers are of high relevance for various consumer applications and, therefore, 

many methods have been developed recently. Furthermore, classifiers reach 

reasonable recall and precision results. Hence, we consider applying audio 

classification as pre-processing for audio-based segmentation augmenting our video-

based segmentation.  

3.2.3 Audio segmentation 

We briefly summarized some audio classification methods, which often serve as pre-

processing step for audio-based content segmentation, as presented for example by 

Nitanda in [79]. The latter does not rely on the usual prior mid-level categorization and, 

hence, can be useful for e.g. semantic segmentation of more complex audio scenes 

representing multiple general classes at the same time. This is an approach, which is 

comparable with efforts to elaborate Audio Scene Analysis (ASA), which has the aim to 

describe the way, how the human auditory system perceives complex sound 

environments, comprising multiple sound sources varying independently from each 

other. The results are currently incorporated into MPEG-4, which provides tools for 

semantic and symbolic description of audio. 

Another method, described by Sundaram in [80], defines audio scenes as semantically 

consistent segments of audio characterized by a few dominant sources of sound. The 

method uses several features to characterize dominant sounds, i.e. cepstral flux, multi-

channel cochlear decomposition and cepstral vectors. Here after, it determines the 

dominant source analyzing the sequences of feature vectors with regards to periodicity, 

envelope and randomness. Then a causal listener model, which mimics human’s 

perception at multiple time scales, applies several parameters to audio scene changes. 

The parameters used are memory (length of required buffer) and attention span 

(subspace of the buffer). Audio scenes are detected based on the correlation between 

the data in the attention span and the past data in the memory. The audio scene 



  
69 J. Nesvadba 

detection rates achieved on a specific type of content, i.e. science fiction movie, result in 

a reported accuracy of 97% and false alarm probability of 10%.  

Alternatively, Foote describes in [81] an audio segmentation method applying the audio 

similarity between past and future sliding windows. The similarity is expressed as 

feature vector distance, which corresponds to the power spectrum of the signal in the 

individual windows, derived after tampering the analysis window with a Hamming 

window and transforming it with an FFT. The logarithm of the magnitude of the FFT 

results in an estimate for the power spectrum of the signal in the individual sliding 

windows. Performing local thresholding the lowest similarity instances are identified and 

indexed as audio segment boundaries. 

In [82] Cettolo compares three different Bayesian Information Criterion (BIC) based 

audio segmentation methods. Here a parameter is computed, which is based on the 

value of the covariance of the audio signal inside a sliding window of variable size. One 

method uses the sum of the input vectors and the sum of the squares of the input 

vectors for the BIC computation. The second exploits the encoding of the input signal 

with cumulative statistics for the efficient estimation of the covariance matrices. The 

third, finally, encodes the input stream with the cumulative pair of sums of the first 

method. Using performance and computational complexity as criteria, the conclusion is 

that the third method outperformed the other two.  

The analysis of the state-of-the-art work unveiled that many methods for classification 

and segmentation, e.g. [71]-[76]/[79]/[81]/[82], have been elaborated for pure audio 

content, i.e. music and audio broadcast. Nevertheless, the results published for audio-

based segmentation of visual content, e.g. [77]/[78]/[80], are promising. Hence, we 

consider fusing audio classification, as proposed by McKinney [74], and audio 

segmentation with visual cues augmenting our audiovisual segmentation.      
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3.3 Video high-level features for segmentation 
 

The focus of this work is semantic audiovisual content segmentation enabling 

meaningful structuring of the audiovisual content into chapters comparable with the 

chaptering of commercial DVDs. Similar to the audio domain, visual classification can 

be applied as pre-processing step for semantic audiovisual segmentation. In this section 

we summarize several relevant methods for high-level video classification and 

segmentation.  

The abstract semantic nature of semantic chaptering results in a certain subjectivity of 

the task. On the contrary, the definition of a shot boundary (SB), for example, is quite 

objective and does not vary when done manually by various individuals. Unfortunately, 

this is not the case for audiovisual scene boundaries (ScB). Indeed the procedure to 

choose these boundaries requests from the human annotator a priori knowledge at an 

abstract level, e.g. which shots are semantically related and should therefore be 

clustered together into a chapter, i.e. segment. Hence, some possibly objective rules 

have to be defined first to aggregate consecutive shots into semantic meaningful units, 

that is scenes or chapters, and the latter into entire content item entities, as shown in 

Figure 22. These objective rules are essential when trying to compare the results of 

various, otherwise incomparable because of their subjectivity, semantic audiovisual 

segmentation methods.  

 

 

Figure 22. Scene Boundary Segmentation – schematically.      
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From Bordwell we know [16] that scenes represent a natural progression of a content 

item and they form a part of a story, comparable to chapters of a book. Various research 

teams have been busy to elaborate a definition of scenes, which were also referenced 

as video paragraphs, story segments or logical story units (LSU), for example by 

Hanjalic in [83] and Vendrig in [84]. Boggs summarized some of the widely applied 

scene definitions in [85], i.e. 

• Definition 1: A scene is usually composed of a small number of interrelated shots 

that are unified by location of a dramatic incident, as published by Beaver in [15]. 

• Definition 2: A scene is a collection of in time continuous shots that have a single, 

consistent, underlying semantic. 

• Definition 3: A scene is a continuous segment of data having coherent audio and 

video characteristics. 

Some authors consider the notion of a Hyper-scene [86]. The latter means a union of 

content similar contiguous sets of shots. Hyper-scenes are of interest for a non-linear 

browsing in a content item. Nevertheless, in the framework of our research, we will 

focus on a more classical definition, supposing signal continuity. Hence, definition 2 

comes closest to our definition we gave in section 2.1.3, which we applied for manual 

annotation of the audiovisual corpus, i.e. 

• a scene consists of one or more shots conveying one single, consistent underlying 

semantic or narrative element; and 

• a scene may incorporate one or more interleaved narrative events, i.e. cross-

cuttings, or dialogues, i.e. shot reverse shots. Scene boundaries may not appear 

inside a parallel shot sequence; 

But seen today’s technical state, the identification of location consistency and/or 

consistent semantics exceeds the capabilities of current analysis and computer vision 

systems (definition 1 and 2). Hence, also our chosen definition for manual annotation is 

similar to definition 2 we expect that the technical realization will be located between 

definition 2 and 3. This implies that a scene change probably will correlate with a 

measurable significant change of the audio and/or video signal. An alternative for the 

latter is to use audio-video mid-level features instead, which we will consider in this 

work. 

 

3.3.1 Video genre classification 

The specific nature of our chosen audiovisual content, i.e. TV broadcast with embedded 

commercial blocks disrupting the coherence of the content of interest, forces us to 

consider separating the task of video classification and content segmentation. We do 
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not want to burden the segmentation task with the problem of non-content related 

inserts, which can be seen as ‘content noise’. Hence, to accomplish our main task of AV 

content segmentation we have to develop a specific genre classifier, i.e. commercial 

block detector, which we apply for content filtering. The latter has to index non-content 

related inserts to exclude them automatically from subsequent processing steps. 

Because of their commercial value commercial block detectors experience a lot of 

interest, which results in many methods published. Hence, we will give a brief overview 

of them in this section.   

 

Commercial block detection 

Commercial blocks, i.e. a block of individual advertisements, have various distinctive 

detectable attributes, mainly because commercials have to convey an attractive 

appealing message in a very short period of time. Commercials, therefore, consist of 

short individual clips, each containing short shots, corresponding to a high shot 

boundary (cut) frequency, as exploited by Blum in [87], and rich activity. Furthermore, 

black frames separate these individual commercial clips in most broadcast streams. 

Blum presents in an early patent [87] a method based on the combination of black frame 

detection and activity classification, wherein the latter is realized through the change of 

luminance levels between two different clusters of frames. Unfortunately, black frames 

appear quite often at e.g. dissolves and luminance activity at motion-rich activity content 

sequences, both leading to false detections. Iggulden extended, in his patent [88], the 

previous concept by including the time-wise distance between consecutive black-frames 

increasing herewith the robustness of the method. At the same time, Lienhart published 

in [89] a method in combining black frame detection, with shot boundary (cut) detection 

and action detection. The latter consists of the combination of macroblock-based motion 

vector length and edge change ratio ECR with 
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(3-25), 

wherein N defines frame instance, NPN number of pixels of the frame, EdgN
in and 

EdgN
out the amount of entering and exiting edge pixels. The robustness of commercial 

block detection can be improved recognizing time-wise repetition of commercial clips. 

Signatures of known or previously detected commercial clips are matched with new 

commercial clips by means of e.g. colour coherence vectors (CCV) as described by 

Lienhart in [89]. Hereafter, the scientific community started to combine audio and video 

cues, i.e. the co-occurrence of e.g. simple audio silences and black frames as 



  
73 J. Nesvadba 

presented by Marlow in [90]. But also extensions with legal-based rules, i.e. non-

presents of logos, are presented as e.g. by Albiol in [91].  

Iggulden’s and Lienhart’s methods attracted some interest in the consumer market, 

because of their simplicity, but failed due to their robustness. We consider to extent their 

methods with audio cues in this work.  

 

Nevertheless, next to genre classification many attempts were published for semantic in 

content classification, such as highlights for summaries or moods of the content, as e.g. 

published by Hanjalic in [92]. In the latter Hanjalic described content description at the 

affective level. The latter was visualized within a 2D emotion space characterized by 

arousal, i.e. the intensity of emotion load changes along the video e.g. highlights, and 

valence, i.e. the expected changes of the moods e.g. negative segments. His analysis 

using soccer videos were summarized in his papers [92] and [93].    

 

3.3.2 Visual and Audio-Visual based segmentation 

So far we have summarized in this chapter available methods for segmenting the 

content into its elementary units, i.e. shots by means of shot boundary detectors, the 

identification of non-content related inserts, i.e. commercial blocks, and audio-based 

classification and segmentation methods. Our main aim of this work is audiovisual 

content segmentation. Hence, in this section we investigate in total eight representative 

methods for video- and audiovisual segmentation, i.e. scene boundary detection, in 

more detail and evaluate them based on two criteria, i.e. their 

• performance, i.e. their reported robustness for the aim they are developed for, and 

• computational complexity, i.e. the processing power required for the method. 

Unfortunately, the various methods were benchmarked against various corpora and, 

therefore, we categorize and rate the individual methods only coarsely by using a small 

scale of grades, i.e. excellent, good, average and poor. 

In general the eight methods can be clustered into two groups, i.e. those applying only 

visual features and those who combine audio and video cues, with one exception, the 

method published by Wang in [94], which augments visual cues with cues derived from 

cinematographic rules to detect scene transitions. The majority of the methods apply 

shot boundaries as input and, hence, their robustness is very much dependent on the 

robustness of the foregoing shot boundary detector. Unfortunately, all works applied 

own shot boundary detectors, instead of shot boundary ground truth and, hence, the 

scene boundary detection results of all methods are ‘polluted’ by the detection rates of 

the shot boundary detectors. 
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The first method, a framework published by Kang in [95], is based on three hierarchical 

steps, i.e. initial segmentation, refinement and adjustment. The entire method is based 

on a continuous coherence-computing model. Shot boundaries are detected by means 

of colour histograms and regions’, i.e. optical, flow followed by a camera motion based 

key frame selection. The latter are stored in a first-in-fist-out (FIFO) buffer with dynamic 

memory size, representing each shot as a symbol. The symbols of the entire content 

item are shifted through the buffer and coherent shots within a specified attention span 

are clustered together. A feature called shot recall specifies the coherence, where the 

one minus dissimilarity value between two shots A and B, i.e. (1-dissim(A,B)), is 

multiplied shot length of both shots, i.e. shot length ShotA and ShotB, normalized by the 

memory buffer size, resulting in 

 ( ) ( )( ) ( ) ( )mmBA TtNnShotShotBAdissimBAcall /1*/1***,1,Re ∆−∆−−=
 

(3-26). 

The normalization requires the parameter Nm (number of total shots in the memory 

buffer), n∆  (the number of intermediate shots between shot A and shot B), Tm (memory 

buffer size) and t∆  (time difference between shot A and shot B). The resulting shot 

recall is, here after, normalized by the maximum shot recall value Comax(Sa) , which 

results in the coherence value Co(Sa) with 

 ( ) ( )( ) ( )∑= aa SCoBAcallSCo max/,Re
 

(3-27). 

 

Another method, presented by Rasheed in [96], identifies first shot boundaries 

exclusively by means of a colour histogram. Each shot is then represented by a set of 

selected key frames, using the middle frame of a shot as initial frame and key frames, 

which surpass a dissimilarity level, are added to the initial one. In addition to the key 

frames also shot motion and shot length are extracted, as sketched in [96]. Rasheed’s 

scene detection method is based on a two-pass solution. In the first pass a colour 

similarity measure, i.e. Backward Shot Coherence (BSC), is applied to quantify the shot 

matching between successive shots. Dips of the BSC graph are, here after, indexed as 

Potential Scene Boundaries (PSB).  

High over-segmentation, e.g. caused by non-repetitiveness in for example action-loaded 

sequences, inspired Rasheed to include a second pass applying a Scene Dynamic (SD) 

measure to improve the robustness of the method. The SD is a function of shot length 

and shot motion used to merge scenes of the first pass and, here with, to reduce the 

over-segmentation. For each scene i the correlated SDi is computed by normalizing the 

shot motion SMCj of the j-th shot in the scene by the shot length Lj of the corresponding 

shot, resulting in 
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(3-28). 

The large values of SMCj and smaller values of Lj in dynamic scenes cause SD to be 

large and, hence, increase the tendency to merge scenes. 

 

At the same time Rasheed published in [97] a scene boundary detector, which 

combines an indoor- and outdoor-scene oriented clustering method applying visual 

contents- and motion contents similarity, respectively. During indoor shots multiple 

cameras capture similar background with similar foreground, which can be identified 

with visual similarity, i.e. colour similarity. Outdoor sequences like action- or travel-

scenes, on the other hand, exhibit correlating motion. First he calculates the colour 

similarity ColSim(x,y) between two frames, i.e. x and y, by applying the minimum HSV 

histogram distance of the two frame histograms, i.e. Hx and Hy, with 
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(3-29). 

 

 

 

Figure 23. Flow chart of Scene Boundary Detection method of [96]. 



 

  
76  

Here with he computes the motion contents similarity Motz by normalizing the overall 

dissimilarity with the length of shot z=b-a. Here b is the end frame index and a the start 

frame index, which results in   
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(3-30). 

The resulting inter-shot similarity ShotSim(i,j) between two shots, i.e. shoti and shotj, is 

the sum of visual similarity VisSim(i,j) and motion content similarity MotSim(i,j) with 

 ),(),(),( jiMotSimjiVisSimjiShotSim +=  (3-31). 

 

VisSim(i,j) is the maximum colour similarity between all key frames of the two shots with 
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(3-32), 

and MotSim(i,j) is derived by computing the motion content similarity between two shots: 
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Here after, shot similarity ShotSim(i,j) is multiplied with a temporal-based exponentially 

decreasing weight function w(i,j) resulting in the shot similarity measure W(i,j), 

 ),(),(),( jiShotSimjiwjiW ⋅=  (3-34), 

which reflects the likelihood of two shots belonging together to the same scene.  

 

 

 

 

Figure 24. Rasheed’s shot similarity graph as described in [97]. 



  
77 J. Nesvadba 

The weight function, intended to decrease the likelihood of temporal distant shots, is 

calculated by using the temporal distance of the middle frames of two shots, i.e. mi and 

mj, the decreasing rate d and the standard deviation of the shot duration in the entire 

video σ resulting in 
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(3-35). 

 

The results of the shot similarity measure W(i,j) for a 36 minutes movie sequence are 

shown in Figure 24 together with scene boundary ground truth. This method is based 

only on low-level features such as histograms and it therefore not convincing. 

Specifically, the authors consider a very limited definition of scenes based on colour 

similarity / dissimilarity. We will see that indeed this method exhibits only low 

robustness. 

 

But visual cues can be enhanced by audio cues, which Huang presents in [98], where 

Huang augments colour- and motion content based discontinuity scene detection, 

similar to the previous methods described, with audio break detection. For the latter he 

first divides the audio signal into non-overlapping one second clips. For each clip a 

number of feature values are extracted, i.e. non-silence ratio, volume standard 

deviation, volume dynamic range, 4 Hz modulation energy, pitch period deviation, 

smooth pitch ration, non-pitch ratio, frequency centroid, frequency bandwidth and 

energy ration in 3 sub-bands. The feature values form together the feature vector )0(f  

of the current clip, )(if  for the i-th clip. With the standard deviations σ2
A- and σ2

A_ of the 

features of the predeceasing N-clips and a small constant c, to avoid division by zero, 

the Euclidian distance ||.|| between two clips is computed resulting in the audio 

dissimilarity DA with  
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(3-36). 

The local maxima of DA are then indexed as audio breaks if they exceed a defined 

threshold. The visual-dissimilarity-based break detection, i.e. with colour histograms and 

motion content, is derived in a similar way as described in [97]. Here after, for each 

audio break the close neighbourhood is checked for present visual breaks and if case of 

temporal correlation the instance is indexed as scene boundary.    
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A method, not only applying audio segmentation but also audio classification, is 

presented by Zhu in [99], where he categorizes the audio signal into four audio groups, 

i.e. silence, speech, music environmental sound, before segmentation is applied. For 

the case of speaker also speaker change detection is applied. Firstly, as shown in the 

flow graph in Figure 25, a differentiation is done between silences, which have the 

attribute of low short-time average energy and short-time average zero-crossing rate, 

and non-silences. The remaining non-silences instances are check for environmental 

sounds, i.e. applause, whistle and other noise, which have the attribute of containing 

high frequencies, in the contrary to music and speech, which remain in the low 

frequency range. 

Hence, he applies the frequency centroid to identify environmental sound instances. In 

the remaining instances Zhu discriminates between speech and music by using Low 

Energy Ratio (LER), which represents the ratio between the number of frames with an 

energy level below a certain threshold and the number of frames in the entire audio clip.  

 

 

Figure 25: Zhu’s audio classification flow chart block diagram from [99]. 
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Zhu calculates the LER for the i-th clip, i.e. the sequence from the initial frame t1 and to 

the terminal frame t2, by thesholding and normalizing the energy function, where L
tf =1 

if the energy of the audio frame is below the threshold and otherwise L
tf =0, which 

results in 
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(3-37). 

LER reaches higher values in speech than in music. Furthermore, the speech signal 

exhibits frequent evenly distributed peaks and, hence, he applies, in addition to the 

LER, the high zero-crossing rate number (HZCRN) as speech-music discriminator. 

Audio class transition instances are indexed as audio breaks and if they temporally 

correlate with visual breaks, i.e. cut or gradual transitions, then they are indexed as 

scene boundaries.  

 

Another audio classification augmented scene boundary detection method is described 

by Rho in [100], where he first applies audio classification prior audio segmentation to 

detect audio breaks, similar to Zhu’s method of [99].  

Here after, temporal correlating instances of the latter with visual breaks. i.e. shot 

boundaries, are indexed as scene boundaries. The method applies short time average 

energy function to derive loudness, which is used to discriminate between voice and 

noise. 

 

 

Figure 26. Rho’s scene boundary detection method described in [100]1. 
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The distinction between voiced and un-voiced speech signal x(n) is done by using the 

average zero crossing rate (ZCR) with the sign of x(n) normalized across the clip length 

N with 
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(3-38). 

To distinguish between the high frequency containing music and speech the energy 

distribution is applied in combination with the bandwidth, because music exhibits is 

normally scattered across a broader frequency range than speech. The bandwidth is 

simply measured from the lowest to the highest frequency of the non-zero spectrum 

components.  The last discriminating audio feature applied is harmonicity, because 

music contains usually harmonic sounds, whereas speech is a mixture of harmonic and 

non-harmonic components and environmental sound only contains non-harmonics. The 

audio class transition instances are indexed as audio breaks between Candidate audio 

scenes CSai and in the case of temporal correlation with Candidate shot boundaries CSvi 

they are indexed as scene boundaries, as shown in Figure 26. Hence, in this method an 

in deep attempt is made to classify audio into usual classes and to use these data as an 

indication for scene boundaries. 

 

In [101] Chen describes as well an method syndicating audio and video to identify scene 

boundaries, but in this case the shot boundary method is enhance with object tracking 

and for the audio break detection three parallel audio detectors are applied. This 

method claims the best performance results. For the visual part segments are identified 

within the frames and tracked by means of a Euclidian distance between the centroids 

of the segments in adjacent frames, as shown in Figure 27.  

 

 

Figure 27: (a) Reference frame; (b) segmentation mask map of reference (a); (c)  

bounding boxes and centroids for the objects/segments in (b), as shown in  [101]. 
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Object tracking discontinuities are augmenting the robustness of the shot boundary 

based visual break detector. For the audio breaks nine different audio features are 

clustered into three different audio groups, i.e. volume group, power group, spectrum 

group. For each group the Euclidian distance is measured between two successive clips 

and if at least one of the three measures exceeds its corresponding threshold the 

instance is indexed as audio break. Here after, the usual temporal correlation between 

audio and visual break is applied to index scene boundaries.  

 

The last method, presented by Wang in [94] is the only one incorporating 

cinematographic production rules, i.e. film grammar, into the scene boundary detection 

approach. In his method he exploits the knowledge of the 1800 rule, i.e. that the 

cameras’ viewpoints should be always at one side of a virtual line. Actor, for example, 

standing in the right half in the scene will maintain his right position as well in close-ups, 

as shown in Figure 28 (left). But also montage rules, i.e. concentration and enlargement 

rules are used. The concentration rule defines that a sequence start with a long distance 

shot and progressively changes by zooming into a close-up shot by decreasing the 

camera’s focal distance. The reverse of it is the enlargement rule, which specifies the 

approach how to switch from a close-up of the object to a total view by progressively 

zooming out, as shown in Figure 28 (top right).  

 

 

Figure 28: Cinematographic rules from [94]1. 
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This sequence is indicative for an upcoming scene boundary. Finally, Wang includes as 

well the parallel rule, which specifies how to compose scenes involving multiple themes, 

i.e. shots of two or more themes are shown in an alternate fashion within the same 

linear sequence. An example for the latter is a dialogue between two persons, as 

sketched in Figure 28 (bottom right), or parallel activities shown in an alternating way. 

Shots belonging to the same theme tend to have strong visual similarities and the same 

focal distance, which Wang exploits in his method. 

 

Performance 

The reported scene boundary detection performance results, i.e. recall and precision, of 

all methods are summarized in Table 1. Unfortunately, each method was benchmarked 

against its own corpus and various scene boundary ground truth rules were used for the 

manual annotation. Furthermore, the results of preceding analysis steps fuzzify the 

performance results, e.g. instead of applying the shot boundary ground truth the output 

of the real shot boundary detector was incorporated. Nevertheless, the overview shows 

that audio augmented methods, i.e. [98] to [101], outperform the visual-only methods, 

i.e. [95] to [97]. The method exploiting cinematographic rules [94], i.e. film grammar, 

performed in between the two groups, but offers the broadest potential. 

 

Complexity 

Also the computation complexity is not of high relevance for our work, we have coarsely 

labelled the methods based on their technical requirements to extract the applied 

features. We assume compressed content as input, i.e. MPEG-2, and exploit as much 

as possible features available in the compressed domain. The three video-based 

methods (i.e. [95] to [97]) apply colour histogram and motion information. These data 

are easily extractable from MPEG-2. But in addition all three methods require a memory 

buffer. The audio augmented methods, i.e. [98] to [101], all apply easy extractable 

cheap audio features in combination with cheap video features, except the method of 

[101], which requires complex object tracking. The cinematographic method is the most 

complex one, because it requires object analysis. The coarse classification of the eight 

methods is summarized in Table 2.  
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Table 1: Performance evaluation of the methods presented in this section. 

Method Tested on Recall Precision Rating 

Movie (20 min.) 82.0% 85.0% good 

Drama A  (20 min.) 88.0% 85.0% good 

[95] 

Drama B  (20 min.) 87.0% 87.0% good 

Terminator 2 (55 min.) 86.1% 81.6% good 

Golden Eye (60 min.) 88.0% 62.9% average 

Gone In 60 sec. (58 min.) 84.6% 76.7% good 

Top Gun (50 min.) 88.5% 76.7% good 

A Beautiful Mind (36 min.) 88.2% 71.4% average 

[96] 

Seinfeld (21 min.) 86.4% 70.0% average 

A Beautiful Mind (36 min.) 83.3% 53.6% poor [97] 

Terminator 2 (55 min.) 88.9% 45.7% poor 

Basketball (155 sec.) 100.0% 100.0% excellent 

Football (223 sec.) 100.0% 100.0% excellent 

News + Commercials (218 sec.) 100.0% 85.7% excellent 

[98] 

News (158 sec.) 100.0% 0.0% worse 

News 1 93.4% 97.5% excellent 

News 2 94.5% 98.2% excellent 

Commercials 90.8% 92.6% excellent 

[99] 

Story 88.3% 91.7% excellent 

TV Commercials + News 84.0% 90.0% good [100] 

Movies 86.0% 97.0% excellent 

V1 93.0% 93.0% excellent 

V2 92.0% 92.0% excellent 

V3 78.0% 100.0% good 

V4 91.0% 91.0% excellent 

[101] 

V5 90.0% 86.0% good 

[94] Movie + Documentary 86.2% 82.7% good 
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Table 2: Overvie of computational complexity evaluation. 

Method 
Visual Feature 

 Calculations 

Audio Feature  

Calculations 

Temporal  

Processing  

(Buffering) 

Special Processing Rating 

[95] 2 0 YES 0 good 

[96] 2 0 YES 0 good 

[97] 2 0 YES 0 good 

[98]* 2 1 NO 0 excellent 

[99] 2 4 NO 0 excellent 

[100] 3 5 NO 0 excellent 

[101] 1 9 NO 1 average 

[94] X X YES X worse 
 

Furthermore, many attempts were published approaching the semantic gap from two 

sides, (a) bottom-up, i.e. combing audio and video features to extract higher level 

semantics such scene data, and (b) top-down, i.e. selecting semantic events and 

extracting feature behaviour. One of the two side approach concepts was published by 

Leonardi in [102], applying a finite-state machine using MPEG-2 motion data for the top-

down approach and a Hidden Markov Model HMM for the bottom-up approach. The 

conclusions of Leonarid’s study were that knowledge of the content, i.e. top-down, was 

necessary achieving semantic characterization reliably. 

   

   

Conclusions 

We have seen that many methods were elaborated to identify scene boundaries, but 

because of the task’s subjective nature and the herewith-related different requirements 

for different content can be seen as a reason here for. Many methods apply visual 

features only, but are outperformed by those augmented with audio-based features, as 

may expected. Furthermore, the audio augmented methods, replacing partly costly 

video features by cheap audio features also complexity wise outperform the video only 

methods. Nevertheless, we think that the highest potential has the approach based on 

cinematographic rules, i.e. film grammar, because it approaches the task by exploiting 

semantic understanding of the content, as proposed by Wang in [94].   
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3.4 Conclusions 
 

In this chapter we have summarized work dealing with a selected group of topics 

relevant for our work. The basis for audiovisual content analysis is almost always to 

segment the content into its atomic units, i.e. shots in our case. Many compressed- and 

uncompressed-domain cut detectors are available, e.g. [39] to [53], as presented in 

section 3.1.1, but achieved performances are still below our requirements. Hence, we 

consider researching various new cut detection methods and benchmark them against 

one selected method, i.e. Rough indexing cut detection [56], which participated in 

TRCVid [42] and, hence, provides us with a more objective reference point. For gradual 

transition detection fewer methods are available and for our work we consider using 

Naci’s method [59]. The analysis of audio-based methods to segment audiovisual 

content, summarized in section 3.2, unveiled that promising results can be achieved, as 

presented in [77],[78] and [80]. Even more, many methods use an audio classifier as 

pre-processing step to enhance the results, which we consider as well by applying 

McKinney’s method [74] for classification. The specific nature of our content, i.e. TV 

broadcast, requires considering to develop a genre specific video genre detector, i.e. 

commercial block detector, to eliminate non-content related inserts. The methods of 

Iggulden [88] and Lienhart [89], described in section 3.3.1, are attractive due to their 

simplicity but under perform what concerns robustness. We consider elaborating their 

methods in the context of this work. In the final section of this chapter, i.e. section 3.3.2, 

the analysis of video- and audio-based segmentation methods showed that audio-

augmented method outperformed the video-only-based ones performance and 

complexity wise. Nevertheless, we believe that the cinematographic rule based method 

presented by Wang [94], offers the highest potential because it exploits semantic 

understanding of the content. Hence, we aim to follow this concept.    
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CHAPTER 4 

 

4 Audiovisual content analysis methods for 
semantic segmentation 

In this chapter we present our contribution to the research and development of 

advanced methods for audiovisual content analysis.  

Firstly, we present in section 4.1 a selected group of video low-level (section 4.1.1) and 

mid-level features (4.1.2), which we aim to apply for general and application-oriented 

audiovisual content analysis tasks. In section 4.1.2 we present, namely, our contribution 

in the domain of audiovisual shot segmentation, i.e. shot boundary detection.  

Here after, we describe in section 4.2 task oriented audio low- and mid-level features, 

which we consider applying amongst others for a specific genre classifier. 

In section 4.4 we present our contribution developing a dedicated genre specific content 

filter to identify non-content related inserts, i.e. commercial blocks. This commercial 

block detector is applied as pre-processing step to audiovisual content segmentation. 

Once filtered, the content can be analyzed from a production point of view. In section 

4.5 we propose a method to check the content consistency exploiting knowledge of film 

grammar production rules.  

Finally, in section 4.6, we develop a method for the detection of scene boundaries in 

audiovisual content embedded in a general content analysis framework.  
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4.1 Video low-level and mid-level feature 
In this section we describe several of low-level and mid-level video analysis based 

features, which constitute the basis for our high-level segmentation and classification 

tasks. The partially constraint target environment forced us to research not only base-

band, but also in some cases compressed content analysis solutions. In section 4.1.1 

we describe in-depth a set of compressed- and base-band-domain low-level video 

features. In 4.1.2 we present several of our video shot boundary detectors and 

benchmark them against each other. Furthermore, we describe the methods we 

propose for a selected group of other mid-level features such as text and face detection. 

 

4.1.1 Video low-level features 

In this section we describe various compressed- and base-band-domain low-level video 

analysis solutions we developed to serve high-level application algorithms as input 

parameters. The specific MPEG-2 terms used in this section and specific compression 

parameter settings were described and summarized, respectively, in Annex 1. 

 

Macroblock matching parameter in MPEG-2 

The advantage of applying compressed video content, e.g. MPEG-2 material, for video 

feature extraction is based on the fact that during video compression, i.e. encoding, 

spatio-temporal information is extracted from video frames to enable efficient encoding. 

The same information can be re-applied as low-level features for video analysis and 

indexing. Let us consider a motion estimation algorithm used for MPEG-2 compression. 

As described in our MPEG-2 annex, i.e. Annex 1, frames are subdivided into 

macroblocks (MB). A motion estimator (ME) is applied to the macroblcok of the current 

frame searching for best corresponding macroblck in a reference frame, as described in 

detail in Annex 1. The ME seeks to minimize the mean absolute difference (MAD) 

criterion. The MAD measure is computed by 

 ∑∑
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(4-1),

where MAD(x,y,dx,dy) represents the MAD between a 16*16 array of pixels (pels) of 

intensities In(x+i,y+j), at MB position (x,y) in the source frame N, and a corresponding 

16*16 array of pixels of intensity IM(x+dx+i,y+dy+j), in reference frame M, with dx and dy 

representing the shift along the x and y coordinates, also called motion vector. The 

optimal, i.e. minimal, value of MAD allows quantifying the MB similarity between two 

consecutive frames. Here after, we calculate the normalized difference value 
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MADNorm(N) per frame, here for frame N. For this we first compute the sum of all MADs 

across all slices excluding letterbox2 and subtitle slices. Herein 

• MBPS represents the number of macroblocks per slice, 

• SPF is the number of slices per frame, 

• LB is the number of slices containing the letterbox, 

• STS is number of slices containing subtitles. 

The sum is, here after, normalized by the total number of MBs, i.e. (SPF-STS-

2*LB)*MBPS, multiplied by the maximal possible MAD value, i.e. 256, resulting in 
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(4-2).

 

Frame complexity analysis in MPEG-2 
For efficient variable MPEG-2 compression encoders normally compute internally 

another valuable measure, i.e. normalized complexity COMNorm, to which we have 

access by using our own MPEG-2 encoder for this work. In fact COMNorm is related to 

the product of motion and texture. To compute COMNorm, which is valid for I-frames only, 

we apply two compressor internal parameters, i.e. 

• BG the number of bits generated or required to represent the information 

  within a segment, where a slice here is divided into three segment, and  

• QS the quantizer scale, which is the quantization scale set per segment. 

Next, we sum this product, i.e. BG*QS, across  

• all specified segments, i.e between fs / ls representing the first and last segment 

inside a slice, and 

• all specified slices, i.e. between fi / li, i.e. the first and last slice taken into 

consideration. 

Finally we normalize the complexity by the area considered multiplied by the maximal 

value possible with BG*QS, which results in 
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(4-3),

Unfortunately, BG and QS are video compressor internal parameters and, hence 

encoder dependent. Nevertheless, for the context of our work this is a valuable 

parameter, which we intend exploiting.  

                                                 
2 Letterbox represents in the 16:9 modus black bars on the boundaries (top, bottom) of a video 

frame.  
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Progressive - Interlace classification in MPEG-2 
Furthermore, an MPEG-2 encoder is able to differentiate between progressive content, 

which is used e.g. to capture movies, and interlaced content, which is applied e.g. to 

record soaps and series. Hence, this mode parameter is also applicable to detect 

boundaries in video broadcast content. Furthermore, this enables the encoder to further 

increase the compression, because both formats have a specific repetitive pattern, as 

described in Annex 2. Hence, MPEG-2 allows switching between DCT field mode and 

DCT frame mode on a macroblock basis. The DCT field mode appears prominently with 

interlaced content, whereas the DCT frame mode with progressive material, as 

described in Annex 2. The DCT field / frame mode decision per macroblock is based on 

two Hadamard transforms, one calculating the correlation between pixels of consecutive 

rows (‘1st Hadamard  frame mode) and the other between every second row (‘2nd 

Hadamard  field mode). If ‘1st Hadamard’ > ‘2nd Hadamard’ is true, then the 

macroblock is labelled with DCT field mode, otherwise DCT frame mode, but the 

condition of sufficient horizontal motion has to be fulfilled, due to the specific nature of 

the decision coefficients. In static sequences, for example where the motion condition is 

not fulfilled, the decision is always DCT frame mode independent of the material’s 

original format. Based on experiments the following rule is defined empirically. If more 

then 90% of all macroblocks of a slice i in frame N have an absolute horizontal motion 

|x-motion|>8 halpels, i.e. half pixels, then  
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Figure 29. Interlaced-progressive classification for a movie with a commercial block. 
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with MBDCTMode=1 for a DCT field macroblock and MBDCTMode=-1 for a DCT frame 

macroblock. Subsequently, the slice values are added to a running sum SUMProg/Inter(N) 

with 
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(4-5),

which is clipped at the empirically derived values ±20.000, as shown in Figure 29 for a 

progressive mode feature film with several interlaced/progressive mode commercial 

clips. 

  

Black and monochrome frame detection in MPEG-2  

Black and monochrome frames are features, which we categorize as low/mid-level 

features. Both frames are often delimiters in specific content sequences such as 

commercial blocks, as claimed by Blum [87], Iggulden [88] and Lienhardt [89]. Initial 

performance restrictions motivated us to research as well MPEG-2 4:2:0 sub-sampling 

format based solutions. Hence, additional parameters we look at are the normalized 

average luminance and chrominance values YDC_AV_Norm(N), UDC_AV_Norm(N) and 

VDC_AV_Norm(N). They are individually calculated on each available intra frame (I-frame) 

with 
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(4-8),

wherein YDC, UDC, VDC  represent the normal and max(YDC), max(UDC), max(VDC) the 

maximal values of the DC luminance- and chrominance values, respectively, per block. 

b defines the number of blocks per macroblock, MBFS the macroblocks per slice, SPF 

the number of slices per frame and LB the number of letterbox slices. YDC[N,10,5,3], for 

example, represented the 3rd YDC  block, of the 5th macroblock in the 10th slice of frame 

N. It should be stated that the method is light in computation as we use only DC 

coefficients, i.e. scaled values of block mean values, as explained in Annex 1.  

Next to the average values also the normalized ‘variances’ of the Y, U and V 

components, YDC_VAR_Norm(N), UDC_VAR_Norm(N) and VDC_VAR_Norm(N), respectively, are 

calculated to improve the robustness of the monochrome frame detector with 
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as schematically explained in Figure 30. Statistical analysis on manually annotated 

ground truth showed, that with YDC_VAR_Norm(N), equation (4-9), optimal black and 

monochrome frame detection results are achievable. For simplicity reasons 

YDC_VAR_Norm(N) is normalized to one, i.e. range [0 .. 1]. Hereafter we defined empirically 

some thresholds for black frames and monochrome frames. For YDC_VAR_Norm(N)<0,009 

frames are labeled as black frames and frames with 0,009≤YDC_VAR_Norm(N) ≤0,015 are 

indexed as monochrome frames. 

 
Letterbox detection for format classification in MPEG-2 
The smooth transition and, therefore, parallel existence of both 4:3 and 16:9 TV 

contents and screens, i.e. two TV formats, necessitates to render e.g. 16:9 content on 

4:3 displays with letterboxes.   

 

Figure 30. YDC_VAR_Norm(N) luminance differential value. 
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Letterboxes are black bars spanning across the top and bottom slices of a frame as 

shown in Figure 31. Hence, when rendering 16:9 content on a 4:3 display the missing 

slices are replaced by black bars. The detection between 16:9 and 4:3 format, is not 

only valuable to distinct between normal video content, e.g. soaps, and feature films, 

which are often recorded in a 16:9 cinema format. But it is also useful for commercial 

block detection, e.g. when a 16:9 feature film with letterboxes is interrupted by individual 

4;3 advertsiment clips. For the detector we compare the normalized DC average 

luminance value,  
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with the normalized DC variance luminance value, 
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(4-13).

 
The applied index numbers for letterbox slices, i.e. LB1 to LB2, are summarized in 

Annex 1 in Table Table 57 for various formats. For our experiments we use PAL D1 

content, i.e. for the upper letterbox calculation LB1=1, LB2=4 and LBs=4 and for the 

lower LB1=33, LB2=36 and LBs=4. As in the case of black / mono-chrome frame 

detection the equivalent normalized luminance, here YDC_VAR_LB_Norm(N) of equation 

(4-13), outperformes the predecessing one (4-12) what concerns detection robustness. 

Statistical analysis based on manually annotated ground truth resulats in a threshold 

YDC_VAR_LB_Norm(N)≤0,012 for letterbox detection. Hence, if either the upper letterbox part 

of the lower letterbox part falls short the detection threshold than the frame is indexed 

as one containing a letterbox.   

 

 

Figure 31. Conversion from 16:9 to 4:3 format with letterboxes1. 
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4.1.2 Video mid-level features 

In this section we introduce various video mid-level features we research and develop in 

the context of our PhD research to fulfil our task of semantic chaptering. These mid-

level features apply as input several of our previously described low-level parameters.  

 

Shot Boundary Detection – Cut Detection 

In our work, temporal segmentation of video content, i.e. shot boundary detection 

(SBD), is an essential element of various spatio-temporal video-processing 

technologies, as we described in chapter 3 ‘State-of-the-art’. SBDs can be classified into 

cut detector CD and gradual transition detector GTD. The importance of SBDs and strict 

requirements (real-time analysis at 25 fps with above 96% precision and recall) based 

on platform, processing and performance constraints force us to develop and to 

benchmark various own cut detectors. In particular, the cut detector that is finally 

chosen has to be reliable since temporal segmentation forms the basis for a multitude of 

other mid-level and high-level analytical features. The need enabling appropriate trade-

offs to be made between reliability and the required processing power, necessitates to 

research four cut detector algorithms benchmarked against a ground truth of a generic, 

culturally-diverse multi-genre AV corpus. The latter is presented in the next section 0. In 

the following sections, i.e. section 0 to section 0 we will introduce three cut detectors we 

propose in this work and one one cut detector from academic research. In section 0, the 

four cut detectors are benchmarked against each other and the best performing cut 

detector is then selected, as also published by us in [103]. Finally, a post-processing 

step is applied, as presented in section 0, and the potential future work is summarized in 

the conclusion of this section in 0.  

 
AV Corpus for Objective Development of Content Analysis Algorithms 
In order to be able to objectively benchmark the quality of various content analysis 

algorithms, used e.g. for applications in CE recording devices, a representative AV 

corpus, with manual or semi-automatically generated ground truth, has to be defined. In 

the CE context ‘representative’ means, that the AV corpus covers the average content 

recorded by a representative group of consumers. Moreover, the term ground truth is 

used for the correct and objective indexation data, i.e. manual annotations based on 

objective rules, which is required to objectively benchmark automatically generated 

results of content analysis algorithms. The on news focused, and therefore narrow 

scope genre-specific nature of the AV corpus of the benchmark initiative called TrecVid 
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[104] (2003), and the absents of an viable alternative forces us to set-up a more genre-

wise AV benchmark corpus, which we present next.  

 

Selection of AV content genres according to population pyramids 

First of all, sufficiently objective rules have to be specified to select an appropriate AV 

corpus to benchmark our content analysis methods, which we propose in this work. 

Hence, based on these objectives, which we describe below, we decided to record 20 

hours of content. Hereafter, we studied the consumer needs to find an optimal 

repartition of these 20 hours of AV broadcast content for such a representative AV 

corpus. 

Hence, firstly we identified the distribution of a global (world-wide) consumer group by 

means of population pyramids, based on data acquired from the Internet [105]. To keep 

it manageable, only the populations of China, the United States of America, and the 

European Union (15 states) are considered.  

The following graphs (see Figure 32) represent demographic distribution across various 

selected geographical regions3 and time variations (see basic data at Table 59, Table 

60 and Table 61 in Annex 3). In Figure 32 we show first the three demographic 

distributions of China for the years 2002, 2025 and 2050, and subsequently the same 

distributions for USA and European Union. In each graph the left side represents the 

male-, and the right side the female population distribution (‘population in millions’) 

across the various age classes, which are represented on the vertical axis. The age 

classes are clustered into 16 equal groups (from 0 to 80) and one group containing the 

population above 80 years.  

In the next step, the following population age classes4 are chosen as focus age groups: 

15 – 20, 20 – 25, 25 – 35, 35 – 45, 45 – 55 and 55 – 65. As Table 3 shows, the selected 

age groups represent the majority of the entire population. 

 

                                                 
3 Selection of three geographic areas is necessary due to time constraints. A broader geographic 

coverage will be the aim for future research. 
4 An extension of this work will be to include other age classes to achieve a better demographic 

coverage. 
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Figure 32: Population pyramids China, USA and EU. 
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Statistical Calculation 

Once various age classes are selected, the distribution of each class has to be 

estimated and comparisons made.  

Table 3 summarizes the size (i.e. number of people) of each age class, where the 

purple zones represent the selected age classes and the cell called ‘Focus group Total’ 

– also in purple - contains the total number of persons selected, i.e. the total target 

group for our research results and final applications. Furthermore, the percentage of 

each age class is calculated in comparison with the rest of the selected group – light 

blue column. In this way it is possible to estimate the proportion of each demographic 

class inside the focus group. Moreover, the yellow column represents the dispatch of 

the total corpus time – 20 hours - according to the percentage calculated before. We 

suppose that the target group audience f a given age group prefers to watch programs 

of a specific genre according to the proportion we show in Table 4. This table illustrates 

the time-wise dispatch of the 20 hours of AV content, attributed to each age class – for 

the scope of this work only based on the 2002 population - across the different kinds of 

genres of TV programs, which are: 

• Series: all kind of series program (e.g. Friends),  

• Shows: all kind of variety programs and popular programs, 

• Movies: all kind of feature films (action, romantic, dramatic, etc…), 

• Info + Pol: deals with news items and political discussions, 

• Mag: all kind of TV magazines and TV reports (scientific, educational)   

• Cartoons: all kinds of cartoons, 

• Sports: any kind of sports (soccer, basketball, etc) and Music: video clips.     

 

 2002 2025 2050 

Age classes 
Europe 
[mill] 

USA 
[mill] 

China  
[mill] % Time 

Europe 
[mill] 

USA 
[mill] 

China 
[mill] % 

Europe 
[mill] 

USA 
[mill] 

China 
[mill] % 

0 -> 5 18 18.5 98 - - 16 22 88  16 27 78  
5-> 10 19 18.5 101 - - 16.5 21 91  16.5 26.5 78  
10-> 15 21 20.5 121 - - 17 21 88  17 26.5 79  
15 -> 20 22 20 99 11.2 2h15min 17.5 21 90 9 17.5 27 82 9.5 
20 -> 25 22.5 18.5 99 11.1 2h13min 18 43 97 11.1 18 26 82.5 9.5 
25 -> 35 46 38 247 26.3 5h17min 42 44 194 19.6 34.5 52 185 20.5 
35 -> 45 45 46 183 21.8 4h17min 44 42 216 21.2 35 50 173 19.4 
45 -> 55 43 39 143 18 3h37min 45 39 203 20.1 36 47 176 19.5 
55 -> 65 32 26.5 87 11.6 2h21min 46 22 204 19 39 44 204 21.6 
> 65 44 31.5 84 - - 79 63.5 194  93 82 300  
Total 312.5 277 1262 100 20h 341 338.5 1467 100 322.5 408 1437.5 100 
Focus group  Total 1256.5   1427.5  1328.5  

Table 3.  Number of people: age class in 2002, 2025 and 2050 [105]. 



 

  
98  

Table 4: Time dispatching: according to age classes and A/V genres. 

Type\Age 15 -> 20 20 -> 25 25 -> 35 35 -> 45 45 -> 55 55 -> 65   
Series 11,1% 11,5% 20,3% 14,2% 15,5% 10,3%   
Shows 11,1% 11,5% 20,3% 16,3% 13,3% 10,3%   
Movies 22,2% 23% 18,7% 24,5% 26,6% 41,2%   
Infos + Pol 0,0% 3,8% 1,6% 8,2% 8,9% 6,8%   
Mag 7,4% 7,6% 14,1% 16,4% 17,7% 24,1%   
Cartoons 22,2% 7,6% 4,6% 2,1% 0,0% 0,0%   
Sports 3,7% 11,5% 12,5% 12,3% 11,1% 3,4%   
Music 22,2% 23% 7,8% 6,1% 6,7% 3,4%   
Total (%) 100 100 100 100 100 100   
Total time (h) 2h15min 2h10min 5h20min 4h05min 3h45min 2h25min ~ 20h % 
 ↓ ~ 20h 100 
Series 15 min 15 min 65 min 35 min 35 min 15 min ~ 3h ~ 15 
Shows 15 min  15 min 65 min 40 min 30 min 15 min ~ 3h ~ 15 
Movies 30 min 30 min 60 min 60 min 60 min 60 min ~ 5h ~ 25 
Infos + Pol 0 min 5 min 5 min 20 min 20 min 10 min ~ 1h ~ 5 
Mag 10 min 10 min 45 min 40 min 40 min 35 min ~ 3h ~ 15 
Cartoons 30 min 10 min 15 min 5 min 0 min 0 min ~ 1h ~ 5 
Sports 5 min 15 min 40 min 30 min 25 min 5 min ~ 2h ~ 10 
Music 30 min 30 min 25 min 15 min 15 min 5 min ~ 2h ~ 10 

 
 

The genre-wise distribution per age class is based on a user evaluation study (minimal 

10 users per age class) that is done as part of this work. Moreover, the target time of 

each genre, see Table 4, is further distributed across the following groups: 

• various geographic/national channels (USA, UK, France, China, Germany),  

• analogue or digital transmission channels and  

• public or commercial channels.  

Concerning the distribution across the geographical/national regions the decision is 

(according to business interests, with an emphasis on Europe) to record5: 

• 12 hours of European TV programs (French, German/Dutch, Italian and UK), 

• 4 hours of US TV programs and 

• 4 hours of Chinese TV programs. 

As to distribution by TV source the decision is taken to record  

• 50% from analogue, i.e. terrestrial, and  

• 50% from digital, e.g. DVB-S, TV sources. 

Finally, the AV corpus is split into public or commercial channels as follows: 

• 30% of public channels and 

• 70% of commercial channels. 

                                                 
5 First iteration only, to keep it manageable. 
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All these percentages and distributions, presented above, are based on time dispatch 

as shown in Table 5. Moreover, the blue cells represent digital, e.g. DVB-S (satellite), 

channels and the pinks cells represent analogue channels, e.g. terrestrial or cable.  

The following abbreviations are used in Table 5: 

• EU_Pub: European program on public/national channels 

• US_Pub: American program on public/national channels 

• Ch_Pub: Chinese program on public/national channels 

• EU_Com: European program on commercial channels 

• US_Com: American program on commercial channels 

• Ch_Com: Chinese program on commercial channels 

Table 5 represents the final distribution of 20 hours of AV content used as evaluation 

and benchmark AV corpus to test the robustness of the various AV content analysis 

algorithms. The corpus does not represent all feasible geographic and demographic 

groups, but can be seen as a pragmatic approach towards a first meaningful and useful 

worldwide AV corpus for evaluation purposes. All content is stored in MPEG-2 MP @ 

ML program stream format with MPEG-1 layer 2 audio. EU and Chinese content is 

stored in PAL at 25 fps in D1 resolution (720*586) and US content in NTSC at 29,97 fps 

in D1 resolution.  

In the following sections we will present three cut detectors we develop. Then in section 

0 we will apply our AV corpus to benchmark the our cut detectors and to benchmark 

them against each other and another available cut detector from academic research. 

 

 

 

 

Table 5: Time dispatching according to the transmission by region,  (analogue: pink, 

digital: blue) and channel. 

  Series  
(min) 

Shows  
(min) 

Movies  
(min) 

Infos + Pol  
(min) 

Mag 
(min) 

Cartoons 
(min) 

Sports 
(min) 

 Music 
(min) 

EU_Pub 0 30 100 30 60 15 30 0 

US_Pub 0 0 0 15 15 0 0 0 

Ch_Pub 0 0 0 15 15 15 15 0 

EU_Com 120 60 100 0 60 15 60 40 

US_Com 30 60 60 0 30 15 15 25 

Ch_Com 30 30 40 0 30 0 0 25 

Total 180 180 300 60 180 60 120 120 
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Macroblock correlation cut detector (MBC CD) 
State-of-the-art video compression systems such as video encoders, as shown 

schematically in Figure 33, contain among others a video compression block with 

motion estimator (ME) as further explained in [43] and [106]. The motion estimator 

identifies the best matching macroblock between current frame and successor (or 

predecessor) frame by means of minimizing the macroblock mean absolute difference 

(MAD) value (equation (4-1)). MAD is available at position b in a video encoder, as 

shown in Figure 33. The latter can be seen as motion compensated macroblock inter-

frame correlation factor, which we introduced in 4.1.1 and explain in more detail in 

Annex 1 (annex MPEG-2). Consecutively, the total sum MADtotal(N), which is the sum of 

all MADs of all macroblocks of all non-subtitle slices of the entire frame, the nominator in 

equation (4-2), is normalized with it’s maximal achievable value, the denominator in 

equation (4-2), resulting in MADNorm(N)∈{0,..,1} of equation (4-2) with N representing the 

frame instance in the video sequence. 

At cut instances the inter-frame correlation decreases dramatically, which results in a 

dirac-like peaks of MADNorm(N) at those abrupt cut transitions, as shown in Figure 34 

(left).  Hereon, for each frame instance N the MADNorm(N) is compared to an adaptive 

threshold A_ThN, which is based on a mean value of MADNorm, 
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(4-14).

 

 

Figure 33. MAD-generating encoder. 
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Here Th∈{2..10} is a fixed factor, by which MADNorm(N) has to minimally exceed the 

local averaged value of MADNorm, with W1∈{3..41} and W2∈{0..3} representing a global 

and a local window length in number of frames, respectively, and with N being the index 

of the current frame investigated, as sketched in Figure 34 (right).  

An inner window W2 (here W2=1) is used to reduce over segmentation, which can 

happen due to compression artefacts and illumination changes. Finally, instances, at 

which MADNorm(N) exceeds A_ThN, are indexed as cut transitions. The analysis of 

optimal settings, W2=13 (further W) and Th=3, and results will be presented latter in this 

section. 

 

Field difference cut detector (FD CD) 
Another cut detector developed in this work is the field difference cut detector FD CD, 

applying technologies from the interlaced / progressive scan video domain. Here we 

calculate for each field, e.g. here field n, in an interlaced video signal (see Annex 2) an 

inter-field dissimilarity IFD[n] of the current field n and the predecessor field n-1. As 

example shown in Figure 35 (up right), this could be the IFD[n] between the odd field 

with field index 6 (field n) and the predecessor even field E with field index 5 (field n-1).   

The luminance signal I(x,y,n), with the spatial coordinates (x,y) and the field index n 

(here in our example this is field index 6), cannot be directly compared with the 

predecessor-field luminance value I(x,y,n-1), at the same spatial position (x,y), due to 

the different interlace phases of the two fields, as presented in Annex 2.  

 

 

 

Figure 34. Video encoder output: MADNorm(N) (left) and adaptive filter (right). 
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Instead, I(x,y,n) is compared with de-interlaced luminance value Idei(x,y,n-1),  

 ( ) ( ) ( ) ( )( )1,1,,1,1,,,,1,, −−−+=− nyxInyxInyxImediannyxI dei  (4-15),

using vertical temporal median as de-interlacing method, as explained in Figure 35 

(top). The resulting IFD[n], shown in Figure 35 (top right), is defined as 

 [ ] ( ) ( ){ }disdei TnyxInyxInPyx
N

nIFD >−−∈= 1,,,,:][),(1

 
(4-16),

with P[n] representing a pixel set with size N, containing the spatial positions (i.e. all 

pixels) in field n, and where Tdis is a preset threshold. We inherited the latter from the 

rendering domain, i.e. film mode detection in consumer rendering devices, where TDIS is 

empirically chosen, as published in [107], with  
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(4-17),

PSNR represents an heuristically derived peak signal-to-noise ratio PSNR (noiselevel) 

of 32 dB, using mean square error MSE of differences of pixels in fields and maximum 

pixel value MAXI,=255 (maximum luminance range of 255), which results in threshold of 

a Tdis=6 [107], i.e. pixel luminance differences of >5. IFD[n]∈{0..1} itself represents the 

relative percentage of dissimilar pixels counted. 

 

 

Figure 35. Inter field difference IFD calculation. 
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 Finally, instances, here fields, at which the local IFD[n] exceeds the maximum IFD[n] 

value of the past W∈{2..15} fields (W represents here a selected window length), 

increased by a chosen threshold value Th∈{0.1..0.7}, as defined by 

 { }WWmThmnIFDnIFD ,1,,3,2,1,][][ −∈∀+−> L
 

(4-18),

are marked here cut instances. This is illustrated in Figure 35 (bottom). Such a cut 

detector is field level accurate, i.e. its cut instance resolution is field accurate. In our 

experience we achieved optimal results, by applying our AV benchmark corpus, with 

W=15 fields and Th=0.2, as presented in 0. 

 

 

Colour segmentation cut detector (CS CD)  

The macroblock correlation MB CD and field difference cut detector FD CD compare 

frames on macroblock and pixel level, respectively. Histogram-based cut detectors, on 

the other hand, compare frames on frame level. The third cut detector developed in this 

work resides on an intermediate level: it is based on RGB (or YUV) color segmentation, 

as published by us in [108], which we simply applied as such. Here, a watershed-like 

segmentation, presented in [49], is used as a pre-processing step, which does not result 

in object segmentation (as objects may have widely varying colors, as shown in Figure 

36 - right). The main idea here is that at a cut instance the segmentations of two 

consecutive frames will be different while consecutively captured frames of a video 

sequence, i.e. a shot, have similar segmentations. Therefore, segmentation dissimilarity 

can be used for cut detection, as shown in Figure 36 (right) for an abrupt cut instance.  

 

 

 

 

 

Figure 36: Frames around a cut transition (top) and corresponding segmentation1. 
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The similarity of consecutive segmentation maps is quantified by a consistency measure 

C. For robustness reasons we also take motion into consideration, hence, we always 

motion compensate the segmentation of predecessor frames. The consistency measure 

C compares all motion compensated (to handle object motion) segments Si(N-1) of 

frame N-1 with Sj(N) of frame N (non-motion compensated), where i and j are segment 

indices. Each segment clusters a number of pixels, which are within its boundaries. 

Here after we define an overlap matrix A, which represents for all possible segments 

between frame N and N-1 the number of joint pixels, i.e. pixels being member of 

segment Si(N-1) and of Sj(N), as presented in Figure 37 (a), with Aij, 

 { })()1(:),( NSNSyxA jiij ∩−=
 

(4-19).

Subsequently, for each segment in frame N the best matching segment in frame N-1 is 

selected that is those with most overlapping pixels. To formally define this, let us 

consider sets of segments of frame N, i.e. S(N), and frame N-1, i.e. S(N-1). 

Subsequently, segments of frame N-1, here Si(N-1), are mapped onto segment of frame 

N, here Sj(N), if Aij ≥ Aiq for all q and/or Aij ≥ Atj for all t. This results in two consistency 

measures CAND(N) and COR(N), as explained in Figure 37 (b) and (c), resulting in: 
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(4-20),
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(4-21),

with Pi representing the total number of pixels of frame N.  

To be more specific, the AND consistency measure is defined as the relative sum of all 

member pixels of all the mutual best matching segments between frame N-1 and N, e.g. 

CAND(N) amounts in the example of Figure 37 (b) to (120 pixels + 250 pixels +115 pixels) 

/ 1000 pixels = 48.5%, while COR(N) results in 76.8%. 
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Figure 37. Consistency measure CAND and COR. 



 

  
106  

CAND(N) measures the normalized area of all segments, which map bi-directionally onto 

each other (red numbers), whereas COR(N) measures the area of all uni-directional 

mappings (red and blue numbers). A division by the total number of frame pixels Pi 

normalizes the consistency values CAND(N) and COR(N). Notches in CAND(N) indicate a 

cut instance resulting in an accurate indicator for video cuts, as shown in Figure 38. 

However image noise or texture may cause segments to be split up or merged in 

subsequent frames, as visualized in Figure 38 (right). This decreases CAND(N), as for 

any split segment it will only count the area of the largest of the newly generated smaller 

segments. COR(N), on the other hand, is insensitive to this effect as all smaller segments 

map uni-directionally to the big segment.  

Hence, we can combine the two consistency measures, CAND(N) and COR(N) into C(N),  
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(4-22),

with Wc being the size of an averaging temporal window. This combination results in the 

fact, that notches - representing correct transitions - become more exposed in 

comparison to CAND(N), but for notches caused by segment splitting, as explained in 

Figure 38 (right), C(N) remains more or less constant due to the insensitivity of COR(N) 

to this particular cause, as shown in Figure 39 (left). Here, especially for difficult content, 

containing large textured areas, such as the grass in a soccer field or water surfaces, 

the performance of the cut detector improves. Finally, for each individual notch, a 

decision has to be taken as to whether or not it represents a cut instance.  

 

 

Figure 38. CAND(N) consistency measure and segmentation inconsistency (right)1.  
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Adaptive threshold methods, as presented by Yussof in [53], are far more robust and 

flexible then fixed threshold ones. Three models were compared as follows, 

 (a) constant variance model: ThTh NN −= µ  (4-23),

 (b) proportional variance model: 
Th

Th N
N

µ
=

 
(4-24),

 (c) Dugad model: NNN ThTh σµ *−=
 

(4-25),

with ThN being the local threshold at instance N, Th a fixed threshold, µN and σN the 

mean and variance of W+1 consecutive consistency values of C(N) around instance N, 

respectively. Proved to perform best, we adapt the proportional model of equation (4-24) 

slightly as had already been done for the MBC CD as shown in Figure 39 (right), with a 

sliding window of size W+1∈{1..9} and Th∈{1.4 .. 4} resulting in the formula 

 

⎪
⎩

⎪
⎨

⎧

≠+∈∀≥

≠+∈∀<
=

Nj, }
2

WN,,
2

W-N{j ,  /)(C(N)    :cut       no

 Nj, }
2

WN,,
2

W-N{j ,  /)(C(N)    :cut      
)(

K

K

ThjC

ThjC
NSC

 
(4-26).

The averaging window W should be smaller than the minimal duration between two 

consecutive cuts, as only one cut per window can be detected. Hence, a shot length 

analysis, presented in section 4.6.4, revealed that W≤10 frames helps to reduce the 

amount of missed transitions. On the basis of a benchmark analysis, as presented in the 

next section, the settings W=8 and Th=1.4 prove to perform best for the color-

segmentation-based cut detector. We published this promising method in a European 

patent [108]. 

 

 

Figure 39. C(N) consistency measure (left) and adaptive threshold method (right). 
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Comparison of CDs 
The next step is to analyze the performance of the three developed cut detectors, see 

Figure 40, and benchmark them against an available cut detector, see Figure 41, which 

participated in TrecVid 2004 [42]. The cut detector is called rough indexing cut detector 

RI CD, described in detail [56] and in the literature survey section 3.1.1.  

Each detector is tested with several settings - Table 6, where one of the parameters is 

fixed at an optimal default value and the other one is varied, resulting in Figure 40. 

Finally, the three developed detectors are benchmarked against the RI CD using 

derived optimal settings for Th and W. In this way recall and precision can be tuned as 

desired. 

Table 6. Cut detector settings. 

 W 

 [range] 

Th 

 [range] 

Optimal W Optimal  

Th 

Overall  

Re [%] 

Overall  

Pr [%] 

MBC CD 3 .. 41 2 .. 10 13 3 92 83 

FD CD 2 .. 15 0.2 .. 0.7 15 0.2 93 93 

CS CD 1 .. 8 1.4 .. 4 8 1.4 93 90 
 

 

Figure 40. Cut detector results for three specific contents. 

 

 

Figure 41: Recall and precision performance results of all four cut detectors. 
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All four detectors are tested on our AV content corpus, recorded in 25 frames per 

second PAL format horizontally sub-sampled to ½ D1 resolution, as presented in Annex 

1. Content is carefully chosen to adequately represent real-world broadcasting material 

containing a variety of genres, such as series, magazines, commercials and sports 

events. 

The performance is evaluated for each genre separately in terms of precision Pr, see 

equation (3-16), and recall Re, see equation (3-17) in section 3.1.1. Both, recall and 

precision are relevant to define the optimal parameter settings such as window size W 

and adaptive scaling threshold Th. They are relevant to assess the effectiveness of 

each individual cut detector, which can be done graphically by using so-called Receiver 

Operator Characteristic ROC graphs, i.e. plots representing true positive rates against 

false positive rates. Hence, tuning e.g. through the entire range of one algorithm 

variable results in series of Pr/Re coordinates.  

The performance of the cut detectors presented relies on two parameters:  

• Th, defining the required minimal (relative) difference of the current sample in 

relation to neighbouring samples in order to be indexed as a cut instance, and  

• W, defining the number of neighbouring samples to be taken into account. 

 

Performance 
The evaluation revealed that the pixel- and segmentation-based detectors outperform 

the block-based methods, as expected. The rough indexing cut detector, which was 

tested on the TREC Video Corpus in the TRECVID2004 campaign, achieves a 

performance of 86.8% recall and 77.8% precision6 there, and is used here as a 

reference benchmark. The rough indexing cut detector scores lower on recall, as shown 

in Figure 41 (left) for soaps/series, whereas the macroblock correlation cut detector 

scores lower on precision, as shown in Figure 41 (right) for commercials. On the other 

hand, the color segmentation cut detector, for which the ½ D1 content was further 

horizontally sub-sampled to 352-by-288 pixel frames, can reach high precision, but has 

a lower recall limit, as visible in Figure 41 (centre). The latter is especially sensitive to an 

inconsistent segmentation due to segment splitting, as shown in Figure 38 (right), a 

problem encountered especially in uniform and slightly textured regions. Examples of 

this are green light-textured soccer field sequences or submarine water sequences or 

dark video sequences sharing a similarly dominant color. This produces a noisy 

                                                 
6 Due to the fact that it performs in compressed domain at I-P level and, therefore, can miss cuts 

at B frames. 
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constancy value, subsequently leading to missed and false detections, resulting in low 

recall and precision, as can be seen in Figure 40.  

However, the detector can be improved in the future by (a) a better time-consistent 

segmentation7, (b) a segment-size-dependent Th, (c) a motion-intensity-dependent Th 

or (d) a texture / homogeneity-dependent Th.  

The results with the best performing W and Th of each detector for one genre, here 

series, are summarized in Table 7. We conclude that the pixel-based field difference cut 

detector performed best, and, hence, select this one for further evaluation in this work. 

 

Table 7. Performance results for all four cut detector for genre series. 

Genre: 

Series 

Optimal W Optimal Th Overall Re [%] Overall Pr [%

MBC CD 13 3 95.9 94.7 

FD CD 15 0.2 96.1 96.3 

RI CD - - 92.1 86.5 

CS CD 8 1.4 93.4 97.0 
 
Complexity, Latency and Robustness 
Complexity: Two of the four detectors are cheap-to-compute by-products of existing 

solutions. The pixel-based field difference cut detector, a by-product of de-interlacing 

solutions, has the lowest complexity, as for each pixel only median and absolute 

difference values need computing. If done in software, the macroblock-based spatial 

correlation cut detector would be quite processing intensive but because it is a by-

product of an already existing integrated circuit, as sketched in Figure 34, it provides an 

efficient video compression solution. The complexity of the rough indexing detector is 

intermediate, as it requires motion vectors and it robustly estimates an affine motion 

model. The measure ∆Q (see chapter 3) only needs to compute macroblock resolution. 

Finally, the color segmentation detector exceeds all others in complexity, as it requires 

costly image segmentation. 

Latency: Both the field difference and rough indexing cut detector have zero-frame 

latency, as the resulting cut detection is immediately available for the current frame, 

making them suitable for on-line detection. The other two cut detectors use a symmetric 

window W surrounding the current frame, resulting in latencies of several frames.  

                                                 
7 The overlap-probability, and hence robustness, increases with segment size, with decreasing 

motion errors and with clear texture. The latter decreases the probability of unstable 

segmentation. 
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Robustness: All cut detectors, with the single exception of the field difference cut 

detector require motion estimation (ME). Depending on the amount of motion as well as 

the quality of the ME, ME errors may become propagated into the resulting cut detector. 

The field difference cut detector is the most robust as it does not require ME, nor does it 

require any other parameters than Th and W. Using segmentation renders the color 

segmentation cut detector relatively resilient to small ME errors. The other two cut 

detectors are more critically reliant on accurate ME. 

 

Overall 
Considering the properties of all of the cut detectors, the field difference cut detector 

best meets the requirements exposing at real-time analysis high precision and recall. 

Nevertheless, depending on requirements (e.g. offline processing, low latency, low 

complexity) and available side information (motion vectors, segmentation, etc.), another 

cut detectors may be more suited to other specific applications. Moreover, Figure 41 

reveals that the reliability of cut detectors is quite genre dependent. Each genre follows 

a fixed set of film (capture) rules, see section 4.5.1, and because of this each genre 

exhibits specific statistical attributes. Knowing what these statistical attributes are, e.g. 

the shot length can, in a subsequent step, be used to derive semantic information about 

new content. 

 

Conclusions of the four cut detector benchmark 
Two cut detectors are obtained as cheap-to-compute by-products of other video 

processing operations, e.g. MPEG encoding. The results on the AV corpus confirm that 

all cut detectors reach comparable levels of maturity/precision in detecting video cut 

transitions. Differences across genres are more pronounced than differences within 

genres for the different detectors. The field difference cut detector shows a good 

performance and has low complexity. Hence, it is in general preferred and, because it 

fulfils the requirements best, we select this detector as the cut detector of choice, with 

the default settings W=15 and Th=0.2 for subsequent analysis. 

The user can control the precision/recall trade-off through a combination of threshold Th 

and window size W (tune-able precision). A topic for future research is gradual 

transitions detection. Whereas the macroblock- and field difference cut detectors 

compare subsequent frames, the color segmentation- (through segment tracking) and 

rough indexing one can handle larger inter-frame spacing, and as such may be more 

suitable for gradual transition detection. 
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Improvement of cut detector with feature-point-based similarity analysis 
The field difference cut detector, as described in section 0, is due to its luminance (Y)- 

and pixel-matching-based nature very sensitive to impulsive illumination- and fast 

motion changes. Unfortunately, the producers of commercial content use those 

elements very often to augment the viewing experience. This includes light source 

variations such as the use of flashlights, sudden explosions or indoor illumination 

variations, but also abrupt transitions from indoor to outdoor settings. Moreover, 

commercial content very often contains special artistic effects such as steady or sudden 

camera vibrations and motions, and, furthermore, unexpected events such as objects or 

subjects passing the camera capturing space in close distance to the capturing unit. All 

these events mislead the field difference cut detector (IFD[n] exceeds at those moments 

Th as stated in (4-18)) resulting in a strong over-segmentation, reflected in a low shot 

boundary detector precision.  

Hence, the aim is to use a cut detector setting from the previous section with high recall 

and medium precision, and, hereafter, to increase the precision by removing the over-

segmentation instances, as sketched in Figure 42 (left-top).  

The common nature of many of those above-mentioned events is their short visual 

deviation from the normal video flow. In other words, the video content before the 

specific event is often very similar to the video content after the event. Hence, we will 

exploit this property to increase the precision. 

 

 

Figure 42. Over-segmentation with field difference cut detector1. 
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Feature-point-similarity-enhanced cut detection verification 
The aim is, therefore, to verify all field-difference-analysis-based cut instances by 

means of a similarity-based post-analysis between key frames pairs, i.e. key frames 

before and after the indexed cut instance (shot boundary, KFx and KFy), as shown in 

Figure 43. Comparing sets of feature points on key frames can do this verification. 

The definition, detection and tracking of the here fore applied feature points are 

described in detail in the feature point section 4.5.2. Here, we suppose the availability of 

the required feature points FPi(KFx) and FPj(KFy). For the required key frame similarity 

check we use the percentage of tracked feature points (threshold ThFP∈{0..100} 

percentage of tracked feature points).  

Hence, the aim of this post-processing is to eliminate false cut instance detections, 

which occur due to time-wise short interruptive events (e.g. flashlights). Because the 

video continuity of the video stream restores shortly after these instances, a 

correspondence can be established between the key frames flanking these short 

instances (i.e. one key frame before and after the event). This correspondence is 

characterized by a significant high number of tracked feature points based on the visual 

similarity between those key frame pairs (KFx / KFy). The average length of such 

temporal limited events can be taken into account by choosing an optimal symmetric 

window size W1 (W1∈{1..3}) around each cut instance, as sketched in Figure 43.  

Moreover, an optional extension to W1 is introduced with window size W2 increasing 

optimal key frame pair selection. If the selected key frames at SBN-1±W1 do not fulfil the 

criteria of a reasonable key frame (e.g. too blurry), it can be replaced with one within the 

range of W2≤10 (heuristically chosen). The evaluation and usage of W2 will be further 

discussed in section 4.5.2.  

 

 

Figure 43. Cut detection verification through key frame similarity analysis. 
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A benchmark analysis on the AV corpus of section 0 (excluding series and movies) 

unveils, that the optimal trade-off between false cut detection reduction and loss of 

correct cut detections can be achieved with W1=2 (optimal distance for temporal limited 

events) and ThFP=30 (optimal percentage of tracked feature points for key frame 

similarity analysis). Hence, at each cut instance the key frames pairs are provided as 

input to the feature-point-based similarity analysis, where at least 30% of all feature 

points have to be tracked to delete the cut index at this instance. 

 
Performance of feature-point-similarity-enhanced cut detector 
The elaborated nature of this work and the drive for quality required to focus finally on a 

subset of the entire AV corpus of section 4.1.2, in particular the genres movies and 

series are selected, as presented in Table 8 (the movies corpus was increased 

compared to section 4.1.2 due to its specific importance). The movies/series corpus 

contained in total a representative set of 4942+1591=6533 manually annotated ground 

truth cut instances (excluding non-content related inserts, e.g. commercial blocks). The 

results of the field-difference-based cut detector of section 4.1.2, with W∈{2..15} and 

Th∈{0.1..0.7}, and a feature-point-based post processing of section 4.5.2, with 

ThFP∈{0..100}, for the movies, series, commercials and channel adds genres are 

summarized in Figure 44.   

 

 

Figure 44. Cut detection results after FP-based post-processing. 

Table 8. AV movies/series corpus.  

Movies 

corpus 
Total  #  GT SB  
(genre only) 

# frames  
@ PAL  

Series 

corpus 
Total # GT SB 
(genre only) 

# frames  
@ PAL 

‘ge1’ 892 86700  ‘nl1” 227 33970 
‘ge2’ 314 65779  ‘nl2’ 212 33300 
‘nl’ 1352 144359  ‘ge1’ 175 23008 
‘us_dig’ 1208 156723  ‘ge2’ 495 59681 
‘us_ana’ 1176 215370  ‘gb’ 482 37492 
Total 4942 668931  Total 1591 187451 
       
Total duration 
[hh:mm] 

7 h 26 min  Total duration 
[hh:mm] 

2 h 5 min 
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Table 9. FD-based cut detection FDCD (W=15, Th=0.2) before (without) and after (with) 

feature-point-based post-processing (W1=±2, ThFP =30) results on movies/series corpus.  

Genre Total SBs 
(CDs) 

Correct CDs False CDs Missed CDs Recall [%] Precision [%]

Movies before FP 4942 4855 194 87 98,2 96,1 
Series before FP 1591 1551 34 40 97,5 97,4 
M&S before FP 6533 6406 228 127 98,1 96,5 

Movies after FP 4942 4855 134 87 98,2 97,3 
Series after FP 1591 1551 24 40 97,5 98,5 
M&S after FP 6533 6406 158 127 98,1 97,6 

 

The results confirmed, that the independently, on the rest of the AV corpus derived 

optimal settings (field-difference settings: W=15 / Th=0.2, feature-point-similarity-based 

settings: W1=2 / ThFP=30), do indeed perform best resulting in R=98,2% / P=96,9% for 

movies and R=97,5% / P=98,3% for series, summarized in Table 9, where ‘False CDs’ 

represents over-segmentation.  

Despite the fact that the increase in precision is rather limited, i.e. 1.1% to 1.2% in our 

experiments, as summarized in Table 9, this approach seems promising. In any case, 

the post-processing of detection results by comparing frames before and after a 

detected cut instance is a finding of this research work. The features for comparison 

have to be appropriately chosen and the decision rule has to be sufficiently 

discriminative. Feature points seem to us to be a good compromise between complexity 

and efficiency. 

   
Resilience of feature-point-similarity-enhanced field difference cut detector 
Over-segmentation (Precision) 

An analysis of the resulting feature-point-post-processing cut detection results unveils, 

that the three main reasons for over-segmentation are  

• temporal long ‘illumination changes’ (i.e. for movies the case for 50% of all over 

segmentation cases), as shown for two examples in Figure 45 (left),  

• ‘objects passing close’ to the capturing device (i.e. in movies: 25% of all over-

segmentation cases and in series: 35%), as shown in Figure 45 (right top), and  

• ’2/3-rule’ (i.e. in series: 40%), as shown in Figure 45 (right bottom) of all over-

segmentation cases. The exact distributions are summarized in Table 10 (left).  

Over-segmentation, due to long-lasting illumination changes, is often not detected 

because of the optimal, but temporal short post-processing window W1=±2, and the 

strong luminance dependency of the feature point. Illumination-adaptive scale invariant 

feature points, which are being under research at this present moment in time, could 

provide a viable solution here.  
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Table 10. Over-segmentation and missed cut detection evaluation. 

 
Over-segmentation (false detection) in % in relation to the total 
number of oversegmentation occurances 

Missed cut detections in % in relation to the total 
number of missed occurances 

Genre Number of 
occurrences 

Illumination 
changes 

Close 
objects 
passing 

2/3-
rule 

Fuzzy 
content, 
fades,.. 

Number of 
occurrences 

Motion 
& out-
of-
focus 

Short shots 
w/ moving 
objects 

Others 

Movies 134 50% 25% 5% 20% 87 84% 5% 12% 

Series 24 - 35% 40% 25% 40 60% 22% 17% 

 

The second source of over-segmentation, the problem with out-of-focus objects passing 

close to the capturing device, will most probably remain for quite some time. But, more 

sophisticated methods, such as depth map analysis (used in 2D-to-3D video 

conversion) in combination with spatial texture information, could lead to promising 

results.  

Over-segmentation due to the ‘2/3-rule’ is a homemade problem based on the strict 

definition that at cut instances at least 2/3 of the frame content has to change (manual 

annotated ground truth). We witnessed that the end sequences of series and movies 

are very often downscaled and graphics at the frame boundaries display content related 

information, e.g. credits as shown in Figure 45 (right bottom). A spatial graphics-video 

discriminator, which is currently under development, will be able to identify the graphic 

bars enabling exclusive video part analysis and a consequent reduction in over-

segmentation. 

 
 

 

Figure 45. Examples of over-segmentation after feature-point-based post processing1. 
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Missed Detections (Recall) 

The analysis of the resulting feature-point-post-processing cut detection results, 

furthermore, unveils that the main reasons for missed cut detections, as stated in Table 

10 (right), are for both movies and series instances with high motion in combination with 

blurry out-of-focus content before/after cut instances, i.e. for movies: for 84% the case 

and for series: in 60% the case. The field difference cut detector, with its pixel-similarity-

analysis-based nature, is not able to cope with such high motion / out-of-focus 

instances. Representative examples are shown in Figure 46 (top). The spatial 

similarities of equation (4-16) often exceed the threshold TDIS dis-proportionally, as 

shown in Figure 46 (bottom). Hence, inter-field dissimilarities IFD[n] prior to cut 

instances display relatively high values, which increase the cut detection threshold, as 

shown in Figure 35 and Figure 46 (bottom). This, unfortunately, leads to missed cut 

detections. This non-trivial problem will require additional low–level data, such as spatial 

texture (e.g. texture co-occurrence and co-variance), which could trigger a switch to an 

alternative, e.g. global, cut detector during these instances.   

 
Resolution dependency of feature-point-similarity-enhanced field difference cut 
detector 
The pixel-based nature of the field difference cut detector and the feature-point-based 

post processing are relatively processing intensive and, therefore, a short resolution 

dependency analysis is performed by us enabling a proper trade-off between reliability 

and processing costs if required. 

 

 

Figure 46. Missed cut detection examples after feature-point-based post processing1. 
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Hence, we either simply sub-sample (using only every kth pixel – sub-sampling factor - in 

x/y direction) or averaged the luminance plane Y(i,j) of the frames of our D1 / SD-based 

content by 
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(4-27),

which represents a block based interpolation similar to DCT-based DC-values of 

individual macroblocks. Applying cross-validation justifies using the entire data set for 

this analysis. The following parameter ranges are applied: W∈{2..40}, Th∈{50..450} 

and ThFP∈{0..100}, only W1=2 is retained and the results are visualized in Figure 47. 

As expected, due to missed cut detections, as shown in Figure 46, and as visible in 

Table 11, simple sub-sampling slightly outperformed averaging, because the former 

better preserves the intensity of edges and the latter blurs the content, a situation to 

which the field difference cut detector and the feature-point-based post processing are 

ultra sensitive. Hence, the proposed solution would probably work even better with high 

definition HDTV resolution. With decreasing resolution, as shown in Table 11, ThFP 

(number of tracked feature points) decreases (D1: 30, HD1: 20, CIF:10) and, finally 

below CIF resolution, the post processing can no longer be applied, as feature points 

can no longer be identified. The field difference method, contrariwise, exhibits an 

impressive robustness against resolution reduction, i.e. a decrease by 1000x results in 

only ~2% recall/precision loss, as shown in Figure 47.   

 

 

Figure 47. Resolution dependency of shot boundary detector. 
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Table 11. Cut detector resolution dependency [(Quarter) Common Intermediate Format (Q)CIF].  

Resolution W Th ThFP R P W Th ThFP R P 

D1 (720 * 576) 12 0.2 20 98,1 97,7

 15 0.2 30 98,1 97,6

 18 0.2 30 97,6 98,0

 

 Sub-sampled Averaged 

HD1 (352 * 576) 15 0.2 20 97,9 97,5 15 0.2 20 97,9 97,5

 18 0.2 20 97,7 98,0 18 0.2 20 97,6 98,8

CIF (352 * 288) 15 0.25 10 97,4 97,6 15 0.25 10 97,3 97,3

 18 0.2 10 97,8 97,4 18 0.2 10 97,7 97,2

QCIF (176 * 144) 18 0.2 - 97,8 97,0 18 0.2 - 97,6 96,7

Q2CIF (88 * 72) 18 0.2 - 97,8 97,0 18 0.25 -- 97,5 96,6

Q3CIF (44 * 36) 18 0.2 - 97,7 96,9      

Q4CIF (22 * 18) 18 0.2 - 96,7 96,6      

 

Recall enhancement of forward-based field difference cut detector with feature-
point-similarity post-processing with backward-based analysis 

Here we will consider a case, where the cut detector has to be semi-automatic. That 

means a cut transition detector, which can be used by a manual annotator, who 

identifies manually the correct cut instances. We make a further step to improve recall. 

As stated above (in Table 10), the common reason for missed detections is high motion, 

and therefore, blurry sequences prior the cut instance, as presented in Figure 46. 

Hence a backward-based field difference cut detector is added to the forward approach, 

as schematically shown in Figure 48. For this purpose we simply reapply the forward cut 

detector technique, but then from the opposite side, i.e. from the end of a content 

analysis window towards the beginning. For simplicity reasons we apply for both, the 

forward and backward approach, the same values for W and Th.  

The analysis on the corpus, applying cross validation, unveils that recall can be 

increased to R=98,9% at the cost of precision P=97,5%, as presented in Table 12 and 

Table 13, with W=18, Th=0.2 and ThFP=20. The comparison between forward against 

forward / backward approach is visualized in Figure 49, showing a clear shift towards 

higher recall. 

The two-side cross-validation requires marginal increase in computational costs and 

memory buffer, but the results are reason enough to include this approach into our final 

cut detector. 

Table 12. Forward- and backward-based cut detector results. 

Resolution W Th ThFP R P  

D1 (720 * 576) 15 0.3 20 98,1 98,0 max R/P 

 18 0.2 20 98,9 97,5 max R 
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Table 13. Missed cut detection improvement with backward-based field difference. 

 Missed cut detections before backward 

improvement and distribution in % across 

reasons for failure 

Missed cut detections after backward  

improvement 

Genre Number of 
instances 

Motion & 
out-of-
focus 

Short shots 
w/ moving 
objects 

Others Number of 
instances 

Motion & out-
of-focus 
(blurry  
blurry 

Short shots  
(< 15 frames) 
w/ moving 
objects 

Others 
(e.g. 2/3 
rule) 

Movies 87 83% 5% 12% 37 85% 5% 10% 

Series 40 60% 23% 17% 33 52% 27% 21% 

 

 

 

 

Figure 48. Forward- and backward field difference cut detector. 

 

 

 

Figure 49. Recall improvement with forward- and backward-based field difference cut 

detector with feature-point-based post-processing. 
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Frame based Cut Detector  
In order to reduce the computational cost in the industrial system, in the final version of 

the service unit cut detector the field difference method is replaced by a simple frame 

based cut detector. Hence, the median calculation of missing pixels is replaced by using 

only pixels of same location in subsequent frames. The IFD[n], applied for the frame 

based cut detector, hence becomes 

 [ ] ( ) ( ){ }disTnyxInyxInPyx
N

nIFD >−−∈= 1,,,,:][),(1

 
(4-28),

with P[n] representing the pixel set with size N, containing the spatial positions (i.e. all 

pixels) in frame n (attention: not field), and where Tdis is the same preset threshold as 

applied for the field difference method (see equation (4-17)). Instances, i.e. frames, at 

which the local IFD[n] exceeds the maximum IFD[n] value of the past W∈{2..20} frames 

(W represents here a selected window length), increased by a chosen threshold value 

Th∈{0.1..0.7}, as defined by 

 { }WWmThmnIFDnIFD ,1,,3,2,1,][][ −∈∀+−> L
 

(4-29),

are marked here as cut instances. Optimal results are achieved, by using the AV 

benchmark corpus of 0, with W=9 frames, Th=0.2 and ThFP=30. The results of the sub-

sequent post-processing steps are summarized in Table 14.  

The drawbacks of such a simple cut detector are the same as for the field-based cut 

detector. Its sensibility to fast motion, flashes and object motion is obvious. This is why 

the same post-processing and cross-validation schemes are of use here. 

 

Table 14. Frame based cut detector with post-processing steps. 

Frame based cut detector W [frames] Th ThFP Correct False Missed Re [%] Pr [%] 
Forward 6 0.2 - 6354 245 169 97.4 96.3 
 7 0.2 - 6337 225 186 97.2 96.6 
 9 0.2 - 6316 169 207 96.8 97.4 
Forward & Backward 6 0.2 - 6450 221 73 98.9 96.7 
 7 0.2 - 6437 199 86 98.7 97.0 
 7 0.2 - 6269 103 254 96.1 98.4 
 9 0.2 - 6414 155 107 98.4 97.6 
 15 0.2 - 6285 101 238 96.4 98.4 
F&B with FP post-processing 9 0.2 30 6414 108 109 98.3 98.3

 
 

System compliant integration of cut detector into framework  

Finally, to integrate the feature-point-enhanced frame difference cut detector in a 

framework compliant way, two Service Units (see section 2.3) are created, as shown in 

Figure 50. The forward (backward) frame difference cut detector indexes with zero-

frame-delay (WBackward-frame-delay, respectively) cut instances and triggers a transfer of 

two selected key frames at this cut instance to the feature-point-based post-processing 
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units. At key-frame-similarity instances, i.e. false cut instances, the cut instance index is 

withdrawn from the metadata output stream, which has now a frame delay of 

max(W1,W2). The MPEG-7 compliant data metadata output streams are summarized in 

Annex 9.   

 
The results of the cut-detection-based segmentation are shown in Figure 51 for one 

broadcasted movie, i.e. movie_ge2, which we will apply across this work as reference to 

show the individual processing results of individual service units. Each vertical bar in the 

graph of Figure 51 represents one shot of the content item (with an increasing shot 

number on the x-axis) and the height of each bar represents the duration of the shot (in 

logarithmic scale on the y-axis). Red bars identify shots, which are delimited at their 

beginning by a cut, and, on the contrary, blue bars are delimited at their beginning by a 

gradual transition. We apply this graphical representation as well in our manual 

annotation tool, which we developed to allow efficient and intuitive manual post-

annotations. 

 

 

Figure 50. System integration of feature-point-enhanced cut detector. 

 

 

Figure 51. Cut- and gradual-detection-based segmentation of one corpus item (x-axis: 

shot number; y-axis: shot length in frames in logarithmic scale). 
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Conclusions for shot boundary detector: cut transition detector 
In this section we introduced three newly developed cut detectors, the comparison with 

a 4th one, the benchmark results on a cultural diverse, multi-genre AV corpus and 

proposed improvement steps using the most promising cut detector. The results unveil 

that the simple frame difference method proves to be currently the best trade-off. A 

subsequent analysis of the detection results unveils further improvement options, which 

are presented in section 4.1.2, i.e. feature-point-based post-processing and backward 

cut detection. Finally, we describe in section 4.1.2 a framework compliant integration of 

the cut detector.  

Our simple processing efficient cut detector reached detection results comparable to the 

highest results achieved in TRECVid with processing-wise expensive methods. 

Nevertheless, the broad range of algorithms requiring a resilient content segmentation 

algorithm justifies further investment into the improvement of the current cut detector. 

Either luminance-, motion- and spatial-texture-adaptive components have to be 

combined with the field difference detector and feature point analysis, e.g. adaptive 

SIFT methods, or 3D segmentation in combination with depth analysis could be applied. 

Especially what concerns the 3D segmentation, the chrominance-only-based AND/OR-

consistency-measure (Figure 37) segment analysis of the colour-segmentation-based 

cut detector, claimed by us in our patent [108], could be enhanced by means of 

luminance weighting, i.e. additional usage of luminance to identify correctly matching 

pixels between two temporally-distant segments. We foresee that recall of the colour 

segmentation cut detector, which performed precision-wise well, will increase and 

subsequently could be applied as post-processing for the current solution to increase 

precision. Nevertheless, for the scope of this work the results achieved with the feature-

point-enhanced frame difference cut detector fulfil the requirements mentioned in the 

introduction and, hence, we decided to focus our attention on the other Service Units 

required to realize our target application. 

 

Shot Boundary Detection – Gradual Transition Detection 
The set of professional content production and editing tools at the broadcaster and 

content producer side not only offer the option to simply concatenate shots together. 

Those tools also allow to combine shots in a gradual manner by means of e.g. 

dissolves, fades and wipes as presented in section 3.1.1. Editors use these artistic 

gradual transitions to create specific situations e.g. to create a flow from a shot of an 

actor towards a shot of his virtual dreams. Hence, gradual transitions transmit the 

message of an abstract connection between these two shots. But, as stated by Borecky 

in [110], ‘Gradual transitions are often used at scene boundaries to emphasize the 
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change in content of the sequence’, and, hence, being a valuable feature for semantic 

content segmentation. Because of their semantic value gradual transitions are used 

during production selectively and with caution. The selected corpus of 5 movies and 5 

series contained in total 6533 cut transitions, but only 67 ground truth gradual transitions 

(series: 34, movies: 33). The ground truth gradual transition group contains 35 

dissolves, 25 fades and 7 generated, as presented in Table 15 and Table 16. 17 of the 

67 gradual transitions instances temporally correlate with ground truth scene 

boundaries, which supports Borecky’s statement in [110] and proves the value of 

gradual transitions detection for our task. Because the viewer needs time to realize the 

artistic complex transition, gradual transitions are rather long ranging from 7 to 50 

frames (average duration: ~30 frames). Hence, our task’s semantic nature stimulates 

considering as well a gradual transition detector. Nevertheless, we do not propose a 

new, but apply one available to us from Naci [59], as introduced in section 3.1.1. 

 

 

Table 15. Ground truth Gradual Transitions in series. 

Series ‘nl1’ ‘nl2’ ‘ge1’ ‘ge2’ ‘gb’ Total 
Dissolves  7 2 0 6 2 17 
Fades 0 3 2 7 1 13 
Wipes 0 0 0 0 0 0 
Computer Generated 1 1 0 2 0 4 
Total Gradual Transitions in genre 8 6 2 15 3 34 
Gradual Trs at Genre Boundary 0 2 2 4 0 0 
Average Duration [frames] 30 31 20 42 29 30 

Table 16. Ground truth Gradual Transitions in movies. 

Movies ‘nl’ ‘ge1’ ‘ge2’ ‘us_com’ ‘us_pub’ Total 
Dissolves 118 58  1 1 0 18 
Fades 3 0 2 4  3 12 
Wipes 0 0 0 0 0 0 
Computer Generated 1 0 1 1 0 3 
Total Gradual Transitions in genre 15 5 4 6 3 33 
Gradual Trs at Genre Boundary 0 0 4 (Fades) 0 0 0 
Average Duration [frames] 12 41 29 64 30 35 

 
 
Gradual transition detection improvements 
The analysis of the detection results of Naci’s simple detector [59] unveils that the 

method is very sensitive to small changes, e.g. compression noise, in areas with almost 

no motion resulting in F1~1 (equation (3-9)) due to its adaptive behaviour, which results 

in a high over detection (352 false detections in total). A detailed analysis of correct, 

false and missed gradual detections for series and movies is given in Table 17, Table 

18 and Table 19.  

                                                 
8 All gradual transitions are clustered in one short sequence of a photo slide show. 



  
125 J. Nesvadba 

Table 17. Gradual Transition Detection of [59] on series and movies. 

Series ‘n1’ ‘nl2’ ‘ge1’ ‘ge2 ‘gb’ Total 

Total # of ground truth GradTs in genre series 8 6 2 15 3 34 
Correctly detected 3 4 2 4 1 14 
False 0 2 0 10 3 15 
Missed 5 2 0 11 2 20 
Movies ‘nl’ ‘ge1’ ‘ge2’ ‘us_com’ ‘us_pub’ Total 
Total # of ground truth GradTs in genre movies 15 5 4 6 3 33 
Correctly detected 4 0 4 3 1 12 
False 84 43 180 28 2 337 
Missed 11 5 0 3 2 21 

Table 18. Gradual Transition Detection of [59]  on series. 

False detections Missed Detections Series 
Static sequence Others Gradual  

high motion 
Dissolve  
static  sequence 

Computer 
animations 

‘nl1’ 0 0 4 0 1 
‘nl2’ 1 1 0 1 1 
‘ge1’ 0 0 0 0 0 
‘ge2’ 10 0 4 7 0 
‘gb’ 2 1 2 0 0 
Total in series 13 2 10 8 2 

Table 19. Gradual Transition Detection of [59]  on movies. 

Movies False Detections     Missed Detection  

 Ss & Ml & B with cut 
transition 

Static sequen Mono lumBlurry Others Gradual high 
motion 

Others 

‘nl’ 10+19+13 13 7 19 3 9 2 
‘ge1’ 17+5 14 7 0 0 5 0 
‘ge2’ 50 128 1 1 0 0 0 
‘us_com’ 2+3 2 18 2 1 1 2 
‘us_pub’ 1 1 0 0  1 1 
Total in movies 120 157 34 22 4 16 5 

 
False gradual transition detection in series appeared mainly during static sequences 

(static pictures, computer animated static sequences, small object moving in static 

background), as shown in Table 18. Missed detections appeared, according to Table 

18, during dissolves between motion loaded colour wise similar sequences or fades to 

static dark sequences. False gradual transition detection in movies appeared during 

static sequences with embedded cuts (cut transition embedded by static pictures), static 

sequences (small object moving in static background, small moving background area 

with big static object computer animated static sequences, small object moving in static 

background), monotonous luminance changes (slowly dimmed light) and blurry 

sequences (fast camera motion, light spot towards camera), as can be seen in Table 

19. Missed detections appeared, according to Table 19, mainly during gradual 

transitions between motion loaded colour wise similar sequences. 

120 of these false instances correlate with cut instances identified by our own cut 

detector of section 4.1.2. Hence, we propose the following post-processing: we discard 

gradual transition instances if a gradual spans across one of our cut instances. 

Graduals are simply discarded when the simple TimeStamp (TS) rule, 
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 ‘CD reduction’: endstart SGradualTrTonTSCutDetectiSGradualTrT ≤<   (4-30),

is satisfied. This reduces the false detection to 232 instances, as stated in Table 20.  

Here after, we applied another step to improve the robustness of Naci’s method [59], i.e. 

by post-filtering all remaining gradual transition instances applying a temporal minimal 

length threshold. Gradual transitions contain a certain semantic meaning and, hence, 

have to have a certain length, i.e. in average 30 frames, to be perceivable by human 

observers. Mainly video artefacts triggered the method of [59] to falsely detect very 

short gradual transitions, which we discard if their length fall-short of an experimentally 

chosen temporal threshold length, i.e. ThW=7 frames, resulting in 74 false detections, as 

summarized  in Table 20. Out of the 74 instances 55 instances are embedded in a static 

sequence and another 17 instances during which the illumination changes smoothly, as 

shown in Figure 52. Hence, we apply our feature point based similarity post-processing 

(with ThFP=30), as applied for the cut detector, reducing the false detections to 17, i.e. a 

precision of 60.5%.  

 

Table 20. Gradual Transition Detection results. 

Genre Total 
GradTs 

Correct 
GradTs 

Missed 
GTs 

False 
GTs 

Recall 
[%] 

Precision 
[%] 

Series - method [59] only 34 14 20 15 41.2 48.3 
Movies – method [59] only 33 12 21 337 36.4 3.4 
M&S - method [59] only 67 26 41 352 38.8 6.9 

Series after CD reduction 34 14 20 15 41.2 48.3 
Movies after CD reduction 33 12 21 217 36.4 5.2 
M&S after CD reduction 67 26 41 232 38.8 10.1 

Series after windowing (W=7)  34 14 20 15 41.2 48.3 
Movies after windowing (W=7) 33 12 21 59 36.4 16.9 
M&S after windowing (W=&) 67 26 41 74 38.8 26 

Series after FP-analysis 34 14 20 1 41.2 93.3 
Movies after FP-analysis 33 12 21 16 36.4 42.9 
M&S after FP-analysis 67 26 41 17 38.8 60.5 

 

 

Figure 52. Examples of gradual transition false detection instances1. 
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The analysis of missed detections shows that 26 of the 41 missed gradual transitions 

occurred during blurry, motion loaded sequences, which decrease the crucial reliability 

of the motion estimator. 

In the end the previous described blocks forms the service unit Gradual Transition 

Detector, as sketched in Figure 53, which communicates its results in an XML-based 

MPEG-7 compliant way to the subsequent service units, as described in Annex 9.  

 
Conclusions on Gradual Transition Detector  

The importance of gradual transitions for semantic segmentation justifies to integrate a 

state-of-the-art gradual transition detector, i.e. the one from Naci, into the framework 

and to elaborate accuracy (precision) improvements using derived statistics. Our 

improvements increased the precision to an acceptable level of 60.5% containing false 

detections mainly based on smooth illumination changes. We expect that the latter 

could probably be eliminated by checking each gradual transistion instance applying our 

segmentation map based consistency method, presented in our shot detection section.   

We also did not tackle the challenging question of increasing recall. Mainly, because the 

detection of the majority of the remaining 41% missed detections, i.e. 26 individual 

instances, which are embedded in blurry, motion loaded sequences would require 

additional features such as more advanced foreground / background segmentation 

solutions enabling better camera motion predictions and texture to define the 

blurriness.9  

To avoid that the accuracy achieved with the gradual transition detector influences sub-

sequent analysis results we consider applying gradual transition ground truth as input 

for the subsequent service units and, hence, to separate the results from each other.  

 

 

Figure 53. System integration of gradual transition detector. 

 

                                                 
9 There are some recent works in TRECVid dealing with luminance changes applying linear 

regression, which could be of use for this purpose.  
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Camera Motion Analysis 
Literature differentiates between two main camera motion analyses models, as 

described in section 3.1.2, a feature- and the intensity-based one. For the purpose of 

audiovisual segmentation analysis an intensity-based camera motion model, derived 

from [111], is implemented as service unit into the framework with a 2-parameter 

translation estimation d=(dx,dy), which will be shortly described in this section. First of all, 

the camera motion algorithm relies on a sequence of related video frames, i.e. frames 

within a shot, e.g. F(n) and F(n+d). Hence, shot boundary information, here from the 

shot boundary detection service unit, is provided as input to the camera motion analysis 

unit used to reset the camera motion parameters d=(dx=0,dy=0) at each shot boundary 

securing small motion parameter values. The latter are usually in the range of ± 20 pixel 

/ frame for both directions, x and y. Unfortunately, we do not have a reliable foreground / 

background differentiating algorithm to our disposal, which could help to reduce the 

motion noise introduced by foreground object motion as described in section 3.1.2.  

 
Camera motion analysis 

First and foremost, a set of NSP uniformly distributed sample points, here a simple 

uniform grid is applied, extracted from the Y-plane, i.e. the intensity out of YCbCr, of the 

initial frame F(n) and the successor frame F(n+1), as described in [111], resulting in NSP 

samples YF(n)(xi,yi) and NSP samples YF(n+1)(xi,yi). Subsequently, only for frame F(n) the 

x- and y-gradients (derivatives) are calculated per sample point, by means of a simple 

“–1;0;1” mask, i.e. for each sample YF(n)(xi,yi) the horizontal predecessor sample YF(n)(xi-

1,yi) is subtracted from its successor YF(n)(xi+1,yi), as well as for the vertical direction 

(YF(n)(xi,yi+1)- YF(n)(xi,yi-1)). This results in an NSPx2 matrix M (consisting of a x- and a y-

gradient per sample point).  

Now a matching procedure, including several iterations, starts to estimate the 2x1 

camera motion vector d=(dx,dy) minimizing the NSPx1 error vector e of equation 

 edM =∆
 

(4-31),

with dNew=∆d+dOld, wherein ∆d=(∆dx,∆dy) represents the update vector of d. The 

elements of e are the luminance difference values between the sample points YF(n)(xi,yi) 

and the motion compensated sample points of YF(n+1)(xi,yi), as defined by  

 ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

++−

++−
=

+

+

yNxNnFNNnF

yxnFnF

dydxYyxY

dydxYyxY
e

SPSPSPSP
,,

,,

1

11111

M
 (4-32),

with an initial d=(0;0). Since M represents an over-specified system (many more rows 

than columns) the equation may not have a solution and, therefore, a least-square 

calculation is required using M’, i.e. the transpose of M, converting the equation into 
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 eMdMM ′=∆′
 

(4-33),

wherein M’M represents a 2x2 matrix and M’e a two-element vector, resulting in  

 ( ) ePeMMMd =′′=∆ −1

 
(4-34),

with P representing the pseudo-inverse of matrix M. At the end of each iteration the 

motion vector dNew=∆d+dOld is updated, which represents the end of an iteration. 

Minimizing ∆d, i.e. ∆d~0, leads, therefore, to an optimal camera motion estimation, 

which is done running the previous calculation for several iterations. In test eight 

iterations have performed best and has been used subsequently. Finally, the resulting 

dNew=(dx,dy) is provided as output of this service unit per frame instance.  

 

Conclusion on Video mid-level features 

In this section we have introduced firstly our approach to construct an AV corpus for 

objective development of content analysis algorithms. The latter we applied to 

benchmark three of our cut detectors, i.e. macroblock correlation CD, field difference 

CD and color segmentation CD, against each and against a rough indexing CD. The 

field difference CD performed best and, hence, we improved the robustness by feature-

point-based similarity analysis post-processing and a forward-backward-based filtering 

approach. Furthermore, we investigated the robustness of the detector by decreasing 

the resolution and replacing the field difference CD by a frame difference CD. The latter 

we integrated as our cut detector of choice into our framework as Service Unit CD. 

Hereafter, we improved an inherited gradual transition detector. The latter we implement 

as Service Unit GDT into our analysis framework. 

Finally, we elaborated a camera motion analysis algorithm, which we implemented as 

Service Unit CM. 

 

 

 



 

  
130  

4.1.3 Conclusions on video low-level and mid-level feature 

In this section we presented several low-level and mid-level analysis algorithms, which 

we consider useful and necessary to elaborate a system solution allowing us to 

segment content automatically into its semantic entities.  

Because we intend to apply low-level feature extraction in a processing constraint 

environment we constraint ourselves in this section to compressed domain solutions. 

Nevertheless, the concepts introduced can be applied as well in the baseband domain if 

required. 

For our task of content segmentation we identified as well several mid-level video 

analysis features, such as cut detection, gradual transition detection and camera 

motion. Our specific robustness and platform requirements forced us to develop own 

solutions for these mid-level features, which we met as e.g. presented for cut detection 

and gradual transition detection. 

In the next section we will introduce several audio-based low-level and mid-level 

analysis features, which we consider as necessary to accomplish our task.     
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4.2 Task-oriented low-level and mid-level audio analysis 
 
In this section we will investigate low-level and mid-level features, which we aim to apply 

for audio-based segmentation and for a dedicated content classification task, i.e. 

commercial block detection.  

The promising results achieved by fusing audio- and video features for audiovisual 

content classification and segmentation, as described in sections 3.2 and 3.3, motivated 

us to elaborate specific audio low-level and mid-level features. In this section we 

present various low-level and mid-level audio analysis algorithms starting with a 

compressed domain silence detector. We develop this application-oriented silence 

detector specifically for our commercial block detector at which we merge audio silences 

and several video features. Here after, we present in more detail our inherited audio 

classifier, i.e. the classifier of McKinney [74], which we introduced in section 3.2.2 and 

aim to apply as pre-processing for audio-based segmentation. 

 

4.2.1 Commercial block silence detection 

The equivalent to shot boundaries in video are in the audio domain silences. The latter 

allow segmenting an audio signal content into its elementary audio units. Especially in 

message loaded content such as commercial adds, individual messages (i.e. individual 

adds) have to be audio-visually observably disconnected. Dedicated audio silences, 

further referenced as commercial block silences, exhibit this distinctive behaviour and 

due to their specific observable nature we aim to identify them for indexing non-content 

related inserts, i.e. commercials. 

 

Compressed domain commercial block silence detection 

Our analysis on commercial blocks embedded in our AV corpus content, described in 

section 4.1.2, unveils that silences separating individual commercial adds from each 

other propagate three specific characteristic and distinctive attributes. These three 

attributes, as published in our patent application [33], are (a) a steep short-term signal 

power decreases and (b) a long duration, i.e. in the range of 0.1-1.0 seconds and (c) a 

distinct local signal power in relation to the global averaged signal power level, i.e. 

distinctive local minima. This is why we propose a method, which is based on a simple 

thresholding. The sub-task’s specific technical requirements, i.e. processing efficient 

implementation of a commercial block detector, are the reason that we focus on two 

compressed domain audio parameters in parallel, i.e. MPEG-1 layer 2 (scale factors) 

and AC-3 (exponents), to realize this specific silence detector.    
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MPEG-1 layer 2 

The core of an MPEG-1 layer 2 codec [114], which covers a bit range from 8 to 384 

kbps, samples an incoming pulse code modulated PCM audio signal at frequencies of 

48 kHz, 44.1 kHz or 32 kHz. Here after, it decomposes the signal into individual 

equidistant audio frames with distances of 24, 26.12 or 36 msec, respectively. Each 

audio frame is sub-divided into three time-wise consecutive blocks BL, i.e. BL1 to BL3, 

consisting of 32 frequency-wise equidistant narrow sub-bands SBMl, i.e. SBM0 to SBM31, 

and containing two channels Ch, i.e. left channel CHL and right channel CHR, as shown 

in Figure 54 (left). This results in 3*32*2=192 sub-band units per audio frame and each 

of them contains 12 quantized samples, which is represented by one corresponding 

intermediate factor. The latter one corresponds to the upper-bound estimate of the 12 

sample values. The resulting intermediate factor is, here after, clipped to one of the 59 

MPEG-1 layer 2 defined scale factor values, i.e. 0 to 58. Hence, each sub-band unit, as 

shown in Figure 54, is represented by its value and one scale factor. This results in 

sfv=32*3*2=192 scale factor values (sfv) per audio frame and each scale factor value 

represents a pseudo dB representation.  

       

 

Figure 54. MPEG1 layer 2 audio frame with maximum scale factor selection. 
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Furthermore, the specific task of computing the maximal signal power allows 

compressing the available data of each audio frame even further. It is sufficient to keep, 

for each sub-band, only the maximum scale factor value, as shown in Figure 54 (right). 

Hence, for each of the 32 triplets and two channels only the maximum scale factor index 

value per sub-band sfi(SBMl) is needed with 
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(4-35). 

This results in 32 scale factor values per audio frame.  

 

 

AC-3 (Dolby) 

For AC-3 we take an equivalent approach to MPEG-1 layer 2. In AC-3 [115], a 

compression developed by company Dolby with a bit rate ranging from 32 to 640 kbps, 

the audio signal is characterized by 21 exponents, i.e. exp0 to exp20, corresponding to a 

signal power ranger of 0 to –120 dB. The sampling rate here is 33.25 kHz. Here after, 

each resulting audio frame is sub-divided into six time-wise consecutive blocks BL, i.e. 

BL1 to BL6, consists of 253 frequency-wise equidistant narrow frequency sub-bands 

SBMl, i.e. SBA0 to SBA253, and contains two channels Ch, i.e. left channel CHL and right 

channel CHR. This results in 6*253*2=3036 sub-band units per audio frame and each 

sub-band unit is represented by a mantissa and exponent product, i.e. mantissa*2(-

exponent). Equivalent to the compression done in the MPEG-1 layer 2 case, we select, per 

sub-band, one maximum exponent value across all blocks and channels, which results 

in 253 exponent values per audio frame. This is still of unnecessary fine granularity, 

hence, we compute the average across eight consecutive narrow sub-bands, i.e. sub-

band clustering, which results in L=upperbound((253-5)/8)=32 maximal exponent values 

expN,i, wherein the last cluster contains only 5 sub-bands.   

 

 

Conversion from MPEG-1 layer 2 scale factors to AC-3 exponents 

At this stage we have with MPEG-1 layer 2 32 maximum pseudo scale factor values and 

with AC-3 32 maximum exponent values. In order to continue with one common solution 

for both we map the scale factor values onto AC-3 exponent values. MPEG-1 layer 2 

applies step sizes of –2 dB per scale factor with the highest scale factor value, i.e. 58, 

corresponding to -116 dB, as shown in Table 21. In AC-3 21 exponents are applied with 

the highest exponent, i.e. 21, also corresponding to –116 dB. The step size is, therefore, 

in AC-3 -5,8 dB. With Table 22 we convert the scale factors into exponent values expN,i.  
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Table 21. Look-up table for MPEG-1 scale factor to AC-3 exponent conversion. 

AC-3  MPEG-1 layer 2 AC-3  MPEG-1 layer 2 
exp dB  dB scale 

factor 
exp dB  dB scale  

factor 
0 0  0 0 (1,2) 11 - 63,8  - 64 32 (33,34) 
1 - 5,8  -6 3 (4,5) 12 - 69,8  - 70 35 (36,37) 
2 - 11,6  - 12 6 (7,8) 13 - 75,4  - 76 38 (39,40) 
3 - 17,4  - 18 9 (10,11) 14 - 81,2  - 82 41 (42) 
4 - 23,2  - 24 12 (13) 15 - 87  - 86 43 (44,45) 
5 - 29  - 28 14 (15,16) 16 - 92,8  - 92 46 (47,48) 
6 - 34,8  - 34 17 (18,19) 17 - 98,6  - 98 49 (50,51) 
7 - 40,6  - 40 20 (21,22) 18 - 104,4  - 104 52 (53,54) 
8 - 46,4  -46 23 (24,25) 19 - 110,2  - 110 55 (56,57) 
9 - 52,2  - 52 26 (27,28) 20 - 116  -116 58 
10 - 58  - 58 29 (30,31)      

Table 22. Mapping of MPEG-1 layer 2 scale factor to AC-3 exponents. 

Scale factor Exponent Scale factor Exponent Scale factor Exponent 
0,1,2 0 3,4,5 1 6,7,8 2 

9,10,11 3 12,13 4 14,15,16 5 
17,18,19 6 20,21,22 7 23,24,25 8 
26,27,28 9 29,30,31 10 32,33,34 11 
35,36,37 12 38,39,40 13 41,42 14 
43,44,45 15 46,47,48 16 49,50,51 17 
52,53,54 18 55,56,57 19 58 20 

      

 

Silence detection with relative ratio of signal strength – compressed domain 
Hence, from the previous step we derived the maximal exponent values expN,i of the 

clustered sub-bands, i.e. L=32 per audio frame. The latter we apply to calculate the local 

signal strength S(N) of audio frame N. Here fore, we sum across all 32 clustered sub-

bands with     
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wherein expN,I denotes the i-th exponent. Here after, we calculate the average signal 

strength SA(N) by averaging across all S(N) values of all audio frames located within a 

sliding time window of size W of consecutive audio frames. Experiments prove that 

logarithmic values of S(N) pose good discriminative power with respect to silence 

detection. We compute SA(N), therefore, with a delay of W/2 frames, with  
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(4-37). 

Each audio frame instance is then evaluated by applying a simple threshold based rule 

with threshold Th, i.e. 

 Th
NS
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A

≤
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)(

  
(4-38), 

and instances satisfying this equation are indexed as potential cut silence instances.  
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Hereafter, we cluster consecutive silence instances together and close short outliers, 

i.e. closing gaps by morphing. The latter instances are defined by a signal strength 

Soutlier, which falls short of the product of a fixed factor M and the signal power of a 

neighboring silence instances SNCS, i.e.  

 NCSoutlier S*MS =
  

(4-39). 

Our method for silence detection in the compressed domain can be easily applied as 

well in the baseband domain as claimed by us in [33] and [114] and published by Louis 

and us in [37] and [36], respectively. In the context of this work we also consider to 

combine the baseband silence detection method for scene boundary detection.      

 

Commercial block silence detection parameter 

The specific distinctive nature of commercial silences allows excluding the signal 

strength of higher frequency sub-band clusters, i.e. SB15 to SB31, because of their 

neglectable contribution to the silence detector. Hence, we apply only the lower 

frequency sub-band clusters, i.e. SB0 to SB14, without scarifying detection robustness. 

The analysis of the detection results unveils limited over-detection, i.e. false detection, 

during speech silences. An analysis of instances of the latter showed that these 

sequences exhibit compared to non-speech sequences a significantly higher variance of 

SA(N) within windows larger than 5 seconds, which we applied to exclude speech 

sequences. Our experiments provided optimal results with an empirically chosen 

window of W=256 audio frames, i.e 8.2 seconds for AC-3 at an audio sampling rate of 

31,25 Hz, a threshold value Th=1/512*(2-9) and a ‘morphing’ factor of M=8. 

 

 

Figure 55. Left: S(N) and SA(N); Right: CB propability with S(N)/SA(N) and duration. 
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In Figure 55 (left) we show the results the local signal strength S(N) and the average 

signal strength SA(N) on a AV corpus movie sequences containing two embedded 

commercial blocks. SA(N) adapts quickly the audio signal and S(N) instances cluster 

themselves close to SA(N) during movie sequences, but at commercials containing 

characteristically deep low-signal-strength silences the S(N)/SA(N) ratio exhibits 

significant changes. Hence, we index all audio instances, which fulfil our S(N)/SA(N) 

ratio based equation (4-38) as potential commercial block cut silences, fill gaps if the 

instance fulfil our morphing condition of equation (4-39) and delete all silence instances 

with a duration shorter than two audio frames. Subsequently, we apply the commercial 

block cut silence frequency to derive a Commercial Block Probability, as visualized in 

Figure 55 (right), which we only calculate to check the strength of the cut silence 

detector but do not use any further. What we aim for is to fuse our commercial cut 

silence detector with visual commercial block detector features.  

 

System integration of service units commercial cut silence detection  
In the final setup we integrate the service unit commercial cut silence detection into our 

framework with an MPEG-7 compliant output. The latter is specified in Annex 9. For the 

required synchronization with the video stream we replace the audio media time of the 

commercial cut silence detector output with the appropriately video media time, as 

shown in Figure 56.   

 

Conclusions 
Our analysis proved that the audio signal of commercial blocks contain, as published by 

Marlow in [90], valuable distinctive information, i.e. characteristic deep and long-lasting 

silences.  

  

 

Figure 56. System integration of commercial block silence detector. 
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The technical requirements of our task, i.e. processing inexpensive and real-time, 

stimulated us to realize a new commercial silence detector, which exploits features of 

compressed domain audio, i.e. MPEG-1 layer 2 and AC-3. From the latter we applied 

scale factors and exponents, respectively, to compute local and average signal power, 

which in relation, i.e. S(N)/SA(N), provide a good commercial silence indicator. The latter 

representss a strong feature for commercial block classification, as we aim to develop in 

section 4.4.   
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4.2.2 Audio classifier 

For scene segmentation we consider fusing visual segmentation with audio scene 

segmentation, as proposed already in [77],[78] and [80]. Similar to the Nitanda’s method 

[79], we intend to apply audio segmentation as preprocessing step for audio 

segmentation. Here fore, we consider applying McKinney’s audio feature extractor [74] 

and classifier. The feature extraction unit is based on a selected group of distinctive 

audio features, i.e. (a) low-level signal properties, (b) mel-frequency spectral coefficients 

(MFCC), (c) psychoacoustic features including roughness, loudness and sharpness, 

and (d) an auditory model representation of temporal envelope fluctuations.  McKinney’s 

classification unit applies these features to classify the audio signal into six independent 

class probabilities, i.e. class independent probability values between zero and one, for 

six audio classes, i.e. speech, music, noise, crowd, silence and unknown, as shown in 

Figure 57 for a short AV corpus movie content for various classes in various colors.   

 

4.2.3 Conclusions on task-oriented low- and mid-level audio analysis 

In this section we introduced two task-oriented audio analysis mid-level features, i.e. 

commercial block silence detection and audio classification, which we consider to fuse 

with video analysis features for content classification, i.e. commercial block detection, 

and content segmentation, respectively.     

 

 

 

Figure 57. Audio class probability results obtained with McKinney’s audio classifier. 
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4.3 Generic High-Level AV Segmentation 
 

So far in this work, we segmented content items up into their elementary video-related 

units, i.e. shots, as presented in section 4.1.2, and into its audio entities as explained in 

section 4.2. The next step is to cluster these elementary units, i.e. shots, which are 

comparable to words in a spoken language, into bigger meaningful entities such as 

audiovisual chapters, which could be seen as entire spoken sentences each having a 

defined structure and semantic meaning. Fortunately, audiovisual productions follow 

well-specified (production) rules, comparable to a human language being defined by a 

specific language grammar. In the same way as human languages are based on 

different grammars and rules, also the audiovisual content genres have their genre-

specific rules, which an analyzer has to be aware of before trying to interpret the 

audiovisual content.  

Hence, in a first step it is important to identify and filter-out non-content-related entities 

(non-genre related contents), which were incorporated into the content, i.e. commercial-

block- and channel-advertisement inserts. This is a necessary step, because the 

grammar of the latter is very uncorrelated with the grammar of the narrative content it is 

embedded in. The author developed, therefore, a specific filter for commercial block 

inserts, further described in the next section, permitting a more focused approach. 

Knowing that non-content related inserts are indexed as such, one can assume that the 

remaining content parts follow some genre specific production rules also known as film 

grammar, as published by Beaver [15] and Bordwell [16], which will be elucidated in 

detail in section 4.5. The aspired quality of the final segmentation solution and the 

variety of genre specific rules compels to narrow the genre space. Hence, we consider 

narrowing the solution to two narrative genres, i.e. series and movies. Fortunately, both 

narrative-based genres contain specific film-grammar-based clusters, i.e. Cross-cuttings 

and Shot-Reverse-Shots, further explained in section 4.5.1. The latter could be seen as 

‘subordinate clauses’ when using the analogy to language grammar.  In section 0 we 

intent to present various methods, which facilitate parallel shot detection through which 

more than half of the content can be clustered together into meaningful audiovisual 

segments.  

The remaining small non-clustered part of the content is the input for the final step, 

which is to segment the content into its semantic meaningful audiovisual chapters. We 

present various clustering and segmentation methods and combinations thereof in the 

remaining sections of 4.5 and 4.6, aiming to detect automatically the boundaries of 

audiovisual scenes (chapters). 
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4.4 Audiovisual Content Filtering: Commercial Block 
Detection 

Robust AV segmentation, as described in the previous sections, and the related 

automatic abstraction of video information from e.g. TV broadcast requests for robust 

methods to distinguish between program related and non-program-related content. This 

is specifically needed as broadcast stations insert non-content-related elements such as 

commercial advertisements due to their specific business model. Because of its 

dissentient nature, these non-content-related inserts have to be identified in a pre-

processing step and they have to be excluded from the further AV segmentation 

process to secure the reliability of the segmentation solution. 

These non-content related inserts mainly consist of individual commercial clips CC. The 

latter aim conveying in a very short time a distinct and recognizable marketing message 

of a product or a service. Their content is, therefore, heavily loaded. It consists of very 

short shots, high motion, appealing color distribution, strong embedded text messages, 

persons and objects in focus, dominant speech/music sequences, and the absence of 

channel logos. Furthermore, commercial clips distinct themselves, by intention, from the 

rest of the content. Hence, intuitive and recognisable audiovisual commercial clips 

separators CCS enable viewers to distinguish between individual commercial clips, as 

shown in Figure 58. Several commercial clips are clustered into commercial blocks CB. 

The latter are often flanked on either side by commercial block identifiers, which are 

defined by legislation to index the beginning and end of a commercial block, and / or 

trailers. The latter are often channel related announcements and promotions of 

upcoming events or programs, schematically shown in Figure 58. Sometimes the latter 

can also appear independently of the commercial blocks. The specific nature of 

commercial blocks distinguishes them from other genres.  

 

 

Figure 58. Commercial block with commercial clips embedded in a program content1. 
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4.4.1 Commercial block properties  

In section 3.3.1 various published methods have been presented exploiting the specific 

nature of commercials to detect them, such as the fact that individual commercial clips 

of a commercial block have to be distinguishable from each other. Hence, an intuitive 

discontinuation between successive clips is required realized by an audible and visible 

disruption of the audiovisual signal. A common approach of broadcast stations in the 

past was applying audio silences black frames here for. From chapter 3 we know that 

especially the latter feature was used by e.g. Blum [87] and Iggulden [88] in combination 

with specific temporal thresholds, i.e. the time-wise distance between successive black 

frames, in order to identify commercial advertisement sequences. The need to convey 

an important marketing message in an appealing way in about 30 seconds, i.e. the 

average duration of a commercial clip, forces producers of commercials to apply an 

unusual high video cut frequency transmitting memorize-able appealing content. An 

example of the latter can be seen in Figure 59 for a news-culture-weather block, which 

is embedded within several commercial blocks. The short shot duration in combination 

with colorful, sharp and focused content provide distinctive video cues not only to 

increase the attractiveness of commercial clips, but at the same time to automatically 

identify them, e.g. by exploiting the high variance of YDV_AV_Norm, as shown in Figure 59 

(up left).   

 

Figure 59. Behaviour of average YUV and RGB values during commercial blocks CB. 
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As presented in chapter 3, Lienhart exploited in [89] the high cut frequency in 

combination with the frequent re-appearance of black frames to detect advertisements. 

We aim in this section combining our application-oriented commercial cut silence 

detector from section 4.2.1 with several distinctive video features, similar to Marlow’s 

method [90] but then extended with concepts from Iggulden [88] and Lienhart [89]. 

Scarce computational processing resources in the target consumer platforms and the 

need for a near real-time performing commercial block detector forced us narrowing our 

search mainly to the compressed domain of video. Luckily, MPEG-2 codecs, i.e. an 

encoder-decoder, offer internally a variety of compression parameters, which we reuse 

to calculate our specific low-level and mid-level features, as published by us in [121]. 

Hence, we implement several compressed domain video low-level features, which we 

introduced in section 4.1.1, i.e.  

• normalized complexity COMNorm of equation (4-3),  

• progressive detector SUMProg/Inter(N) of (4-5),  

• black frame detector and mono-chrome frame detector with YDC_AV_Norm(N) and 

YDC_VAR_Norm(N) of (4-6)/(4-9), 

• letterbox detector YDC_VAR_LB_Norm(N) of (4-13) and the video mid-level feature,  

• shot boundary detector of section 0 with MAD,  

and try applying them to identify commercial blocks, as shown in Figure 60.  

 

Figure 60. Distinctive behaviour of features for genre ‘commercials’.  
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The nature of the high-level features commercial clips and commercial blocks vary, 

unfortunately, between cultures, i.e. nations, but also between commercial and national 

authority owned channels and even within channels dependent on the day of the week 

and the time of the day. An example for the latter is that during prime time, i.e. between 

6 and 9 p.m., shorter commercial clips appear in more frequent commercial blocks e.g. 

compared to noon time. The variant nature and the need for a processing-efficient 

solution forces us to select the most salient commercial block detection features, which 

appear to be features enabling the detection of commercial clip separators. Because 

broadcaster replaced black frames by monochrome frames as visual commercial clip 

separator we select our monochrome frame detector, based on YDC_VAR_Norm(N) of 

equation (4-9), and index all instances as monochrome frames, which fall bellow the in 

section 4.1.1 specified threshold of  YDC_VAR_Norm(N) ≤0,015. Hereafter, we index all 

monochrome frame instances as commercial clip separators, if they correlate time-wise 

with a commercial cut silence instance, as visualized schematically in Figure 61 (left). 

In a final step we empirically analyse the statistical nature of commercial clip separators 

within our AV corpus, which we use to implement our commercial block detector. The 

analysis shows that the minimum and maximum length of individual commercial clips 

and, hence, the distance between commercial clip separators is CCMinLength=22 seconds 

and CCMaxLength=640 seconds. Hence, the first identified CCS is applied as reference and 

if at least two succeeding CCS instances, i.e. in total three CCS in row, appear within 

the CC boundaries, i.e. CCMinLength and CCMaxLength, than we index the first CCS as start 

of the commercial block sequence. Here after, all subsequent CCS instances, which 

fulfil the CC boundary conditions, are added to the commercial block and the last CCS 

is indexed as end instance of the automatically detected commercial block.   

  

 

Figure 61. Commercial block detection - schema.  
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4.4.2 Results of commercial block detection 

The application of commercial block detection in consumer products leaves us with the 

question of the specific usage of it in the consumer product. The desired solution would 

be to implement a fully automatic commercial block detector and, hence ‘automatic 

commercial skip’. Nevertheless, user studies unveiled that also a ‘lean forward’ based, 

i.e. user initiated, commercial skip would fulfil the requirements. The user initiates the 

commercial skip as soon he encounters a non-content related insert. Hence, the 

detection of the beginning of a commercial block sequence is less important than the 

correct end detection of the sequence, because the system automatically jump to the 

automatically identified end point. Therefore the latter should rather be within the non-

content related sequence than outside. In the case of the latter desired program content 

would be missed. We conclude that our system should achieve high precision, i.e. the 

duration of false positive instances FP (CBFalse) in seconds should be very low, rather 

than high recall, i.e. the duration of false negative instances FN (CBMissed) in seconds. 

False positives are those part(s) of program content(s), which are falesy identified as 

commercials, and false negatives FN are those part(s) of commercials(s) and trailers, 

which are not identified as non-content related inserts, as sketched in Figure 61 (right). 

The specific nature of this analysis motivates us to adapt the recall and precision 

equations (3-16) and (3-17), respectively. For recall we define CBTotalTime in seconds, 

which represents the accumulated duration of all commercial clips including other non-

content related inserts such as trailers. On the contrary, for precision we define PC in 

seconds, which represents the accumulated total time of the program contents, with  

 100*Pr,100*Re
PNTotalTime

TotalTime

FPC
PC

FCB
CB

+
=

+
=

 
(4-40).

With this definition our precision should reach close to 100% to be useful for consumer 

devices, i.e. Pr~99.99% which results in 3.6 seconds of program content falsely indexed 

as non-content related inserts for every 10 hours of program content, as summarized in 

Table 23.  

 

Table 23. Duration of falsely identified content for a set of precision values. 

Precision 98.00% 99.00% 99.50% 99.90% 99,95% 99.99% 

FP per  

10 hours 

12 min 6 min 3 min 36 sec 18 sec 3.6 sec 
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For the evaluation of our commercial block detector we record 96 hours and 16 minutes 

of AV broadcast content (excluding non-content inserts) with 12 hours and 18 minutes 

of non-content related inserts, i.e. commercials clips and trailers. The latter are 

clustered in 204 individual commercial blocks. The corpus contains recordings from 23 

commercial and national channels distributed across 7 countries. For the analysis we 

decided not to differentiate between trailers and commercial advertisements. The results 

of our commercial block detector, unfortunately, only reached a precision  of 99.93%, as 

shown in Table 24, i.e. ~30 seconds of 10 hours of content are falsely indexed as non-

content related inserts. The recall reaches about 91.4% and Table 24 summarizes as 

well the average and maximum duration of false positives and negatives, respectively. 

  

Table 24. Commercial block detection results. 

Pr [%] Re [%] Average 

FP 

Average 

FN 

Maximum 

FP 

Maximum  

FN 

99.93 91.4% 3 sec 29 sec 35 sec 59 sec 

 

For the analysis we also classified each commercial block sequence into one of the 

following five groups, i.e. 

• complete correct detection CCD of the non-content related insert, 

• entire commercial detected ECD, but pre-deceasing and/or succeeding trailers are 

not (entirely) detected, 

• partial commercial detected PCD, i.e. part of the commercial clips are missed,  

• non-relevant program content NPR included, i.e. program content such as the 

program credits or program intros are included, 

• relevant program content RPR included, i.e. relevant program content was indexed 

as non-content related inserts.  

The distribution of the 204 commercial block sequences across the five groups is 

summarized in Table 25. The last two columns, i.e. NPR and RPR, represent the 

instances of severe problems, i.e. content identified as non-content related inserts. 

 

Table 25. Results of analysis of total 204 commercial block sequences. 

Group CCD ECD PCD NPR RPR 

Number of  

sequences 

105 60 29 6 4 

Percentage 51.5%  29.4% 14.2% 3.0%  1.9% 
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The analysis of the NPR and RPR cases shows that (a) content of individual music 

channels, i.e. music clips, exhibit commercial clip characteristic behaviour, and that (b) 

some commercial low budget movie channels do not separate program content from 

commercial blocks. The six NPR cases contain two cases at which credits (offset ~15 

seconds), two cases at which program intros of soaps (offset ~34 seconds) and two 

music clip intro (offset ~12 seconds) are indexed as non-content related inserts. The 

four RPR cases contain three instances at which the program start (offset ~42 seconds) 

and one time the music clip itself (offset ~55 seconds) is identified as non-content 

related insert.   

Applying a dedicated program credit detector, i.e. a scrolling text detector as we 

published in [118], which is based on our embedded text detector [119], could solve the 

problem of false positives during program credits, i.e. NPR cases. Furthermore, 

repetitive intros and outros of programs could be memorized with e.g. Forbes method 

[120], i.e. signal signatures of repetitive TV signals could be stored automatically and 

used for identification. The same method could be applied to increase recall, i.e. 

learning the signature of individual commercial clips, which are then used to identify 

missed commercial clips during a post-processing step. Another extension of our 

method would be to include a dedicated logo detector, because in many countries 

channel logos have to disappear during non-content related inserts and reappear after 

them. 

 

4.4.3 Service Units commercial block Detection CBD  

Finally we implemented both, our commercial cut silence detector of section 4.2.1 and 

our monochrome frame detector, and provide the resulting commercial clip separators 

to our commercial block detector unit. The latter generates an MPEG-7 compliant 

commercial block data output stream. 

 
Figure 62. Service unit Commercial Block Detection CBD. 
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Hence, our service unit commercial block detection classifies all non-content related 

inserts in our AV corpus appropriately, as shown in Figure 63, and identifies both 

boundaries instances, i.e. commercial block start instance CBS and commercial block 

end instance CBE.  

 
 

4.4.4 Conclusions 

In this section we presented a commercial block detector, which we required to filter out 

all non-content related inserts before starting to segment the content into semantic 

meaningful chapters. We implemented here fore several audio and video low-level and 

mid-level features exploiting data most efficiently available within a video compressor, 

as we describe as well in [121]. Here after, we selected the most salient features, i.e. 

• commercial cut silence detection (as we describe as well in [33] and [116]) and 

• monochrome frame detection (also published in [122], [123] and [124]),  

which we applied for our commercial clip separator detector. Subsequently, we used a 

statistical analysis to derive appropriate rules for our commercial block detector. For the 

benchmark of the latter we recorded a broader test set of broadcast content. The 

analysis unveiled that the precision of the detector reached about 99.93% and a recall 

of 91.3%. Because the achieved robustness did not satisfied the requirements of an 

automatic commercial skip application we decided applying the detector for a manual 

commercial skip application. Furthermore, we developed an intuitive user annotation 

tool, as we described in Annex 10, with which consumers can easily shift the 

automatically detected boundaries to the appropriate location. Only recently we saw that 

a few CE device makers provided on very few of their PVRs commercial block detection 

functionality, but no skip based application mainly due to the low detection rate of their 

solution. 

 

 

 

Figure 63. Shot segmented and non-content indexed content item (movie_ge2). 
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4.5 Film-grammar based audiovisual content clustering 
 
The service units of the preceding chapters, i.e. shot boundary- and commercial block 

detection cleaned the content and segmented the content-only sequences into its 

atomic units, i.e. shots. For the final aim of retrieving semantic audiovisual 

discontinuities, i.e. scene boundaries, the author decided to include an intermediate 

step, i.e. retrieving and clustering of visually correlated content sequences based on 

commonly applied content production rules. Sequences of the latter category exhibit 

such a strong internal correlation that from a comprehensive point of view it is 

impossible to divide such a sequence, e.g. by a scene boundary. Hence, we decide to 

investigate those rules and to develop an appropriate clustering method in order to 

reduce the potential scene boundary instance space, i.e. to pre-cluster the content as 

much as possible before searching for scene boundaries in the remaining parts. 

In the following section, in 4.5.1, we describe the internationally acknowledged and 

commonly applied, e.g. by content production industry, film-grammar based production 

rules. The latter include cinematographic features, shot classification and parallel shots. 

The reader should be aware that those rules hold true only for a sub-set of all 

audiovisual genres, i.e. narrative content such as soaps, series, special magazines, 

some sub-groups of documentaries, cartoons and movies. Hereafter, we propose 

methods for content clustering, i.e. parallel shot detection, in section 4.5.2, and for 

categorization, in 4.5.3, respectively.  

 
 
 

4.5.1 Film Grammar for AV scene segmentation: Introduction 

4.5.1.1 Production metadata 

The production of TV broadcast- and cinema content underlies a handful of common 

conventions often referenced as film grammar, Bordwell [16].  In this section the basics 

of film grammar and its related domain-specific terms are explained in more detail to 

sketch the opportunities for multimedia content analysis.  

First of all, the reader or those who work with film analysis have to realize that film 

production is an art on its own. As such, it is very difficult to analyze film content 

objectively, because it is based on and makes usage of the creativity and subjectivity of 

the content producer or director, who has his/her own style. Fortunately, almost every 

producer or director commits himself to follow the above-mentioned conventions during 

the production of multimedia content, as sketched in Figure 64.  
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First of all a scenario is sketched containing a short overview in terms of scenes, their 

location, their settings, the actions contained and its involved characters. The 

segmentation into its narrative elements, i.e. scenes, is explicitly present in the scenario, 

which as such is mainly used to estimate budgets and agree on, hence, required 

changes. Thereafter, a script is written defining the semantic concept and the 

screenplay. It contains objective description elements, such as location / environmental 

setting, time of the day, dialogues, shot composition and video editing transitions. The 

script, which incorporates film grammar rules, is still readable like a novel and provides 

the producer or director with an initial layout for the production. During the production 

the director or producer may adapt the concept if required, e.g. due to budget cuts, and 

those decisions in combination with the now and then updated script result in the final 

production decisions. Those production decisions together with the script information 

are very valuable production metadata, as shown in Figure 64, providing content- and 

context-relevant information about the content. Unfortunately, those production 

metadata are not standardized and even if available not stored appropriately with the 

produced content.  

 

 

Figure 64. Production and analysis flow1. 
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Before capturing individual takes the script is used to make a storyboard composed of 

individual sequential graphics, as sketched in Figure 65, depicting the narrative story 

line supporting the director to imagine the settings, e.g. arrangements inside a shot, 

exact camera positions, shot type, costumes, make-up, lighting and other 

cinematographic components, explained in more detail later in this section.  

Subsequently, content providers or broadcasters change the flow of the produced 

content according to their business models. Broadcasters create a continuous 

broadcast flows by concatenating various produced content items, which to some 

extend are captured by Electronic Program Guide (EPG) metadata and transmitted by 

means of e.g. Digital Video Broadcast – Service Information (DVB-SI), containing data 

such as title, genre, channel id, start time and duration, synopsis (abstract) and key 

words.  

 

Figure 65. Storyboard of a scene with crosscutting - realized in Figure 781. 
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Optionally they can also contain data such as the name of the director and actors, 

country of origin and language. Unfortunately, the current business models of 

broadcasters, which to some extend is based on commercial inserts, inhibit the open 

and accurate transmission of broadcast metadata, sketched in Figure 64. Often 

commercial blocks flank content items and therefore EPG start- and end times are kept 

fuzzy. In addition, commercial blocks are inserted into content items, but due to the 

business model no information is available about the location of the commercial inserts.  

 
The task of content analysis engines can be seen as a kind of reverse engineering. 

Production rules, production decisions and transmission decisions are not properly 

maintained or provided with the produced content and therefore the metadata have to 

be re-generated by analyzing the incoming AV signal with an analysis engine resulting 

in analysis engine metadata, as shown in Figure 64. 

In chapter 3 we have already introduced some prior works, which implicitly or explicitly 

apply production rules in order to segment content into video entities. We apply in this 

work additional film grammar knowledge to elaborate new methods for the final aim of 

clustering and segmenting audiovisual content. Hence, in the rest of this section more 

insides in the film grammar rules will be given to understand the common production 

rules, which were necessary to define proper analysis engine algorithms for this work. It 

is needless to say that the ultimate goal is to generate all relevant production metadata. 
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4.5.1.2 Film grammar 

The task of director and editor is to use script and storyboard to produce an audiovisual 

sequence telling a logical and comprehensible story, which should fulfill certain ‘film 

grammar rules’ and which should be to some extend uniform to the chosen film genre. 

For us film grammar is a set of rules we can apply for this work. Film grammar often has 

specific patterns, which have established themselves in the course of time e.g. the 

narrative structure of classical movies consists of three acts separated by two plot 

points, as sketched in Figure 66 and explained by Bordwell in [16] and Beaver in [15]. 

Hence, the production of raw material starts with capturing takes, as described in 4.1.2, 

which are composed matching as much as possible to the sketches described in script 

and storyboard.  

Mise-en-Scene production rules 

Directors, here for, use a well-known technique called Mise-en-Scene, i.e. French for 

‘putting into the scene’, which covers from a cinematographic point of view all what a 

viewer sees, i.e. spatial compositions, settings, camera position, make-up, light settings 

and space-time relations. Properly applied Mise-en-Scene enables to convey emotional 

effects, symbolic messages and meanings, but also to concatenate content instances 

on an abstract level together. 

Setting, Costumes, Make-up, Lighting, Space and Time 

Director or script defines where an event should take place, which is called the setting. 

Everything, which surrounds the actor, is part of the setting. Outdoor scenes, for 

example, are often shot at authentic locations to preserve authenticity. Indoor scenes 

are predominately produced in studios due to access to professional lighting and 

equipment facilities. In general nothing is left to chance, what is shown in a movie, and 

even if something should occur random it is most probably intended. Through settings 

directors are enabled to deliver certain messages to the audience. A scene with e.g. 

impressive buildings and a gaggle of supernumeraries shall deliver a mind-blowing 

atmosphere. In contrary, a scene with a monochrome background should direct the 

viewer attention to e.g. the specific gestures and mimics of an actor. 

 

Figure 66. Narrative structure of classical movie consisting of three acts. 
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Costumes have the purpose to support the authenticity created by the setting, e.g. 

emphasizing the era of the event. Moreover, costumes have the function to define 

certain actor’s roles, e.g. the viewer will immediately uncover a magician as such 

through his long dark robe and a soldier through his uniform. Make-up has a similar 

function in defining an actor’s role. It can convert an actor into anything and anybody 

such as a beast as well as a famous composer.  

“Light expresses ideology, emotion, color, depth, and style. It can efface, narrate, 

describe. With the right lighting, the ugliest face, the most idiotic expression can radiate 

with beauty or intelligence”, stated by director Frederico Fellini. Light has a strong 

impact on the interpretation of a scene and with light certain subjective feelings can be 

triggered. Furthermore, light can have the function to stimulate the viewer to focus on 

specific areas, objects  / subjects or actions. Light can be separated into key light and fill 

light, which are the two basic sources used to lighten a scene. Key light is the strongest 

possible light and usually corresponds to the actual light source in the scene, which is 

often also visible to the viewer. Fill light is used to illuminate the entire setting and to 

soften existing shadows. Lighting graduations are often used to differentiate between 

day and night settings. “There is a strong shadow where there is much light.” (J.W. v. 

Goethe, “Goetz von Berlichingen”, 1st act). In cinematography there are two kinds of 

shadows the attached shadows or shading and the cast shadows. When obstacles 

hinder light to illuminate the entire setting shadows occur. The human nose causes for 

example almost always slight shadows in the face of the actor, which is called shading. 

On the other hand specific objects can create strong visible meaningful shadows called 

cast shadows.   

 

 

Figure 67. Setting, Make Up and Lighting examples1. 
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Another aspect of film grammar is the creation of a continuous story line, which has to 

be done carefully because the human visual system and brain is very well trained to 

perceive changes, both in space and time, much better than uniformity. This fact will be 

further exploited and therefore the non-uniformity aspects of Mise-en-Scene will attract 

our further attention, especially those related to changes in light, shape and movement. 

Essential here fore is the understanding of some cinematographic rules.  

 

Cinematographic rules 
Cinematography, literally the writing in movement, provides the director with tools to 

manipulate the viewer’s experience and to create (non-)uniform impressions, using e.g. 

range of tonalities, speed of motion and transformation of the perspective. 

Range of Tonalities 

The director has for example a range of tonalities choice of creating either color or 

black-and-white content. In addition, he can regulate the contrast in the content stream, 

which refers to the degree of difference between the darkest and the lightest areas in 

the singular frame, but also across the shot and the entire content. 

Speed of motion is mainly used to create an impression of action or suspense, but also 

to focus the viewer’s attention on something. In live sport events the point of interest is 

often passed before the viewer is able to absorb the information, e.g. a goal in a soccer 

match. Hence, slow motion replays are used to flashback onto the instance of interest 

and at critical moments a freeze-frame may be used to enable the viewer to digest the 

instance. On the other hand, an increase of speed of motion is often used to create an 

impression of action and activity. In the extreme case, if increased to comic-like speeds, 

it is often used to give an overview of a long-windowed process, such as a sunrise. 

Perspective relations can be applied to achieve e.g. the impression of 3-D spaces. 

Those relations deal with the spatial relation of objects / subjects inside a setting. In a 

nature setting for example, trees located close to the viewer are perceived much bigger 

then mountains, which are far back in the scenery. The kind and the settings of the 

camera lens enable to simulate the human eyes focusing capabilities changing the 

perspective relations. A wide-angle lens, for example, tends to hyperbolize depth in a 

recording, whereas a telephoto lens drastically reduces the depth. 

Shot Distance – Shot Type 

Perspective relations are created e.g. with properly selected camera angle, height and 

shot distances, i.e. the position from which a setting is captured in relation to the setting. 

The latter are used to separate shots into Establishing Shots, Long Shots, Medium Long 

Shots, Medium Shots, Medium Close Shots, Close-Ups, Big Close-Ups and Extreme 

Close-Ups, as summarized in Figure 68. When starting with e.g. a new scene, the 
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director has to introduce the viewer to the new setting. Hence, the opening shot, also 

called Extreme Long Shot (ELS), Establishing Shot or Objective Shot, often presents a 

general view of the setting from a far distance, where the protagonist only plays a 

secondary role, whereas the surrounding is the main focus at this moment. Attention 

has to be paid to the fact that Establishing Shots can also occur during a scene e.g. 

when (re-) establishing an 180º system (see next section). Long Shots (LS) are defined 

by the fact that the entire actor is frame central. On contrary, in Medium Long Shots 

(MLS) the lower frame line cuts off the actor’s feet and ankles. Documentaries with 

social themes e.g. mainly make use of Long Shots to focus on social circumstances 

rather than on individuals. In Medium Shots (MS) object or subject of interest and its 

surrounding setting share equal frame areas, e.g. in the case of a standing actor the 

lower frame line passes through his/her waist, providing sufficient space to follow his/her 

gestures. Reducing further the distance leads to Medium Close Shot (MCS) level, 

wherein the lower frame line passes e.g. through the chest of an actor often used for a 

tight presentation of two persons. Close-Ups (CU) are covering extreme close 

distances, showing only e.g. the character’s face and its shoulders in great detail so that 

it fills the screen. Those shots abstract the subject from the context. Big Close-Ups 

(BCU) show only an actor’s forehead and chin, focusing the attention of the viewer on a 

person’s feelings and reactions. They are sometimes used in interviews to show 

participant’s emotional excitement state, grief or joy. Finally, Extreme Close-Ups (ECU) 

isolate a portion of an object or subject to magnify the moment. 

 

 

 Figure 68. Examples for various distance shots1. 
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Angle of shot: The angle of the shot is determined by the direction and height from 

which the camera captures the setting. The convention for e.g. news programs is, that 

the camera is on eye-level with the anchorperson (Eye-Level). Particularly dialogues 

make use of this technique to maintain the eye-level when switching between speaker A 

and speaker B (eye-line match, as published by Boggs in [85] and shown in Figure 69). 

Special cases are Close-Ups in which males are usually shown from just below eye 

level and females from just above eye-level.  

Level Height: In a high angle setting the camera looks down on the actor (High Angle, 

see Figure 70), which puts the viewer in a (psychological) stronger position than the 

actor. A shot from below puts more impact on the actor’s importance (Low Angle). An 

overhead shot, also called Bird’s Eye, is made from a position located directly above the 

scene. The opposite is called the Worm’s Eye. A Tilted Shot, also called chanted shot, 

is created when the camera is tilted to its own axis. In this way normally vertical lines 

appear slant, which creates an unease feeling at the viewer and is often used in mystery 

content. A special case are the Point-of-View Shots were the scene or setting is shown 

out of the eyes of another actor and is therefore shot in sight to this person.    

   

 

Figure 69. Dialogue with Eye Line1. 

 

Figure 70. Examples for various shot angles and various positions1. 
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Camera Motions 

Camera motions specify the trajectories of a camera in relation to the setting and can be 

classified into Zoom In, Zoom Out, Tilt, Pan, Dolly and Tracking, sketched in Figure 71 

(left), Crab and Crane. During a zoom the camera position does not change, but the 

focus of the lens is adjusted, as shown in Figure 72. An example for a Zoom In is the 

continuous transition from a Long Shot to a Close Up, used to guide the attention of the 

viewer to something, which might be invisible in the Long Shot. On contrary, the Zoom 

Out uncovers areas in the setting, which were previously not visible. In the case of a tilt 

the camera retains at a fixed position, but it experiences a vertical rotation around the 

horizontal axis either upwards (Tilt Up) or downwards (Tilt Down), shown in Figure 73. 

 

 

Figure 71. Camera Motions and Eye-Level1. 

 

Figure 72. Examples for zooming1. 

 

Figure 73. Examples for tilting1. 
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A pan is defined by the fact that the camera retains at a fixed location, but it sways in 

horizontal direction, i.e. rotates around its vertical axis, either to the left (Pan Left) or to 

the right (Pan Right), as shown in Figure 74. The pan leads more than it trails and 

therefore a space is always left in front of the moving object or subject. In films a pan is 

usually flanked at both sides (beginning and end) by some seconds of a still picture to 

increase the impact of the pan. The mood of the content can be influenced through the 

speed of the panning as is often done in action feature films. Incidentally it happens that 

inexperienced operators pan too fast, which cause an effect called strobing or tearing. 

A dolly is a small-wheeled vehicle, piloted by a dolly grip that is used to move a camera 

around in a scene. A dolly shot is a move in (Dolly In) and out (Dolly Out) of a scene, 

i.e., the movement is parallel to the camera lens axis. Fast Dolly In creates excitement 

at the viewer, whereas a Dolly Out relaxes the interest. 

A tracking (or crab) shot is a movement perpendicular to the camera lens axis, i.e. the 

camera moves horizontally right or left in relation to the setting, sketched in Figure 75, 

whereas during a crane (or boom) the camera executes exclusively vertical movements.  

 

The presented mis-en-scene and cinematographic rules enable the director to record 

individual takes matching script and storyboard and conveying abstract massages, but 

also time wise constituencies have to be satisfied and are applied as described next. 

 

 

Figure 74. Examples for panning1. 

 

Figure 75. Examples for tracking1. 
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Post-Production Editing Rules  
During the capturing / recording part of the production flow in Figure 64 raw video 

material has been produced, enabling the cutter, editor and/or director (further only 

referenced as cutter) to select appropriate material to create a consistent flow. The 

cutter has the task to select and concatenate the raw material appropriately fulfilling the 

above-described cinematographic rules of (non-) uniformity. Hence, first of all he/she 

selects appropriate raw material and removes unwanted footage like unnecessary takes 

of clips or the clapboard in the beginning of each take. Thereafter, he creates individual 

shots, which are continuous camera recording events, as described in 4.1.2, and 

concatenates those together using traditional techniques such as hard cuts, but also 

artistic transitions, i.e. dissolves, fade ins, fade outs and wipes, as described in 4.1.2. 

 

Film Editing 

The dense way transmitting semantics, nevertheless, demands from the cutter to 

densely pack shots with information and, increasing the compression even further, to 

capitalize on the viewers intelligence of self-conclusions and semantic interpretations. 

The cinematographic Kuleshov Effect, named after Russian director Lev Kuleshov, is a 

good example exploiting the viewer’s intellectual capabilities. A shot containing a neutral 

expression of Ivan Mozzhukhin’s face has been combined alternatively with shots of a 

plate soup, a girl and a child’s coffin. The audience believed that Mozzhukhin’s face 

expressed associated feelings as hunger (soup shot), desire (girls shot) and sorrow 

(coffin shot), not knowing that the face shot was always the same one, which proofed 

the effectiveness of film editing. Hence, the essence is not only presented through the 

shot’s content, but also through its time wise compilation with each other. In general 

there are four groups of such relations used by filmmakers, which are (a) graphic 

relations, (b) rhythmic relations, (c) spatial relations and (d) temporal relations.  

During the post-production process the cutter (as well as the director or editor) has to 

secure continuity and uniformity of the stream using those relations. Shots are either 

concatenated to obtain a soft continuity, i.e. uniformity is present across shots, or to 

create abrupt changes, i.e. a strong mismatch between consecutive shots.  

What concerns graphical relations the cutter has various graphical elements to influence 

the continuity and uniformity, e.g. continuity of visible shapes, colors, range of tonalities, 

and movements. Fulfilling all the above graphical rules leads to a perfect uniformity, also 

called graphic match, but in reality such a perfect match is difficult to achieve and 

therefore editors mainly concentrate to keep at least the centre of interest at the same 

location. 
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Another instrument to guarantee uniformity, but also to create certain feelings, is the 

shot-length-based rhythmic relation. Shots can span several frames to several thousand 

frames as we describe in 4.1.2. The cutter controls the length of shots and with 

concatenating them he/she also controls the rhythmic potential. Increasing the duration 

of a shot gives the viewer time to process the information of the passed scene, but also 

to increase the tension as often used in dramatic scenes. For the latter an increasing 

shot length builds up a certain suspension before the climax of the scene is reached, 

which is often followed by a long shot to enable the viewer to prepare him/herself for the 

next highlight. On contrary, short shots are either used to create action and excitement, 

as e.g. in action movies or music clips, but also to transmit a lot of information, as 

usually used in commercial blocks. Important to realize is that the shot length, and 

therefore the rhythm relation, is proportional to the camera’s distance, i.e. Long Shots, 

at which a viewer has more to absorb, are in average longer than Close Ups.   

A viewer also expects uniformity what concerns spatial relation, hence, it is of 

importance to create first a sense of the scenery by means of an establishing shot and 

shots covering the scene-relevant locations and / or actors. Those spatial relations are 

secured following the 180º system.  

 

 

Figure 76. The 180° System1. 
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While watching a certain activity in a setting the viewer expects certain uniformity in 

terms of the camera’s location, i.e. the action should take place along a so-called axis of 

action also referenced as 180º line. This virtual (imaginary) line cuts the setting into a 

forbidden camera location area and an accepted area, as sketched in Figure 76. This 

rule is important to avoid confusing the viewer.  

Hence, the camera has to capture the scenery, here as an example the dialogue 

between two persons, permanently from the accepted side. Furthermore, it is important 

that the objects of interest, here the dialogue partners, have to be positioned spatial-

conform inside the captured frame, as the examples of Figure 76 shows, to support the 

spatial relation to each other. 

But there are also artistic exceptions, e.g. Lev Kuleshov used a technique to only create 

the impression of an uniform scenery, by actors virtually ‘looking at each other’ in 

concatenated shots, who were in reality physically dislocated. Spatial relations can also 

point out activities, which happen at the same time, or even at different times, at 

different locations, which we will describe in more detail later addressing them as 

parallel shots. The most drastic way to use this technique is to create an uncertainty of 

the location by showing little of the scenery. This is sometimes used in suspense 

movies. 

The seldom-used temporal relation technique covers situations were a continuity of an 

action is interrupted by temporal dislocated instances such as flashbacks or flash-

forwards, activities that happened either in the past or will happen in the future, 

respectively. To establish a relation, editors use for this often dissolves. 

The so far described production rules, i.e. mis-en-scene, cinematographic rules and 

post-production rules including several relation rules, guarantee uniformity and narrative 

continuity. As a result, viewers perceive the result of the production as smooth and 

uniform, and, hence, not distractive allowing them to follow the narrative content of the 

story.  

 

Semantic segments 
According to script writer Syd Field [125], good story scripts are subdivided in 3 acts 

separated by two plot points, as already depicted in Figure 66, starting with the 

introduction of the actors, scenery and story in the exposition act. The latter is followed 

by the confrontation act containing the battle of the protagonist loaded with action and 

tension, and, finally, followed by the resolution act, letting the protagonist reach a certain 

aim. Those acts are further subdivided into semantic scenes, which in the ideal case 

start with an establishing shot, followed by several sometimes interleaved narrative 

elements following a certain peripety and finalized by a conclusion shot.  
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Establishing and conclusion shots 

Some general rules on the types of shots used during film production can be given. A 

scene has to be established, for example, first giving the viewer the chance to 

accommodate with the new setting. Hence, a scene is established with an establishing 

shot, normally the first shot(s) of a scene.  Giving an overview requests for great depth 

achieved by using Extreme Long Shot ELS or Long Shot LS sometimes in combination 

with slow panning. Hence, these types of shots give insights about the setting and its 

spatial relations. Due to their information richness the Shot Length SL of theses shots, 

as we describe later in this chapter, is in general proportional to the shot depth, enabling 

the viewer to absorb the details. We experienced as well that when scenes / settings are 

reestablished, i.e. settings already established in a preceding scene, those 

reestablishing extreme long shots have a rather short shot length or are left out. In the 

case of the latter the director counts on the viewers memory. 

Conclusion shots, on the other hand, applied to conclude scenes and used to show that 

a certain action came to an end, often have to recall the setting, which is achieved 

through extreme long shots (high shot length). Moreover, conclusion shots are used to 

relax the tension of an e.g. action loaded scene lowering the viewer’s excitement to a 

level, which allows him to enter the new scene. Nevertheless, we witnessed that 

conclusion shots are often skipped by directors, as we will prove later in this chapter. 

 
Interleaved narrative elements – Parallel Shots 

Each individual scene can contain one or more embedded interleaved narrative 

elements, which we further address as parallel shots, and each individual scene is 

encapsulated by one or more establishing and conclusion shots. Furthermore, in some 

genres these scenes follow a certain peripety. 

Each narrative element represents one individual event consisting of strongly related but 

not necessarily connected shots, i.e. shot fulfilling the previous described relations. 

Usually two or more narrative elements are interleaved with each other, forming parallel 

shots. We introduce the following definitions for parallel shots: 

• Parallel shots are interleaved narrative elements. 

• Parallel shots, can be divided into two main groups, i.e. cross-cuttings and shot 

reverse shots.  

• Cross-Cuttings visualize, in general, either (a) time-wise correlated, location-wise 

disjoined parallel running narrative events, i.e. same time, but different location were 

interaction is not obligatory, as shown in Figure 77 and Figure 78, or (b) time-wise 

uncorrelated events such as one event and a flash-back, i.e. different time at the 

same or different location. 
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Figure 77. Schematics of a scene with cross-cutting. 

 

 

 

Figure 78. Scene with cross-cutting: depicts two events (A and B) that unfold 

simultaneously. Interleaved rendering of A & B1. 
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• On contrary, shot reverse shots are used to visualize events happening at the same 

time at the same location, captured from two or more camera positions and rendered 

in an interleaved manner, e.g. A-B-A-B, such as a dialogue between two actors. An 

example is given in Figure 79. In-between the interleaved sequences distant shots 

are used, e.g. an AB shot, to introduce spatial relations. Here after, A and B shots 

follow the spatial relation rules. Essential for shot reverse shots is to fulfill the earlier 

described eye-line match.  

Moreover, two additional semantic structures are often applied inside parallel shots, i.e. 

peripety and four-action sequence. Peripety, defined by the poet Aristotle, is the 

interplay between sensations increasing success passages and crushing 

disappointment ones. Four action sequences, on the other hand, are semantic logical 

sequences of perceiving, i.e. shot of an actor in perceiving pose, perception, i.e. shot 

depicting the actor’s attention, pondering, i.e. shot showing the actor’s pondering, and 

action, i.e. shot with the final action taken.  

 

 

Figure 79. Scene with shot reverse shot: dialogue between two individuals (A & B) 

shown in an alternating fashion1. 

 

Figure 80. Schematics of a scene with shot reverse shot as used in Figure 79. 
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The film grammar, including its artistic rules, is essential to semantically analyze 

audiovisual content, which includes classification and segmentation of AV content into 

its semantic entities, i.e. scenes. In the following sections various AV analysis tools will 

be described, which the author chose based on the knowledge described in this section. 
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4.5.2 Film grammar rule based content clustering into parallel shots 

With the work of the previous section (4.1.2) the content is so far segmented into its 

elementary shots, i.e. a kind of reverse engineering of the editing work done by the 

content editor, by means of shot boundary detection. The latter contain cut transition 

detection and gradual transition detection. Furthermore, non-content related inserts, i.e. 

commercial- and channel adds, inserted by the broadcaster (transmission decision), 

were identified and indexed by the commercial block detector (as explained in section 

4.4).  

In the present section, in addition, we apply film grammar based rules to accomplish 

higher-level content analysis, embedded in higher-level service units. The latter, e.g., 

cluster intentionally interleaved shots of two or more narrative events together, i.e. 

dialogues, a.k.a. shot reverse shots, and cross-cuttings, as introduced in 4.5.1.  

 

Ground truth and statistics of parallel shot sequences  
The objective evaluation of the parallel shot detection methods on its robustness 

requires a manually generated ground truth. Hence, objective rules were defined for the 

manual annotation. Knowing that directors (editors) establish a bridge between related, 

but not consecutive, shots through a continuation of the audiovisual story flow, the rule 

has been established to visually compare one of the last key frames (WKF>1, i.e. 

excluding at least the last one) per shot with one of the first key frames (WKF>1) of a 

certain number of consecutive shots (Wsh>2, i.e. excluding the proceeding one), as 

sketched in Figure 81. In the case that key frames at WKF=2 do not fulfill the 

requirements of a representative key frame the best-fitting one within the range 

[ ]102K∈KFW  is chosen.  

 

Figure 81. Rules for parallel shot ground truth annotations. 
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The analysis or a large amount of content, i.e. more than 12 hours, unveils that editors 

do not separate semantically connected shots by more than ~7 shots. Hence for this 

work we select the maximal distance Wsh_max=7 for the manual annotation. In the next 

step, the end key frame of e.g. shot x is compared with the start key frame of all 

subsequent Wsh_max shots, and the two shots with the highest key frame pair similarity 

are linked together (as shown in Figure 81). The similarity is specified, based on the 

definitions of cinematographic rules and relations of section 4.5.1, as simultaneous 

strong visual correlation of foreground and background information and similar spatial 

layout. 

The only restriction we apply is that shots can only have one single forward and 

backward link. Finally, shots linked to subsequent shots, but not to predeceasing ones, 

are determined as the beginning of a parallel shot. On contrary, shots linked to 

predeceasing shots, but not to successive ones, are indexed as the end of a parallel 

shot. All shots between the beginning and the end shot of a parallel shot sequence are 

considered as members of that parallel shot sequence. In an additional step of the 

manual annotation, individual linked shots are either indexed as shot reverse shots, i.e. 

dialogues, or cross-cuttings based on the rules given in 4.5.1, according to the location 

of the scene criterion. Furthermore, we different between links between individual SRS 

shots ‘SRS links’ and CC shots ‘CC links’ and apply them for statistical purposes. 

Ground truth GT results covering the series/movies AV corpus are summarized in Table 

26. The statistical analysis, summarized in  

Table 27, shows that the ratio between SRS and CC sequences is about 3:1 in series 

and 0.8:1 in movies (1st column), which fulfils the expectations that series contain more 

dialogues.  

 

Columns two and three show that in series about 60% of all shots are member of shot 

reverse shot SRS sequences (dialogues with an average duration of 9.5 shots) and ~13 

% of cross-cuttings CC (average duration of 6.4 shots).  

On contrary, in movies only 46% of all shots are members of shot reverse shots (with an 

high average duration of 14.8 shots) and almost 30% of cross-cuttings (average 

duration of 7.4 shots). Finally, columns four and five in  

Table 27 unveil that the ratio of parallel shot links compared to the number of member 

shots is for both, series and movies, about 0.7 for shot reverse shots and ~0.45 for 

cross-cuttings, i.e. link bridges in movies are almost twice the size in terms of shots 

compared to those in series. 
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Table 26. Ground truth numbers of SRSs and CCs of series /movies AV corpus. 

Content 
# of SRSs # of shots 

in SRSs 

# of GT  

SRS links 

# of CCs # of shots 

in CCs 

# of GT  

CC links 

# of shots 

total  

‘nl1’ 9 104 56 11 60 23 227 

‘nl2’ 12 127 84 8 62 30 212 

‘ge1’ 15 145 96 0 0 0 175 

‘ge2’ 28 298 197 0 0 0 495 

‘gb’ 28 297 198 10 63 28 482 

Se
rie

s 

Total 92 871 631 29 185 81 1591 

‘ge1’ 36 486 337 35 203 99 890 

‘ge2’ 17 163 122 10 93 54 314 

‘nl’ 24 335 258 83 588 297 1352 

‘us_dig’ 48 950 726 11 102 43 1208 

‘us_ana’ 28 337 239 50 404 178 1176 

M
ov

ie
s 

Total 153 2271 1682 189 1390 661 4940 

 

Table 27. SRS and CC statistics for series and movies. 

Genre Ratio # 

SRSs:CCs 

Shots  

member  

of SRSs 

Shots  

member  

of CCs 

Average  

length  

of SRS  

Average  

length  

of CC 

Ratio SRS  

links : number  

of SRS shots 

Ratio CCS  

links : number

of CC shots 

Series ~ 3 : 1 60% 13% 9.5 shots 6.4 shots 0.7 0.4 

Movies ~ 0.8 : 1 46% 28% 14.8 shots 7.4 shots 0.74 0.48 
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Key frame pair similarity analysis methods for parallel shot detection 
In this section we will present the methods we developed to identify and index parallel 

shots. Accordingly to the definition of parallel shots, this task consists in detecting 

similar shots time-distanced by at least on dissimilar shot. 

We will declare two shots similar, if their representative key-frames are similar in a 

specified feature space according to a specified similarity criterion. Hence, in this 

section we will consider four methods we developed for measuring key-frame similarity 

(i.e. HSV, HY, ScaFT, SIFT based key frame pair similarity analysis) for parallel shot 

detection. Subsequently, we will benchmark the methods using our AV corpus and 

specify the winning method in more detail.  

 

HSV based key frame pair analysis 

In order to make a proper choice for the first key frame pair similarity analysis method, 

several different color spaces and feature models have been evaluated, including 

uniform quantized histogram intersection models with (a) global histogram or (b) local 

histogram, (c) non-uniformly histogram intersection models, (d) color coherence vectors 

and, finally, with (e) color auto-correlogram, which led to the selection of HSV-based 

uniform histogram intersection method with spatial separation. For this purpose video 

frames, e.g. YUV coded ones, are converted into HSV (hue, saturation and value). 

Subsequently, three spatial frame areas are defined, as sketched in Figure 82, i.e. (a) 

the entire frame further references as global area GA, (b) the region of interest area 

further referenced as foreground FG for which the frame is cropped by 20% at the right, 

left and top, and, finally, (c) the remaining area further referenced as background area 

BG.  

 

Figure 82. Spatial frame segmentation for HSV based key frame pair similarity analysis1.  
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Moreover, for each of three frame areas (areaє[GA,FG,BG]) of each frame of the key 

frame pair (FN, FM) an uniformly distributed 256-bin HSV histogram is calculated, which 

is schematically shown for HSV HISTk_FN_area in Figure 83. The hue space is divided in 

l=16, saturation in m=4 and value in n=4 intervals, which results in k=256 uniform bins. 

A bin index k is obtained as  

 ]255..0[],3..0[],3..0[],15..0[,*4*16 ====++= knmlnmlk
  

(4-41). 

In order to evaluate the relationship, i.e. visual similarity, between two key frames (FN, 

FM) of two shots, various histogram distances were introduced in the past. For this work 

we select the histogram intersection distance HID, presented by Jeong in [126]. In his 

method the color histograms of two frames (HistFN, HistFM) are compared calculating 

the normalized sum of the lower bin values between two corresponding bins (Hist(k,FN), 

Hist(k,FM) across all bins,   
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(4-42),

with |Hist(Fx)| representing the number of pixels present in frame (region) Fx, and 

binmax-1 representing the index of the highest bin. With the spatial separation in three 

areas this results in three HIDs (HIDє[0…1]), which are 

 

 

 

 

 

Figure 83.Uniformly distributed HSV histogram. 
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(4-45).

In a subsequent step, the HID with the highest value among the three HIDs, i.e. 

foreground, background and global, is selected, and stored as Sprob,   

 ( ) ( ) ( ) ]1..0[,,,max, ∈= MNprobGABGFGMNprob FFSwithHIDHIDHIDFFS
  

(4-46).

Sprob is then compared against a derived key frame pair similarity threshold 

ThPS_HSVє[0…1], 
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Finally, two individual shots with a key frame pair similarity of S(FN,FM)=1 are indexed as 

sufficiently similar and, hence, linked together. They will be further used to cluster them 

into parallel shot sequences. 

 

Hue-luminance (HY) based key frame pair analysis 
Our study of color spaces unveiled that the maximal discriminative power of the YUV 

and HSV space of individual frames (FN) is mainly contained in the values hue H and 

luminance Ylum. Hence, instead of comparing key-frames in a single color system, we 

decided to use both, i.e. HSV and YUV, but using only their most discriminative 

components, i.e. H and Y. After normalization of hue to 0..360 degrees, and luminance 

to values between 0..255, hue and luminance plane similarity analysis are applied in this 

section on selected key frame pairs (FN, FM) of two selected shots, which are Wsh shots 

distanced from each other, for parallel shot detection. This results in hue- and 

luminance difference values ∆H(FN,FM) and ∆Ylum(FN,FM), respectively. For the analysis 

the normalized hue and luminance planes H
NF  and lumY

NF  of individual key frames (e.g. 

taking as example frame FN with frame resolution xres and yres) are subdivided into p 

columns (iє[0…p-1]) and q rows (jє[0…q-1]), which results in p*q blocks (heuristically 

chosen) each indexed through i and j. Columns identified as letterboxes are excluded 

from sub-sequent steps here. Subsequently, for each block of the frame one normalized 
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average (mean) hue and luminance value is calculated, which results in two p*q 

matrices NFH  and NFY ,  

 ( )
qpji

FF
qp

F
ji

F nNNN yYhH
*,*, :,: ⎟

⎠
⎞⎜

⎝
⎛==  (4-48),

with NFH ’s and NFY ‘s matrix elements (mean /average values) 
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where block width and height is defined by the resolution dependent parameter 
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Hereafter, time-wise hue- and luminance derivatives, i.e. ∆H and ∆Y, are calculated of 

selected key frame pairs (FN, FM) with  

 ( ) ( ) ( ) ( )MNMN
FF

MN FYFYFFYHHFFH MN −=∆−=∆ ,,,   (4-52).

In a sub-sequent step, the individual block based hue- and luminance matrix elements, 

∆h(FN,FM)(i,j) and ∆y(FN,FM)(i,j) of the matrices ∆H(FN ,FM) and ∆Y(FN , FM), are compared 

with empirically derived thresholds ThHY_hue and ThHY_lum,. 

 

Finally, the comparison resulted in a set of binary value elements representing key 

frame pair block-by-block similarities, i.e. r(FN,FM)(i,j), with 
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The latter elements are used to calculate a normalized key frame pair similarity Sprob,  
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which are compared against a derived key frame pair similarity threshold ThPS_HY, 

 
  

( )
( )⎩

⎨
⎧

<=
≥=

PS_HY

PS_HY

0,
1,

ThSifFFS
ThSifFFS

probMN

probMN

 (4-55).

Finally, two individual shots with a key frame pair similarity of S(FN,FM)=1 are indexed as 

sufficiently similar and, hence, linked (clustered) together, as explained in more detail 

later. 
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ScavFT (scale variant feature transform) based key frame pair analysis 
While HSV and HY based key-frame similarity analysis allow measuring the similarity on 

minimal block resolution, in this section we are interested in a local similarity using 

distinctive landmark points. The latter are also called feature points FP or salient points, 

which are robust, distinctive, but also scale variant. We further reference the method as 

scale variant feature transformation ‘ScaFT’ method. The distinctive nature of feature 

points enables a reliable way to localize and track them across e.g. key frame pairs (e.g. 

FN to FM). Feature points were primarily used thus far to estimate camera-motion in 

compressed video, as described by Kuhn in [127], or uncompressed video, as explained 

by Matsuyama in [128]. Feature Points were also applied in image retrieval applications, 

as described by Sebe in [129]. The feature point selection procedure may take several 

forms. One of the widely applied methods was the Harris corner detector [130]. Modern 

techniques claim to improve upon the Harris detector by selecting points other than 

corners. Sebe for example used wavelets in [129] to select feature points. We chosed 

for ScaFT a feature point detection method proposed by Shi and Tomasi described in 

[131], which was based on the minimum eigenvalue of a 2-by-2 gradient matrix in 

combination with Newton-Raphson method for tracking. In our work the goal was to 

apply feature point selection and tracking from a video viewpoint. This was akin to the 

image retrieval applications of [129], since a video sequence is merely a sequence of 

images. Hence, for key frame pair similarity analysis for parallel shot detection, first of 

all, feature points were selected and, thereafter, were tracked from frame to frame 

through a video sequence, as shown in Figure 84 left. 

 

 

Figure 84. Feature point tracking and gradient-matrix of gradient image. 
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Scale-variant feature point selection 
Hence, for the selection of feature points in selected frames, e.g. FN of a video 

sequence, we applied the methods of Shi-Thomasi. In a first pre-calculation step 

individual RGB or YUV frames (see Figure 85 upper left) were reduced to their 

accordant luminance (Y) plane, as shown in Figure 85 (upper right, described in Annex 

1). Subsequently, we calculate the minimum eigenvalue of a gradient matrix, as in [131], 

which we derive using a window around individual pixels in the Y plane of the frame, i.e. 

YFN (Figure 84 right). To compute the gradient matrix we first calculate the horizontal 

and vertical gradients of YFN, derived by convolving YFN with a high-pass filter. We used 

here a derivative of a Gaussian filter. The horizontal gradients are obtained by 

convolving the high-pass impulse response row-wise on the pixels of YFN and the 

vertical gradients by convolving it column-wise, respectively. The continuous zero-

mean, unity-variance Gaussian is given by 
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 (4-56).

which forms the basis for the discrete time function, 

 

 

 

Figure 85. Gradient image generation for feature point analysis1.  
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(4-57),

and which is applied as kernel for the convolution. As a result of this operation, two 

gradient images, gx(x,y) and gy(x,y), (shown in Figure 85 lower left and Figure 85 lower 

right) are obtained, which are used to calculate the gradient matrix G, 

 
⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

∑∑
∑∑

yyyx

xyxx

window
y

window
xy

window
yx

window
x

gg
gg

yxgyxgyxg

yxgyxgyxg
G 2

2

),(),(),(

),(),(),(

  

(4-58).

 

For each individual pixel the matrix G is calculated with a chosen window area WA of 

e.g. 7*710 around the pixel, as shown in Figure 84 right. Thereafter, the strength of each 

individual pixel, i.e. its suitability to form a robust feature point, is measured by means of 

the minimum eigenvalue of the gradient matrix. The eigenvalues are derived using 
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(4-59), 

with x representing the eigenvector, which finally result in the eigenvalues  λ+ and λ- 
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(4-60). 

 

All individual pixels are represented by their location, e.g. FN(x,y), and their minimum 

eigenvalue (z-axis in a three-dimensional plot), as sketched in Figure 86 left.  

 

 

 

Figure 86. Minimum eigenvalue results for feature point analysis1. 

                                                 
10 Any window size was applicable. 
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The calculated minimum eigenvalues of example image FN (of Figure 85) result in the 

two dimensional representation of Figure 86 (right image). 

Finally, pixels with the local highest minimum eigenvalue are selected – from best to 

worst - into a feature list, ensuring that new additions to the list are at least 10 pixels 

away in all four directions from all other pixels, which are already selected and added 

into the list. Pixels that do not meet this criterion are simply discarded.  This results in a 

set of FPtotal_FN, e.g. FPtotal_FN=100, feature points containing only well-spaced trackable 

feature points, as shown in Figure 87 (left image).  

 

Feature point tracking 
After we identified feature points, we applied feature point tracking to be able to 

measure the frame-pair similarity in the sense that, if for a given set of feature points in 

frame FN (i.e. FPtotal_FN) a sufficiently high percentage of them was successfully tracked 

into frame FM, then the pair of frames, i.e. (FN, FM), was indexed as similar. To track 

feature points we applied the method proposed in [131]. 

Firstly, gradient images gx and gy were calculated for both frames, FN and FM, which 

resulted in gx_FN, gy_FN, gx_FM and gy_FM. Subsequently, the procedure11 ‘tracking iteration’ 

was performed for all FPtotal_FN feature points of FN with a fixed number of iterations, 

updating the estimated location of the feature point in FM after each iteration.  

 

 

Figure 87. Feature point selection and tracking for key frame pair similarity analysis1. 

                                                 
11 The procedure is applicable as long as the displacement vector of related feature points of FN 

and FM is limited. 
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Tracking iteration {start} 

At the beginning of each iteration the horizontal and vertical gradient sums, sx and sy, 

were calculated within a window (we apply here a 7x7 window12) around the current 

feature point by summing the corresponding gradient values of FN and FM, 
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Hereafter, the gradient sum matrix S is calculated, 
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(4-62).

 

To derive the displacement vector d the following steps were taken. Firstly, the 2-by-1 

error vector e in the equation S*d=e was minimized, 
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(4-63),

 

as described in [131], to arrive to an estimate for the position of the feature point in FM, 

with d representing the displacement vector.  

 

By applying Cramer’s rule, the equation was solved with13  

 

xyyxyyxx

yxxxxy
y

xyyxyyxx

yyxxyy
x

ssss
eses

d

ssss
eses

d

−

+−
=

−

−
=

 

(4-64),

 

which resulted in the displacement vector d. At the end of the iteration d was added to 

the estimated feature point location in FM. Nevertheless, shortcomings of this gradient-

based motion estimation method, i.e. only small displacements were trackable, led 

incidentally to remaining displacement errors. Hence, for large displacements other 

methods were applicable such as multiscale schemes proposed by Anandan in [132], or 

regression-based methods mentioned by Patras in [133], but especially Lowe’s SIFT 

method using difference descriptors to measure the goodness of a match as described 

in [134].  

Tracking iteration {end} 

 

                                                 
12 Any window size was applicable, but the author believes that improvements would be probably 

feasible with a displacement and motion dependent window area WA. 
13 With the assumption that S is non-singular, i.e. the denominator of the above equation is 

unequal to zero. 
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Table 28. Evaluation of optimal number of ‘tracking iterations’. 

# iterations 1 2 3 4 5 
Displacement of FPs 2.51 2.05 0.52 0.14 0.08 

 

We derived the optimal number of ‘tracking iterations’ by calculating the average 

displacement value across an entire set of video items, i.e. news, soaps, movies. The 

feature point displacement decreases with increasing iterations. The optimal number of 

‘tracking iterations’ is, hence, chosen with five, as derived from Table 28. After five 

iterations the determinant of the matrix decreases so much that further calculations are 

not feasible anymore. Hence, five iterations prove to be sufficient for tracking the feature 

point to its final location, as shown in Figure 88. 

 

After the iteration process has been stopped the correctness of the tracking of FPx is 

verified calculating the normalized sum of the displacement frame intensity differences 

D, 
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(4-65),

in the selected window between the original feature point window in FN and its tracked 

counterpart in FM, respectively. The tracking is labeled as successful if D do not exceed 

a heuristically chosen threshold of Thwindow=2014, 
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and, finally, the percentage of successfully tracked feature points Sprob, 
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(4-67),

is compared against a derived key frame pair similarity threshold ThPS_ScaFT,  

 

 

Figure 88. Number of tracking (displacement) iterations. 

                                                 
14 A trade-off between insufficient correct and too many false trackings. 
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(4-68),

Finally, two individual shots with a key frame pair similarity of S(FN,FM)=1 are indexed as 

sufficiently similar and, hence, linked (clustered) together, as explained in more detail 

later. For our analysis we chose ThPS_ScaFT=10% (see Table 30). 

 

SIFT (scale invariant feature transform) based key frame pair analysis 

The shortcoming of ScaFT is its sensitivity to scaling and its unreliable, i.e. coarse, 

tracking using only intensity difference D as check. We, therefore, choose as 4th method 

for key frame pair similarity analysis the SIFT method, i.e. scale-invariant feature 

transform SIFT, published by Loewe in [135]. The latter used not only differential scale-

space representations, i.e. DFN(x,y,σ), of the luminance plane of individual frames e.g. 

FN, i.e. YFN, and selected extrema in this scale-space, i.e. DFN(x,y,σ)>α, as feature 

points, but also gradient magnitude mFN(x,y) and gradient orientation ΘFN(x,y) sets within 

a certain window around the selected feature point as signature to improve the matching 

robustness between SIFT feature points between e.g. two frames FN and FM, as 

described in more detail in Annex 4.  

Hence, applying Lowe’s method, we identify all SIFT feature points per frame, as 

described in Annex 4. Straight after, we index all SIFT feature points between selected 

key frames pairs (FN,FM) as matching (SIFT_FPx_tracked=1), if the normalized Euclidian 

distance D(SIFT_FPx) falls short compared to a defined threshold ThSIFTPoint, similarly to 

equation (4-68), with  
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(4-69).

An example of matching SIFT feature points is shown in Figure 89.  

 

 

Figure 89. FN and  FM Y plane with tracked SIFT feature points superimposed1. 
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Next, we define the total amount of SIFT feature points in frame FN by SIFT_FPtotal_FN 

and calculate the percentage of successfully tracked feature points Sprob(FN,FM) with 
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(4-70).

Here after, we compare the probability Sprob(FN,FM) against a derived key frame pair 

similarity threshold ThPS_SIFT and, if the threshold is exceeded the key frame pair  (FN,FM) 

is indexed as matching (Sprob(FN,FM)=1), with 
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(4-71),

Finally, we link (cluster) all individual shots containing matching key frame pairs 

(Sprob(FN,FM)=1) together. For the threshold value we chose ThPS_SIFT=15% (Table 30). 

 

Comparison and evaluation of parallel shot detection results 

To compare and evaluate the reliability of the four key frame similarity analysis methods 

for parallel shot detection we use the manual annotated parallel shot links as ground 

truth. That means that we calculate recall and precision of detected parallel shot links 

(key frame links) and use them as measure for comparison. For all four methods we 

define two variable parameters, i.e. window size Wshє[2..15] measured in shots and the 

absolute key frame pair similarity threshold ThPSє[0...1].  

Hence, parallel shots are established using subsequently all four key frame pair analysis 

methods varying the two threshold Wsh and ThPS. This means that within a certain 

window range of +/-Wsh shots the key frame of the current shot e.g. first key frame of 

shot x (shx) is compared with the last key frame of each predecessor shot within this 

window, as depicted in Figure 90. The similarity value is then compared to threshold 

ThPS. 

 

 

Figure 90. Key frame pair analysis for parallel shot detection with Wsh and ThPS. 
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Next, the backward-based key frame pair similarity with the maximal probability SProb is 

selected, but shots to which already a link has been established are excluded from this 

process, as shown for the case ‘forbidden link’ in Figure 90. The two shots with the 

maximal probability are linked together if SProb does not fall short ThPS. Hereafter, 

sequence with interleaved shots, i.e. interleaved connections of linked shots, are 

identified and their start and end shot indexed as boundaries of the parallel shot 

sequence, as shown in Figure 91. In the optimal case the boundaries correlate exactly 

with the ground truth of parallel shots (interleaved narrative events). But, before starting 

the robustness evaluation of the four methods, we define benchmarking criteria. 

Originally, we started with the traditional way of calculating recall and precision based 

on the total shots clustered correctly into parallel shot sequence, as sketched in Figure 

92.  But the fuzziness of the traditional benchmark approach, i.e. limited feedback 

acquired about the real linking, which we find more objective and relevant, justifies to 

define two other benchmark criteria, i.e. recall and precision based on links only and, in 

addition, for link through, as sketched in Figure 93. 

 

 

Figure 91. Established parallel shot. 

 

 

Figure 92. Traditional way of calculating recall and precision for parallel shot evaluation. 
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We apply these two benchmark criteria in the subsequent analysis for robustness of four 

parallel shot detector methods, i.e. those based on HSV, HY, ScaFT and SIFT key 

frame pair similarity.  

 

For the HY based parallel shot analysis method we specify three additional parameters 

before starting with the key frame pair analysis, i.e. ThHY_hue, ThHY_lum and resolution 

(p,q), as described in 4.5.2. Due to the visual sensitivity in hue a very small ThHY_hue, 

differential value threshold, is expected to perform well, in contrary to luminance, which 

is expected to lie in the range of about 10% of the total luminance range, i.e. ThHY_lum. 

Furthermore, the theoretically optimal resolution is expected to be a trade-off between 

recall and precision, because with increasing resolution the recall should drop (i.e. due 

to increasing variation sensibility), but on contrary precision should increase (i.e. less 

false link detection due to stricter comparison). The expected theoretical behaviour is 

verified through iteratively and sub-sequentially (one-by-one) varying the parameter and 

monitoring the robustness changes of the parallel shot linker. The criteria for the proper 

settings are to maintain high precision and, hence, to minimize the chance to cross 

scene boundaries. With a given window length Wsh=3 and threshold ThPS=30 the three 

parameter are tuned, i.e. ThHY_hueє[3…disabled], ThHY_lumє[3...disabled] and the 

resolution p*qє[8*8…30*30], and the results are summarized in Table 29. 

The analysis unveils that the hue thresholds has to be chosen very restrictive, i.e. 

ThHY_hue=7, and in contrary the luminance difference threshold performs well in the 

expected range, i.e. ThHY_lum=20. The resolution behaves as predicted, i.e. with 

increasing resolution recall decreases and precision increases. Hence, a trade-off value 

is selected with reasonable recall and a low number of scene boundaries crossed, i.e. 

no scene boundary should be crossed by a parallel shot sequence.  

 

 

 

Figure 93. Parallel shot detection benchmark definitions – link and link through. 
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Table 29. Parameter evaluation for the HY based parallel shot detector method. 

 Wsh 
[shot] 

ThPS 
[%] 

ThHY_hue ThHY_lum p*q Correct  
Links 

False 
Links 

Missed 
Links 

Crossed 
ScB 

Re 
[%] 

Pr 
[%] 

3 30 3 10 16*16 1600 161 1450 2 52.5 90.9 
3 30 7 10 16*16 2091 356 959 8 68.6 85.5 
3 30 10 10 16*16 2261 505 789 15 74.1 81.7 

Th
H

Y
_h

ue
 

3 30 Disabled 10 16*16 3026 2764 624 226 82.9 52.3 
3 30 5 10 16*16 1697 181 1353 4 55.6 90.4 
3 30 5 20 16*16 2052 334 998 7 67.3 86.0 
3 30 5 25 16*16 2147 404 903 10 70.4 84.2 

Th
H

Y
_l

um
 

3 30 5 Disabled 16*16 2291 981 664 80 77.5 70.0 
3 30 5 10 8*8 2105 423 945 13 69.0 83.3 
3 30 5 10 10*10 2083 338 697 7 68.3 85.6 
3 30 5 10 12*12 2051 348 999 7 67.3 85.8 
3 30 5 10 16*16 1912 263 1138 6 62.7 87.9 
3 30 5 10 20*20 1919 263 1131 6 62.6 88.0 
3 30 5 10 23*25 1793 209 1257 4 58.8 89.6 

R
es

 p
,q

 

3 30 5 10 30*30 1865 242 1185 4 58.2 89.8 

 

The resolution p*qє[12*12] is, therefore, selected, because only scene boundaries at 

gradual transitions are crossed. The cause of the latter is the motivation to include, 

subsequently, gradual transitions as well. Hence, the final three values for the HY based 

method are ThHY_hue=7, ThHY_lum=20 and a resolution of p=12 / q=12. 

 

Now we can start with the benchmark of the four methods. The results of the analysis 

are summarized in Figure 94, where the first row covers the results for series and the 

second one those for movies. The detection results for shot reversed shots SRS and 

cross-cuttings CC, respectively were summarized in the 1st and 2nd column of Figure 94. 

 

 

Figure 94. Shot-reveres-shot and cross-cutting benchmark based on shot links. 
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The analysis unveils that the detection robustness of dialogue sequences, i.e. shot 

reverse shot sequences, exceed that of cross-cuttings, based on the fact that dialogues 

appear during less vivid content sequences compared to motion loaded cross-cuttings. 

The motion-loaded nature of cross-cuttings results in frequent foreground and 

background changes especially in genres like movies, as reflected in low recall and 

precision in the graphs ‘movies – CC’ in Figure 94. The recall and precision of shot 

reverse shot link detection for both, movies and series, outperforms, therefore, those for 

cross-cutting link detection. Interesting enough is the fact that both landmark point 

based methods, i.e. ScaFT and SIFT, perform at least by 10% better for shot reverse 

shot link detection in movies than in series. The evaluation shows that dialogues in 

series have a strong focus on the individuals involved in the dialogue (e.g. close up 

shots) leaving little chances to identify reliable feature points in rigid areas, whereas the 

individuals in movie dialogues are more distant (e.g. medium long shots) and, hence, 

more rigid background areas / objects are in focus. Because of the final aim of scene 

boundary detection, the ambition is to cluster shots together with parallel shot detection, 

but to avoid that parallel shots sequences cross scene boundaries. The analysis of the 

results of Figure 94 shows that ~18 of the 240 AV corpus scene boundaries are 

crossed. This happens mainly during gradual transitions, which we originally excluded in 

the first benchmark analysis. 

 

 

Figure 95. Shot reverse shot and cross-cutting benchmark based on shot links with 

exact gradual transition boundaries. 
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Table 30. Evaluation of parallel shot detection methods. 

PSD method Wsh [shots] ThPS [0..1] Re [%] Pr [%] 

HSV 5 75 83.9 83.6 

HY 5 30 69.6 87.0 

ScaFT 5 10 53.5 75.1 

SIFT 5 15 30.9 84.5 
 

Table 31. Evaluation of parallel shot detection aiming for optimal link trough results. 

PSD  

method 

Wsh [shots] ThPS [%] Correct False  Missed Missed 
ScB 

Re [%] Pr [%] 

HSV 5 75 2429 375 775 3 75.8 86.6 

HY 5 35 2285 333 919 7 71.3 87.3 
 

Hence in the second iteration, we apply both shot boundary types, i.e. cuts and gradual 

transitions, to re-evaluate the robustness of the parallel shot detector with the two best 

performing methods, i.e. HSV and HY. These results of the parallel shot linker are 

summarized in Figure 95. Even so the ground truth analysis unveils that editors insert 

up to six shots between correlating shots, i.e. Wsh_max=7, a window size of Wsh=5 results 

in a good recall/precision trade-off, as depicted in Table 30. These results show that the 

focus on mostly non-rigid areas, i.e. subjects in dialogues, in the AV content are the 

major reason for the low recall of the two landmark based detection methods, i.e. ScaFT 

and SIFT (see Table 30), which are very much dependend on the presents of rigid 

structures within the focus. On contrary, both color based methods, i.e. HSV and HY, 

reached comparable high precision (Pr~90% at Re~70%). But, because the aim is to 

cluster linked shots into parallel shot sequences the pure link method, as depicted in 

Figure 97, is less suited for our purpose. The method is too strict compared to the link 

through method, because the latter allows missing individual links as long as one of the 

next links is correctly detected, which is more relevant for our purpose. The results of 

the link through are summarized in Table 31, and reach Pr~86% at Re~76%. 

 

Analysis of parallel shot detector results 

In order to be able to understand the individual strengths and weaknesses of the four 

methods, we do a detailed analysis of the missed and false link detections. We apply 

the individual chosen settings for the four methods as given in Table 30.  

The evaluation of the HSV and HY based methods unveils that the main reasons for 

missed link detection are (a) non-captured camera zoom-in or zoom-out between 

related shots but without panning or tilting further referenced as ‘virtual zooms’, (b) non-
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captured object motion, e.g. same subject or object in a different position or pose in 

mainly medium to close shots, further referenced as ‘virtual object motion’, (c) non-

visible camera motion between correlated shots, e.g. same object/person in a different 

setting or background, further called ‘virtual camera motion’ (d) or missed links due to 

illumination/color changes, e.g. the object of interest passed through settings with 

different illumination, such as an tunnel or a weather front. We call the non-captured 

camera and object transitions as ‘virtual’, because the director has the intention to 

create the impression of e.g. a camera zoom-in, but do not captures this activity. But 

also systematic reason lead to miss detections such as links bigger than Wsh=5.  

We divide false detections for the HSV and HY based methods mainly into two groups, 

i.e. systematic and semantic errors. The semantic errors occur mainly due to the strict 

ground truth annotation, which are based on the rule that key frame pairs have to exhibit 

major visual similarities. The systematic false detections are split into false detection 

due to (a) similar color ranges, i.e. non-related key frame pairs have similar color 

compositions, and (b) dark sequences, i.e. that little information is present due to very 

dark settings. Some false detection has no obvious correlation between the linked key 

frame pairs, hence, and these are clustered into the cluster ‘no obvious similarity’. 

The false and missed detection analysis of the ScaFT and SIFT based methods is 

rather difficult due to the complex nature of these methods and, hence, the explanation 

is given using visual examples. 

 

Evaluation of HSV based parallel shot detector 

The analysis of the in total 795 missed links using the HSV based method unveils that 

links are missed to 30% because of virtual zooms, i.e. non-captured zooms between 

connected shots, to 30% due to prominent foreground objects being abruptly displaced 

between connected shots, to 10% based on non-captured camera motion and to 10% 

due to significant illumination or colour changes, summarized in Table 32. 

The analysis of the in total 736 falsely identified links using the HSV method shows, as 

summarized in Table 33, that about 17%+18%+10%+9%=51% (i.e. similar color ranges, 

dark sequences and no obvious similarity) of the false detections are based on 

systematic shortcomings of the method. On contrary, 11%+15%+3%+6%+14% =49% of 

falsely identified semantic error links are due to the very strict ground truth annotation 

rules. The parallel appearance of missed on false detections based on semantic links, 

i.e. for example the non-captured abrupt zoom between semantically connected shots, 

is the main reason that we re-define the annotation rules for the semantic ground truth.  
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Table 32. Missed links of HSV based parallel shot detection in series and movies. 

Series ‘nl1’ ‘nl2’ ‘ge1’ ‘ge2’ ‘gb’ Total 

Virtual zoom 3 17 9 25 14 68 
Virtual object motion 2 5 4 25 16 52 
Virtual camera motion 1 0 2 10 3 16 
Illumination / color change 0 1 1 0 9 11 
Link size >5 9 6 2 4 5 26 
False ground truth 0 0 2 1 1 4 
Virtual zoom & object motion 4 3 6 5 2 20 

Total 19 32 26 70 50 197 

Recall [%] 91.6 84.9 85.1 85.9 89.6 87.6 

Movies ‘nl’ ‘ge1’ ‘ge2’ ‘us_ana’ ‘us_dig’ Total 

Virtual zoom 35 16 13 51 47 162 
Virtual object motion 61 36 10 28 37 172 
Virtual camera motion 13 10 9 26 21 79 
Illumination / color change 15 17 3 20 40 95 
Link size >5 12 9 3 5 23 52 
False ground truth 1 2 0 2 5 10 
Virtual zoom & object motion 3 4 2 8 11 28 

Total 140 94 40 140 184 598 

Recall [%] 84.3 70.1 97.0 88.1 84.8 87.9 

Table 33. False links of HSV based parallel shot detection in series and movies. 

Series ‘nl1’ ‘nl2’ ‘ge1’ ‘ge2’ ‘gb’ Total 

Similar color range 4 4 3 13 1 25 
Dark image sequence 0 1 0 0 0 1 
No obvious similarity 3 3 0 2 0 8 

Sy
st

em
at

ic
 

 E
rr

or
s 

Bridge link across virtual zoom lin 0 0 2 3 4 9 
No visible change 5 1 1 7 5 19 
Virtual zoom 5 5 3 19 0 32 
Virtual camera motion 1 1 1 2 3 8 
Virtual camera motion and zoom 1 2 0 1 0 4 

Se
m

an
tic

   
Er

ro
rs

 (G
T)

 

Virtual object motion 3 4 3 4 12 26 

Total 22 21 13 51 25 132 

Precision [%] 90.4 89.6 92.0 89.3 94.5 91.4 

Movies ‘nl’ ‘ge1’ ‘ge2’ ‘us_ana’ ‘us_dig’ Total 

Similar color range 24 25 0 36 16 101 
Dark image sequence 53 20 0 43 18 134 
No obvious similarity 19 13 0 26 5 63 

Sy
st

em
at

ic
 

 E
rr

or
s 

Bridge link across virtual zoom lin 4 7 2 6 15 34 
No visible change 12 15 2 19 12 60 
Virtual zoom 16 11 1 34 19 81 
Virtual camera motion 4 2 0 7 2 15 
Virtual camera motion and zoom 6 3 1 24 7 41 

Se
m

an
tic

   
Er

ro
rs

 (G
T)

 

Virtual object motion 16 22 4 22 11 75 

Total 154 118 10 217 105 604 

Precision [%] 83.0 65.1 99.2 82.7 90.7 87.8 
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Evaluation of HY based parallel shot detector 
The analysis of the in total 665 missed links of the HY based method unveils that the 

robustness is comparable to the HSV method. 

Table 34. Missed links of HY based parallel shot detection in series and movies. 

Series ‘nl1’ ‘nl2’ ‘ge1’ ‘ge2’ ‘gb’ Total 

Virtual zoom 5 11 9 20 14 59 
Virtual object motion 2 2 5 21 18 48 
Virtual camera motion 0 0 2 7 3 12 
Illumination / color change 0 0 0 0 10 10 
Link size >5 9 6 1 4 5 25 
False ground truth 0 0 1 1 1 3 
Virtual zoom & camera motion 2 2 3 9 0 16 

Total 18 21 21 62 51 173 

Recall [%] 92.1 90.1 88.0 87.5 89.4 89.1 

Movies ‘nl’ ‘ge1’ ‘ge2’ ‘us_ana’ ‘us_dig’ Total 

Virtual zoom 27 13 14 39 28 121 
Virtual object motion 47 34 15 16 26 138 
Virtual camera motion 11 14 8 21 17 71 
Virtual zoom & camera motion 4 4 2 7 7 24 
Illumination / color change 12 19 0 14 24 69 
Link size >5 14 8 3 12 23 60 
False ground truth 1 2 0 1 5 9 

Total 116 94 42 110 130 492 

Recall [%] 87.0 70.1 96.9 90.7 89.2 90.0 

Table 35. False links of HY based parallel shot detection in movies. 

Series ‘nl1’ ‘nl2’ ‘ge1’ ‘ge2’ ‘gb’ Total 

Similar color range 4 6 4 14 6 34 
Dark image sequence 0 0 0 0 0 0 
No obvious similarity 4 3 0 3 0 10 

Sy
st

em
at

ic
 

 E
rr

or
s 

Bridge link across virtual zoom lin 0 1 1 3 3 8 
No visible change 5 1 1 7 5 19 
Virtual zoom 5 5 4 20 0 34 
Virtual camera motion 1 0 1 2 3 7 
Virtual camera motion and zoom 1 2 0 2 0 5 

Se
m

an
tic

   
Er

ro
rs

 (G
T)

 

Virtual object motion 2 4 3 4 12 25 

Total 22 22 14 55 29 142 

Precision [%] 90.5 89.7 91.7 88.7 93.7 90.9 

Movies ‘nl’ ‘ge1’ ‘ge2’ ‘us_ana’ ‘us_dig’ Total 

Similar color range 30 28 1 53 36 148 
Dark image sequence 66 20 0 47 14 147 
No obvious similarity 16 13 1 27 7 64 

Sy
st

em
at

ic
 

 E
rr

or
s 

Bridge link across virtual zoom lin 6 5 2 7 10 30 
No visible change 12 18 2 22 13 67 
Virtual zoom 19 13 0 42 42 116 
Virtual camera motion 5 4 0 11 2 22 
Virtual camera motion and zoom 7 3 1 26 15 52 

Se
m

an
tic

   
Er

ro
rs

 (G
T)

 

Virtual object motion 17 22 4 28 22 93 

Total 178 126 11 263 161 739 

Precision [%] 81.3 63.6 99.2 80.2 87.0 85.8 
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The results are comparable mainly because of the similar nature of the two methods. 

Links are missed to 30% because of virtual zooms, to 30% due to prominent foreground 

objects being abruptly displaced between connected shots, to 10% based on non-

captured camera motion and to 5% due to significant illumination or colour changes, as 

summarized in Table 34. 

The analysis of 881 falsely identified links shows, summarized in Table 35, that about 

21%+17%+8%+4%=50% of the false detections are based on systematic shortcomings 

of the HY method and about 10%+17%+3%+6%+14%=50% of the falsely identified links 

on the strict visual similarity based ground truth annotation rule.  

 

The evaluation of the ScaFT- and SIFT-based parallel shot detector is of less relevance 

for the remainder of this work, nevertheless, the results could be of interest for future 

works. Hence, we have placed the results in Annex 5.    

 

Conclusion on key frame similarity analysis methods for PSD 

Our evaluation of the four key frame pair similarities methods, i.e. the HSV, HY, ScaFT 

and Sift based method, for parallel shot detection shows that the simplified color based 

methods, i.e. HSV and HY, robustness-wise outperform advanced feature point based 

methods mainly due to the abstract similarity between semantically connected shots, 

e.g. zooms, and the content’s frequent non-rigid nature, e.g. faces in the foreground. 

Nevertheless, the feature point based methods, i.e. ScaFT and SIFT, perform very well 

in the most often rigid background areas. To enhance the feature point based methods 

our next step would be to create a background mosaic per shot and to enhance the 

SIFT method with spatial constellation information, texture dependent thresholds and 

colour. We believe that with the SIFT method the robustness of the best performing 

HSV method, could be enhanced or even outperformed. But we decided to exclude the 

ScaFT- and SIFT-based methods due to their performance from the subsequent steps 

in this work. Nevertheless, we published the feature point based method for parallel shot 

detection PSD in one of our patents [136]. 

 

Semantic re-annotation of parallel shot detection links and PSD results 
The strict, but still fuzzy, rule for the first manual annotation of the ground truth, i.e. that 

key frame pairs derived from two shots have to exhibit full visual similarity across the 

image, lead to the situation that semantically linked shots with non-visualized changes 

are not always part of the ground truth annotation set. The causes for the latter are (a) 

virtual zooms, (b) virtual object motions, (c) virtual panning and (d) combination of the 
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previous three. Hence, the benchmark of e.g. the HSV method contains such instances 

as misses (see Table 32), as well as false detections (see Table 33). Therefore, we re-

annotate the ground truth, called here 2nd ground truth, including these semantically 

linked shots. Hence, the re-annotation rule for the 2nd ground truth includes (a) virtual 

zooms, (b) virtual object motions, (c) virtual panning and (d) combination of the previous 

three. The new ground truth statistics for the data set are summarized in Table 36 (an 

update of Table 26). We restrict the final benchmark on the new ground truth to the HSV 

and HY method. Recall and precision based on the semantic ground truth, surprisingly 

increase considerably for series and slightly for movies, as sketched in Figure 96, which 

shows that the HSV method is also robust enough to cope with slight variations within 

the content, e.g. zooming and panning. Finally, we also calculate recall and precision for 

the more relevant Link Through LT case benchmarked against the second ground truth 

(2nd GT), summarized in Figure 97.  

 

 

Table 36. Ground truth numbers of SRSs and CCs of series /movies AV corpus. 

Content # of 
SRSs 

# of 
shots  
in 
SRSs 

# of GT  
SRS 
links 

# of 
CCs 

# of 
shots  
in CCs 

# of 
GT  
CC 
links 

Total 
# of 
shots 
in PS 

total # 
of 
shots  

PS 
Coverage 
[%] 

‘nl1’ 9 125 67 12 71 26 196 227 86.3 

‘nl2’ 11 140 95 6 57 31 197 212 92.9 

‘ge1’ 12 164 124 0 0 0 164 175 93.7 

‘ge2’ 21 357 273 2 6 2 363 495 73.3 

‘gb’ 31 341 226 9 58 28 399 482 82.8 

Se
rie

s 

Total 84 1127 785 29 192 87 1319 1591 82.9 

‘ge1’ 36 502 351 35 209 103 711 890 79.9 

‘ge2’ 17 180 137 9 91 60 271 314 86.3 

‘nl’ 26 353 267 84 604 311 957 1352 70.8 

‘us_dig’ 46 950 738 13 110 46 1060 1208 87.8 

‘us_ana’ 31 443 322 43 579 289 1022 1176 86.9 

M
ov

ie
s 

Total 156 2428 1815 184 1593 809 4021 4940 81.4 
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Figure 96. Shot reverse shot and cross-cutting benchmark based on shot links with 

semantic parallel shot link ground truth (2nd GT). 

 

Figure 97. Shot reverse shot and cross-cutting link trough benchmark based on shot 

links with semantic parallel shot link ground truth (2nd GT). 



  
193 J. Nesvadba 

HSV method evaluation 
Because of the comparable results of the HSV- and HY-based methods we make now a 

selection and choose the processing-wise more efficient one of the two methods, 

namely the HSV based method, for the remainder of this work.  

For the detailed analysis of the HSV key frame similarity analysis for parallel shot 

detection we choose a parameter setting with a reasonable high link trough precision, 

derived from the analysis summarized in Figure 97, i.e. Wsh=7 and THPS_HSV=75%. The 

results with the latter setting are summarized in Table 37. For a detailed analysis of the 

HSV method, which as described in 4.5.2 is composed of a set of areas, i.e. foreground 

FG, background BG and global area GA analysis. The influence of the three areas for 

correct and false links is summarized in Table 38, which sub-divides correct and false 

decisions into cases were FG, BG or GA was the winning, and hence decisive, class. 

Correct cross-cutting links are based to about one quarter on the background, mainly 

due to film grammar based shot distance rules, i.e. many long and medium distance 

shots are part of those cross-cuttings. Nevertheless, the high contribution of the global 

area reflects the shortcoming of the spatial wise fixed and rough foreground / 

background segmentation. Objects of interest, i.e. region of interest ROI, are not often 

centred in the middle of the frame, e.g. as specified by film grammar rules during 

dialogues the protagonists are placed in such a way that spatial rules are satisfied, i.e. 

faces are presented either in the left or right side of the image.     

 

 

 

 

 Table 37. Link trough results of HSV parallel shot detector (Wsh=7, THPS_HSV=75%). 

Genre  Re [%] Pr [%] Correct 
links 

Missed 
links 

False 
links 

SRS 74.0 90.1 574 202 63 
CC 86.2 90.4 75 12 8 

Se
rie

s 

Total 75.2 89.6 649 214 75 
SRS 79.0 91.1 1433 380 140 
CC 62.4 81.0 504 304 118 

M
ov

ie
s 

Total 73.9 88.2 1937 684 259 
 

Table 38. Detailed HSV area analysis (Wsh=7, THPS_HSV=75%).   

 Series Movies 
 SRS 

Correct 
CC 
Correct 

False  
 

SRS 
Correct 

CC 
Correct 

False  
 

FG 12 % 5 % 17 % 17 % 18 % 18 % 
BG 15 % 25 % 23 % 18 % 23 % 29 % 
GA 73 % 70 % 60 % 65 % 59 % 53 % 
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Parallel shot detection system 
The schematically integration of the service unit HSV key frame pair similarity based 

parallel shot detector, i.e. SU PSD, into the framework is sketched in Figure 98. SU 

PSD requires as input the data of SU Shot Boundary Detector, including cut and gradual 

transition detection, SU Commercial Block Detection, SU Subtitle Detection and a YUV-

to-HSV converter. The SU Parallel Shot Detector hosts various units such key frame 

pair similarity analysis, shot linker and parallel shot decision. Furthermore, two optional 

extension service units are sketched in the figure, i.e. SU Logo Detection and SU Face 

Detection, which are scheduled for future extensions.    

 

 

Figure 98. System integration of parallel shot detector1. 

 

 

Figure 99. MPEG-7 description of parallel shots (cross-cutting and shot reverse shot). 
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As XML-based MPEG-7 like output we suggest to use the StucturalUnit element of the 

Video Segment DS and to add three new values, i.e. Parallel Shot, Cross-cutting and 

Shot Reverse Shot, because nothing applicable is available to specify these elements in 

a MPEG-7 compliant way. The StucturalUnit element seems to be suited, because it is 

applied in the MPEG-7 specification ([151]: part 5, page 131) as well for descriptions 

such as Shot, Scene and Story. The proposed MPEG-7 conform output for the three 

cases is summarized in Figure 99, i.e. Parallel Shot: general case, Parallel Shot: Cross-

cutting and Parallel Shot: Shot Reverse Shot.  

Finally, in Figure 100 we visualize the result of the service unit parallel shot detection 

SU PSD for one selected content item, here movie-ge2, including parallel shot clusters. 

The black lines in Figure 100 indicate the beginning of a parallel shot sequence and the 

yellow area indicates the duration of each individual parallel shot sequence. The high 

density of parallel shot sequences is representative for movies.   

 

 

 

 

Figure 100. Output of service unit parallel shot detector for content movie_ge2. 
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4.5.3 Parallel shot categorization 

We also exploited the evidence of shot links inside parallel shot sequences to 

distinguish between  

• Cross-Cuttings, i.e. two or more interleaved narrative events, depicting e.g. 

events unfolding simultaneously at arbitrary locations, and  

• Shot / Reverse Shots, i.e. dialogue sequences with two or more individuals 

shown in alternating fashion.  

As presented in  

Table 27, the statistics of cross-cuttings and shot reverse shots, i.e. link distance and 

frequency of appearance, proved to be strong features for content genre classification. 

Series, for example, contain mainly dialogues and, hence, statistically 70% of all shots 

of series are Shot/Reverse Shots, as can be seen in Figure 101. On contrary, movies 

consist not only of dialogues, but also of many parallel events as can be seen in Figure 

102. We published the concepts of genre classification in our patent application ‘Parallel 

Shot Detection’ [136]. The limitation to only two classes justified developing only a 

Shot/Reverse Shot, i.e. dialogue, detector and to index the remaining parallel shot 

clusters as Cross-Cuttings. Hence, we further elaborated the genre classification using 

face features for Shot/Reverse Shot detection, which we published in [137].   

 

 

 

Figure 101. Results after parallel shot classification for content series_gb. 

 

Figure 102. Results after parallel shot classification for content movie_ge2. 
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The categorization knowledge is very useful information for scene boundary detection, 

which can be exploited statistically, because the scene boundary attributes around 

Shot/Reveres Shots are different to those of Cross-Cuttings. In this work we do not 

exploit this knowledge any further and leave it for future research. 

 

4.5.4 Conclusions concerning service unit parallel shot detection 

In this section 4.5 we introduced our own service unit ‘Parallel Shot Detection’ (SU PSD) 

exploiting film grammar rules applied in production environments. In particular we 

exploit the nature of interleaved narrative events and dialogues. We benchmarked four 

key frame pair similarity analysis methods, i.e. HSV, HY, ScaFT and SIFT, against each 

other, using shot dependent interval instead of the in prior art time-intervals, which are 

often applied. We decided, on basis of the benchmark results, to select the best 

performing HSV based method for parallel shot detection, which reaches in the link 

trough modus recall / precision of about 83% / 83% or 70% / 90%. Given the fact that 

about 80% of all shots are members of a parallel shot cluster, i.e. the case for ground 

truth, this detector reduces the potential scene boundary instances drastically and, 

hence, is a useful pre-processing step for scene boundary detection. Furthermore, with 

the parallel shot class knowledge, i.e. the knowledge about the appearance frequency 

of shot reverse shot or cross-cutting blocks and their internal link structure, a genre 

classifier has sufficient data to distinguish between soaps, movies and magazines, as 

we claim in our patent [136].  

Nevertheless, our proposed HSV method seems to reach its limits in terms of 

robustness. We believe that further robustness improvements are achievable, e.g. 

through the combination of landmark point related techniques, e.g. SIFT, and 

foreground / background segmentation. These techniques could be applied to create 

background only mosaics of shots or sub-shots and those mosaics with their landmark 

points could be used to evaluate the correlation between shots. In addition, mid-level 

features such as similar face detection could be applied to enhance the robustness 

even further, e.g. during shot reverse shot sequences.  



 

  
198  

4.6 Audiovisual segmentation of filtered content 
In the final section of this work we describe our research work on retrieving semantic 

meaningful audiovisual scene boundaries. This section is organized as follows: in 

section 4.6.1 we define once more scenes and summarize some scene boundary 

ground truth statistics. In 4.6.2 we present our HSV based dissimilarity scene boundary 

analysis and the results here of. Subsequently in 4.6.3 and 4.6.4 two post-processing 

steps using orthogonal features, i.e. based on audio discontinuities and shot length, are 

presented and the conclusion on scene boundary detection are given in 4.6.5. 

4.6.1 Re-definition of scenes 

Humans established during their evolution in a tedious process language grammar rules 

to communicate transparently between each other. Even so, talking about abstract 

objects such as feelings and interpretations misunderstandings due to improper 

objective rules are common and frequent. The latter is mainly based on the personal 

interpretation based on individual past experiences, i.e. individual data sets of situation 

experiences acquired over during the individual’s life time. For the visual domain 

mankind is even one step further back if compared with languages. In the visual domain 

artists have started to elaborate some visual grammar, i.e. film grammar, but still a long 

way has to be passed before well-established objective rules will satisfy transparent 

interpretation of visual information. On an abstract level it is possible to establish an 

analogy between film and language entities, i.e. video shots can be set equal to 

individual spoken words, parallel shots to subordinate clause, visual scenes to full 

sentences, video acts to book chapters, full video items to books and, finally, series of 

content items to book series. In course of this work we elaborated so far definitions and 

technical solutions to identify individual shots, individual parallel shot sequences and to 

eliminate non-content related inserts. The next step is to use available knowledge about 

scene rules to reach the final aim of this work, i.e. to identify semantic audiovisual scene 

boundaries. In the film grammar section we mentioned that narrative content is usually 

split into three acts, and subsequently each act is split further into semantic scenes. 

Scenes contain usually several parallel shots, i.e. interleaved narrative elements. By 

definition these interleaved narrative elements form a semantic entity. Hence, they can 

never contain a semantic scene boundary. In general, a semantic scene conveys a 

special message or meaning to the audience to understand the flow of the story (fuzzy 

definition). Hence, for an objective evaluation of scene detection algorithms we require 

well-defined objective rules for scenes incorporating as much as possible film grammar 

rules.  
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Table 39. Ground truth scene boundaries. 

Series ‘nl1’ ‘nl2’ ‘ge1’ ‘ge2’ ‘gb’ Total Average Scene 
Duration [min] 

GT ScB 7 16 11 17 19 70 2.1 

Movies ‘nl’ ‘ge1’ ‘ge2’ ‘us_ana’ ‘us_dig’ Total  
GT ScB 35 25 30 53 26 169 2.6 

 

Based on the analysis of film grammar and studies of content of various genres we 

come to the conclusion that the following set of definitions and rules fits best to define 

semantic scenes: 

• Scenes consist of one or more shots conveying one single and consistent underlying 

semantic; 

• Scenes may incorporate one or more interleaved narrative events, i.e. cross-cuttings 

or dialogues (shot reverse shots). But by definition these interleaved narrative 

sequences form a consistent semantic entity and, hence, scene boundaries may not 

appear within them. Nevertheless, interleaved narrative sequences may be bordered 

by scene boundaries; 

Scenes contain usually one or more narrative elements, which often are surrounded by 

introduction and conclusion elements, i.e. one or more introduction and conclusion 

shots, as shown in Figure 77 and Figure 80. We have given above listed scene 

boundary rules to five persons as annotation basis and asked them to select scene 

boundaries using our AV (series / movies) data corpus. The latter consist of five movies 

and five series. Applying a majority vote approach we selected the test group’s resulting 

scene boundaries and present them in Table 39 and in more detail in Annex 6. The 

analysis unveils that semantic scenes have in average durations of 2.1 to 2.6 minutes.   
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4.6.2 HSV based ScB detection 

As we stated in the previous section (4.5.1) mis-en-scene rules and cinematographic 

rules unveil that shots of interleaved narrative elements clustered together in parallel 

shots sequences contain visual correspondence, which facilitate the viewer to 

discriminate intuitively between individual semantic sequences. Hence, parallel shot 

sequences constitute elements of audiovisual scenes and, therefore, scene boundaries 

cannot be met within such parallel shot sequences. The detection of parallel shot 

sequences, which we described in the previous section, can be considered as a pre-

filtering for subsequent scene boundary detection. In this section we are interested in 

the detection of scene boundaries within the remaining content sequences, i.e. after 

pre-filtering. 

From the visual set of features, e.g. color, motion, texture, audio, speech, we choose to 

apply color first. Several color spaces were to our disposal, i.e. YUV, RGB, HSV, LUV, 

based either on global or spatial information, e.g. color auto-correlogram or color 

coherence vectors, and color histograms, i.e. uniform and non-uniform ones. Analysis 

showed that the strongest discriminative power is reached with uniform distributed HSV 

color histogram, i.e. 16 discrete bins for hue, 4 for saturation and 4 for value, as 

described in 4.5.2 and Figure 83. 

Here after, we exploit the knowledge that cinematographic rules force directors to 

secure graphic consistencies, i.e. settings of shots of one scene should exhibit similar 

color compositions. Hence, if sets of key frames of two shots show strong color 

dissimilarities it is most likely that they belong to different scenes. We choose the sets of 

key frames of two shots by regular temporal sub-sampling of the video sequences.  

Here fore we apply the usual MPEG-2 GOP size of 6, i.e. frame distance of 6, as the 

temporal sub-sampling rate. We witnessed by tests that the robustness loss compared 

to lower sub-sampling rates is negligible. Hence, we proceed with the chosen distance. 

 

HSV based scene boundary dissimilarity analysis  
In 4.5.2 we introduced the Histogram Intersection Distance HID, published by Jeong in 

[126], on four key frame elements as shown in Figure 103, i.e. foreground FG, 

background BG and downscaling in two directions, called global zoom GZ/ZG. The 

latter is used to increase the robustness of the method by being able to detect and link 

non-captured zoom-in and zoom-out sequences, as shown in Figure 103 (right). 

Directors apply this global zoom often during the setting describing (re-)establishing and 

conclusion shots using simply more distant shots, i.e. medium or long shots, with a 
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similar color setting. For our method we downscale the image horizontally and vertically 

by a fixed factor of 2/3. 

Hence, four histogram intersections were defined of key frame pairs FN/FM, i.e.   
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Figure 103. Four histogram intersection distances applied for FN/FM analysis1. 
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as also visualized in Figure 103, which are intended to identify the optimal frame 

similarity. Hence, the highest one of the four histogram intersection distances is 

selected to represent the FN/FM similarity with 
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(4-76). 

For the analysis of scene boundaries we consider the maximal similarity between shot 

pairs shN/shM. It is derived by calculating HIDmax(FN,FM) for the entire key frame sets of 

two shots shN/shM and selecting the one with the maximal histogram intersection 

distance with 

 ( ) ( ){ }jiMN FFHIDshshSim
MshjFNshiF

,max, maxmax
, ∈∈

=
  

(4-77). 

The minimal dissimilarity between two shots Dissimmin(shN,shM), hence, is simply derived 

by subtraction the resulting similarity Simmax(shN,shM) from a value of one with 

 ( ) ( ) [ ]1...0,1, minmaxmin ∈−= DissimwithshshSimshshDissim MNMN  (4-78). 

Dissimmin(shN, shM) represents therefore the absolute minimum key frame dissimilarity of 

all frames of two shots shN /shM, which is exactly the parameter required to identify color 

based cinematographic discontinuities in a video stream.  

 

To build an efficient decision scheme we introduce now the minimal dissimilarity P(SBl) 

within a ‘window’ of Wsh shots where the minimum of all dissimilarities Dissimmin(shN, 

shM) of all shot pair links crossing a certain shot boundary SBl is chosen, as shown in 

Figure 104. 

The min dissimilarity P(SBl) is calculated with  

 ( ) ( ){ } ( ) [ ]1...0,min min,,,
∈=

≥<∈ lMNshshshshWshshl SBPwithshshDissimSBP
lNlMshMN   

(4-79). 

 

 

 

Figure 104. Shot pair dissimilarity analysis within window Wsh. 
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All shots considered for the shot boundary SBl, i.e. candidates to a scene boundary, 

have to be within the distance of WshЄ[3..30] shots. Subsequently, we introduce the 

mean dissimilarity measure µSBl normalizing within the chosen window Wsh across all min 

dissimilarities P(SBl) with  
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(4-80). 

Finally, we introduce the maxmin dissimilarity position MaxMinPos. We need this 

measure to identify the maximum dissimilarity position for each shot boundary SBl with 

 ( ){ }qSBPMaxMinPos
lql 33

maxarg
+≤≤−

=
  

(4-81)., 

We use a window size of three to circumvent multiple successive detections around 

local maxima surrounded by slightly lower probability peaks. Finally, a shot boundary is 

indexed as scene boundary if the local min dissimilarity P(SBl) not only exceeds the 

product of mean dissimilarity µSB and threshold ThЄ[1.2 ... 3], but also represents the 

local maximum and exceeds a minimum threshold of Pmin=0.04. Thus the decision rule 

on a scene boundary is formulated as: 

 ( ) ( ) ( )
⎩
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0
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else
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SBScB iSBi
i

i
µ

  
(4-82). 

 

 

Results of HSV based scene boundary dissimilarity analysis 
We describe, next, the assessment scheme for scene boundary detection, which is 

based on HSV dissimilarity. For the analysis of the scene boundary detector the 

parameters WshЄ[3..30], Th Є[1.2 ... 3] and jitterЄ[0…3] are applied. The latter is a 

tolerance interval. We introduce it to cope with establishing and conclusion shots, which 

have durations of one to even three shots, as can be seen in Figure 77. These shots 

visualize the entire setting in medium or long shots and, therefore, capture more of the 

setting often from a different position, e.g. outside shot. Color based shot dissimilarities 

appear, therefore, within a certain distance from the exact scene boundary instance. A 

robust establishing and conclusion shot identification algorithm, which is an interesting 

research topic in itself, is not available at the moment of this work. Hence, we solve this 

problem by using a jitter window. With the latter the detection of a boundary is 

considered as correct, if the instance of the ground truth GT falls inside the jitter window 

j. Hence, with the set of Automatically Detected Scene Boundaries ADSB, the number 

of real scene boundaries GTScB, the total number of shot boundaries TotalSB, the 
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number of correct, missed and false detections are calculated. The set of ADSB is the 

subset of SB, which is scene boundaries with   

 ( )( )∑
=

=
TotalSB

i
iSBScBADSB

1   
(4-83). 

The numbers of correct and false detections are calculated across all ADSB (ds 

represents the variable) with 

 ( ) ( )∑∑
==

==
ADSB

ds

ADSB
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dsFalseScBFalseanddsCorrectScBCorrect
11   

(4-84). 

Then, additionally two problems are taken into account, i.e. (a) that in the case of a 

correct detection two overlapping windows may appear impropriate increasing recall, 

and (b) that in the case of a false detection overlapping windows can influence 

precision. Hence, detection instances appearing in overlapping windows are counted 

only once. This means, for situations with two scene boundaries, i.e. oth ScB(o) and pth 

ScB(p), which are in close neighbourhood to the sth scene boundary ground truth 

GTScB(s), only the first instance is taken into consideration for the correct detection 

value, with  
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(4-85). 

The same approach is taken with false detection, i.e. if two false detections appear 

within window j only the first false detection is added to the total false detection value 

with 
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(4-86). 

Missed detections are calculated by subtracting correct detections from the total number 

of ground truth scene boundaries. Here we consider the GT presented in Table 39. 

Subsequently recall and precision are calculated as stated in equation (3-16) and 

(3-17). The results of the benchmark are visualized in Figure 105 and as shown the 

filtering of scene boundaries occurring within parallel shots, excluding those within a 

distance of j from a parallel shot boundary, increases as expected precision by several 

percents. Concrete results for two chosen settings are presented in Table 40. As we 

know from previous sections 80% of all shots of series are member of parallel shots. 

Hence, the detection performs better on series compared to movies, because more 

content is pre-filtered into parallel shot sequences, and, therefore, the detection error 

(precision) decreases if more content is pre-filtered.       
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Table 40. Benchmark results of scene boundary detector after parallel shot detection. 
 Wsh Th Jitter Correct False  Missed # potential shot 

boundaries (outside PS) 
Re 
[%] 

Pr 
[%] 

S&M 204 206 35 1191 85.2 49.4 
Series 58 38 12 272 82.9 59.6 
Movies 

6 1.4 3 
146 168 23 919 86.3 46.3 

S&M 146 99 93 1191 60.6 59.1 
Series 50 15 20 272 70.6 76.2 
Movies 

10 2.4 1 
96 84 73 919 56.5 53.1 

 

Furthermore, scene transitions in series are very distinct, i.e. abrupt, applying very few 

establishing and conclusion shots, which is not the case in movies. Hence, recall-wise 

the method’s potential is promising, but especially for movies the HSV scene boundary 

detection combined with parallel shot detection requires further features to reach 

satisfying precision results.  

 

Conclusion for HSV based scene boundary dissimilarity analysis 
Our scene boundary detector, based on HSV based dissimilarity analysis of shots, 

proves to be reasonably robust and processing efficient component to identify scene 

boundaries. In our experiments it detects with a lose setting, i.e. Wsh=6, Th=1.4 and j=3, 

204 of the 239 scene boundaries, i.e. Re=85.2%. For further clarification, our solution 

does not take appropriate measurements to deal with scene boundaries, which occur 

close to content item boundaries. The problem occurs because the applied buffer for our 

calculation is not filled sufficiently at content item boundaries. Another limitation is, that 

scene boundaries are discarded, if separated by only one shot, i.e. scene boundaries 

occurring close to each other. These are the constraints for any detector requiring 

computation in a temporal buffer. Hence, out of the 35 missed scene boundaries in total 

5 are not detectable, because they are placed close to the boundaries of the content, 

and 13 are not detectable due to their close distance to other scene boundaries, as 

visualized in Annex 6.  

 

 
Figure 105. HSV based scene boundary detection with parallel shot post-processing.  
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Such scene boundaries are questionable, but, because it was a common decision of 

several manual annotators, we decided to keep these scene boundaries in the ground 

truth set. In Figure 106 an example is given including ground truth scene boundaries 

ScB (bold black vertical lines), scene boundary min dissimilarity P(SBl) (blue graph at 

bottom) and detected scene boundaries (green lines at bottom) applying a specific 

setting.  

Scene boundaries are bordered very often by establishing and conclusion shots as we 

presented in 4.5. An example for this remaining problem of medium or long distant 

establishing and conclusion shots, which cause slight offset detections, a problem 

solved for the moment by us by applying a jitter j, is shown in Figure 107. 

Hence, in this section we presented methods for scene boundary detection based on 

visual information only. Nevertheless, AV content contains semantically rich audio as 

well. In the next section we consider, therefore, combined audio-visual methods to 

enhance our current scene boundary detection approach. 

 

 

Figure 106. Content movie-ge2 with ground truth scene boundaries, scene boundary 

dissimilarity measure and detected scene boundaries (Wsh=10, Th=2.4 and j=1). 

 

 

 

Figure 107. Example for detection within a jitter caused by establishing / conclusion 

shots1. 
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4.6.3 Audio-visual discontinuities as a model of a scene border 

Audiovisual scene boundaries have the attribute that the audio signal and the visual 

signal experience independently intermissions at these distinct scene boundary 

instances. In the audio domain these can be silences, audio class transitions or energy 

discontinuities, and in video domain these are shot boundary instances. The assumption 

is that the intermissions of those independent information sources correlate time-wise 

according to the scene boundary model. But, as stated by film grammar and production 

rules in section 4.5, audio and video transitions exhibit, often by intention, certain 

misalignments, i.e. that an audio changes slightly before or after a video change. For 

example, often directors intentionally, i.e. semantically, glue independent narrative story 

elements through audio together, as shown in Figure 108 (left), or during dubbing, i.e. 

an usual (post-) production technique for language adaptations, these misalignments 

are introduced. Moreover, in some cases slight offsets between audio and video are 

added deliberately to avoid unpleasant harsh audiovisual transitions called mixing, as 

shown in Figure 108 (right).  

 

Audio silence and video cut correlation analysis 

 

Gaussian Distribution Model for AV jitter 
In a first attempt we try with one colleague15 to research the time-wise correlation 

between audio silence instances and video cut transitions for scene boundary detection.  

 

 

 

Figure 108. Audiovisual editing and dubbing.  

                                                 
15 Co-supervised PhD student Nicolas Louis 
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Figure 109. Scheme for AV jitter measurement. 

 

Being aware of the film and production rules, which led to slightly misaligned audio and 

video transitions a tolerance value, called “audio-visual jitter” J, is introduced to cope 

with this time-wise fuzzy correlation. Here for a combination of a Gaussian distribution 

model, the Bayesian theorem and a maximum likelihood ratio is applied and evaluated, 

which we disseminated in our paper [117] and which is fully published by Louis in [37]. 

In the actual PhD thesis we present only the concept and the results. 

The introduced jitter represents the time-wise distance between the current video shot 

boundary SB, i.e. a video cut represented by the timestamp SB(i) corresponding to the i-

th cut instance with j=[1, NSB] wherein NSB represents the total number of indexed shot 

boundaries, i.e. video cuts, and the closest audio silence instance, as sketched in 

Figure 109, using a simple silence detector, see [117] and [37]. Each silence instance 

s(s) is represented by the beginning timestamp sb(s) and end timestamp se(s), here 

e.g. the s-th instance with s=[1,S] wherein S represents the total number of indexed 

silences.  

The jitter J(i), i.e. the jitter at cut instance i,  is, hence, represented by 

 ( )( ) ( )( )⎩
⎨
⎧

−−∗−−⋅
≤≤⋅⋅

=
)()(,)()(minarg)()()()(minmin

)()()(0
)(

sseiSBssbiSBsignsseiSBssbiSBotherwise
sseiSBssbif

iJ
s   (4-87),

wherein only the closest silences s(s) around SB(i) are taken into consideration. A 

statistical Bayesian decision model is applied to specify conditional and unconditional 

probability density functions and to calculate the maximum likelihood function with 

correct and false scene boundary detection within a certain jitter distance using a 

training set. The jitter is assumed to follow a Gaussian distribution. The statistical 

analysis is applied to derive heuristically an optimal jitter threshold value ThJ [number of 

video frames]. Finally, ThJ is used to identify potential scene boundary instances, as 

presented in detail [117] and [37]. The approach and equation applied are further 

described in [117] and [37]. The evaluation is done with 
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(4-88),

with following parameters applied: mean µ and standard deviation σ jitter value of 

positive (ScB) and negative (NScB) examples and the probabilities of the hypothesis 

that a jitter value corresponds to a scene boundary with a silence P(HScB) or does not 

correspond P(HNScB).   

 

Training of stochastic AV jitter model 

As described in [117] and [37], a sub-set of the AV corpus, see Table 41, is used to 

derive a Gaussian-distribution-based parameter for the training and evaluation process, 

i.e. four series and four movies. The columns in Table 41 represented the number of 

shot boundaries SB before parallel-shot-based clustering PS, number of shots clustered 

into a number of PSs (as described in section 4.5.2 using the first ground truth) and 

number of shot boundaries after parallel-shot-based clustering PS, i.e. the shot 

boundaries left outside parallel shots, which are potential scene boundaries ScB. The 

last column identifies all other potential ScB, i.e. potential ScBs at boundaries of content 

item boundaries or adds.  

 

Table 41. AV sub-corpus for AV segmentation analysis (series and movies).  

AV sub-corpus Total  

# SB 

# Shots inside PS  
(1st GT)      /    # PS 

# of   

potential ScB 

# ScB 

‘nl1’ 231 151 15 95 7 
‘ge1’ 181 128 9 62 11 
‘ge2’ 490 307 23 206 17 
‘gb’ 481 360 21 142 19 

Se
rie

s 

Total 1383 946 68 505 54 
‘ge2’ 442 242 21 221 30 
‘nl’ 1400 523 33 910 35 
‘us_dig’ 1190 1041 44 193 26 
‘us_ana’ 1260 736 31 555 53 

M
ov

ie
s 

Total 4292 2542 129 1879 144 
 

Successively, each content item is split into two parts, whereof the first part, further 

called training set, is used for training and the second, further called test set, for testing 

the performance of the solution. Successively, each shot boundary instance SB, i.e. 

video cut, of the training and test set is manually labelled either as scene boundary with 

a correlating silence SBa (±½ s ~ ThJ=±15 video frames) with the index a=ScB for 

positive (indeed scene boundaries) and index a=NScB for negative examples. For each 
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of the two data sets Xa={xa1,..xaNa}, wherein Na  represented the size of each of the two 

datasets,  

 ∑
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(4-89),

and the class probabilities P(HScB)=NScB/NSB and P(HNScB)=1-P(HScB) are calculated.  

 

Results with audio-visual jitter model 

The results of the evaluation with a statistically derived threshold ThJ,=(0,+2) from 4.6.3 

on the trainings set and an empirical threshold ThJ =±3, described in [117] and [37], are 

summarized in Table 42. The evaluation is executed on the test set and parallel shot 

post-processing is applied to eliminate detections within parallel shots. As can be seen 

in Table 42, the precision of parallel shot detection increased from 5% to more than 

16%. The analysis resulted in a reasonable recall; nevertheless, the precision is still too 

low for most applications. 

 

Table 42. Results with AV jitter before and after parallel shot detection. 

 ThJ Total #
ScB 

Corrrect 
ScBS 

Missed 
ScB 

False 
ScB 

Re  [%] Pr [%] 

ThJ = ±3 64 52 12 965 81,2 5,1 S&M before PSD ThJ =(0,+2) 64 47 17 853 73,4 5,2 
Series after PSD ThJ = ±3 16 11 5 25 75.7 31.0 
Movies after PSD ThJ = ±3 48 41 7 238 87.1 14.5 
S&M after PSD ThJ = ±3 64 52 12 263 81.2 16.5 

 
Conclusion of AV Jitter 

Our manual evaluation reveals, that about 60% of all scene boundaries in the ground 

truth contain shot boundary and silence instance correlations. The remaining 40% 

exhibit other audio class transitions in the close neighbourhood to the remaining scene 

boundaries, as summarized in Table 43.  

 

    Table 43. Remaining 40%: audio class transitions in close neighbourhood of ScB. 
Audio class transition Percentage 
Speech to noise 14,28 % 
Noise to noise 12,24 % 
Noise to speech 12,24 % 
Music to speech 12,24 % 
Speech to music 10,21 % 
Music to noise 8,16 % 
Music to music 8,16 % 
Speech to speech 6,13 % 
No transition 6,13 % 
Music to noise plus music  4,09 % 
Noise to speech plus music 2,04 % 
Noise plus speech to noise plus speech 2,04 % 
Noise to music 2,04 % 



  
211 J. Nesvadba 

Unfortunately, the analysis with the empirical value ThJ =±3 unveils that recall is high, 

i.e. 84%, but precision is far too low, i.e. <17%. Very often this is the case due to speech 

sequences outside parallel shots. Hence, we decide to evaluate alternative audio 

segmentation methods.  

 

Audio scene segmentation for audio scene boundary detection 

As specified by film grammar, scenes contain in general one or more interleaved 

narrative sequences encapsulated by establishing and conclusion shots introducing or 

concluding a story element. These scene transitions have to be audio-visually 

identifiable by the viewer to secure the understandability. But as stated before, audio 

and visual transitions not necessarily have to be time wise aligned. Even more, directors 

slightly dislocate them from each other to create abstract connections. Moreover, not 

only scene boundaries have to be recognizable, but also individual events inside a 

scene. We assume that at these instances audio will exhibit class changes. Therefore, 

we manually identified together with five colleagues audio scene boundaries AScB, i.e. 

instances at which either (a) the continuous ambient sound that surrounds the scenery 

audibly changes or (b) audio classes exhibit transitions. The results of the manual 

annotations are summarized in Table 44 and Annex 6. The manual evaluation unveils 

that the average ratio, i.e. series and movies, between audiovisual scene boundaries 

AV ScB and audio scene boundaries AScB is about 1:1.3, i.e. about 30% more AScBs 

compared to AV ScBs. The average duration of an audio scene is about ~1.7 minutes 

and only 12 of the 239 ground truth scene boundaries miss a correlating audio scene 

boundary. One could question those 12 scene boundaries, but due to a majority vote we 

left these scene boundaries in the ground truth. 

 

Table 44. Audio scene boundary AScB ground truth.  

Series ‘nl1’ ‘nl2’ ‘ge1’ ‘ge2’ ‘gb’ Total 
AScB 

Total AV 
ScB 

Average Audio 
Scene 
Duration [min] 

Average AV 
Scene 
Duration [min] 

GT Audio ScB 6 19 10 16 34 85 70 1.7 2.1 

Movies ‘nl’ ‘ge1’ ‘ge2’ ‘us_ana’ ‘us_dig’     
GT Audio ScB 57 34 41 75 32 239 169 1.8 2.6 

 

In general six audio classes are taken into consideration by us, i.e. music M, speech Sp, 

noise N, crowd noise Cr, silence Si and unknown U. In Annex 6 we specify for each 

audio scene boundary AScB not only the audio class transition type, e.g. noise to music 

(N M), but also the misalignment in shots between audio scene boundary and the 

audiovisual scene boundary, see annex 6 last column. The misalignment evaluation 

shows that at (a) 113 out of 239 scene boundary instances an exact alignment with an 
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audio scene boundary occurs, (b) 68 out of 239 instances of the audio transition occur 

during the subsequent shot, at (c) 33 out of 239 instances the audio transition appears 

during the predecessor shot, and (d) 13 out of 239 instances have a higher 

misalignment than one shot. From a human perceptual point of view audio should either 

be aligned with video or time-wise follow video, because humans are used to see first 

and then to receive the related audio information. We expect that the misalignment 

information alone could contain some semantic information, which could be a potential 

field for future research.   

 

 

 

Audio scene boundary detection with audio classifier 

Our goal in this section is to detect audio scene boundaries, which we understand as 

transitions between audio classes, as mentioned before. We decided for this purpose to 

apply an audio and music classifier described in [74] for the detection of audio class 

transitions. The classifier provides independent class probabilities, i.e. class 

independent probability values between zero and one, for six audio classes, i.e. speech, 

music, noise, crowd, silence and unknown, as shown in Figure 110 for various classes 

in various colors for a sequence of movie_ge1. The classifier is trained on a set of low 

level signal properties, mel-frequency cepstral coefficients MFCC and psychoacoustic 

features, of pure audio samples, as further described by McKinney in [74].  

 

 

Figure 110. Audio class probability results obtained with audio classifier. 
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For the detection of audio class changes we apply first sub-sampling of the audio 

classifier output, i.e. reducing the frequency of the six class vectors to the PAL video 

frame rate. Subsequently several methods are tried to identify audio scene boundaries. 

One applied method is to cluster the feature vectors within a sliding window using k-

mean clustering. Feature vectors, here after, are substituted by the index of the cluster 

they belong to. Subsequently, the dominant indices are calculated within a certain 

predecessor and successor window W at a video frame instance. These dominant 

indices are applied to identify the dissimilarity measure PDis between the predecessor 

and successor window, an equivalent of computing the relative entropy, i.e. Kullback-

Leibler distance. Finally local maxima are identified by means of an adaptive threshold. 

Unfortunately the output of the audio classifier do not meet the robustness requirements 

for this purpose mainly due to the fact that the classifier was developed for audio only 

signals, i.e. radio stations [74]. At some instance the generated class transitions 

correlate with the manually annotated ground truth, as pictured in Figure 111 (left), but 

in many cases audio class probabilities mask audio scene boundaries present in ground 

truth, as shown in Figure 111 (left).  

Subsequently, we try another approach using the classifier output for detecting audio 

scene boundaries applying a Mamdani-type Fuzzy Interference System (FIS), as 

presented in [138], and an Adaptive Neuro Fuzzy System (ANFIS), described in [139]. 

But, because in both cases the results confirm that the classifier require re-training we 

discontinue the approach using audio class transition detection for audio scene 

boundary detection. Nevertheless, we believe that audio scene boundary detection by 

means of audio class transition detection contain opportunities. 

 

 

Figure 111. Positive and negative class transition examples for ground truth AScB.  
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Audio scene boundary detection  
Another attempt to include audio for scene boundary detection is based on the 

experience that the audio power level exhibits a level change around scene boundaries. 

Hence, we select the low-level feature available within the audio classifier, i.e. audio 

power, as described in [74], and calculate the video shot mean audio power level µAP, 

i.e. the mean power level calculated across an entire shot. Here after, we apply a first 

order Gaussian derivative filter with  

 
( ) 2,

2
2

2

2
3

' =
−

=
−

σ
σπ

σ
X

exxGaussian
 

(4-90).
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(4-91),

to obtain an audio level change function AC. σ=2 is chosen as appropriate filter 

parameter, because meaningful scenes contain about four of more shots. The audio 

change curve represents the audio change intensities and with its first derivative audio 

power level change instances APC are identified,  
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(4-92),

where i represents the shot number, but also the shot boundary instance. The analysis 

of the detection results after applying parallel shot post-processing and the 

misalignment jitter jAPC=[0,1,2] confirm as well for this method the difficulties with audio, 

i.e. a high over segmentation resulting in an insufficient by low precision and, hence, no 

robustness improvements, as shown in Figure 112. 

 

 

Figure 112. Results of HSV scene boundary detection with audio power change 

analysis. 
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Conclusions about audio based scene boundary detection  
In this section 4.6.3, we applied various audiovisual methods, i.e. correlation of cut 

transitions with silences, audio class transition analysis and audio power transition 

analysis, to obtain independent features for our audiovisual scene boundary detection 

solution. Unfortunately the researched methods and applied audio classification tools 

are not sufficiently reliable, i.e. over detection or false detections, and, hence, we decide 

to exclude audio segmentation from the further analysis in this work.  

Nevertheless, as the manually annotated ground truth of audio scene boundaries 

unveils, as shown in Annex 6, audio exhibits changes close to scene boundaries and, 

hence, it is necessary to further research audio segmentation algorithms to improve 

their robustness for the future and to combine them with visual scene boundary 

detection methods to multi-modal scene boundary detection solutions. 
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4.6.4 Shot-length-based scene boundary detection 

Another independent parameter we investigate is the shot duration, a.k.a. shot length 

SL, which is reverse proportional to the shot boundary frequency or cut instances per 

hour. Shots of narrative content, e.g. series and movies, are concatenated during the 

post-production process following a film grammar like structure, as described in 4.5.1. 

Directors, cutters or producers use this attribute as artistic tool to create e.g. certain 

emotions. Action scenes, for example, are created by deliberately decreasing the 

average shot length, as stated by Faulstich in [140] and [141]. On the contrary, artistic 

‘master shots’, i.e. shots with a high semantic meaning, are by purpose very long to 

convey a specific story message. Shots of suspense scenes are also rather long and 

include specific shot types, i.e. close or medium shots, as explained in 4.5.1, which 

leads to a kind of claustrophobic impression. Furthermore, shot durations are also genre 

dependent. In this section we intend to use the shot length to identify lengthy shots 

bordering scene boundaries.  

Using the corpus, we evaluate an indicative overview of shot boundary frequencies, 

summarized in Table 45, showing that especially channel and commercial 

advertisements have a deliberately high transition frequency often used by commercial 

block detectors, as described in 4.4. This can be also deduced from the shot duration 

histograms – clustered in 50-, 20- and 5-frames-length bins - shown in Figure 113 and 

Figure 114 for various genres.  

The narrative nature of AV contents, conveying a complex message to the viewer, 

requests for short shots inside individual scenes following rhythmic relations, i.e. the 

shot length or in other words shot cut tempo have to be constant within scenes. 

 

Table 45. Average number of shot boundaries per hour for various genres. 

Genre MPEG-7 genre Cut Instances

 / hour 

Average  

shot length 

[sec] 

Gradual 
Transitions / 
hour 

Channel adds Information\\Information/tabloid 2000 2 300 
Commercial adds Information\\Leisure 1900 2 300 
Talk shows Entertainment\\Talk Show 900 – 1300 3 – 4 30 
Action movies Movies\\Action 700 – 1300 3 – 5 0 
Series Drama\\Popular Drama 600 – 1200 3 – 6 30 
Magazines Information\\General Non-fiction topics 750 5 80 
News Information\\General Non-fiction topics 700 – 1100 3 – 5 80 
Cartoons Drama\\Animated 700 – 900 3 – 5 200 
Quiz shows Entertainment\\Quiz 700 5 30 
Romantic movies Movies\\Romance 700 5 0 
Sport items Information\Sport events 600 – 900 4 – 6 50 
Documentaries Information\\Documentary 500 7 100 
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 On the contrary, at the beginning and the end of scenes the director uses so-called 

establishing (or introduction) and conclusion shots, as described in section 4.5. These 

two shot classes convey a lot of scenery information and complexity and, hence, they 

are in general medium or long shots. The shot duration is, therefore, distinctively longer 

than the average shot duration within a scene, which is elaborated further in this section 

by us. 

 

 

Figure 113. Shot length distribution for three genres (with 50- and 20-frame bins). 

 

Figure 114. Shot length distribution (extreme zoom, 5-frame bins). 
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Our goal is to improve the robustness of the scene boundary detector of 4.6.2 in terms 

of precision being willing to scarifying recall to some extend, because one of the 

intentional applications is to identify correct scene boundaries with a high precision 

likelihood to insert at these instances automatically other content. Especially commercial 

audiovisual Internet video portals are interested to insert advertisements to foster a new 

business model. 

 

Statistical analysis for establishing and conclusion shot duration 
Our analysis unveils that directors deviate from the strict rule to use for each scene 

simultaneously an establishing shot, i.e. the first shot of a scene, and a conclusion shot, 

i.e. is the last shot of a scene. As a first step, we make a statistical evaluation of the 

shot length of both (a) establishing shots and (b) conclusion shots. Here fore we 

perform a manual shots length evaluation, i.e. visualizing the shot length before and 

after a shot boundary for all non-scene shot boundaries SB (red crosses in Figure 115, 

including shots of parallel shots) and all shot boundaries being a scene boundary ScB 

(black triangles in Figure 115).  

 

 

Figure 115. Establishing and conclusion shot length analysis. 

 

Figure 116. Establishing and conclusion shot length analysis (zoomed). 
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These points are visualized in Figure 115 and in its zoomed out version in Figure 116 

including two threshold lines, i.e. establishing shot duration esd=300 [frames] and 

conclusion shot duration csd=300 [frames]. The figures unveil that a significant number 

of scene boundary instances exhibited long duration shots in their close neighbourhood, 

but little of them are simultaneously bordered by long duration establishing and 

conclusion shots.  

Hence, we identify potential scene boundaries through averaging the shot length of 

predecessor and successor shot of each shot boundary µSL=½*(shN+shN+1) and to 

statistically derive an average shot length threshold ThSL identifying scene boundaries. 

Here fore, we create two clusters, i.e. shot boundaries being a scene boundary ScB and 

those no being one NScB, for the statistical analysis.   

For the statistical analysis we apply a single sided probability density function pdf, i.e. 

pdf with Weibull distribution [142] using the average shot length j=µSL, a shape 

parameter k and a scale parameter λ, which results in  

 
( ) kjk

ejkkjpdf
⎟
⎠
⎞

⎜
⎝
⎛−

−

⎟
⎠
⎞

⎜
⎝
⎛= λ

λλ
λ

1

*),;(
  

(4-93).

For the specific case of this section we choose the special case of a Weibull distribution 

with pdf(j;k=2, λ=√2*σ) resulting in a pdf with Rayleigh distribution,  
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wherein the maximum likelihood estimation of σ is represented by   
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Using the pdf in the maximum likelihood ratio, as applied in 0 and presented in [117] 

and [37], we obtain  
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(4-96), 

using the same  notations as in 4.6.3. With the thresholds derived from annex 8, we are 

able to calculate statistically the required threshold ThSL. For the statistical analysis we 

take the same approach as in 4.6.3, i.e. the first half of each content item of the corpus 

sub-set is used for training (training set) and the second half for testing (test set). The 

with the training set statistically derived optimal threshold setting results in ThSL=258 

[frames] for series and movies, but due to their genre specific narrative structure and 

film grammar individual evaluations result in ThSL=205 for series and ThSL=289 for 
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movies. Using the statistically derived threshold ThSL with our shot length based scene 

boundary detector in combination with our parallel shot post-processing, hence, not 

using our HSV scene boundary detector here, we witness that ~50% of ground truth 

scene boundaries are detected appropriately (column ‘Correct ScB’ in Table 46). 

Because many non-ScB instances exhibit long shot durations (see Figure 115, Figure 

116 and column ‘False ScB’ in Table 46), the shot length based method leads to high 

over-detection and performs worse than the HSV based method (see Table 40). 

Nevertheless, the shot length based method is valuable for our approach, because our 

aim is to increase the precision of our HSV based method developed in 4.6.3. 

 

Table 46. Results of shot length ScBD after parallel shot detection with ThSL=258. 

 # GT ScB Correct ScB Missed ScB False ScB Re [%] Pr [%] 

Series 69 32 37 83 46.4 27.9 

Movies 170 97 73 382 57,1 20.3 

Series & Movies 239 129 110 465 54.0 21.7 
 

Conclusions of shot length based scene boundary detection  

The assumption derived from film grammar rules that scenes, and hence scene 

boundaries, are bordered by setting exposing medium and long distance shots, which 

by definition are of long duration, was proven by us to be correct for more than half of 

the ground truth scene boundary set, as can be seen in Table 46. The seldom-

isochroous appearance of establishing and conclusion shots at individual scene 

boundaries justifies our approach to combine the shot length into one threshold 

parameter ThSL. Nevertheless, because of the high over-detection but acceptable recall 

we decide to combine this shot-length-based feature with the independent scene 

boundary detection features, i.e. HSV based scene boundary detector of 4.6.3, to 

increase the robustness of the overall scene boundary detector. We, nevertheless, 

believe that future research on establishing and conclusion shot detection, a.k.a. 

objective shot detection, by means of not only shot length, but also non-presence of 

faces, camera motion and texture, will be valuable to further improve the scene 

boundary detector.  
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4.6.5 Results of combined scene boundary detection system  

Finally, we combine our parallel shot detector of section 4.6.2, our HSV scene boundary 

detector of section 4.6.3, which is based on the knowledge of cinematographic non-

uniformity between subsequent scene, and our independent feature of shot length of 

section 4.6.4. The system, therefore, identifies first with our HSV scene boundary 

detector all potential scene boundary instances. Here after, our parallel shot detector 

filters the latter and only these located outside parallel shot sequences are provided to 

the shot length based analysis. These instances, which fulfil the criteria of the latter 

(section 4.6.4), are indexed as scene boundaries.  

The analysis is done using a broad range of settings, i.e. window length WshЄ[3..30], 

ThЄ[1.2 ... 3], jitterЄ[0…3] and ThSLЄ[50…300], and unveils that the best performances 

are achieved with low thresholds during the HSV scene boundary detection phase, i.e. 

high jitter j, low window length Wsh and a low passing threshold Th, followed by a rigid 

post processing, i.e. high shot length threshold ThSL. In this way almost all correct scene 

boundary passes the first step together with a reasonable number of false detection, 

which, here after, are filtered out by the rigid post processing. 

An example subset of HSV scene boundary settings is presented in Table 47 with their 

achieved detection results after parallel shot post-processing. Some representative 

results after performing shot length post processing (section 4.6.4) are shown in Table 

48. As presented Table 48 and in Figure 117 the post-processing increases the overall 

robustness significantly towards higher precision at reasonable losses of recall, which 

confirms that directors and producers follow the film grammar rule to begin and/or end a 

scene with long lasting shots. The latter are expected to be long or medium establishing 

or conclusion shots and a shot length is only a first primitive way to identify and use 

them.  

 

Table 47. Example subset of HSV scene boundary settings with detection results 

(after parallel shot processing, i.e. methods of section 4.6.2 and 4.6.3). 

 jitter Wsh Th Correct 

ScB 

False  

ScB 

Missed 

ScB 

Re [%] Pr [%] 

1 10 2.4 143 99 96 60.6 59.1 
2 20 3 128 78 111 53.0 61.6 
3 10 2 173 119 66 72.0 58.8 

Series & 
Movies 

3 6 1.4 204 206 35 85.2 49.4 
3 10 2 55 22 15 77.9 70.7 Series 
3 6 1.4 58 38 12 82.4 59.6 

Movies 3 10 2 118 97 51 69.6 54.7 
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Table 48. Results of combined scene boundary detector 

 (i.e. methods of section 4.6.2, 4.6.3 and 4.6.4). 

 jitter Wsh Th ThSL Correct
  ScB 

False   

ScB 

Missed 

ScB 

Re [%] Pr [%] 

3 6 1.4 100 179 99 60 74.6 64 
3 6 1.4 150 140 60 99 58.1 69.5 
3 10 2 100 148 60 91 61.4 70.7 
3 10 1.6 100 159 71 79 66.5 68.9 

Series & 
Movies 

3 10 1.6 150 129 42 110 53.4 75.0 
3 6 1.4 50 57 17 13 80.9 76.4 
3 6 1.4 75 55 14 15 79.1 78.9 

3 8 1.4 100 49 10 21 69.1 82.5 
3 10 2 100 46 8 24 64.7 84.6 

Series 

3 10 2 200 23 2 47 30.9 91.3 
3 6 1.4 100 132 88 37 77.4 59.6 
3 8 1.4 150 110 56 59 66.1 65.8 

3 10 1.6 150 90 36 79 53.0 71.2 
3 10 2 150 81 30 88 47.5 72.2 

Movies 

3 10 2 200 63 18 106 36.3 77.2 
 
 

Furthermore, as already seen in previous analysis sections series adhere much stricter 

to the rules than movies, hence, recall- and precision-wise the scene boundary 

detection system performs, as expected, much better in series than in movies.    

Moreover, shots encapsulating scene boundaries in series are shorter than movies as 

implicitly included in Table 48, i.e. shorter threshold ThSL for optimal results, which is 

conform with the findings of 4.6.4, where we came to the same conclusion. 

Unfortunately, we are short of time to further research establishing and conclusion shots 

to render more precisely scene boundary instance, which in the course of this work are 

still allowed to be slightly dislocated, i.e. jitter j.  
 

 

Figure 117. Results of combined scene boundary detector. 
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To emphasize once more the problem of long lasting establishing and conclusion shots 

at scene boundaries resulting in miss detections if using e.g. only a color based 

segmentation algorithms, we summarized the results with a low scene boundary jitter 

j=0 and j=1, which result in low recall and precision justifying the use of higher jitter 

values in the course of this work, i.e. j=3. The results of the HSV-based scene boundary 

detector with the settings Wsh=10, Th=2.4 and jitter=0 are summarized in Table 49 (for 

series) and Table 50 (for movies) and for jitter=1 in Table 51 (for series) and Table 52 

(for movies). 

 

 

Table 49. HSV-based scene boundary detector with jitter=0 in series.  

series , jitter=0 ‘nl1’ ‘nl2’ ‘ge1’ ‘ge2’ ‘gb’ Total 
# ScB GT 7 16 11 17 19 70 
Correct 1 11 11 3 15 40 
Missed 6 5 0 14 4 29 
False 7 3 1 7 17 35 
Re[%] 14.3 66.7 100 17. 7 79.0 57.1 
Pr[%] 12.5 76.9 91. 7 30 46.9 53.3 

 

Table 50. HSV-based based scene boundary detector with jitter=0 in movies. 

movies , jitter=0 ‘nl’ ‘ge1’ ‘ge2’ ‘us_ana’ ‘us_dig’ Total 
# ScB GT 35 25 30 53 26 169 
Correct 18 11 14 11 14 68 
Missed 17 14 16 42 12 101 
False 44 37 6 22 25 134 
Re[%] 50.0 44.0 46.7 22.2 53.9 40.2 
Pr[%] 27.9 22.9 70.1 35.3 35.9 33.7 

 

Table 51. HSV-based based scene boundary detector with jitter=1 in series. 

series , jitter=1  ‘nl1’ ‘nl2’ ‘ge1’ ‘ge2’ ‘gb’ Total 
# ScB GT 7 15 11 17 19 69 
Correct 1 13 11 6 18 49 
Missed 6 2 0 11 1 20 
False 7 0 1 4 13 25 
Re[%] 14.3 86.7 100 35.3 94.7 71.0 
Pr[%] 12.5 100 91.7 60.0 58.0 66.2 

 

Table 52. HSV-based based scene boundary detector with jitter=1 in movies.  

movies , jitter=1  ‘nl’ ‘ge1’ ‘ge2’ ‘us_ana’ ‘us_dig’ Total 
# ScB GT 34 25 30 54 26 169 
Correct 29 13 16 18 16 92 
Missed 5 12 14 36 10 77 
False 32 35 3 17 23 110 
Re[%] 85.3 52.0 53.3 33.3 61.5 54.4 
Pr[%] 47.5 27.1 84.2 51.4 41.0 45.6 
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Furthermore, the results of the HSV-based scene boundary detector in combination with 

our parallel shot detector post-processing with jitter=0 are summarized in Table 53 (for 

series) and Table 54 (for movies) and for jitter=1 in Table 55 (for series) and Table 56 

(for movies). 

 

Table 53. HSV based scene boundary detector with jitter=0  and PSD filter in series.  

series , jitter=0 ‘nl1’ ‘nl2’ ‘ge1’ ‘ge2’ ‘gb’ Total 
# ScB GT 7 15 11 17 19 69 
Correct 1 10 11 3 15 40 
Missed 6 5 0 14 4 29 
False 6 2 1 3 13 25 
Re[%] 14.3 66.7 100 17.6 79.0 58.0 
Pr[%] 14.3 83.3 91.7 50.0 53.6 61.5 

 

Table 54. HSV based scene boundary detector with jitter=0 and PSD filter in movies. 

movies , jitter=0 ‘nl’ ‘ge1’ ‘ge2’ ‘us_ana’ ‘us_dig’ Total 
# ScB GT 34 25 30 54 26 169 
Correct 17 11 14 1116 14 67 
Missed 17 14 16 43 12 102 
False 41 32 3 11 17 104 
Re[%] 50.0 44.0 46.7 20.4 53.8 39.7 
Pr[%] 29.3 25.6 82.4 50.0 45.2 39.2 

 

Table 55. HSV based scene boundary detector with jitter=1 and PSD filter in series.  

series , jitter=1  ‘nl1’ ‘nl2’ ‘ge1’ ‘ge2’ ‘gb’ Total 
# ScB GT 7 15 11 17 19 69 
Correct 1 13 11 6 18 49 
Missed 6 2 0 11 1 20 
False 6 0 1 1 10 18 
Re[%] 14.3 86.7 100 35.3 94.7 71.0 
Pr[%] 14.3 100 91.7 85.7 64.3 73.1 

 

Table 56. HSV based scene boundary detector with jitter=1 and PSD filter in movies. 

movies , jitter=1  ‘nl’ ‘ge1’ ‘ge2’ ‘us_ana’ ‘us_dig’ Total 
# ScB GT 34 25 30 54 26 169 
Correct 28 13 16 1616 16 89 
Missed 616 12 14 38 10 80 
False 29 32 1 7 15 84 
Re[%] 82.4 52.0 53.3 29.6 61.5 52.7 
Pr[%] 49.1 28.9 94.1 69.6 51.6 51.5 

 

The jitter results in slightly dislocated detection results, which are acceptable for the 

application in mind, i.e. as service support tool for video portals. In the near future 

research will be required to apply post-processing algorithm to specify the exact scene 

boundary instances on top of the current detection solutions.  

                                                 
16 Narrative scene boundary became part of a semantic parallel shot (second PS ground truth), 

i.e. two narrative events with interleaved parallel shot sequences.  
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As derived form the results of Table 55 and Table 56, recall and precision were due to 

the rigid jitter of j=0 and j=1 quite low (series: R/P=71%/73%, movies: R/P=53%/52%, 

series & movies: R/P=59%/51%). Therefore, we apply a jitter of j=3. 

 

Hence, with the here described approach we are able to reach for film grammar 

conforms behaving series recall and precision values of almost 80% (Table 48 and in 

Figure 117). On movies, which often included film grammar deviating artistic elements at 

scene boundaries, the detection rate is lower reaching recall and precision values of 

66% (Table 48 and in Figure 117), which is approximately as well the level of detection 

for series and movies together. The results would be slighter higher if, as mentioned in 

the beginning of 4.6.2, scene boundaries at the boundaries of the content and scene 

boundaries with one-shot distance are either detected with a slightly adapted approach.  

The final results were achieved applying optimal performance, i.e. ground truth, of 

individual predecessor Service Units enabling an objective development of analysis 

algorithms. Real analysis results of the cut detector, i.e. 98.3% / 98.3%, had no impact 

on the scene boundary detector but minor on the Parallel Shot Detector. The detection 

results of the gradual transition detector, i.e. 40% / 60%, were due to the jitter=3 of the 

scene boundary detector neglectable, but would have impact at a jitter=0. Applying real 

detection results of the Parallel Shot Detector, i.e. 83% / 83%, decreased the 

robustness of the Scene Boundary Detector to 70% and 55% for series and movies, 

respectively. Finally, we integrate the combined scene boundary detector as Scene 

Boundary Detection service unit into the overall framework, as sketched in Figure 118, 

with an XML-based MPEG-7 compliant metadata output, according to the example 

shown in Figure 119.   

 

 

Figure 118. System integration of combined scene boundary detector. 
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Figure 119. XML-based MPEG-7 description of scene boundary instances. 

4.6.6 Conclusions of audiovisual segmentation of filtered content 

In section 4.1 we elaborated our shot segmentation method, eliminated with our method 

of section 4.4 non-content related entities and clustered with our method described in 

section 4.5 parts of the remaining shots into parallel shots.  

In this section we elaborated in 4.6.2 an HSV-based scene boundary detector, which 

aim to identify discontinuities in the video flow applying HSV-based colour features. In 

combination with our parallel shot detector we achieved a high recall of ~85% with a low 

precision of ~50%. To improve the low precision we elaborated several methods 

enhancing the results. In section 4.6.3 we elaborate methods based on silence 

detection and audio scene boundary detection, but the results remained behind our 

expectations. Hence, we decided to use another independent feature derived from the 

knowledge of film grammar from section 4.5, i.e. the discriminative length of establishing 

and conclusion shots. We described the method in section 4.6.4 and the results 

confirmed our theory. We, therefore, combined the method of section 4.6.2, i.e. HSV-

based scene boundary detector, with our shot-length based post-processing (section 

4.6.4) and parallel shot filtering approach (section 4.5.2). With our approach we 

achieved a recall and precision of almost 80% for series and ~66% for movies (as 

summarized in Table 48 and in Figure 117).   
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4.7 Conclusions of audiovisual segmentation 
 

In this chapter we presented our individual service unit elements required to segment 

content into its objective, but also subjective semantic audiovisual elements. In 4.1 we 

presented several of our low-level and mid-level video analysis service units to e.g. 

segment content into its individual shots. We developed, here fore, various new shot 

boundary detectors, i.e. a compressed domain macroblock correlation cut detector, a 

field difference cut detector, a color segmentation based cut detector and benchmarked 

them against a representative AV corpus. Our filed difference cut detector FD CD 

proved to be the most reliable one with recall and precision reaching 96%, as presented 

in 0. Hence, we used the FD CD as basis and elaborated several enhancement service 

units using feature-point-based similarity analysis. In combination with the 

enhancements the FD CD reached recall and precision values of 98.3%, as presented 

in 0. Subsequently, we integrated the FD CD with its enhancement service units and our 

gradual transition detector into our framework as service units.  

Here after, we aimed to clean the content item from non-content item related inserts, i.e. 

commercial blocks. Here fore we developed task oriented low-level and mid-level audio 

features (section 4.2), which we applied in section 4.4 to build a commercial block 

detector for detecting and subsequently deleting non-content related inserts.  

In 4.5 we then presented content production related know-how, i.e. film grammar, which 

describe the rules of content production.  

We applied the knowledge of film grammar to elaborate our parallel shot detector in 

section 4.5.2, which based our analysis can be used to cluster up to 70% of all shots 

into parallel shot entities, i.e. interleaved narrative sequences. In section 4.5.2 we 

described several of our methods for parallel shot detection, i.e. HSV-based key frame 

pair analysis, HY-based key frame based analysis, ScaFT-based key frame based 

analysis and SIFT-based key frame based analysis. Our benchmark, summarized in 

section 4.5.2, unveiled that our HSV- and HY-based methods outperformed the other 

two. We decided, therefore, to select the processing-wise more efficient HSV-based 

method. Our HSV-based parallel shot detector achieved a recall~75% and 

precision~90%, as summarized in the end of that section.  

In the subsequent step, we developed a method to detect content flow dissimilarities, 

which are representative for scene boundaries. In section 4.6.2 we presented our HSV-

based scene boundary detector, which detected color dissimilarity instances in the 

content flow. With our HSV-based scene boundary detector in combination with our 

parallel shot detector we reached a high recall=85%, but only a low precision~50%. We, 
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therefore, aimed to identify independent features to enhance the precision. In section 

4.6.3 we elaborated several audio related segmentation methods using audio features, 

such as audio silence, audio scene segmentation. The audio-based methods did not 

reach the detection levels expected. Hence, we elaborated anther independent feature 

derived from film grammar rules, i.e. shot length. In section 4.6.4 we described our shot-

length-based scene boundary detector, which proved to be a distinctive feature for 

scene boundary detection. We, therefore, combined the method of section 4.6.2, i.e. 

HSV-based scene boundary detector, with our shot-length based post-processing 

(section 4.6.4) and parallel shot filtering approach (section 4.5.2). Finally, we achieved 

with our service unit scene boundary detection SU ScBD a recall and precision of 

almost 80% for series and ~66% for movies (as summarized in Table 48 and in Figure 

117). 

We have to state that all features we used for the detection of boundaries of semantic 

scenes can be quantified as ‘low-level’ and ‘mid-level’ from a semantic point of view. By 

intention, we did not included ‘high-level’ features such as objects and speakers, e.g. as 

we present in [137], in this work to keep our solution generic and most processing 

efficient, as required for our target platform. Nevertheless, to achieve better recall and 

precision, these high-level features are surely useful and have to be taken into 

consideration, when enhancing the current system.    
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CHAPTER 5 

 

5 Conclusions and perspectives 

 
 
 
Conclusions (in English) 
 

The ambitious aim of this work was providing a technical sound, intuitive and lean-

backward-oriented browse- and navigation solution for consumer electronics devices 

meeting consumer’s current need managing his / her audiovisual content archive. 

Consumer’s positive acceptance of chapter makers provided with commercial content 

on purchased carriers, such as with DVDs, increased consumer’s desire having such a 

chaptering solution as well for recorded broadcast content. Furthermore, our market 

analysis unveiled a strong consumer desire skipping undesired advertisements, while 

watching e.g. recorded items on their Personal Video Recorders PVRs. We applied 

these market insights when selecting our target application, i.e. semantic segmentation 

of audiovisual content items resulting in semantic audiovisual scenes. Furthermore, we 

aimed providing the market with a commercial skipping application, which we expected 

being a low-effort ‘by-product’ of our work. 

      

In order to provide the market with a suited technology- and consumer solution at the 

appropriate time, we thoroughly researched today’s technology- and consumer trends 

as summarized in chapter two. The selected technology trends investigated covered 

those of processing, storage and connectivity. The researched consumer trends were 
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related or at least triggered by the technology trends and their solutions introduced into 

the market. The consumer trend analysis unveiled the expressed consumer desire for 

ubiquitous, ambient, intuitive, content- and context-aware solutions and applications. 

Consumer’s request for intuitiveness and content-awareness endorsed our application 

choice, i.e. for semantic scene segmentation. Achieving the latter we had to research 

the underlying content-awareness creation in more detail, which meant creating 

metadata, i.e. data describing the content, by means of content analysis algorithms. 

Realizing the semantic nature of our semantic scene segmentation task we identified 

soon the need but also at the same time the opportunity to exploit more than just one 

single modality of our audiovisual content. Hence, we were facing the issue of 

syndicating many single modality content analysis solutions into one prototyping system 

allowing us to exploit not only low- / mid-level features but also features at a semantic 

level. The technology trends unveiled that former individual consumer electronics were 

syndicated today by means of today’s In-Home networks sharing their processing and 

memory transparently. The latter allowed distribution of e.g. content-awareness creation 

processes across the network. These insights were the basis for our decision applying a 

Service Oriented Architecture SOA based technology for our work resulting in a SOA 

based prototyping framework. We embedded each individual content-awareness 

creating single modality solutions into one component, a so-called Service Unit. Each of 

the latter communicated with the system through standardized interfaces and in this way 

the components became transparent to the system, but at the same time the system 

became transparent to the content analysis component. This approach allowed the 

efficient usage of the resources of the network. During our research we identified as well 

several robustness and maintenance issues when applying SOA based technology for 

our prototyping system. In the second part of chapter two we describe our research of 

several components, such as our Connection Manager and Health Keeper, solving 

these identified issues. Finally, in the end of chapter two we introduced a set of selected 

individual content analysis Service Units, which, when syndicated together, formed our 

envisioned semantic content segmentation application solution. 

Finally, our SOA based and distributed framework enabled an efficient and seamless 

collaboration of multiple teams, each of them having expertise in one specific content 

analysis modalities, i.e. speech, music, image or video. But even more important for us, 

this framework allowed an efficient research of multi-modality based content analysis 

solutions and application. Furthermore, our prototyping system capabilities allowed us to 

simulate the target platform and hence to verify the performance before integration onto 

e.g. an embedded platform. 
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In a sub-sequent step we studied thoroughly a selected group of segmentation- and 

classification state-of-the-art technologies and the here for required feature parameter 

solutions. We did this not only to streamline our work with available works, but also to 

be able exploiting, if appropriate, those technologies or their underlying concepts 

efficiently. For each of these selected technology groups we collected and evaluated the 

relevant state-of-the-art solutions based on their suitability for our specific application, 

but also on the technology’s maturity and reliability, i.e. robustness. The description of 

the technologies and our evaluations were summarized in chapter three of this work. 

Furthermore, special attention in this state-of-the-art-analysis was given to video 

segmentation-based technologies such shot- and scene segmentation. The results of 

this study served as basis for the decision, which technology blocks reached maturity 

and which had to be researched even further by us in order to meet our requirements. 

Unfortunately, neither the shot- nor the state-of-the-art scene segmentation 

technologies met our criteria. Hence, we decided to research them in more depth. 

 

In the state-of-the-art analysis we identified, furthermore, an issue with semantic scene 

segmentation, i.e. that non-content related inserts such as inserted commercials 

deteriorated the robustness of any automatic chaptering solution. We retrieved several 

interesting single- and multi-modality based commercial block detection solutions during 

our analysis. Unfortunately, neither these solutions were suited for our target platform 

nor they met our additional requirements for a dedicated commercial skip application. 

Hence, we researched several video low-level and mid-level parameters suited for the 

implementation on a dedicated video compressor. These features included features 

such as a Monochrome Frame Detector, Interlaced-progressive Detector, Letterbox 

Detector and Shot Boundary Detector. The first three features were compressed domain 

low-level features, which we developed using special parameters provided by our 

dedicated video compressor. In addition, the mid-level feature Shot Boundary Detector 

was of great importance for our work, because shots were seen as a kind of atomic unit 

of video, next to individual frames. The robustness of this feature was of utmost 

importance, because many segmentation and clustering solutions were based on shots. 

The analysis of the state-of-the-art shot boundary detection solutions - including those 

which participated in TRECVid - raised two shortcomings.  

The first one was that none of the benchmark corpora applied resembled the content 

group, which was relevant for our target application and target user group, i.e. 

consisting of a variety of genres and derived from a variety of cultures. Hence, we 

researched the consumer behaviours of our target audience and established a 

representative benchmark corpus accordingly including the required ground truth data. 
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Subsequently, we applied this corpus for testing and benchmarking our researched 

analysis solutions, such as the Shot Boundary Detector. 

The second shortcoming, we witnessed, was the reasonable but still improvable 

robustness of the Shot Boundary Detectors retrieved. Due to the importance of this 

feature we decided to research three new Shot Boundary Detectors, i.e. Macroblock 

Correlation Cut Detector, Field Difference Cut Detector and Colour Segmentation Cut 

Detector. We benchmarked them, using our benchmark corpus, against each other and 

against one detector derived from academia. The latter we used as objective reference 

as it participated in the TRECVid benchmark. Here after we selected the winner of the 

benchmark, i.e. Field Difference Cut Detector, and researched additional post-

processing steps, e.g. using Feature Points and backwards analysis, boosting the 

robustness even further. The high detection results, i.e. recall and precision of 98.3%, 

were comparable to the winning TRECVid solutions. The high robustness in 

combination with our methods simplicity was the reason, why we integrated this detector 

as Service Unit into our framework. 

But our analysis of semantic scenes showed that scene boundaries occurred as well at 

smooth video transitions, i.e. gradual ones. Hence, we decided to integrate a Gradual 

Transition Detector, which we identified during the state-of-the-art analysis as suited, 

and improved its robustness by means of some post-processing steps, as described in 

chapter four.   

 

In order to exploit the multi-modal nature of our content efficiently, we researched, here 

after, audio related low-level and mid-level features, which we aimed to combine - 

similar to methods studied in the state-of-the-art - with video features. In particular, we 

researched a dedicated commercial silence detector for the compressed domain as 

described in section three of chapter four, which satisfied our requirements. We did so 

because in the state-of-the-art we retrieved dominantly general purpose silence 

detectors not suited for our purpose.  

 

In the next part of our work we aimed to research a specialized genre detector, i.e. a 

commercial block detector, which had to identify non-content related inserts. But we 

also aimed to apply this solution for a commercial skip application. For this purpose we 

experimented with various video- and audio feature combinations and identified that the 

combination of our Monochrome Frame Detector with our Commercial Silence Detector 

performed best and outperformed robustness-wise the state-of-the-art commercial block 

detectors. The detection results, i.e. recall of 91.4 and precision of 99.93%, met the 

requirements of our commercial skip application. Hence, we integrated this detector as 
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Service Unit into our framework, which here after eliminated automatically all non-

content related inserts, i.e. commercials inserted by the broadcasters. We described 

and summarized our work on the commercial block detector in the fourth section of 

chapter four. 

 

Being very much aware of the subjective nature of our semantic scene segmentation 

task and triggered by some clustering technologies, which we retrieved during our state-

of-the-art analysis, we decided studying the art of film production. With the knowledge of 

the latter we aimed extracting objective film grammar rules, which we witnessed, were 

commonly applied in the content production business. One of the many film grammar 

rules was related to interleaved narrative sequences, further referenced as Parallel 

Shots, often applied in narrative contents such as feature films and series. These 

Parallel Shots form semantic sub-entities, i.e. clusters. Parallel Shots were divided into 

two classes Cross-Cuttings and Shot-Reverse-Shots, where the latter were dialogues. 

By definition these Parallel Shot sequences did not contain any scene boundaries and, 

there for, we selected them to pre-cluster shots into such Parallel Shots prior Scene 

Boundary Detection. Our research showed that up to 70% of narrative content was 

clustered into such Parallel Shots, which we described in the fifth section of chapter 

four. 

For the clustering of shots into Parallel Shots we decided to research four similarity 

based methods using the knowledge derived from the state-of-the-art analysis. For our 

analysis we developed two simple colour based methods, i.e. one based on HSV and 

one based on HY, and two Feature Points based methods, i.e. Scaft and SIFT. Our 

benchmark showed the potential of the Feature Point methods, but nevertheless in their 

current form they fall short compared to the simple colour based methods. The two 

colour based methods showed comparable detection results, hence, because of its 

processing-wise more efficient nature we selected the HSV based method, with which 

we reached recall and precision of about 83% for narrative content. 

 

Finally, in the last section of chapter four, we aimed to identify scene boundary 

instances in the remaining parts of our content, i.e. after non-content related inserts 

were removed and up to 70% of the shots were clustered into Parallel Shots. For this 

purpose we researched technologies to identify discontinuities in the content flow. 

Applying a simple HSV based dissimilarity method we achieved detection results of 85% 

recall and of 50% precision.  
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Because of the low robustness of this solution we decided investigating independent 

features to increase the detection results. The selection of these additional features was 

partially based on the knowledge derived from our film grammar study.  

The study of audio based scene boundary detection methods, unfortunately, did not 

resulted in sufficiently high detection results, mainly due to the limitation of the inherited 

audio classification component we applied for this purpose.  

Fortunately, the specific nature of scenes and scene boundaries, as specified by film 

grammar, led to an independent shot-length based scene boundary detector, mainly 

exploiting the presents of extremely long establishing- and conclusion shots at scene 

boundaries. The combination of our shot-length based and HSV based Scene Boundary 

Detector enabled us boosting the detection rate of the semantic scene boundary 

detector to almost 80% for series and 66% for movies. Our market analysis showed that 

this achieved accuracy was sufficient high for our lean-backward oriented Advanced 

Content Navigation application. For the latter our solution identified automatically the 

boundaries of non-content related inserts, i.e. commercial blocks, and scene boundaries 

throughout the recorded content, in some cases with a certain offset. With our method 

described in Annex 10 the user was enabled to relocate slightly misaligned boundaries 

efficiently and subsequently burn the resulting clean chaptered content onto e.g. a DVD. 

Hence, finally we integrated our solution as Service Unit Scene Boundary Detection into 

our framework.  

 

Furthermore, we identified several other application domains, which we were able to 

serve with our scene segmentation solution such as professional semi-automatic 

content indexing. In the case of the latter our solution might serve as pre-processing 

step for humans, who wish to manually annotate content for professional content 

management and service businesses. But the solution might also serve individual 

consumer device applications, where human involvement is accepted, e.g. correcting 

manually slightly incorrect detection results. We described this application, i.e. Content 

Item Boundary Detection CIBD and the manual post-annotation, in more detail in Annex 

10 and our publications [12], [13] and [14]. The CIBD application clusters coherent 

chapters, i.e. scenes, together and identifies strong discontinuities, which are indicative 

for e.g. the start and end of a movie. Hence, applied in consumer devices, this enables 

consumers to obtain a clean recording of e.g. recorded broadcast content. Here after, 

we might apply our intuitive shot- and scene boundary based User Interface UI for 

manual post-annotation, with which consumers can easily eliminate shortcomings of the 

solutions’ robustness, i.e. inaccuracies, as described in Annex 10. 
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Hence, in this work we proposed a low-level and mid-level approach for high-level 

semantic segmentation of AV content into semantically coherent chapters. The results 

achieved were satisfactory for a range of applications targeted for the consumer- and, 

partially, for the professional domain. Nevertheless, the problem was not solved entirely, 

i.e. the solution might be further enhanced. In addition, we believed that for a fully 

automatic content analysis solution more apriori knowledge, i.e. film grammar, and 

related to this, more mid-level and high-level features, have to be applied. The latter 

was also stated by Leonardi in [102], where he aimed syndicating top-down and bottom-

up results. We believe that additional independent mid-level and high-level features, 

such as object recognition, speaker identification, but also features like focus and depth, 

contain valuable insights, which in combination with film grammar knowledge allows 

extracting deeper semantics about the content and its production concept. For example, 

speaker identification would help increasing the robustness of dialogue related analysis, 

i.e. Shot-Reverse-Shots. The modular and generic nature of our framework allows 

seamless, transparent and straightforward integration of new mid-level and high-level 

Service Units and, hence, the opportunity to efficiently develop an enhanced solution. 

Furthermore, the to some extend subjective nature of semantic scene boundaries 

justifies at the same time applying machine-learning solutions. But we believe that the 

latter should be based on film grammar compliant mid-level and high-level features 

rather than on low-level data. 
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Conclusion (en Français) 
 

L‘objectif de ce travail de thèse de doctorat est d’explorer une solution intuitive et 

utilisant des techniques adaptées et orientées à la catégorie lean-backward permettant 

au grand public la navigation intégrée dans les équipements domestiques de stockage 

des données. De plus, cette solution doit satisfaire l’attente du consommateur  en 

termes de facilité d’utilisation, notamment en ce qui concerne le classement des 

archives audiovisuelles. La segmentation d’un contenu en chapitres est très appréciée 

par le  consommateur, étant donné que cette dernière est déjà à sa disposition dans 

certains matériels commerciaux comme par exemple dans les DVD. Ainsi, ceci explique  

le désir du consommateur de pouvoir  réaliser le même travail  de classifications sur ses 

vidéos personnelles. Ensuite, notre analyse du marché montre une demande très 

accentuée d’une autre application : l’élimination des passages publicitaires. Après quoi, 

nous avons formulé nos objectifs, à savoir la segmentation sémantique des  données 

audiovisuelles. Avec cette approche, le contenu doit être classifié en scènes 

sémantiques. Enfin, notre travail doit offrir une solution d’élimination des passages 

publicitaires, une application qui – à coup sur – serrât un produit supplémentaire de 

notre recherche. 

 

Apporter des technologies et des solutions souhaitables et actuelles au consommateur 

s nécessite l’analyse des tendances existantes, les résultats de cette enquête nous les 

présentons dans le deuxième chapitre. Nous avons étudié les évolutions techniques en 

termes de capacité de calcul, de capacité d’enregistrement et de largeur des bandes de 

transmission. L’analyse montre surtout que le consommateur s’attend à des solutions 

qui sont globales, intuitives et considérant le contenu et le contexte. Cette information 

nous a amené à nous orienter vers une application de segmentation. Ce choix est suivi 

par la nécessité d’analyser en détail les diverses technologies décrivant le contenu. 

Nous avons examiné de plus prés ces technologies qui génèrent des meta-données, 

permettant ainsi l’analyse des contenus par l’intermédiaire d’algorithmes spéciaux. 

Due à la nature spéciale de la segmentation sémantique de notre domaine de 

recherche nous avons rapidement eu la possibilité, mais aussi le besoin, de considérer 

plusieurs modalités pour l’analyse (audio et vidéo). Cette pluralité avait pour but de 

trouver la solution adéquate et correcte pour l’intégration de plusieurs modalités en un 
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prototype commun afin d’obtenir des résultats surpassant les analyses mono-modales 

avec de nouveaux paramètres sémantiques. 

L’analyse du marché nous a d’ailleurs indiqué que les équipements domestiques, 

travaillant auparavant en unités individuelles (mono-modale), sont  reliés de plus en 

plus dans les ménages en réseau intégrés, partageant ainsi leurs capacités de calcul et 

capacités d’enregistrement. Cette réalité nous permet de localiser les solutions 

d’analyse du contenu au diverses endroits du réseau domestique. Cela nous a guidé 

pour choisir la méthode du Service Oriented Architecture (SOA), nous offrant ainsi un 

système orientée SOA, qui sera dorénavant notre base de recherche pour les activités 

futures. Nous avons donc intégré chaque unité individuelle dédiée à une tâche 

spécifique dans l’analyse du contenu, que nous avons appelée Service Unit. Chaque 

Service Unit est reliée avec le reste du système à l’aide d’une interface de 

communication. Les informations fournies par le système sont donc transparentes et 

nous donnent la possibilité de disposer efficacement des capacités du système global. 

Au cours des recherches suivantes nous avons résolus quelques problèmes en vue 

d’améliorer la robustesse et les services dans notre système SOA. Dans la seconde 

partie du chapitre 2, nous décrivons quelques composantes résolvant les problèmes 

cités ci-dessus, puis nous décrivons le Connection Manager et le Health Keeper. A la fin 

du chapitre 2, nous présentons notre solution de segmentation sémantique composée 

de différentes Sevice Units. 

 

Notre approche consistant à s’orienter d’abord vers les SOA individuelles, mais 

cohérentes, nous permet de former des familles différentes ayant une approche 

spéciale de l’analyse d’une modalité, comme par exemple la langue, la musique, 

l’image ou bien encore la vidéo, qui pourraient néanmoins être liées facilement et 

efficacement en un seul ensemble. De plus, très importante pour notre travail, cette 

approche de rapports interactifs nous permet d’examiner facilement des solutions 

analysant le contenant à caractère multi-modal. Notre approche nous offre, en plus, la 

possibilité de créer des prototypes simples et puissants.  Ces dernières nous 

permettent, ainsi, de tester les résultats et les caractéristiques avant de les appliquer au 

système définitif. 

 

Dans l’étape suivante, nous avons  analysé un groupe de technologies sélectionnées 

de classification et de segmentation, en examinant de plus les paramètres exigés. Ce 

travail est nécessaire non seulement pour éviter les redondances, mais aussi pour  

pouvoir éventuellement les appliquer dans nos solutions à part entière ou au moins en 

partie dans la conception singulière. Nous avons collecté pour chaque groupe de 
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technologies toutes les informations existantes et faisons une évaluation en vue de 

l’application éventuelle dans notre système, critère décisif étant donné leur robustesse 

et la maturité de la technologie. Les détails de cette recherche ainsi que les évaluations 

sont donnés dans le chapitre 3. Une approche très approfondie de cette analyse des 

technologies s’intéresse aussi à la segmentation des vidéos, en Shots et en scènes. Ce 

groupe d’analyse est décisif pour le choix des technologies à appliquer dans le travail à 

suivre et nous donne les indications suivantes: quelles technologies devraient être 

examinées plus en détail pour trouver des améliorations nécessaires ayant comme but 

de les appliquer dans notre solution définitive. Aucune des technologies étudiées, ni les 

Shots, ni même d’autres technologies de segmentation appliquées au marché n’avaient 

des performances satisfaisantes : des améliorations étaient donc nécessaires. 

 

En analysant les technologies présentes nous avons  très vite rencontré un problème 

assez important affectant la segmentation sémantique et ayant un effet négatif au 

classement d’un contenu en chapitres: les informations additionnelles, surtout les 

publicités. Nous avons trouvé quelques détecteurs de publicités mono-modaux et multi-

modaux, mais aucun d’entre eux n’avaient des qualités acceptables pour la solution 

envisagée et ne pouvait garantir une élimination automatique de ces segments 

publicitaires dans notre application. Par conséquent,  nous avons examiné quelques 

descripteurs vidéo de bas et moyen au niveau qui pourraient être de bons candidats 

pour  un détecteur global de vidéo compressée. Parmi ces descripteurs, nous nous 

sommes intéressé aux paramètres Monochrome Frame detector, au Interlaced–

progressive detector, au Letterbox detector et au Shot Boundary detector. Les trois 

premiers éléments cités ci-dessus sont des paramètres de  bas niveau du flux vidéo 

compressé. Nous avons modifié ces derniers à l’aide de paramètres spéciaux issus de 

la compression. Pour la suite de notre travail le descripteur de moyen niveau,  Shot 

Boundary detector,  s’avère de plus en plus important, puisque un Shot, de la même 

manière qu’une image individuelle, peut être classifié comme un élément de base 

(atome) d’un contenu audiovisuel. La robustesse  de ce paramètre est décisive pour 

notre choix, puisque plusieurs solutions de segmentation et de clustering sont basés sur 

les Shots. 

 

Après avoir analysé les différentes solutions d’aujourd’hui incluant les méthodes 

présentées au TrecVid, nous avons caractérisé deux aspects de défaillance. D’abord 

aucune de ces techniques n’appliquent les aspects pertinents et indispensables dans 

notre application et ils ne comprennent pas de contenus provenant de diverses genres, 

diverses cultures et pays.  Afin de compenser et d’éliminer cette défaillance nous avons 
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analysé les habitudes du consommateur de notre groupe sélectionné, ensuite nous 

formulons divers tests nécessaires, ajoutons et compilons les données et les critères 

pertinents. Ces tests ont servis pour l’évaluation de nos solutions, par exemple pour 

tester notre propre Shot Boundary detector. La deuxième défaillance que nous avons 

décelée provient du fait que les nouvelles techniques de Shot Boundary detector ont 

une robustesse acceptable, mais du point de vue de nos objectifs de qualité ces 

derniers nécessitaient une amélioration. Tenant compte de l’importance de ce détecteur 

nous avons formulé et examiné trois détecteurs : le Macroblock Correlation Cut 

detector, le Field Difference Cut detector et le Colour Segmentation Cut detector. Nous 

avons testé et analysé ces trois détecteurs avec nos méthodes de test, mais aussi en 

appliquant les tests déjà utilisés ailleurs. Ce détecteur qui a participé à la campagne 

d’évaluation de TrecVid assure l’objectivité de notre propre évaluation. 

 

Le meilleur détecteur selon l’évaluation est le Field Difference Cut detector. C’est celui-

ci que nous avons pris comme base pour nos recherches futures. Nous avons apporté 

quelques améliorations : l’analyse basée sur les Feature Points et les analyses retro, 

avec comme but déclaré d’atteindre une qualité de robustesse supérieure. Le niveau de 

détection, rappel et précision, est de 98,3% étant comparables aux résultats de la 

solution présentée au TrecVid. Notre méthode se révèle beaucoup moins compliquée 

en comparaison de cette dernière nous facilitant, ainsi, la justification de prendre notre 

solution propre comme Service Unit dans notre système. Notre analyse des scènes 

sémantiques par notre détecteur a montré que la classification tenait compte des 

transitions nuancées, donc la classification générait un nombre trop important de 

fausses alarmes. Pour compenser cette sensibilité, nous avons ajouté un paramètre 

correctif, le Gradual Transition detector,  ce dernier étant un bon candidat. Nous avons 

adapté ce détecteur à nos besoins en y ajoutant quelques modifications pour améliorer 

sa robustesse – voir chapitre 4. 

 

Pour pouvoir appliquer la multi-modalité dans nos recherches nous avons pris en 

compte des paramètres de bas et moyen niveau en les combinant  – comme c’est le 

cas dans les technologies du marché – avec des paramètres vidéo. Prenant un 

détecteur de silence de réclame spécialement étudié pour agir au niveau compressé, 

nous avons analysé et modifié ce détecteur, qui était plus ou moins  suffisant pour nos 

objectifs. Une description de cette recherche est donnée dans le chapitre 4. Les 

modifications sont nécessaires puisque les détecteurs disponibles sur le marché 

comprennent seulement des paramètres généraux. 
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Dans la section suivante, nous avons examiné de plus près un détecteur de publicité 

spécialisé, lequel permettant de caractériser des inclusions (publicités) ajoutées au flux 

original. Nous avons testé la méthode apportée par cette solution, essayant d’appliquer 

ce détecteur comme méthode pour éliminer ces passages de réclames. Nous avons 

examiné plusieurs variantes en  combinant des paramètres audio et vidéo, et enfin nous 

avons découvert, que la combinaison de notre détecteur du Monochrome frame et notre 

détecteur de silence de réclame donnait des résultats très satisfaisants et, en plus, 

surpassait considérablement la robustesse des détecteurs connues du marché. En ce 

qui concerne les performances de détection, nous avons une valeur de rappel de 91,4% 

et de précision allant jusqu'à 99,93% justifiant de prendre ce détecteur comme notre 

solution pour l’application d’élimination des passages publicitaires. Nous avons donc 

considéré ce détecteur comme Service Unit dans notre système global. Cette unité 

élimine dorénavant tous les passages ajoutés par les stations d’émission, surtout les 

réclames. Les étapes de la recherche à ce sujet sont décrites dans la quatrième section 

du chapitre 4. 

 

Notre solution d’analyse et de segmentation des scènes sémantiques, ainsi que 

l’utilisation de quelques technologies faisant appel à  la technique de contexte - 

découvertes au cours de notre analyse du marché - nous a incités à étudier de plus 

près la procédure commune de production d’un film. Nous avons tenté d’identifier les 

règles de grammaire objectives appliquées et avons appris que, ces règles sont 

effectivement existantes et en vigueur. Une de ces règles est la présence de séquences 

narratives interalliés l’une avec l’autre, appelées dans la suite Parallel Shots. Ces 

Shots, très représentés dans les séries ou films, font naître des sous-groupes 

sémantiques: les clusters. 

 

Les Parallel Shots peuvent être sous-divisés en deux classes : Cross-Cuttings et Shot-

Reverse-Shots, cette dernière étant des dialogues. Les Parallel Shots n’ont, par 

définition, aucun changement de scène. Nous avons sélectionné et classifié quelques 

uns de ces Parallel Shots pour être en position d’avoir une base nécessaire pour la 

recherche des changements de scènes. On peut constater que, presque 70% du 

contenu narratif peut être classifié dans la catégorie des Parallel Shots - comme décrit 

en détail dans la section 5 du chapitre 4. 

 

Pour l’assemblage des ‘Shots’ en Parallel Shots nous avons choisi – parmi les 

méthodes présentées dans notre analyse du marché – quatre méthodes d’analogie. 

D’une part, nous avons examiné deux méthodes d’analyse simple couleur: le détecteur 
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HSV et le détecteur HY. D’autre part, deux méthodes de type Feature Points - le 

détecteur ScaFT et le détecteur SIFT. Nos test montrent le potentiel des méthodes 

basées sur le Feature Point, mais en réalité l’application directe de ces méthodes 

basées sur les couleurs simples donnent des résultats meilleurs. Entre les deux 

méthodes simples basées sur la couleur il n’existe pas de différence significative, c’est 

pourquoi nous avons choisi la méthode plus efficace en termes de calcul – le détecteur 

HSV. Avec ce détecteur, nous avons obtenu des résultats de 83% pour le rappel et la 

précision. 

 

Arrivant à la dernière section de notre quatrième chapitre,  nous avons atteint un des 

buts de notre travail, à savoir examiner la méthode de détection des changements de 

scène dans le contenu après l’élimination des réclames et passages supplémentaires. 

Cette partie restante, couvrant à peu prés 70% du contenu initial, nous l’avons classifié 

en Parallel Shots. Pour caractériser un changement en scène nous avons examiné 

diverses technologies permettant de détecter des discontinuités. 

 

Avec une méthode basée sur la HSV simple, nous avons obtenu des résultats de 85% 

pour le rappel et 50% pour la précision. Cela n’étant pas suffisant pour notre recherche 

successive, nous avons entrepris de rechercher d’autres méthodes qui pourraient 

apporter une amélioration en termes de robustesse. Les informations acquises lors de 

l’étude des règles de grammaire d’un film nous ont aidés efficacement pour chercher 

ces méthodes nouvelles. L’application des détecteurs bas-niveau est basée sur la 

reconnaissance de changement de scène analysant le flux audio n’ont 

malheureusement pas donnée des résultats acceptables. Une explication pour 

l’inaptitude de ces détecteurs pourrait être que ces détecteurs étaient construits pour 

des buts autres que ceux définis dans notre travail. Les attributs spéciaux et différents  

pour une scène et pour un changement de scène nous ont offert la possibilité de 

construire un détecteur indépendant de changement de scène Shot long. Un 

changement de scène est très souvent accompagné par des scènes assez longues qui 

décrivent le commencement et la fin du changement de la scène. La combinaison de 

notre détecteur Shot longue et de notre détecteur de changement de scène HSV nous a 

apporté un résultat de presque 80% pour les séries et 66% pour les films. 

 

Notre analyse du marché montre, que les résultats obtenus sont suffisants pour notre  

lean-backward méthode d’application Advanced Content Navigation, donc apte pour 

être implémentée comme solution dans les équipements domestiques. En conséquence 
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de quoi, nous avons intégré la solution basée sur le détecteur de changement de 

scènes dans notre Service Unit. 

Ensuite, nous avons trouvé d’autres applications pour notre détecteur de 

reconnaissance des changements de scènes, par exemple le marché indexant les 

vidéos professionnelles. Notre méthode peut servir comme analyse primaire donnant 

aux  enregistreurs des données d’archive ou archives professionnelles de vidéo. 

L’application est aussi possible dans le domaine des consommateurs privés, donnant la 

possibilité de l’interactivité, où les frontières des scènes est légèrement flottante, 

permettant une correction manuelle et selon les vœux du consommateur. Une 

application de cette dernière, appelée Content Item Boundary Détection CIBD est 

décrite dans l’Annexe 10, mais aussi dans [12], [13] et [14]. 

 

Dans notre travail, nous avons décrits divers paramètres audio et vidéo de bas et 

moyen niveau, leur combinaison avec des paramètres sémantiques, menant à la fin à 

une segmentation cohérente en chapitres. Les résultats obtenus sont suffisants pour 

diverses applications dans le marché du grand public mais aussi pour le marché 

professionnel. Néanmoins, les problèmes de reconnaissance du changement des  

scènes ne sont pas totalement résolus, des recherches futures sont possibles afin 

d’améliorer encore les résultats. Nous pensons qu’une exploration encore plus profonde 

des règles de la production d’un film ainsi que la construction et l’inclusion des 

paramètres de moyen niveau et ceux de niveau sémantique apporterait des résultats 

encore plus satisfaisants. Parmi les détecteurs spéciaux nous pourrions explorer 

l’application des paramètres comme par exemple l’identification des objets, identification 

du narrateur, focus de l’appareil photo, analyse de la profondeur, … Tous ces 

détecteurs supplémentaires combinés avec la connaissance des règles du film 

pourraient apporter beaucoup plus des informations du contenu et du concept de la 

production. Par exemple – avec la reconnaissance du narrateur - on pourrait augmenter 

drastiquement le niveau de reconnaissance du Shot-Reverse-Shot. 

 

Les modules et solutions génériques dans notre concept offrent sans effort et avec une  

grande efficacité une intégration consécutive par les Service Units, permettant de 

trouver et d’introduire de nouvelles solutions. Notre concept de reconnaissance des 

changements de scènes peut être appliqué au maniement mécanique. Aussi, en ce cas, 

notre conseil serait de s’orienter vers les règles de grammaire liée à la production d’un 

film. 
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1. ANNEX: MPEG-2 and Compression Parameters 
Moving Picture Experts Group (MPEG) is the name of an international committee 

responsible for digital audio and video compression (coding) standards, e.g. used for 

transmission and digital archiving. MPEG is a working group within the International 

Standards Organization (ISO) and the International Electrotechnical Commission (ISO) 

Initially, the MPEG-1 [143] standard, also known as ISO/IEC 11172, has been 

elaborated in the ’80s and finalized in 1993. It addresses video compression with data 

rates of up to 1.856 Mbps and three audio compressions standards MPEG-1 Layer-1, -2 

and -3. MPEG-1 has been developed to store information on a Compact Disc – Read 

Only Memory (CD-ROM). The advent of the Digital Versatile Disc (DVD), an optical disc 

with ~4 GBs storage capacity, requested for a high-quality video coding standard with 

data rates between 4-15 Mbps, called MPEG-2 [144], also known as ISO/IEC 13818, 

established in 1994. The usage of the latter spans from Digital Video Broadcast (DVB) 

for television broadcast, to digital video storage for media archives, to Video On 

Demand (VOD) services. In contrary to MPEG-1, MPEG-2 supports fully interlaced 

video. In addition, MPEG-1 can cope only with resolutions up to Standard Interchange 

Format (SIF, 352 x 240/288 pixels), but MPEG-2 handles up to International Radio 

Consultative Committee (CCIR)-601 resolution (720 x 480/576 pixels). 

Today’s video compression standards, such as MPEG-2, rely on the human eye's 

inability to resolve high frequency color changes and the fact that there is a lot of 

redundancy spatial-wise within each frame17 and time-wise between successive frames. 

According to this, MPEG-2 defines methods to compress video using the 

aforementioned characteristics. Figure 120 shows schematically the underlying 

compression idea, which will be further described in detail. 

Details of MPEG-2 
MPEG-2 YUV color space 
A color model is an abstract mathematical model describing the way colors can be 

represented. Colors are displayed by means of Red Green Blue (RGB), further called 

the RGB color space. Consequentially, each image pixel consists of 3 color pixels: a 

red, a green and a blue one (Figure 121, left). In the optimal situation each color pixel is 

represented by an 8-bit value (resulting in a value range of 0-255) enabling to display up 

to 1.67 million different colors. The color representation used by e.g. MPEG-2 is YUV, 

also referenced as YCbCr. 

                                                 
17 one picture out of a motion sequence 
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Figure 120: Video compression by using spatial and temporal redundancy1. 

 
It is composed of an Y-value, which represents the luminance18, and an U- and V-value, 

which represent the chrominance19 (Figure 121, right). The different systems can be 

easily transformed, e.g. from RGB to YUV, using linear equations (5-1), (5-2) and (5-3). 

The advantage of YUV is, that it exploits human eye’s characteristics, i.e. it perceives 

brightness changes (Y) more accurate than color changes (U and V). Thus, it is possible 

to decrease the accuracy of the U- and V-value without loosing much visible 

information, also called lossy compression. 

   

Figure 121: RGB – color space (left), YUV – color space (right) 1. 

 

                                                 
18 Also called brightness, which can be derived as output signal from black-and-white cameras. 
19 Also called color difference component. 
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 Y =  0,299 * R + 0,587 * G + 0,114 * B (5-1) 

 U =  -0,146 * R - 0,288 * G + 0,434 * B  = 0,493 * (B - Y) (5-2) 

 V =  0,617 * R - 0,517 * G - 0,100 * B = 0,877 * (R - Y) (5-3)

 
MPEG-2 Sub-sampling 
Consequently, to exploit the knowledge of the human eye’s color resolution deficiency, 

MPEG-2 uses different down sampling formats, such as YUV 4:2:0. In YUV 4:2:0 every 

individual pixel is represented by an 8 bits Y-value. On contrary, in the U- and V-space 

only the pixels of odd lines will be sampled (vertical sub-sampling), and furthermore only 

every second pixel in those odd lines (horizontal sub-sampling). That means odd lines 

are sampled in 4:2:2 format (4 Y-values, 2 U-values and 2 V-values) and even lines in 

4:0:0 (4 Y-values, 0 U-values and 0 V-values). Therefore the representation of a 2 by 2 

pixel block (4 pixels) requires 6 bytes (Y: 4 bytes; U: 1 byte; V: 1 byte), which leads to a 

compression rate of 2:1, as summarized in Figure 122.  

 

Figure 122: MPEG-2 sub-sampling (U = Cb; V= Cr) 

Blocks and MacroBlocks (MB) in MPEG-2  
In MPEG-2, as in many other compression formats, the individual frames are split into 

blocks of 8x8 pixels, further referenced as Blocks (see Figure 124). Four neighboring 

blocks are clustered into one MacroBlock (MB), consisting of 16x16 pixels, as visualized 

in Figure 123. Subsequently, MBs are sub-sampled, as explained above. For example 

an YUV 4:2:0 (see Figure 122) MB consists of four Y-blocks, 1 U(Cb)-block and one 

V(Cr)-block (Figure 123). 
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Figure 123: YUV 4:2:0 MacroBlock 

 

MPEG-2 Spatial Redundancy20 (Intra-frame coding) 
 
Discrete Cosine Transformation 
In the next step, Discrete Cosine Transformation (DCT, see Figure 124) is used to 

convert the spatial information within blocks into the frequency domain by means of 

equation (5-4) and (5-5). 
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 and 1, =vu CC  otherwise 
(5-5) 

with: F(u,v) representing DCT coefficient in row u and column v of the DCT matrix and 

f(x,y) standing for the intensity of the pixel in row x and column y 
After the DCT, the top left value of the block, in Figure 124 sketched as position (00), 

represents the DC level, the average brightness or chrominance, respectively, of the 

block. Furthermore, horizontal successive values, e.g. position (01) to (07), represent 

the strength of horizontal-wise increasing frequency. That means, that the (07)-value 

represents high frequency horizontal information. Similarly, the (70)-value represents 

high frequency vertical information. High frequencies appear in regions with a lot of 

details, texture or edges. Intuitively, the DC value and its close AC neighbors include 

most information (energy) of the image, resulting in low information in higher frequency 

values. 

Quantization 
The next the lossy step is the quantization, as sketched in Figure 124 and Figure 125. 

The technique was originally developed for Pulse Code Modulation (PCM) coding, for 

                                                 
20 Spatial redundancy refers to the correlation between neighbouring pixels in, for example, a flat 

uniform background. 
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which it was necessary to map continuous analog values to discrete levels. As 

mentioned above, the human eye does not have the same sensitivity to all frequencies. 

Therefore, a coarse quantization of high frequency DCT coefficients is less annoying to 

the viewer than the same quantization applied to low frequencies. Hence, to obtain a 

minimal perceptual distortion, each DCT coefficient should be individually weighted. In 

MPEG-2 this is achieved by the use of a weighting matrix, further referenced as 

Quantization Matrix, which is part of the MPEG-2 data. In addition to the Quantization 

Matrix, an uniform quantization factor can be applied to the entire image. This 

quantization factor, further referred to as Quantization Scale, will appear to be the key to 

the rate control algorithm. As a result of this, it is typically the case that many of the 

higher frequency DCT components are rounded to zero or at least they are clipped to 

very small positive or negative numbers. 

 

Figure 124: Intra-frame coding (DCT Quantization Zig-Zag Scan RLC  Huffman 

Coding) 1. 
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Figure 125: Quantization 

Entropy coding 
Entropy coding is a form of lossless data compression used in MPEG-2. Basically, it 

clusters DCT components with similar frequencies together using a Zig-Zag21 Scan, as 

shown in Figure 126. Successively, Run-Length Coding (RLC) and finally Huffman 

Coding are applied, as can be seen in Figure 124 and further described next.  

 

Figure 126: Zig-Zag Scanning 

Run Length Coding (RLC) 
Run-Length Coding, a simple data compression technique, exploits the redundancy of 

same consecutive symbols. To avoid saving each symbol individually, the count of 

symbols will be coded instead, as may be seen in Figure 127.  

                                                 
21 Clustering of DCT coefficients to encourage runs of 0s. 
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Figure 127: Example for Run-Length Coding (schematically) 

 

Furthermore, MPEG-2 uses the End-Of-Block (EOB) symbol, which, in case the last 

non-zero symbol of a block is reached, will be attached. This helps to further reduce the 

data, because usually the higher frequencies are quantized to zero. 

 

Huffman Coding 
Huffman Coding (HC) is a form of variable-length information encoding, mininizing the 

number of necessary encoding bits, also called entropy. In an information stream the 

data for a given variable may be given as N bits. HC exploits the statistical nature, 

meaning that not all 2N bit combinations are used or at least not with an equal 

probability. This means, that HC orders all symbols according to their decreasing 

occurance probability, as seen in Figure 124. Succesively, it assigns the 0 bit to the 

symbol of highest probability and the 1 bit to what is left. Iterateviley, HC proceeds the 

same way for the second-highest probability value, which get the 10 code assigned, and 

it further iterates. 

 

MPEG-2 Temporal Redundancy 
 
I-, P- and B-frames 
Naturally, temporal redundancy occurs in time-wise consecutive images e.g. during 

uninterrupted recording events, as e.g. in broadcast material. The recording event is 

limited by the start- and stop-recording, respectively, instances, which are represented 

by shot transitions, also called Shot Boundaries (SBs) [103]. To exploits the temporal 

redundancy, MPEG-2 defines three types of frames, as sketched in Figure 128:  

 

o Intra coded intra frames, also referenced as I-Frames, 

o Inter coded predicted frames, also called P-Frames, and  
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o Inter coded bi-directional frames, usually called B-Frames. 

To be more specific, intra coded I-frames contain all information required for decoding, 

which means that they can be reconstructed without any reference to other frames. P-

frames are forward predicted based on the predecessor I- or P-frame, as sketched in 

Figure 129. Therefore, it is impossible to reconstruct a P-frame without the data of 

another I- or P frame, unless it is entirely intra coded, which could be the case after a 

shot transition. Finally, B-frames are both, forward- and/or backward predicted, as 

shown in Figure 130. In average, B-frames require the data from both, the predecessor 

and the successor I- or P-frame. This implies, that normally two other frames are 

necessary to decode B-frames. 

 

 

Figure 128: I-, P- and B-frames used in MPEG-21. 

 
 

Figure 129. Forward Prediction Figure 130. For- and Backward PredictionI 

 

n addition, the time-wise successive frames are clustered into so called Group Of 

Pictures (GOPs) with arbitrary length. GOPs are headed by an I-frame, as shown in 

Figure 128. 

Motion compensation 
I-frames are reference frames exclusively compressed by means of present spatial 

redundancy. As a result of this, I-frames contain all required information to decode them 

autonomously. On contrary, P- and B-frames are compressed by exploiting not only 

spatial-, but also temporal redundancies. To identify the presents of the latter, the Mean 
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Absolute Difference (MAD) value is used (labeled with letter ‘b’ in Figure 131), which is 

an output of the video compressor Motion Estimator (ME) as described in [106]. 

 

Figure 131. Schematic of an MPEG-2 video compressor (partially) 

The MAD is a matching criterion used to quantify the similarity between the target MB 

and best matching candidate MBs in the reference frame exploiting temporal 

redundancies. To be more specific, corresponding pixels of two MBs, one from source 

frame n and one from reference frame m, are compared and their differences are 

summed up, as described by equation (5-6). 
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where MAD(x,y,dx,dy) represents the MAD between a 16*16 array of pixels (pels) of 

intensities Vn(x+i,y+j), at MB position (x,y) in the source frame n, and a corresponding 

16*16 array of pixels of intensity Vm(x+dx+i,y+dy+j), in reference frame m, with dx and 

dy representing the shift along the x and y coordinates, also called motion vector. 

 

Using the MAD value the compressor can select one of the following three approaches 

to minimize the bit rate by retrieving correlations between time-wise successive frames.  

The first one, the MB at the same position in the successor frame hasn't changed, 

quantified by an MAD value falling short a certain threshold. This leads to the decision 

that no coding will be executed on this MB. The information will be transmitted that both 

MBs are the same.  

The second one, the MAD of the MB at the same location exceeds a defined threshold. 

In this case a search is initiated to search for the best matching MB in a defined search 

area (normally 48 by 48 pixels) clustered around the current MB position. The horizontal 

and vertical position change between the best matching- and the current MB represents 

the motion vector, which will be transmitted as well.  

Finally the third one, in this case even the MAD value of the best matching MB exceeds 

a defined threshold. In this case the complete intra-coding process will be applied to the 

current MB. 
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Applied compression parameters 
The MPEG-2 compression parameters applied in sub-section 4.1.1 are summarized in 

Table 57. 

 

Table 57. Compression format settings. 

PAL NTSC  
D1 ½ D1 SIF D1 ½ D1 SIF 

Width [pixels] 720 352 352 720 352 352 
Height [pixels] 576 576 288 480 480 240 
Active MBs / 
slice 

 720/16=45 352/16=22 352/16=22 720/16=45 352/16=22 352/16=22 

Active slice / 
frame 

 576/16=36 576/16=36 288/16=18 480/16=30 480/16=30 240/16=15 

LB1 1 1 1 1 1 1 
LB2 4 4 2 4 4 2 

Letterbox 
upper 

LBs 4 4 2 4 4 2 
LB1 33 33 17 33 33 17 
LB2 36 36 18 36 36 18 

Letterbox 
lower 

LBs 4 4 2 4 4 2 
Upper [slices] 26 26 13 21 21 10 
LowMiddle [slices] 10 10 5 9 9 5 
Centre [slices] 16 16 8 12 12 6 
Subtitle [sliceNr] 27-32 27-32 14-16 22-26 22-26 11-13 
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2. ANNEX: Interlaced / Progressive  
Video frames of video broadcast are composed of a number of Red Green Blue (RGB) 

pixels, resulting in a full frame as shown in Figure 132 (left). The number of pixels, in 

vertical and horizontal direction, depends on the broadcast standard and the resolution 

used for the transmission of the video, as summarized in Table 58. The rendering of the 

pixels starts at the top left and will successively, pixel by pixel, continue from the left to 

the right and line-by-line, i.e. row-wise through the frame. This continuous way of 

capturing or rendering of pixels is called Progressive Scan. This scan method is applied 

in modern studio cameras and modern rendering devices, such as Liquid Crystal 

Displays (LCD), which are capable to render the video frames fast enough in 

progressive mode. The term progressive (p) is used, because each frame is captured 

and displayed, respectively, from the first scan line to the last scan line without any 

discontinuation. On contrary, technical constraints of the Cathode Ray Tube (CRT) 

television sets of the early days of television required the split of each frame into two 

fields (half-frames), the upper field, see Figure 132 (center), and the lower field, see 

Figure 132 (right). The first half-frame, the upper field, contains all odd lines of the 

original frame, i.e. line 1, 3, 5, etcetera, and the second half-frame, the lower field, all 

even lines of the frame, i.e. line 2, 4, 6, etcetera. This capturing and rendering method is 

called interlaced (i) mode, applied in low-cost studio cameras and camcorders, but also 

in legacy rendering devices, such as CRT television sets.  

 

Figure 132. Interlaced video with top and bottom field1. 

 

Table 58. Video Resolutions [Systeme Electronique Couleur Avec Memoire (SECAM), 

Standard Interchange Format (SIF), International Radio Consultative Committee 

(CCIR)]. 

PAL / SECAM NTSC Resolution 

Number of pixels in 
horizontal direction 

Number of pixels in 
vertical direction 

Number of pixels in 
horizontal direction 

Number of pixels in 
vertical direction 

SIF 352 288 352 240 

CCIR 601 720 576 720 480 
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Another reason for this split of frames was the halved bandwidth required, a bandwidth 

problem of the early days of television transmission. 

The frame capturing and display frequency is dependent of the broadcast standard 

applied. In Western Europe, for example, Phase Alternating Line (PAL) is the standard 

used with 50 fields per second resulting in frequency of 50Hz and referenced as 50i. 

With the afterglow of the pixel points in e.g. a CRT, the viewer gets the impression that 

real 50 ‘full’ frames per second are rendered. The standard frame resolution used for 

PAL transmission is based on the CCIR 601 standard, see Table 58, with 720-by-576 

pixels per frame and 720-by-288 pixels per field, respectively. In other regions such as 

in Northern America the National Television System Committee (NTSC) is applied with 

59.94 fields per second (29.97 fps), respectively, resulting in 59.94 Hz (59.94 Hz are 

round up in literature to 60 Hz and referenced as 60i).  

Scan Rate Conversion: telecine 
Unfortunately, any film content captured with a progressive-film-format camera, as e.g. 

used in professional movie studios, is recorded on celluloid with 24 fps (24p, e.g. in US) 

and 25 fps (25p, e.g. in Europe), which is also referenced as film mode. In order to 

display film on TV sets, the 24p/25p format has to be converted to 50i/60i format. The 

process is called telecine or pull-down.  

 

 

Figure 133. 2:2 and 3:2 pull down mode.
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3:2 pull-down for film-to-NTSC (24p-to-60i) conversion 
To convert a 24p content to 29,97 fps based NTSC requires more effort to accurately 

render the film’s motion, called 3:2 pull-down. 3:2 pull-down is accomplished in two steps. 

Firstly, the film’s motion has to be reduced, or pulled-down, by 0.1%, which is 

unnoticeable to the viewer, and reduces the frequency to 23.976 fps. Secondly, at 23.976 

fps, there are 4 frames of film for every 5 frames of NTSC video (23.976/29.97 = 4/5). 

These four frames are now “stretched” into five frames exploiting the interlaced nature of 

NTSC video. Each NTSC frame is the result of two fields of the interlaced video, an upper 

field (odd lines) and a lower field (even lines). Therefore, ten fields are required to 

assemble 5 NTSC frames. To meet this requirement, alternately one film frame is placed 

across 3 fields, the next film frame across 2 fields, then again across 3 fields and so on 

(3:2:3:2…), as can be seen in Figure 133 (right bottom). The 3-to-2 cycle repeats itself 

completely after four film frames have been exposed22.  

 

2:2 pull-down for film-to-PAL (25p-to-50i) conversion 
The conversion from 24 fps film mode to 25 fps based PAL is simply done by speeding up 

the 24 fps content by 4% to reach 25p. This causes a noticeable increase in audio pitch 

by about one semitone, which is corrected by a pitch shifter. In a second step each frame 

is split into an odd and an even field resulting in 50 fields-per-second (50i) and therefore 

it’s called 2:2 pull-down. 

                                                 
22 Note that the pattern in this example is 2-3 and 2-3. The name 3:2 pull-down is an archaic 

reference to the pattern, which was used by older telecine equipment. The modern telecine uses a 

2-3 technique. 
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3. ANNEX: AV Corpus selection: demographics and 
statistics 

 

 

 

Table 59: Demographic data for China 2002 – 2025 – 2050 from [105] 

Ages Men Women Ages Men Women Ages Men Women 

0-  4 50 110 996 45 771 602 0-  4 42 516 389 40 190 790 0-  4 36 040 448 34 040 885 

5-  9 54 198 573 49 416 465 5-  9 46 501 006 43 808 040 5-  9 37 041 087 34 998 978 

10- 14 62 816 940 57 148 486 10- 14 48 150 313 45 030 010 10- 14 36 799 988 34 788 343 

15- 19 51 385 852 47 672 902 15- 19 44 291 013 41 173 750 15- 19 36 657 224 34 741 013 

20- 24 49 357 387 46 532 006 20- 24 41 888 507 38 785 016 20- 24 37 859 350 36 074 383 

25- 29 61 095 341 57 718 981 25- 29 48 611 194 44 945 031 25- 29 41 438 336 39 688 139 

30- 34 64 434 769 60 704 306 30- 34 52 415 563 48 504 489 30- 34 45 126 325 43 198 110 

35- 39 52 752 092 50 054 406 35- 39 60 500 300 55 931 796 35- 39 46 491 343 44 286 491 

40- 44 42 779 757 39 491 531 40- 44 49 046 277 46 386 217 40- 44 42 529 256 40 352 627 

45- 49 43 199 071 40 832 053 45- 49 46 810 564 45 045 132 45- 49 40 085 733 37 888 627 

50- 54 31 731 338 29 322 907 50- 54 57 226 778 55 351 648 50- 54 46 189 985 43 646 144 

55- 59 23 850 562 21 972 889 55- 59 58 617 247 57 120 078 55- 59 48 722 464 46 458 109 

60- 64 21 071 214 19 655 095 60- 64 45 574 142 45 637 400 60- 64 53 948 455 52 315 254 

65- 69 17 488 055 17 145 676 65- 69 33 407 460 33 830 467 65- 69 40 738 282 41 668 661 

70- 74 12 130 589 12 954 251 70- 74 29 147 072 31 953 987 70- 74 34 595 250 37 822 318 

75- 79 7 054 614 8 844 624 75- 79 16 664 374 19 494 948 75- 79 34 829 009 41 402 075 

80+ 4 317 168 7 461 803 80+ 13 570 567 20 319 584 80+ 46 364 123 68 803 815 

 

Table 60: Demographic data for US 2002 – 2025 – 2050 from [105] 

Ages Men Women Ages Men Women Ages Men Women 

0-  4 9 831 175 9 386 999 0-  4 12 015 262 11 503 133 0-  4 14 348 291 13 731 791 

5-  9 10 488 829 9 994 277 5-  9 11 831 125 11 331 891 5-  9 14 059 510 13 461 160 

10- 14 10 560 818 10 047 597 10- 14 11 692 274 11 195 478 10- 14 13 782 484 13 191 510 

15- 19 10 412 689 9 837 270 15- 19 11 496 334 10 972 391 15- 19 13 602 067 12 981 326 

20- 24 9 821 860 9 363 203 20- 24 11 296 473 10 828 512 20- 24 13 465 834 12 904 593 

25- 29 9 785 399 9 531 418 25- 29 10 882 110 10 559 020 25- 29 13 375 482 13 002 541 

30- 34 10 372 884 10 214 189 30- 34 11 646 783 11 346 511 30- 34 13 407 428 13 107 356 

35- 39 11 304 995 11 343 359 35- 39 11 654 430 11 425 246 35- 39 13 277 400 13 056 279 

40- 44 11 179 973 11 355 395 40- 44 11 232 276 11 086 703 40- 44 12 806 833 12 703 154 

45- 49 9 959 477 10 271 081 45- 49 10 327 250 10 354 883 45- 49 12 234 140 12 235 962 

50- 54 8 706 996 9 083 620 50- 54 9 914 318 10 130 050 50- 54 11 418 281 11 500 158 

55- 59 6 553 207 7 005 944 55- 59 9 945 218 10 346 340 55- 59 11 568 562 11 768 619 

60- 64 5 165 703 5 699 027 60- 64 10 184 920 10 943 536 60- 64 10 997 678 11 386 511 

65- 69 4 402 844 5 131 111 65- 69 9 283 604 10 363 146 65- 69 9 911 357 10 532 466 

70- 74 3 904 321 4 945 625 70- 74 7 346 016 8 694 809 70- 74 8 273 629 9 224 985 

75- 79 3 051 227 4 374 151 75- 79 5 376 751 6 890 873 75- 79 6 853 651 8 213 190 

80+ 3 093 305 6 158 663 80+ 5 793 098 9 775 435 80+ 13 289 512 20 406 847 
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Table 61: Demographic data: Europe 2002 – 2025 – 2050 from [105]. 

Ages Men Women Ages Men Women Ages Men Women 

0-  4 10 542 939 10 007 895 0-  4 9 165 564 8 698 547 0-  4 8 427 193 7 994 322 

5-  9 11 124 837 10 568 773 5-  9 9 435 834 8 959 945 5-  9 8 608 629 8 170 232 

10- 14 11 602 210 11 032 061 10- 14 9 713 911 9 226 075 10- 14 8 811 603 8 365 403 

15- 19 11 958 312 11 390 902 15- 19 10 135 301 9 639 872 15- 19 9 086 621 8 639 665 

20- 24 12 694 112 12 164 576 20- 24 10 817 334 10 328 002 20- 24 9 471 820 9 039 278 

25- 29 14 237 830 13 677 340 25- 29 11 325 887 10 818 497 25- 29 9 930 066 9 469 727 

30- 34 15 650 195 15 076 087 30- 34 12 042 438 11 468 368 30- 34 10 343 481 9 820 621 

35- 39 15 699 130 15 234 251 35- 39 12 557 586 11 960 998 35- 39 10 680 311 10 124 746 

40- 44 14 190 246 13 966 199 40- 44 12 809 820 12 233 392 40- 44 11 029 466 10 469 461 

45- 49 13 102 197 13 095 660 45- 49 13 223 926 12 728 194 45- 49 11 438 803 10 908 202 

50- 54 12 716 783 12 796 671 50- 54 14 224 273 13 859 061 50- 54 11 524 561 11 082 898 

55- 59 10 729 461 11 000 789 55- 59 14 948 882 14 861 587 55- 59 11 731 847 11 433 125 

60- 64 10 134 619 10 836 527 60- 64 14 214 309 14 593 531 60- 64 11 637 084 11 592 265 

65- 69 8 711 064 9 944 514 65- 69 11 911 258 12 873 596 65- 69 11 102 560 11 430 231 

70- 74 7 274 005 9 340 219 70- 74 9 797 952 11 361 778 70- 74 10 404 591 11 278 037 

75- 79 5 283 416 8 278 284 75- 79 7 950 245 10 043 844 75- 79 9 601 648 11 269 157 

80+ 4 58 2932 9 913 597 80+ 9 612 485 16 794 675 80+ 16 567 689 26 505 737 
 

Statistics of recorded benchmark AV corpus 
The recorded Benchmark AV Corpus consists of selected content items summarized in 

Table 62, which will be further used for the evaluation of developed feature extraction 

algorithms: 

 

Table 62. AV Corpus data files and AV Corpus subset for parallel shot detection and 

scene boundary detection. 

Filename Genre Corpus 
for 1st 
SBD 

# GT 
SB 

Corpus fro 
2nd SBD, 
PSD, ScBD 

AV subset content:  
Items further referenced as 

cartoons_eu_com_15min_nl_dig Cartoon X 211   
mag_eu_com_30min_ge_ana Magazine X 298   
mag_eu_com_30min_nl_ana Magazine X 294   
mag_eu_pub_30min_gb_ana Magazine X 323   
mag_eu_pub_30min_nl_ana Magazine X 186   
movie_eu_pub_100min_fr_ana Movie X 1021   
movie_eu_pub_50min_ge1_ana Movie   X movie_ge1 
movie_eu_pub_50min_ge2_ana Movie   X movie_ge2 
movie_eu_com_100min_nl_dig Movie X 1256 X movie_nl 
movie_us_pub_150min_us_dig Movie   X movie_us_dig 
movie_us_com_150min_us_ana Movie   X movie_us_ana 
serie_eu_com_30min_nl1_ana Series X 497 X serie_nl1 
serie_eu_com_30min_nl2_ana Series X 389 X serie_nl2 
serie_eu_com_30min_ge1_ana Series X 433 X serie_ge1 
serie_eu_com_30min_ge2_ana Series X 514 X serie_ge2 
serie_eu_pub_30min_gb_ana Series X 554 X serie_gb 
show_eu_com_30min_nl_ana Show X 359   
show_eu_com_30min_ge_ana Show X 1025   
sport_eu_pub_30min_nl_ana Sport X 164   
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Table 63. Data used for audiovisual jitter analysis. 

AV sub-corpus for 
2nd SBD, PSD, ScBD 

Total # SB 
(genre only) 

# Shots inside 
PS / # PS 

# of  potential 
ScB 

# ScB # ScB (adds, 
EPG) 

movie_ge1 900 555 / 29 374 25 0 
movie_ge2 442 242 / 21 221 30 4 (C1/2/3/4) 
movie_ nl 1400 523 / 33 910 35 0 
movie_ us_dig 1190 1041 / 44 193 26 0 
movie_ us_ana 1260 736 / 31 555 54 0 
serie_ nl1 231 151 / 15 95 7 3 (C1/2/3) 
serie_ nl2 220 166 / 15 69 15 3 (E1, C2/3) 
serie_ ge1 181 128 / 9 62 11 2   (C1/2) 
serie_ ge2 490 307 / 23 206 17 4 (E1/2/3/4) 
serie_ gb 481 360 / 21 142 19 2 (E1/2) 

 

 Table 64. Shot boundary ground-truth for audiovisual corpus sub-set. 

AV sub-corpus 
for 2nd SBD, 
PSD, ScBD 

# GT 
SBD 1st 
50% 

# GT 
SBD 
100% 

# Shots inside 
PS / # PS 
1st 50% 

# Shots inside 
PS / # PS 
100% 

# of  
potential 
ScB 100% 

# ScB # ScB 
(adds, 
EPG) 

movie_ ge1 427 892 235 / 20 535 / 47 404  0 
movie_ ge2 189 314 157 / 14 247 / 25 92  4 

(C1/2/3/4) 
movie_ nl 694 1352 291 / 22 487 / 42 907  0 
movie_ us_dig 531 1208 456 / 26 1049 / 61 220  0 
movie_ us_ana 496 1176 353 / 32 617 / 56 615  0 
Total movies 2337 4942   2238   
 
serie_ nl1 119 227 83 / 9 154 / 18 91  3 (C1/2/3) 
serie_ nl2 109 212 99 / 9 181 / 19 50  3 (E1, 

C2/3) 
serie_ ge1 87 175 70 / 7 141 / 14 48  2   (C1/2) 
serie_ ge2 295 495 171 / 15 296 / 29 228  4 (E1/2/3/4) 
serie_ gb 272 482 207 / 17 354 / 39 167  2 (E1/2) 
Total series 882 1591   584   
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4. ANNEX: Scale invariant feature transform SIFT 
In this Annex the scale invariant feature transform SIFT, which the author applied for key 

frame similarity analysis, is explained in more detail. In 1981 Moravec [145] introduced the 

theory of (distinct) interest points, a theory improved by Harris and Stephens in 1988 [146] 

resulting in ‘improved corner features’. In parallel Witkin developed in 1983 [147] the 

theory of scale spaces, which Koenderink extended in 1984 [148] to continuous scale 

spaces and finally Lindenberg to normalized scale spaces in 1994 [149]. Lowe then 

combined the theory of normalized scale spaces, improved corner features and Torr’s 

‘robust geometric clustering’ into the theory of scale invariant feature transform. 

Lowe’s SIFT used a scale-space representation of a frame, e.g. FN, and selected local 

extrema in this scale space as feature points. The advantages of the latter were their 

invariance to scaling. Invariance to rotation was successfully added. 

For the selection of SIFT points the scale-space representation of YFN , i.e. the luminance 

plane of YUV of frame FN , was calculated, 

( ) ( ) ( )yxYyxGyxL
NN FF ,,,,, ∗= σσ

 
(5-7)  

by convolving YFN with a family of Gaussians of different variance, where 

( ) 2

22

2
22

1,, σ

πσ
σ

yx

eyxG
+

−
=

 
(5-8),  

 the Green function, constituted of a two-dimensional Gaussian of variance σ. Hereafter, 

the corresponding differential scale-space representations, as shown in Figure 134, 

( ) ( ) ( )( ) ( ) ( ) ( )σσσσσ ,,,,,,,,,,, yxLkyxLyxYyxGkyxGyxD
NNNN FFFF −=∗−=

 
(5-9)  

were calculated, as presented in [135], by using the difference of two scales separated by 

a constant multiplicative factor k=21/2. Sub-sampling was repeated until the resolution fell 

below 50*50 pixels, a heuristically chosen value. 

 

Figure 134. Difference of Gaussians DoG. 
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The scale space representations allowed retrieving distinctive points at multiple scale 

levels. To do so, local extrema within DFN(x,y,σ) were identified applying  

( ) ayxD
NF

>σ,,
 

(5-10), 

using an intensity threshold of α=5 (derived from [135]). In addition, for each selected 

SIFT feature point an orientation was assigned that reflected the dominant direction of the 

local gradient, a kind of SIFT feature point signature, used to improve the tracking 

robustness. To obtain the orientation at first, the gradient magnitude mFN(x,y) and gradient 

orientation θFN(x,y) were calculated for each pixel in FN  with 

( ) ( ) ( )( ) ( ) ( )( )22 111,1, −−−− yx,L+yx,L+yxLy+xL=yx,m
NNNNN FFFFF

 
(5-11), 

( ) ( ) ( )
( ) ( )yxLy+xL

yx,L+yx,L
=yx,θ

NN

NN

N
FF

FF
F 1,1,

11
arctan

−−

−−

 
(5-12). 

In a second step, an orientation histogram was calculated around each feature point 

consisting of gradient orientations θFN(x,y) of all points within a specified window WFP (here 

a Gaussian region of 4σ was chosen). The orientation histogram consisted of 36-bins 

covering a 360˚ orientation range. Each sample, which was added to the histogram was 

weighted by its mFN(x,y). Successively, the dominant orientation of the histogram, i.e. 

θFN_dominant(x,y), was assigned to the SIFT feature point, which resulted in feature point 

descriptor vectors including θFN_dominant(x,y), as shown in Figure 135 for three points in an 

up- and downscaled image representation. θFN_dominant(x,y), hereafter, was used to 

normalize the orientation and mFN(x,y) to normalize the feature point representation to a 

sample array of heuristically chosen 15*15 (Lowe used 16*16 in [135]) pixels by extra- or 

interpolation. The latter step provided the desired scale invariance.  

 

 

Figure 135. Scale invariant image descriptor matching. 
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For each pixel inside the normalized patches mFN(x,y) and θFN(x,y) were computed and, 

e.g. taking the example of Figure 136, 4*4 pixel values were accumulated into one 

orientation histogram with 8 orientation bins with the length of each bin (arrow in Figure 

136 right) corresponding to the sum of the corresponding mFN(x,y) values. For the current 

work the 15*15 sample arrays were accumulated in 3*3 descriptor arrays with 8 

orientations each resulting in a vector of 3*3*8=72 vector values Vv (Lowe used 4*4*8 Vv, 

[ ]2550K∈Vv ). Finally, SIFT points of two frames, e.g. FN and FM, were indexed as 

matching if their normalized Euclidian distance fell short a chosen threshold 

ThSIFTPoints=0.2.   

 

 

Figure 136. SiFT feature point vector arrays. 
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5. ANNEX: Evaluation of ScaFT and SIFT based parallel 
shot detector 

 
Evaluation of ScaFT based parallel shot detector 
The evaluation of the ScaFT based key frame pair similarity analysis unveils that the 

gradient matrix based minimum eigenvalue feature point detection performs reasonable 

well for sequences with areas containing rigid objects. The latter are often present in the 

background, as presented in Figure 137 for the correct detections during shot reverse 

shots and cross-cuttings rigid background areas containing correctly tracked feature 

points. Unfortunately, recall of the method is limited to about 50%, as summarized in 

Table 65, based on several shortcomings, i.e. (a) limiting the detection to luminance only 

lead to missed detection in case of illumination variations (Figure 137 SRS missed in 

movies), (b) limiting the method to one scale space leading to feature point tracking 

problems between e.g. zoomed sequences, and (c) applying minimum eigenvalue 

favoured areas with blocking artefacts (which were present especially in series) to place 

feature points. 

  

Figure 137. ScaFT result examples for shot reverse shots and cross-cuttings (placeholder 

in final version).  
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Table 65. Parallel shot link detection results with ScaFT in series. 

Series ‘nl1’ ‘nl2’ ‘ge1’ ‘ge2’ ‘gb’ Total 
Ground Truth links 227 212 175 495 482 1591 
Correct 119 106 78 322 254 877 
False 72 33 31 238 59 433 
Missed 108 106 97 173 228 714 
Recall [%] 52.3 50.0 44.3 65.0 52.6 55.1 
Precision [%] 62.2 76.3 71.7 57.4 81.2 67.0 

Table 66. Parallel shot link detection results with ScaFT in movies. 

Movies ‘nl’ ‘ge1’ ‘ge2’ ‘us_ana’ ‘us_dig’ Total 
Ground Truth links 890 314 1352 1176 1208 4940 
Correct 449 183 692 587 642 2554 
False 147 10 145 180 92 573 
Missed 441 131 660 589 566 2386 
Recall [%] 50.5 58.4 51.2 49.9 53.2 51.7 
Precision [%] 75.4 94.7 82.7 76.6 87.5 82.0 
 
Precision, on contrary, varies between 60 and 90% with various reasons why false links 

are established. Most often textured areas, e.g. hair, foliation, but also blocking artefacts, 

lead to feature point detection at similar locations, but in completely unrelated key frame 

pairs, as captured in ‘false’ in Figure 137, an error which can be minimized by using 

feature point signatures as SIFT does.  

 
Evaluation SIFT based parallel shot detector 
Lowe’s scale invariant feature transform method is very well suited to identify robust 

feature points in textured rigid areas, but especially in shot reverse shot loaded series with 

unstable non-rigid persons in the foreground, as pictured in Figure 138, the method 

unveils its limitations.  

Table 67. Parallel shot link detection results with SIFT in series. 

Series ‘nl1’ ‘nl2’ ‘ge1’ ‘ge2’ ‘gb’ Total 
Ground Truth links 227 212 175 495 482 1591 
Correct 88 53 63 148 149 501 
False 44 7 9 72 23 155 
Missed 139 159 112 347 333 1090 
Recall [%] 38.6 25.0 36.1 29.9 30.9 31.5 
Precision [%] 66. 7 87.9 87.5 67.4 86.6 76.4 

Table 68. Parallel shot link detection results with SIFT in movies. 

Movies ‘nl’ ‘ge1’ ‘ge2’ ‘us_ana’ ‘us_dig’ Total 
Ground Truth links 890 314 1352 1176 1208 4940 
Correct 510 178 723 534 631 2576 
False 216 12 218 205 96 747 
Missed 380 136 629 642 577 2364 
Recall [%] 57.3 56.8 53.5 45.4 52.3 52.1 
Precision [%] 70.2 93.8 76.9 72.3 86.8 78.3 
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Recall, therefore, drops, in comparison to ScaFT, from 50% to 30% in series, but reaches 

about 50% in movies, as summarized in Table 67 and Table 68. Precision, reaches only 

80% for both genres, because SIFT tracks the required number of feature points, i.e. 

THPS, from a non-textured to a textured key frame rather easy, as shown for ‘false’ cases 

in Figure 138 with pink lines for tracked points. Three of the deficiency of SIFT are that (a) 

only luminance, but no colour values, (b) no spatial constellation, and (c) not texture 

dependent thresholds are taken into consideration. Especially the two latter could improve 

precision drastically.   

 

 

 

Figure 138. SIFT result examples for shot reverse shots and cross-cuttings 

(placeholder in final version). 
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6. ANNEX: Scene description in AV corpus 
 
In this Annex we summarized the attributes and ground truth of our AV corpus, i.e. five 

series and five movies. The ten graphs show the content items in their entity as stored in 

the archive. The subsequent tables contain not only the increasing audiovisual scene 

boundary number (column #1) and its associated frame index (column #2), but also the 

increasing audio-only scene boundary number (column #4) and its associated frame index 

(column #5). The transition type of the audio-only scene boundary instance is specified in 

column #6 (N..noise, M..music, Si..silence, Sp..Speech, Cr..Crowd, U..Undefined). The 

final column #7 specifies the dislocation between the audio transition and the audiovisual 

scene boundary. 
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Figure 139. ‘movie_eu_pub_50min_ge1_ana’, a.k.a. movie_ge1. 

 

Table 69.Scene description for ‘movie_eu_pub_50min_ge1_ana’. 

AV ScB 
Number 

AV ScB 
Frame 
Index 

Remarks A ScB 
Number 

A ScB 
Frame 
Index 

A ScB 
transition type 

AV ScB to 
A ScB  
[# shots] 

1 898  1 900 N M +1 
   2 1655 Si Sp -- 
2 3037  3 3072 Cr N +1 
   4 5862 N M -- 
   5 6788 M Si -- 
3 7092  6 7092 Sp N 0 
4 9775  7 9775 Sp M 0 
5 10557  8 10475 M Sp -1 
6 14244  9 14250 M/Sp N +1 
7 17874  10 17874 M/Sp M/Sp 0 
8 21843  11 21962 Sp N +2 
   12 22710 N M -- 
9 24146  13 24347 M Sp +3 
10 29519  14 29519 Sp M 0 
   15 31450 M Sp -- 
11 32249  16 32249 N Si Mu 0 
   17 32820 N N/M -- 
12 34059  18 34059 U U 0 
13 36734  19 37263 Sp N +1 
14 39432  20 39432 N M 0 
15 41775  21 41819 Sp M +1 
   22 43015 Sp N -- 
16 45283  23 45283 M Sp 0 
17 46225  24 46252 Sp N +1 
18 51395  25 51443 N Sp +1 
19 58511  26 58511 Sp Sp 0 
20 61080  27 61130 M N +1 
   28 63800 Sp N -- 
   29 67205 Sp M -- 
   30 70350 N M -- 
21 71466  31 71510 M Sp +1 
22 74051  32 74051 M N +1 
23 79402  - -  -- 
24 80363  33 80363 N M +1 
25 83498  34 83530 M/Sp M +1 
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Figure 140. ‘movie_eu_pub_50min_ge2_ana’, a.k.a. movie_ge2. 

Table 70.Scene description for ‘movie_eu_pub_50min_ge2_ana’. 

AV ScB 
Number 

AV ScB 
Frame 
Index 

Remarks A ScB 
Number 

A ScB 
Frame 
Index 

A ScB transition 
type 

AV ScB 
to A ScB  
[# shots] 

1 6122 Dissolve (11 frames) 1 6653 M N +1 
   2 8315 N M  
2 10798 At two PSs 3 10800 N Sp +1 
   4 12415 M N  
3 14040  5 14052 M Sp/N +1 
4 15033  6 15050 N U Sp +1 
5 15475  7 15505 N Sp +1 
   8 16655 M/Sp N  
6 17719  9 17718 N Sp -1 
   10 18355 Sp/M U/M  
7 20942 At two PSs 11 20942 N Sp 0 
   12 22243 N U  
8 23068  13 23068 U Sp 0 
9 23840  14 23840 Sp/M Sp/N 0 
10 24528  15 24528 N Si M 0 
11 26962  16 26962 N N 0 
   17 27710 M/N U  
12 28234  18 28240 N N +1 
13 31396  19 31396 Cr Si 0 
14 33584  20 33584 Sp M 0 
15 36618  21 36618 M N 0 
16 38057  22 37980 Sp M -1 
17 48058 23 23 48060 M Si (Sp,N) 0 
18 49465  24 49465 Sp M 0 
19 51487  25 51569 M Sp +1 
   26 52011 M M  
   27 53876 N Si Sp  
20 56329  28 56290 Sp M -1 
21 58759  29 58759 Sp M/N 0 
22 60919  30 60919 N Si 0 
   31 61600 M M/Sp  
23 62932  32 62932 M M/Sp 0 
24 64923  33 64923 Sp N 0 
25 66209  34 66209 Sp/M N/M 0 
   35 66380 N Sp  
26 67084  36 67084 Sp Sp 0 
27 68238  37 68238 Sp M 0 
28 70458  38 70458 M N/M 0 
29 72241  39 72241 Sp U 0 
   40 75000 M Sp  
30 76332  41 76332 Cr M 0 
Start / stop of non-content sequences:     
 2928  Commercial 1 start 
 6122  Commercial 1 end 
 40881 Fade to commercial End of Scene (X) - Commercial 2 start 
 48060 Fade out commercial Commercial 2 end – Start of Scene (X+1) 
 79729 Fade in commercial EPG End, Commercial start 
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Figure 141. ‘movie_eu_com_100min_nl_dig’, a.k.a. movie_nl. 

 

Table 71.Scene description for ‘movie_eu_com_100min_nl_dig’. 

AV ScB 
Number 

AV ScB 
Frame 
Index 

Remarks A ScB 
Number 

A ScB 
Frame 
Index 

A ScB 
transition type 

AV ScB to A ScB  
[# shots] 

   1 1120 Sp M  
   2 3238 M Sp  
1 3888  3 3900 U N +1 
2 5529  4 5540 N Sp +1 
3 7771  5 7860 M N +1 
4 10970  6 10970 N N 0 
5 13099  7 13110 U N +1 
6 13980  8 14081 M M/Sp +1 
7 16567  9 16567 Si N 0 
   10 18259 U N  
8 19128  11 19128 N Si 0 
   12 20490 Si N Sp  
9 20753  13 20760 Sp M +1 
10 23087  14 23087 N Si 0 
11 24799  15 24800 U U +1 
12 27807  16 27643 N N Sp -1 
   17 28100 M Cr  
13 29749  18 29560 Sp Sp/M -1 
14 31622  19 31620 M Sp -1 
15 40574  20 39704 N M -5 
16 42410  21 42420 M U Sp +1 
   22 44120 Sp M  
17 49762  -- --   
18 51988  23 51988 Si N 0 
19 53175  24 53170 Sp Si Sp -1 
20 56422  25 56544 M N +1 
   26 60392 M Sp  
21 61224  27 61224 Sp M 0 
22 63036  28 63036 M Sp 0 
   29 65400 Si Sp  
23 65712  30 65712 Sp U 0 
   31 68754 Sp M  
   32 70220 M Sp  
   33 71900 M U  
24 73656  34 73680 M Sp +1 
   35 74440 M Sp  
   36 74910 Sp M  
25 76154  37 76150 N Sp -1 
26 79664  38 79680 Sp M +1 
27 87795  39 87790 Cr M -1 
   40 89489 M Sp  
   41 92110 Sp Sp  
28 100640  42 100720 M M/N +1 
   43 102750 Sp M  
   44 105341 Sp N  
29 105505  45 105500 N N -1 
30 109219  46 109210 Sp N -1 

                                                                                                                                                 
23 Sc(X): fade-out to CB, Sc(X+1): fade-in after CB (12 frames) 



 

  
270  

   47 111540 U Cr  
   48 111690 Cr M  
   49 111951 M Cr  
31 112577  50 112577 Sp M 0 
32 116545  51 117930 Sp M +14 
33 121019  52 121000 Sp/M N/M -1 
34 126201      
   53 128744 M N  
35 132126  54 132600 M U.M +5 
   55 136430 Si Sp  
   56 137080 M M  
   57 137881 M Sp/M  
Potential semantic scenes  
 68654 0 Inside PS, inside car, new semantic action, silence at SB 
 71895 -23 Inside PS, inside car (same location), new semantic action 
 136250 -76 Inside a PS, chaptering on DVD, discussion with semantic change, 

Long shot, music change shortly after 
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Figure 142. ‘movie_us_pub_150min_us_dig’, a.k.a. movie_us_dig. 

 

Table 72.Scene description for ‘movie_us_pub_150min_us_dig’. 

AV ScB 
Number 

AV ScB 
Frame 
Index 

Remarks A ScB 
Number 

A ScB 
Frame 
Index 

A ScB 
transition type 

AV ScB to A 
ScB  
[# shots] 

1 4122  1 4480 Sp N +2 
2 9166  2 9166 Sp/M M 0 
   3 9800 N Sp  
   4 10756 Sp N  
3 22749  5 22749 M Cr 0 
4 24837  6 24837 Sp/M M 0 
   7 26052 Sp M  
5 28892  8 28900 Si M +1 
6 31854  9 31854 Cr/M Si Sp 0 
   10 37675 Sp N Sp  
7 40264  11 40270 N Sp +1 
8 41080  12 41080 Sp M/Sp 0 
9 49138  13 49138 Sp M 0 
10 50347  14 50347 M/Sp Sp 0 
11 56281  15 56281 Sp M 0 
   16 57237 Sp/M U  
12 61322  17 61322 Sp M 0 
13 65025  18 65025 Sp Cr/Sp 0 
14 71816  19 71523 Sp M/Sp -2 
15 73992  20 74000 U N +1 
16 82912  21 82950 Sp N M +1 
   22 95954 Sp Cr  
17 98683  23 98786 M M/N +1 
18 109856  24 109912 M M/Sp +1 
19 111492  25 111500 Sp N +1 
20 113267  26 113290 N M/Sp +1 
   27 125540 M Cr  
21 127699  28 127844 M Sp +1 
   29 132300 M M/Sp  
22 133498  30 133498 M N 0 
23 139603  -- --   
24 143165  31 143032 Si M/Sp -2 
25 144408  -- --   
   32 149225 N N  
26 153914    Sp/U N 0 
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Figure 143. ‘movie_us_com_150min_us_ana’, a.k.a. movie_us_ana. 

 

Table 73.Scene description for ‘movie_us_com_150min_us_ana’. 

AV ScB 
Number 

AV ScB 
Frame 
Index 

Remarks A ScB 
Number 

A ScB 
Frame 
Index 

A ScB 
transition 
type 

AV ScB to A 
ScB  
[# shots] 

   1 886 Si M  
   2 3300 M Si  
1 5563  3 5141 N Sp +1 
   4 6660 Sp N  
2 7111  5 7018 Sp M -2 
3 9921  6 9921 M M/N 0 
4 10709 Computer Generated Dissolve 

(26 frames) 
7 10810 Sp M -1 

5 11889  8 11889 Sp M 0 
   9 12959 Si N  
   10 16030 Sp N  
6 16292  11 16292 Sp U 0 
7 19948  12 19926 Sp N -1 
8 20821  13 20806 Sp Sp/M -1 
9 23193  14 23193 Sp/M N 0 
10 25966  15 25966 U N 0 
11 30169  16 30410 U N +1 
   17 32500 N   
12 33255 Fade-out / Fade-in (35 frames) 18 33350 M N -1 
   19 35170 U Cr  
   20 35369 Cr Sp/M  
13 36370 Fade-out / Fade-in (42 frames) 21 37100 N N +1 
   22 37813 Sp N +2 
14 39071  23 39071 Sp U 0 
   24 40105 Sp N/Sp  
15 41300  25 41247 N U/N -1 
16 44858  26 44885 Sp N +1 
   27 45995 N Sp  
17 48144  28 48144 Sp U 0 
18 49357  29 49357 N Sp 0 
   30 51107 Sp N  
 51872 Narrative ScB, but inside 2nd PS 

GT  deleted 
31 52250 N N +2 

19 63017  32 63036 Sp N +1 
20 67885  -- --   
21 71309  33 71309 Sp U Sp 0 
   34 72253 Sp Sp  
22 76595  35 76595 Sp Sp 0 
23 79794  36 79794 Sp Sp/M 0 
24 82118  37 81981 Sp M -1 
25 84569  38 84569 M Sp 0 
   39 85358 Sp N  
26 87253  40 87253 Sp N  0 
   41 88020 Sp/N N  
27 96096 No video cut but ScB 42 96431 M/Sp Sp -1 
28 101514  43 101514 Cr Sp 0 
29 101961  44 101961 Sp N 0 
30 103468  45 103468 Sp N 0 
31 108324  46 108324 Sp/Cr Sp 0 
32 111548  47 111471 Sp Si S -1 
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p 
33 114684  -- --   
34 115631  48 115631 Sp Si S

p 
0 

35 119282  49 119282 Sp/M Sp 0 
36 123783 Same room, different time -- --   
37 126417  50 126350 Si Sp -1 
   51 127015 N M/N  
   52 128139 Sp Sp  
38 131052  53 131052 N Sp  
   54 132860 Sp Cr  
   55 135253 Sp Si S

p 
 

   56 139299 N Sp  
39 139909  57 139909 M Sp 0 
40 142132  58 142132 U N 0 
41 146322  59 146322 Sp/M N 0 
   60 147366 N Sp  
42 149598  61 149598 Sp N 0 
   62 151402 Sp M  
43 151736  63 151736 N Sp 0 
44 152434  64 152434 Sp N 0 
   65 156197 N N  
   66 156948 N/Sp N  
   67 157718 Sp N  
   68 168000 N Si N  
 171316 After 2nd PS GT annotation 

deleted 
Confirme
d new 
AScB 

171511 U  M  

45 174681 Computer Generated Wipe  
Eye transition into eye and abject 
from black eye 
(40 frames) 

69 173936 M N 0 

46 182671  70 182500 M N -1 
47 184079  -- --   
48 185301  71 185301 Sp Sp 0 
49 186584  72 186584 Sp U Sp 0 
   73 189744 Sp N/Sp  
50 195775  74 195775 Sp/M Cr 0 
51 198926  -- --   
52 200075  75 200075 Sp Si U 0 
53 201649      
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Figure 144. serie_eu_com_30min_nl1_ana, a.k.a. serie_nl1. 

 

Table 74.Scene description for ‘serie_eu_com_30min_nl1_ana’. 

AV ScB 
Number  

AV ScB Frame 
Index 

Remarks A ScB 
Number 

A ScB 
Frame 
Index 

A ScB 
transition 
type 

AV ScB to 
A ScB  
[# shots] 

1 433  1 314 M Cr -1 
2 2125 - 2167 Dissolve: 42 2 2084 Sp U -1 
3 7137 - 7160 Dissolve: 23 Sp  Sp with no break 
4 20560 Sc(X): CB, 

Sc(X+1):  
    

5 26635 At 2 PSs 3 26610 Sp M -1 
6 29376 - 29393 Computer 

Generated Wipe: 
17 

4 29380 M Cr 0 

   5 33140 M U
Sp 

 

7 39105 - 39135 Dissolve: 30 6 39150 Sp N 0 
Start / end of non-content sequences 
 2  EPG start 
 13900  Commercial 1 start (Cut) 
 20559  Commercial 1 end – Start of Scene (X+1) 
 40631  Commercial 2 start 
 44563  Commercial 2 end 
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Figure 145. ‘serie_eu_com_30min_nl2_ana’, a.k.a. serie_nl2. 

 

Table 75.Scene description for ‘serie_eu_com_30min_nl2_ana’. 

AV ScB 
Number 

AV ScB 
Frame 
Index 

Remarks A ScB 
Number 

A ScB 
Frame 
Index 

A ScB 
transition type 

AV ScB 
to A ScB  
[# shots] 

   1 10690 M M  
1 11982  2 11981 M Sp 0 
2 14009  3 14009 Sp/M Sp 0 
3 15816  4 15816 Cr Sp 0 
4 17832  5 17832 M Sp 0 
5 19661  6 19661 M Sp 0 
6 30391  7 30400 M Si M 0 
7 32190  8 32190 Sp N/Sp 0 
8 33822  9 33822 M M 0 
9 35528  10 35528 Sp N +1 
   11 36440 Sp U  
10 37050  12 37050 N Sp 0 
11 38666  13 38663 Sp M +1 
12 39949  14 49933 M M +1 
13 42936  15 42960 M M +1 
14 44817  16 44817 M N Sp 0 
15 46934  17 46935 Sp/M Sp/M +1 
16 48127  18 48127 M Sp 0 
   19 50187 M M  
Start / end of non-content sequences  
 27   Commercial 1 start 
 9172   Commercial 1 end, EPG start 
 21658   Commercial 2 start (End Scene X) 
 30377   Commercial 2 end (start Scene X+1) 
 51063   EPG End 
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Figure 146. ‘serie_eu_com_30min_ge1_ana’, a.k.a. serie_ge1. 

 

Table 76.Scene description for ‘serie_eu_com_30min_ge1_ana’. 

AV ScB 
Number 

AV ScB 
Frame 
Index 

Remarks A ScB 
Number 

A ScB 
Frame 
Index 

A ScB 
transition 
type 

AV ScB 
to A ScB  
[# shots] 

1 1431  1 1430 Sp/M Si -1 
2 3011  2 3010 Sp U M -1 
3 4747  3 4750 M Si +1 
4 17241 24 -- --   
5 19509  4 19540 M N Sp +1 
6 22131  5 22130 Si M -1 
7 24199  6 24200 M U +1 
8 26609  7 26610 Sp M +1 
9 27937 At 2 PSs 8 27937 Sp/M Sp 0 
10 29751 At 2 PSs 9 29750 N M -1 
11 31040  10 31040 Sp/M Sp 0 
Start / end of non-content sequences  
 32   EPG start 
 6825   End of Scene (X) - Commercial start 
 17258   Commercial end – Start of Scene 

(X+1) 
 33080   EPG end 

 

 

 

                                                 
24 Sc(X): fade-out to CB, Sc(X+1): fade-in after CB  (23 frames). 
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Figure 147. ‘serie_eu_com_30min_ge2_ana’, a.k.a. serie_ge2. 

 

Table 77.Scene description for ‘serie_eu_com_30min_ge2_ana’. 

AV ScB 
Number 

AV ScB 
Frame 
index 

Remarks A ScB 
Number 

A ScB 
Frame  
Index 

A ScB 
transition 
type 

AV ScB 
to A ScB  
[# shots] 

  1 3104 - 3154 Dissolve: 50 1 3140 M Si N 0 
2 5697  2 5734 M N +1 
3 8970 At 2 PSs 3 8969 M Sp +1 
4 11961  4 11984 M Sp +1 
5 14154 - 14241 Fade-out  

Fade-in: 87 
5 14230 M Si Sp 0 

6 17108  6 17200 M N  Sp +1 
7 20012 – 20130 Fade-out  

Fade-in: 113 
7 20110 M Si--<N 0 

8 24826  8 24861 M N 0 
9 29875  9 29875 N M 0 
10 32939 - 32991 Fade-out  

Fade-in: 52 
10 32970 M Si N 0 

11 35155 - 35195 Dissolve: 40 Sp (35078)  M  M/Sp (35195) 
12 38553  11 38625 M Sp +1 
13 42010 At 2 PSs 12 42040 M N +1 
14 45799  13 45805 M N +1 
15 50246  14 50280 M Sp +1 
16 53421 - 53516 Fade-out  

Fade-in: 95 
15 53491 M Si M 0 

17 57620  16 57650 M Sp +1 
Start / end of non-content sequences 
 2130 EPG 1start     
 30398 EPG 1 end     
 31920 EPG 2 start     
 61870 EPG 2 end     
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Figure 148. ‘serie_eu_pub_30min_gb_ana’, a.k.a. serie_gb. 

 

Table 78.Scene description for ‘serie_eu_pub_30min_gb_ana’. 

AV ScB 
Number 

AV ScB 
Frame 
index 

Remarks A ScB 
Number 

A ScB 
Frame  
index 

A ScB 
transition 
typ 

AV ScB to 
A ScB  
[# shots] 

   1 2089 M M  
   2 2439 M/N Sp  
1 6212  3 6230 Sp N +1 
2 7065 At 2 PSs 4 7065 N Sp +1 
3 8671  5 8647 Sp M -1 
4 9467 At 2 PSs 6 9467 Sp N 0 
   7 11122 Sp M  
5 12352  8 12380 M N -1 
6 13137  9 13137 N N 0 
   10 13863 Sp M  
   11 15045 M N  
7 15629  12 15629 N Sp 0 
8 16927  13 16927 N Sp 0 
9 19031  14 19031 N U 0 
   15 19539 Sp Sp  
   16 21700 Sp/M Sp  
10 22117  17 22117 Sp U 0 
   18 22581 M/Sp Sp  
11 23146  19 23146 Sp N 0 
   20 23637 Sp M  
   21 24217 M Sp  
12 25185  22 25185 N Sp 0 
   23 25870 N Sp  
13 26410  24 26409 N Sp -1 
14 27926  25 27926 N Sp 0 
   26 28467 U Sp  
   27 29502 Sp M/Cr  
15 30152  28 30180 M Sp +1 
16 31983  29 32000 U Sp +1 
   30 33338 Cr Sp  
17 34412  31 34412 N U 0 
18 35132  32 35132 N N 0 
19 35981  33 36000 N Sp +1 
   34 36695 N M  
Start / end of non-content sequences    
 1031  EPG start 
 37678  EPG end 
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7. ANNEX: Formulae for AV Jitter 
 
Here we present the development of the maximum likelihood test from Louis [37].  For the 

calculation of the maximum likelihood thresholds, i.e. the cross-over points of the following 

two probability functions 
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we applied the equation LScB= LNScB, which equals to LScB / LNScB =1. It can be rewritten 

(given an Guassian distribution) as 
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This equation can be further developed into 
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resulting in 
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8. ANNEX: Formulae for Shot Length 
 
For the calculation of the maximum likelihood thresholds, i.e. the cross-over points of the 

following two probability functions, as in Annex 7,  
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the equation LScB= LNScB, which equals to LScB / LNScB =1, can be rewritten as 
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Finally, this equation can be further developed into 
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9. ANNEX: MPEG-7 descriptors for Service Units 
 

In this Annex we specify the MPEG-7 compliant output of several of our service units of 

our analysis framework. 

 
MPEG-7 compliant output of service unit Cut Detector  

For reasons of interoperability we convert the output stream of the service unit shot 

boundary detector into an XML-based MPEG-7 format, as described in [150] and [151]. 

Abrupt transitions between shots, i.e. cuts, are represented in MPEG-7 as a Global 

Transition of Cut type, see Figure 149. MPEG-7 provides the Description Scheme (DS) 

‘Analytic Edited Video’ to describe video items with gradual and abrupt video editing 

effects. In the specific case of a shot decomposition, the DS ‘Analytic Editing Temporal 

Decomposition’ describes the segmentation in shots and transitions and DS ‘Global 

Transition’ the transition itself. The Descriptor (D) ‘Media Time’ and ‘Media RelIncr Time 

Point’ specifies the frame at which the transition starts, as shown underneath for the case 

of a cut instance. 

 

MPEG-7 compliant output of service unit Gradual Transition Detector 
An XML-based MPEG-7 compliant description example of a gradual transition had been 

sketched in Figure 149, using as defined by the standard Description Scheme 

GlobalTransition and Descriptors MediaTime (MediaRelIncTimePoint, MediaIncDuration) 

and EvolutionType (Name). 

 

 

Figure 149. XML-based MPEG-7 description of cut and gradual transition instances. 
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MPEG-7 compliant output of Audio Decoding Time Stamp 
Audio DTS represents the time instant to decode and display an audio segment. It is 

specified using basic MPEG-7 data types MediaTime, MediaRelIncrTimePointType, and 

mediaDurationType, assuming the notion of time encoded within the audio-visual 

sequence being described.    

 
MPEG-7 compliant output of Audio Silences 
Audio silence reflects the property of a segment that only sounds of intensity smaller than 

a defined threshold occur. The MPEG-7 compliant output is shown in Figure 150.   

 

MPEG-7 compliant output of Commercial Cut Silence Detection 
For the commercial cut silence detection we specified an Audio Descriptor of type 

CommercialBlockSilenceType, as shown in Figure 151.  

  

 

 

 

 

 

 

 

  

 

Figure 150. MPEG-7 compliant description of commercial block silences in the framework. 
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Figure 151.  MPEG-7 compliant description of commercial cut silence. 
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10. ANNEX: Manual post-annotation tool for Consumer 
Recording Devices (Application for AV Segmentation) 

The problem with statistical-analysis-based genre classifiers, such as commercial block 

detectors as described in 4.4 or EPG content boundaries, are their long decision window 

resulting in a time-wise imprecision at the boundaries. Consequently, this leads to 

untimely start and end of e.g. commercial block detections degrading the reliability of the 

detector and consequently, to displeaseness at the consumer side. Today’s analysis 

methods can offer only limited accuracy and therefore easy-to-use and intuitive manual 

post-annotation tools are a viable offer to the consumer to solve the problem. 

 

Manual Post-Annotation Tool 

Fortunately, the offset of the automatically detected e.g. CB boundaries is in the range of 

few shots. Consequently, it is possible to implement an easy-to-use and intuitive manual 

post-annotation tool to shift time-wise dislocated boundaries to their appropriate position. 

The tool becomes feasible due to the simultaneous availability of a shot-, see section 0, 

and a scene boundary detector, as described in 4.6. 

To start the procedure the viewer has to inform the system, e.g. HDD recorder, that he 

would like to readjust the boundaries of the automatic segmentation. 

To understand the principle some examples will be given. In the first example the CBD 

identifies position ‘A’ as the end of the CB, as shown in Figure 152 and Figure 153. The 

real CB ends at the end of scene 1 (Sc 1), visualized in grey. As sketched in Figure 152, 

the Graphical User Interface (GUI) enables the user to relocate the boundary with minimal 

effort. The initial GUI (left rectangular) plays-back the video sequence in its main screen 

starting from instance ‘A’. The upper-left Picture-in-Picture (PiP) displays scene 2 (Sc 2) 

and the upper-right PiP scene 3 (Sc 3). The user sees that scene 2 and sequence ‘A’ are 

both non-commercial content. Therefore, after pressing the ‘backwards button’ the GUI 

adapts (right GUI) and the upper-right PiP plays-back the last part of the CB. This 

provides the viewer with the confirmation that he/she retrieved the exact end instance of 

the CB, i.e. here sh1, and he /she freezes the new boundary by pressing the ‘confirm’ 

button. 

 

Figure 152. Example sequence ‘A’. 



  
285 J. Nesvadba 

 

Figure 153. Scenes and shots for manual post-annotation1. 

 

Figure 154 –GUI of Figure 152 for sequence A with scenes and shots of Figure 1531. 

 

In the next example the CBD defines instance ‘B’ as the end of the CB, as shown in 

Figure 155. The initial GUI (left GUI) displays the video sequence starting from ‘B’ in the 

main field and scene 3 and 4 in the two upper PiPs. Because all three are non-CB 

contents the user will press the ‘backwards’ button. The resulting GUI will play-back scene 

3 in the main window, scene 2 in the upper-left PiP and shot 6 (Sh 6) in the upper-right 

PiP. Due to the fact that all windows display non-CB content the user will press once more 

the ‘backwards’ button. In this case the main window will display scene 2, the upper-left 

PiP scene 1 and the other shot 3. Consequently the user will press the ‘confirm’ button to 

freeze the new CB boundary between shot 1/2. 

    

Figure 155. Example sequence ‘B’. 

 

Figure 156. – Example GUI for sequence B as shown in Figure 1551. 
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Unfortunately, the current scene boundary detector has not reached 100% reliability and, 

therefore, misses sometimes a scene boundary ScB. The following example explains the 

situation in such a case. In the main window of the GUI, see Figure 157, the detected CB 

end, here from instance ‘C’ onwards, is displayed. The viewer doubts that instance ‘C’ is 

the real start of the non-CB content. Therefore, he/she presses the ‘backwards’ button 

and the GUI (central) displays scene 0 and 1 (PiP), both containing CB content. 

Consequently, he/she presses the ‘forward’ button and the system automatically switches 

from scene level to shot level. Trough this GUI (right one) the viewer gets the confirmation 

that he found the CB end and freezes the instance between shot 1 and 2. 

 

Figure 157. Example sequence ‘C’. 

 

 

Figure 158. – Example GUI for sequence C as shown in Figure 1571. 

The following examples will deal with the situation that the CB end is detected to early, as 

shown in Figure 159. In this case the initial GUI (left one) will display with the D-sequence 

CB content. Naturally, the viewer will press the ‘forward’ button and will see that in scene 

2 already non-CB content is displayed. Consequently he/she will press the ‘confirm’ button 

to relocate the CB end instance to the end of scene 1. 

 

Figure 159. Example sequence ‘D’. 



  
287 J. Nesvadba 

 

Figure 160. – Example GUI for sequence ‘D’ as shown in Figure 1591. 

In the next example the CB end is again identified to early (Figure 161). The viewer sees 

in the initial GUI (left one) only CB contents in all windows. Consequently, he/she will 

press the ‘forward’ button and sees CB-containing scene 1 in the main window. Therefore, 

he/she will press again the ‘forward’ button resulting in a GUI playing-back scene 2 (as 

shown in right GUI). This confirms the viewer that he/she found the CB end between shot 

1and 2, which, subsequently, will be confirmed. 

 

Figure 161. Example sequence ‘E’. 

 

Figure 162. – Example GUI for sequence ‘D’ as shown in Figure 1611. 

 

In the last example the CB end is detected to early and a scene boundary ScB has been 

missed. The initial GUI (left GUI in Figure 163) displays with the F-sequence CB content, 

therefore, the viewer will press the ‘forward’ button. In the resulting GUI (second one) will 

display scene 2, shot 4 and scene 3, all non-CB content. Subsequently, the viewer will 

press the ‘backwards’ button, which will initiate the shift from scene level to shot level. 

This will result in the third GUI playing-back shot 3, 4 and 5 all of them non-CB 

sequences. Another ‘backward’ will result in a GUI displaying shot 2, 3 and 4. After the 

final ‘backward’ shot 1, 2 and 3 will be displayed providing the viewer with the confirmation 

that he/she retrieved the correct CB end, so he can freeze the instance finally.       
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Figure 163.  Example sequence ‘E’. 

 

Figure 164. – Example GUI for sequence ‘D’ as shown in Figure 1631. 

 

Applications 
The presented user interface solution based on available shot and scene boundary 

detection algorithms enables the realization of an easy-to-use and intuitive manual 

annotation tool to relocate improper e.g. commercial block boundaries. The solution can 

be used not only for commercial blocks, but also for EPG boundaries, an application to 

position fuzzy DVB-SI-originated EPG content item boundaries correctly. Furthermore, 

this solution can be used to relocate boundaries of any inaccurate classification system.  
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11. ANNEX: Abbreviations 
 

AAC  Advanced Audio Coding 

AC-3  aka Dolby Digital, Audio compression by Dolby Labs 

API  Application Programming Interface 

AV  AudioVisual 

B-frame Bi-directional (coded) frame  

BD  Blu-ray Disc 

CB  Commercial Block 

CBD  Commercial Block Detector 

CBIR   Content Based Image Retrieval 

CBR  Constant Bit Rate 

CD  Compact Disk 

CDDB  CD Database 

CE  Consumer Electronics 

CIB  Content Item Boundary 

CIBD  Content Item Boundary Detector 

CPI  Characteristic Point Information 

CPU  Central Processing Unit 

CVBR  Constraint Variable Bit Rate 

DAB  Digital Audio Broadcast 

DCT  Discrete Cosine Transformation 

DSP  Digital Signal Processor 

DTS  Decoding Time Stamp 

DVB  Digital Video Broadcast 

DVB-SI  DVB Service Information 

DVD  Digital Versatile Disk 

EPG  Electronic Program Guide 

GOP  Group Of Pictures 

HD  High Definition 

HDD  Hard Disk Device 

HDTV  High Definition TeleVision 

I2S  Inter IC Sound 

I-frame  Intra-(coded)-frame 

IPG  Internet Program Guide 

ISBN  International Standard Book Number 
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JPEG  Joint Photographic Experts Group 

MAD   Mean Absolute Difference 

MB  MacroBlock 

MBP  MacroBlock Processor 

MFCC  Mel-Frequency Cepstral Coefficient 

MIPS  RISC CPU 

MPEG  Motion Picture Expert Group 

NTSC  National Television System(s) Committee 

ppm  Portable Pixel Map 

png  Portable Network Graphics 

P-frame Predicted-(coded)-frame   

PAL  Phase Alternating Line 

PC  Personal Computer  

PCI  Peripheral Component Interface 

RAM  Random Access Memory 

RDF  Resource Description Framework 

ROM  Read Only Memory 

ScB  Scene Boundary 

ScBD  Scene Boundary Detector 

SB  Shot Boundary 

SBD  Shot Boundary Detector 

SD  Standard Definition (= resolution, e.g. 720*576) 

SIF  Standard Interchange Format (=resolution, e.g. 352*288) 

SSA  Solid State Audio 

STB   Set Top Boxe 

STPS  Short time power spectrum 

TM  TriMedia 

TOC  Table Of Contents 

UI  User Interface 

URL  Uniform Resource Locator  

VBR  Variable Bit Rate 
VCOMP Video COMPressor 

VFEND Video FrontEND module 

WMA  Windows Media Audio 

XML  eXtensible Markup Language  
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Segmentation Sémantique des Contenus Audio-Visuels 
 

 

Résumé:  

Dans ce travail, nous avons mis au point une méthode de segmentation des contenus audiovisuels 

applicable aux appareils de stockage domestiques pour cela nous avons expérimenté un système distribué 

pour l’analyse du contenu composé de modules individuels d’analyse : les Service Unit. L’un d’entre eux a 

été dédié à la caractérisation des éléments hors contenu, i.e. les publicités, et offre de bonnes 

performances. Parallèlement, nous avons testé différents détecteurs de changement de plans afin de 

retenir le meilleur d’entre eux pour la suite. Puis, nous avons proposé une étude des règles de production 

des films, i.e. grammaire de films, qui a permis de définir les séquences de Parallel Shot. Nous avons, 

ainsi, testé quatre méthodes de regroupement basées similarité afin de retenir la meilleure d’entre elles 

pour la suite.  Finalement, nous avons recherché différentes méthodes de détection des frontières de 

scènes et avons obtenu les meilleurs résultats en combinant une méthode basée couleur avec un critère de 

longueur de plan. Ce dernier offre des performances justifiant son intégration dans les appareils de 

stockage grand public. 
 

Discipline: Informatique 
 

Mots-clés: indexation multimédia, segmentation temporelle des flux multimédias, classification 

multimédias, analyse des contenus audiovisuels numériques, analyse sémantique des scènes 

 
Semantic Segmentation of Audiovisual Content 

 
 

Abstract:  

In this work we elaborated a method for semantic segmentation of audiovisual content applicable for 

consumer electronics storage devices. For the specific solution we researched first a service-oriented 

distributed multimedia content analysis framework composed of individual content analysis modules, i.e. 

Service Units. One of the latter was dedicated to identify non-content related inserts, i.e. commercials 

blocks, which reached high performance results. In a subsequent step we researched and benchmarked 

various Shot Boundary Detectors and implement the best performing one as Service Unit. Here after, our 

study of production rules, i.e. film grammar, provided insights of Parallel Shot sequences, i.e. Cross-

Cuttings and Shot-Reverse-Shots. We researched and benchmarked four similarity-based clustering 

methods, two colour- and two feature-point-based ones, in order to retain the best one for our final solution. 

Finally, we researched several audiovisual Scene Boundary Detector methods and achieved best results 

combining a colour-based method with a shot length based criteria. This Scene Boundary Detector 

identified semantic scene boundaries with a robustness of 66% for movies and 80% for series, which 

proofed to be sufficient for our envisioned application Advanced Content Navigation.    
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