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Concerning a Decision-Diagram-Based Solution to
the Generalized Directed Rural Postman Problem

Renzo Roel P. Tan∗, Jun Kawahara, Kazushi Ikeda, Agnes D. Garciano, and Kyle Stephen S. See

Abstract—Decision-diagram-based solutions for discrete op-
timization have been persistently studied. Among these is
the use of the zero-suppressed binary decision diagram, a
compact graph-based representation for a specified family of
sets. Such a diagram may work out combinatorial problems by
efficient enumeration. In brief, an extension to the frontier-
based search approach for zero-suppressed binary decision
diagram construction is proposed. The modification allows for
the inclusion of a class-determined constraint in formulation.
Variations of the generalized directed rural postman problem,
proven to be nondeterministic polynomial-time hard, are solved
on some rapid transit systems as illustration. Lastly, results are
juxtaposed against standard integer programming in establish-
ing the relative superiority of the new technique.

Index Terms—enumeration algorithm, frontier-based search,
generalized directed rural postman, subgraph optimization,
zero-suppressed binary decision diagram.

I. INTRODUCTION

THE zero-suppressed binary decision diagram is a com-
pressed data structure capable of storing families of

sets [1]. Due to the recursive structure of representation,
mathematical operations on families may be carried out
comfortably [2]. The intersection and union, for instance, are
swiftly calculated using the diagram. That being the case,
feasible solutions to discrete optimization problems may
be economically kept in a zero-suppressed binary decision
diagram [3]. The number of feasible solutions, the optimal
solutions, the mean and variance of solutions, and other
statistics may be extracted without difficulty [2].

In combinatorial optimization over graphs, a zero-
suppressed binary decision diagram may correspond to a
collection of subgraphs [2]. The edge sets that make up each
subgraph differentiate the elements in the collection. It is thus
understood on this account that the nodes in the diagram are
consistent with the edges and not the vertices of the graph.
Should the items from the subsets in Figure 1a stand for the
edges of the graph in Figure 1b, the elements of the zero-
suppressed binary decision diagram in Figure 1c would be
the paths shown in Figure 1d.

Regarding diagram construction, a fundamental approach
is the frontier-based search [4]. The algorithm inputs the
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(a) A family of sets. (b) A fixed graph.

(c) The diagram. (d) Some paths.

Fig. 1: Representing a collection of subgraphs.

needed information to the nodes as they are being generated.
As a consequence, requirements for the stored subgraphs are
set in conformity with the given problem. The practicality
of the zero-suppressed binary decision diagram has been
growing. Domains such as architectural planning [5], disaster
preparedness [6], grid power loss minimization [7], and route
finding [8] present diverse applications.

Concisely, the study augments the frontier-based search
for zero-suppressed binary decision diagram construction.
The resulting algorithm accommodates additional constraints
during computation. By the advanced routine, the generalized
directed rural postman problem and its reverse are simulta-
neously solved for several transit networks. To justify the
effectiveness of the method, numerical assessment is done
in conclusion to the analysis.

An outline of the paper is as follows. A summary of
the zero-suppressed binary decision diagram, the frontier-
based search, and the generalized directed rural postman is
provided in the second section. The third section lays out
the methodology for investigation. Experiment results and
reports on computational efficiency are in the fourth section.
The fifth section emphasizes the contribution of the research
and suggests directions for subsequent work.

II. PRELIMINARIES

A. Zero-Suppressed Binary Decision Diagram

The subsection mainly follows the progression in [8]. A
formal definition for the zero-suppressed binary decision
diagram is below [1].
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Definition 1 (Zero-Suppressed Binary Decision Diagram).
Let U =

{
x1, x2, . . . , x|U |

}
be a finite universe with ordered

elements. For xk ∈ U , xi < xj if and only if i < j. A
zero-suppressed binary decision diagram is a labeled directed
acyclic graph satisfying the properties listed infra.

1) The root is the only node with indegree 0.
2) There are exactly two nodes with outdegree 0 called

the 0-terminal and 1-terminal.
3) Each nonterminal node has exactly two outgoing arcs

labeled by 0 and 1 and these are called the 0-arc and
1-arc, respectively.

4) For j ∈ {0, 1}, the destination node of the j-arc of a
node n is called the j-child of n.

5) Each nonterminal node is labeled by an element of U .
6) The label of a nonterminal node is strictly smaller than

those of its children.

Building on the definition, a zero-suppressed binary de-
cision diagram represents a family F of subsets from U .
More specifically, a path P from node n to n′ in a diagram
corresponds to a subset U ′ ⊆ U if and only if for all x ∈ U ′,
there exists a node n′′ labeled with x whose 1-arc is in P
[9]. A subset U ′ ⊆ U is an element of F if and only if there
is a path from the root node to the 1-terminal to which U ′

corresponds [9]. One proceeds to a helpful theorem [1].

Theorem 1. Let D be a zero-suppressed binary decision
diagram corresponding to family F with root node e. The
root is either terminal or nonterminal.

1) If e is the 0-terminal then F = ∅, the empty family.
2) If e is the 1-terminal then F = {∅}, the family

containing only the empty set.
3) If e is nonterminal then the root node of D has two

children. Let e0 be the 0-child and e1 be the 1-child.
Denote the family with diagram rooted at ei by Fi. The
family F may be written as F0 ∪

(⋃
x∈F1

x ∪ {e}
)
.

To reiterate, connected to e by the 0-arc are the sets in F
that do not contain e. In symbols, F0 = {x | x ∈ F , e /∈ x}.
The sets in F that do contain e are connected through the
1-arc, meaning F1 = {x \ {e} | x ∈ F , e ∈ x}.

The existence and uniqueness of a reduced zero-
suppressed binary decision diagram with the fewest nodes
is guaranteed for a given F [1]. Reduction in linear time
with respect to the number of nodes is possible through an
algorithm found in [2].

Remark 1. A zero-suppressed binary decision diagram is
defined to be reduced whenever:
• There are no distinct nodes that have the same label,

0-child, and 1-child; and
• There is no node whose 1-child is the 0-terminal.

As the diagram is inherently recursive, it is suited for
family algebra [1]. Operations on two families such as the
intersection and union are easily computed in time propor-
tional to the product of the number of nodes in each of
the concerned diagrams [2]. Explicitly, let |D| denote the
number of nodes in a diagram D. The time complexity of the
intersection of two diagrams D1 and D2 is O (|D1| · |D2|);
it is the same with the union.

In the context of combinatorial optimization, a diagram
may contain sets pertinent to a particular setup. For a diagram

Fig. 2: The zero-suppressed binary decision diagram for the
combination problem with n = 5 and k = 3. The 0-terminal
and the arcs pointing to it are omitted.

D1, the solutions with maximum or minimum weight and the
total number of solutions may be conveniently acquired with
O (|D1|) complexity. The enumeration of feasible solutions
takes time proportional to the number of solutions times the
number of variables in D1.

Matters relevant to application and interpretation are tack-
led in the succeeding examples. Common problems in com-
binatorics are used as setting to explain the utility of the
zero-suppressed binary decision diagram.

Example 1 (The Combination Problem). Resolving ways
in which k objects may be chosen from n distinct objects
regardless of order is known as the combination problem.
A single zero-suppressed binary decision diagram may rep-
resent the family of k-element subsets from a universe of
cardinality n. Figure 2 holds all ways to select exactly 3
items from a set of 5 items.

In the diagram, all nodes are labeled by a variable number
corresponding to an item and a node identification number
for reference. A 1-arc is represented by a solid line and a
0-arc is represented by a dashed line. The former and latter
correspond to the item being present or not, respectively. Any
traversal from the root node to the 1-terminal with symbol
> through a path formed by 1-arcs and 0-arcs is a 3-subset
of the 5-element universe.

Example 2 (The Knapsack Problem). A familiar combi-
natorial problem is the knapsack problem. Given a set of
individually weighted and valued items, the goal is to identify
which subset would have the maximum value while having
a total weight not exceeding the prescribed weight. The
decision-diagram-based solution approaches this formulation
by first determining the subsets that satisfy the weight
constraint. For n = 5 different items with assigned weight
tuple w = (12, 7, 11, 8, 9) and weight constraint W = 26,
the rotated diagram is in Figure 3. Upon the incorporation
of the value tuple g = (24, 13, 23, 15, 16) into the problem,
computing for the set with maximum total value and with
weight not exceeding the limit is straightforward. The set
formed by taking the second, third, and fourth items with
total weight 26 has the maximum value of 51. The selection
is consistent with the source text for the sample knapsack
problem conditions [10].
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Fig. 3: The zero-suppressed binary decision diagram for the
specified knapsack problem.

Fig. 4: The zero-suppressed binary decision diagram for the
intersection of the combination and knapsack diagrams.

Furthermore, there would be no complications should one
frame a version of the knapsack problem and impose the
restriction that precisely 3 items may be carried. Noticeably,
the formulation simply puts together the constraints for the
combination and knapsack problems. Solving the problem is
tantamount to taking the intersection of the two diagrams
previously produced. Figure 4 shows the zero-suppressed
binary decision diagram. It is discovered that only two 3-item
subsets have total weight less than or equal to 26; there are
only two paths from the root node to the 1-terminal. Among
the two, one proves to be the optimal solution mentioned in
the previous paragraph.

B. Frontier-Based Search

An algorithm for constructing a zero-suppressed binary
decision diagram representing a defined set of subgraphs
from a given graph is the frontier-based search. Through
the aforementioned process, diagrams for subgraphs that are
paths, trees, matchings, and others may be generated. The
construction of the zero-suppressed binary decision diagram
in a graph-theoretic setting is condensed consistent with
that of [8]. Appropriately, one pays special attention to path
representation. Refer to [4] for a complete discussion.

Consider G = (V,E), an undirected edge-weighted graph
with vertex set V and edge set E = {e1, e2, . . . , em}. The
set of edges E is a collection of 2-element subsets of V , each
of which corresponds to a unique edge in G. Equivalently,
an edge e ∈ E is written as {v, w}, where v, w ∈ V . The
graph G is also assumed to be simple and connected.

Further, a subgraph of G is defined as (V ′, E′) with V ′ =⋃
e∈E′ e for E′ ⊆ E. The union

⋃i
j=1 ej is the set of vertices

to which at least one of e1, e2, . . . , ei is incident. This means
that a subgraph has no vertex with degree 0; in general, an
edge set determines the subgraph. The set E with ordered
elements e1 < e2 < · · · < em is the universe of the zero-
suppressed binary decision diagram.

As the algorithm begins, the root node is labeled as e1. The
breadth-first construction advances and creates nodes ei+1

after all nodes ei have been generated for i = 1, 2, . . . ,m−1.
The arcs of the nonterminal nodes ei are ensured to point
at nodes labeled ei+1, the 0-terminal, or the 1-terminal.
Concurrently, an array n.deg mapping a particular subset
of V to the set of natural numbers is stored into every node
n. If n.deg is equal to n′.deg for two nodes n and n′

then the two nodes are merged. Node sharing is the term
coined for such a circumstance [4]. A subgraph with vertex
degrees specified by n.deg corresponds to a path from the
root node to n.

Let ei be the edge of largest index among all edges inci-
dent to a vertex v. After ei is processed, deg[v] is no longer
referred to since the degree of v is independent of edges
ei+1, ei+2, . . . , em. The node v is then tagged as fixed [4].
The ith frontier is defined as Fi =

(⋃i
j=1 ej

)
∩
(⋃m

j=i+1 ej

)
for i = 1, 2, . . . ,m − 1 and F0 = Fm = ∅ [4]. For node n
with label ei, n.deg[v] is stored into the node if and only
if v ∈ Fi−1. Should there be violations in the degree condi-
tions, pruning using the array deg is done [4]. Through node
sharing and pruning, the zero-suppressed binary decision
diagram representing subgraphs of a prescribed type may be
constructed; notwithstanding, more information than what is
in n.deg may be required for other kinds of subgraphs.

C. Generalized Directed Rural Postman

The definition of a path in graph theory is first delved into.
It is essential in problem formulation.

Definition 2 (Path). Given a graph, a path is a sequence
of edges y1, y2, . . . , yp where yi = {vi−1, vi} for i =
1, 2, . . . , p with vertex vi 6= vj if i 6= j.

The question of finding the shortest journey in a metro
network that uses each line at least once may be formulated
as a known problem in operations research, the generalized
directed rural postman [11]. The problem, along with the
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Chinese postman [12] and the rural postman [13] problems,
falls under the field of arc routing, which focuses on arc or
edge properties rather than node features [14]. A definition
derived from [15] follows.

Problem 1 (Generalized Directed Rural Postman). Given a
set of weights W , a set of colors C, a graph G = (V,E),
an edge-weighting function w : E → W , and a coloring
function c : E → C, find path E′ such that

∑
e∈E′ w(e) is

minimum and
⋃

e∈E′{c(e)} = C.

The generalized directed rural postman problem is nonde-
terministic polynomial-time hard [14]. Accordingly, another
nondeterministic polynomial-time hard problem is the re-
verse [16]. By seeking the maximum instead of the minimum
weight, the problem is distinctively named the crazy general-
ized directed rural postman. Both the original and the reverse
problems are hired by the study to further demonstrate the
efficiency and effectiveness of the technique.

Problem 2 (Crazy Generalized Directed Rural Postman).
Given a set of weights W , a set of colors C, a graph
G = (V,E), an edge-weighting function w : E → W ,
and a coloring function c : E → C, find path E′ such that∑

e∈E′ w(e) is maximum and
⋃

e∈E′{c(e)} = C.

As an aside, an exact algorithm for solving the original
problem is introduced in [15]. Given in [17] are improve-
ments through a branch-and-cut solution. A more recent
study is [11], providing a clever workaround for finding the
optimal solution in reasonable time.

The constraints for the generalized directed rural postman
problem and the crazy generalized directed rural postman
problem may be relaxed in cases where no solutions are
found. In lieu of paths, one may search for trails.

Definition 3 (Trail). Given a graph, a trail is a sequence
of edges y1, y2, . . . , yp where yi = {vi−1, vi} for i =
1, 2, . . . , p with edge yi 6= yj if i 6= j.

In a weighted graph, a minimal path is a path of minimum
weight; a path of maximum weight is called a maximal path.
Consistently, a trail of minimum weight is a minimal trail and
a trail of maximum weight is a maximal trail.

III. METHODOLOGY

The proposed method was implemented in the C++ pro-
gramming language aided by TdZdd1, an existing library
for diagram manipulation documented in [18] and [19]. The
ZDDLines2 repository, utilized in [8], served as basis for the
program. In addition, the entirety of the code is committed
to the GDRPDD3 project.

Version 9.3.0 of g++ is used as compiler. Machine spec-
ifications include the Ubuntu 18.04.4 Long Term Support
(Bionic Beaver) operating system, the Intel® CoreTM i7-
8565U processor at 1.80GHz, the NVIDIA® GeForce®

MX250 graphics card, and a memory of 16GB.

1https://github.com/kunisura/TdZdd
2https://github.com/renzopereztan/ZDDLines
3https://github.com/renzopereztan/GDRPDD

A. Data Preprocessing
A sample grid and chosen metro networks of increasing

size are encoded. The first four rows of the text data for the
sample network is shown as example.

1 2 100 1
2 3 100 1
3 4 100 1
4 5 100 1

Each row represents an edge and its properties. The first
two numbers are the start and end vertices that define the
edge. The weight of the edge, typically measured in units of
distance or time, is given by the third number. The fourth
number specifies the category of which the edge is part; in
the case of a metro, this would be the line by which the
edge is labeled or to which the two linked stations belong.
Coordinate data for all station positions are also gathered for
the purpose of visualization.

B. Algorithm Implementation
For each vertex pair (s, t) in the network, the following

steps are done. First, the diagram for all paths from s to t
is created. The task is accomplished through designating a
degree constraint using the frontier-based search. For vertices
s and t, a vertex degree of 1 is set. The remaining vertices are
forced to be of degree 2 or 0 depending on the involvement
in s-t path generation. This guarantees subgraphs included
in the diagram to be paths. For trails, the limitation is eased
to accept even degrees greater than 2.

The requirement of having to use each metro line at
least once is then addressed. The Lines class summarizing
the approach in generating the diagram that satisfies the
said restriction is seen in Appendix A. Nodes in a level in
the zero-suppressed binary decision diagram created by the
Lines class collectively correspond to an edge in the graph.
Stored in every node is a bitmask indicating the line usage
of the subgraph represented by a traversal from the root to
the node. As the diagram is constructed from top to bottom,
the states of the nodes are updated depending on the line
information coming from the designated edge.

For a problem with color set C = {c1, c2, . . . , c|C|}, edge
set E = {e1, e2, . . . , em}, and coloring function c : E → C,
the bitmask is set to be of |C| bits. Each bit ties in with the
elements of C in order, implying that the kth bit indicates
whether the color ck is covered or not. The root node has a
bitmask state with all bits being 0. For a node ei, the 0-child
retains state and the state of the 1-child is revised, flipping
the bit designating c(ei) to 1 if it is 0. This happens routinely
as one descends. A path from the root node ends in the 1-
terminal if the resulting mask contains no bits with value 0,
signifying all lines being utilized.

The intersection of the s-t path zero-suppressed binary de-
cision diagram and the constraint diagram is taken afterward.
The final step is to obtain the overall optimal paths for the
graph. Attached as Appendices B and C are the MinDist
and MaxDist classes based on [2] utilized to produce the
paths with minimum and maximum weight.

IV. EXPERIMENTS

The results are discussed in two parts. The outcome of the
implementation based on the zero-suppressed binary decision
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Fig. 5: A solution to the original problem for the sample
grid.

Fig. 6: A solution to the reverse problem for the sample grid.

diagram is in the first subsection. This is further segmented
into the sample grid setting and the metro context. The
second subsection replicates a standing method in literature
for comparison. An integer linear program for the generalized
directed rural postman problem is examined.

A. Decision-Diagram-Based Approach

The simple graph consists of 22 vertices and 33 edges in a
mesh-like pattern. All edge weights are set to be 100 units.
The 9 lines are determined by the vertical and horizontal
lines that cut through the grid.

The generalized directed rural postman problem and its
reverse are solved in 56.96 seconds. The recorded time
includes the enumeration of all paths in the network that
satisfy the category-based constraint and the extraction of
the paths that have the minimum and maximum cumulative
weights. Note that through the approach, even the solutions
with the second smallest weight, the third largest weight, and
so on, are known and may easily be recalled.

There are 2 unique solutions of total weight 900 units
found for the minimum. Figure 5 shows one of them. A
total of 19 different paths exist for the maximum. A solution
with the maximum weight of 2100 units is seen in Figure 6.

1) The Hong Kong Metro: Composed of 98 vertices and
108 edges is the Hong Kong Mass Transit Railway, referred
to in the paper as the Hong Kong Metro4. The network has
10 lines identified in Appendix E. For the purposes of the
study, an edge is weighted one step. For every additional
edge, the cost of the journey would increase by one step.

An out-turn of no solution was reached in 1010.67 sec-
onds. No path that uses each line at least once exists for the
metro. In response, relaxation is done. Trails of minimum
and maximum weight that pass through all lines are sought.
This problem-solving detour yields added complexity, hence
the running time of 1172.33 seconds.

There are two minimal solutions. A trail with the minimum
35 steps is in Figure 7 and Table I. Two solutions of 56 steps

4https://en.wikipedia.org/wiki/MTR

Fig. 7: A solution to the relaxed original problem for the
Hong Kong Metro.

TABLE I: The Shortest Journey for the Hong Kong Metro

Move Initial Station Terminal Station Line

1 Ocean Park Admiralty SI

2 Admiralty North Point I

3 North Point Yau Tong TKO

4 Yau Tong Prince Edward KT

5 Prince Edward Lai King TW

6 Lai King Tsing Yi TC

7 Tsing Yi Kowloon AE

8 Kowloon Nam Cheong TC

9 Nam Cheong Hung Hom WR

10 Hung Hom Tai Wai ER

11 Tai Wai Che Kung Temple TM

Fig. 8: A solution to the relaxed reverse problem for the
Hong Kong Metro.

are maximal. Notice in Figure 8 that the algorithm forces
itself to extend the trail in producing the maximum. Pairs
of edges that are incident to the same vertices but are on
different lines are likely to be taken as part of the trail.

2) The Osaka Metro: The Osaka Metro5 is chosen for
the second experiment. Previous studies [8] have used the
same network to find solutions to a constrained version of
the simpler s-t path problem. The metro has 107 vertices
and 125 edges, a larger network compared to the Hong Kong

5https://en.wikipedia.org/wiki/Osaka Metro
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Fig. 9: The solution to the original problem for the Osaka
Metro.

TABLE II: The Shortest Journey for the Osaka Metro

Move Initial Station Terminal Station Line

1 Hirabayashi Suminoekoen P

2 Suminoekoen Daikokucho Y

3 Daikokucho Namba M

4 Namba Nippombashi S

5 Nippombashi Nagahoribashi K

6 Nagahoribashi Tanimachi 6-Chome N

7 Tanimachi 6-Chome Tanimachi 4-Chome T

8 Tanimachi 4-Chome Midoribashi C

9 Midoribashi Shigino I

Fig. 10: A solution to the reverse problem for the Osaka
Metro.

system. The edge weights are the distances between stations
given in kilometers. The 9 lines are in Appendix F.

The time taken for the simultaneous solution of the two
problems is 938.89 seconds. Interestingly, there is only one
solution for the minimum. The path presented in Figure 9 and
Table II with distance 16.2 kilometers is the optimal solution.
For the crazy generalized directed rural postman problem, a
maximum distance of 77.2 kilometers is registered. There are
30 ways to complete the journey as in Figure 10.

Fig. 11: A solution to the original problem for the Taipei
Metro.

TABLE III: The Shortest Journey for the Taipei Metro

Move Initial Station Terminal Station Line

1 Xing Fu New Taipei Industrial Park Y

2 New Taipei Industrial Park Taipei Main P

3 Taipei Main Zhongshan R

4 Zhongshan Songjiang Nanjing G

5 Songjiang Nanjing Zhongxiao Xinsheng O

6 Zhongxiao Xinsheng Zhongxiao Fuxing BL

7 Zhongxiao Fuxing Daan BR

Fig. 12: A solution to the reverse problem for the Taipei
Metro.

3) The Taipei Metro: The Taipei Metro6, also known as
the Taipei Mass Rapid Transit, comprises 136 vertices and
149 edges. One includes the Airport Line and considers 7
lines total listed in Appendix G for the network. The edges
are simply weighted in units of steps.

The solution on the metro results in a computation time of
2176.70 seconds. The minimum of 8 steps and maximum of
90 steps each share two solutions. For the original problem,
a solution is seen in Figure 11 and Table III; a solution for
the reverse problem is in Figure 12.

6https://en.wikipedia.org/wiki/Taipei Metro
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B. Mathematical Programming

One pays particular attention to the generalized directed
rural postman problem. Solving the crazy variant entails a
similar strategy. The problem is posed as an integer program
with linear constraints. A formulation motivated by [11] and
[20] is employed.

Program 1 (Linear Program for the Generalized Directed
Rural Postman Problem). Minimize∑

(u,v,l)∈A xu,v,l

subject to∑
(u,v,l)∈A xu,v,l,∑
(u,v,l)∈A xu,v,l =

∑
(v,w,l)∈A xv,w,l ∀v ∈ V \ {s, t},∑

(s,v,l)∈A xs,v,l =
∑

(u,t,l)∈A xu,t,l = 1,∑
(u,v,l)∈A xu,v,l ≥ 1 ∀l ∈ C,

|V | · xu,v,l ≥ fu,v,l ∀ (u, v, l) ∈ A,∑
(u,v,l)∈A fu,v,l −

∑
(v,w,l)∈A fv,w,l ≥ y0 ∀v ∈ V \ {s},∑

(u,v,l)∈A xu,v,l −
∑

(v,w,l)∈A xv,w,l ≤ yv ∀v ∈ V,

xu,v,l ∈ {0, 1} ∀ (u, v, l) ∈ A,

fu,v,l ∈ N ∀ (u, v, l) ∈ A, and
yv ∈ N ∀v ∈ V.

For each edge connecting vertices u and v on line l, a
binary variable xu,v,l is assigned. Instinctively, the sum of
the variables is to be minimized. A virtual source s and a
virtual target t, both of which are connected to every vertex in
the station, are added to overcome the crux of having to solve
the program for each possible vertex pair. One may consult
[11] and [21] for a thorough explanation of the constraints
and some possible refinements.

Upon completing the integer programming experiment, the
correctness of the solutions attained by the decision-diagram-
based algorithm is confirmed. From the optimal solutions to
the number of solutions, results from both methods match.
A complete iteration for a network, however, took several
hours. It is important to note that this is primarily because
of the need for solving the model multiple times to get the
number of solutions that give minimum.

V. CONCLUSION

The paper has put forth a novel solution to the known
generalized directed rural postman problem and the uncon-
ventional crazy generalized directed rural postman problem.
The two nondeterministic polynomial-time hard problems
were simultaneously solved by the decision-diagram-based
procedure in minutes while a traditional integer program
analogue consumed several hours on each problem. More-
over, the capacity for enumerating feasible solutions and the
flexibility in adjustment further the relative superiority of the
zero-suppressed binary decision diagram.

With regard to future work, the parallelization of the
algorithm is recommended. The distribution of the vertex
pairs may return a smaller computation time. To close, new
applications for the zero-suppressed binary decision diagram
and the frontier-based search are to be explored.

APPENDIX A
CODE FOR THE LINE CONSTRAINT

class Lines: public tdzdd::DdSpec<Lines, int, 2> {
public:

Lines(){}
int getRoot(int& state)
const{
state = 0;
return n;}

int getChild(int& state, int level, int value)
const{

if(value == 1) state |= (1<<l[n-level]);
level--;

if(level == 0){
if(state == ((1<<L)-1)<<1){

return -1;
}else{

return 0;
}

}
return level;

}
};

APPENDIX B
CODE FOR EXTRACTING THE MINIMUM

class MinDist: public tdzdd::DdEval<MinDist,DistData> {
public:

MinDist(){}
void evalTerminal(DistData& data, bool one)
const {

data.val = one ? 0 : 100000;}
void evalNode(DistData& data, int level,
tdzdd::DdValues<DistData,2> const& values)
const {

const DistData& data0 = values.get(0);
const DistData& data1 = values.get(1);
if(data0.val <= data1.val + d[n-level]){

data.val = data0.val;
data.mask = data0.mask;

}else{
data.val = data1.val + d[n-level];
data.mask = data1.mask;
data.mask[level-1] = 1;

}
}

};

APPENDIX C
CODE FOR EXTRACTING THE MAXIMUM

class MaxDist: public tdzdd::DdEval<MaxDist,DistData> {
public:

MaxDist(){}
void evalTerminal(DistData& data, bool one)
const {

data.val = one ? 0 : INT_MIN;}
void evalNode(DistData& data, int level,
tdzdd::DdValues<DistData,2> const& values)
const {

const DistData& data0 = values.get(0);
const DistData& data1 = values.get(1);
if(data0.val >= data1.val + d[n-level]){

data.val = data0.val;
data.mask = data0.mask;

}else{
data.val = data1.val + d[n-level];
data.mask = data1.mask;
data.mask[level-1] = 1;

}
}

};

APPENDIX D
SOME EXPERIMENT STATISTICS

Graph |V | |E| |C| Time (s)

Sample 22 33 9 56.96

Hong Kong 98 108 10 1172.33†

Osaka 107 125 9 938.89

Taipei 136 149 7 2176.70

†Computation time for the relaxed problem.
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APPENDIX E
LINE REFERENCE FOR THE HONG KONG METRO

Line Name

AE Airport Express Line

ER East Rail Line

I Island Line

KT Kwun Tong Line

TM Tuen Ma Line

SI South Island Line

TKO Tseung Kwan O Line Line

TW Tsuen Wan Line

TC Tung Chung Line

WR West Rail Line

APPENDIX F
LINE REFERENCE FOR THE OSAKA METRO

Line Name

M Midosuji Line

T Tanimachi Line

Y Yotsubashi Line

C Chuo Line

S Sennichimae Line

K Sakaisuji Line

N Nagahori Tsurumi-Ryokuchi Line

I Imazatosuji Line

P Nanko Port Town Line

APPENDIX G
LINE REFERENCE FOR THE TAIPEI METRO

Line Name

BR Wenhu Line

R Tamsui-Xinyi Line

G Songshan-Xindian Line

O Zhonghe-Xinlu Line

BL Bannan Line

Y Circular Line

P Airport Line
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