
International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 10 – Issue 1, January 2021

www.ijc it .com 18

Reuse Alternatives based on the Sources of Software

Assets

Anas Bassam AL-Badareen

Department of Software Engineering
Aqaba University of Technology

Aqaba, Jordan
Email: abdareen [AT] aut.edu.jo

Abstract— Since the idea of software reuse appeared in 1968,

software reuse has become a software engineering discipline.

Software reuse is one of the main techniques used to enhance the

productivity of software development, which it helps reducing the

time, effort, and cost of developing software systems, and

enhances the quality of software products. However, software

reuse requires understanding, modifying, adapting and testing

processes in order to be performed correctly and efficiently. This

study aims to analyze and discuss the process of software reuse,

identify its elements, sources and usages. The alternatives of
acquiring and using software assets either normal or reusable

assets are discussed. As a result of this study, four main methods

are proposed in order to use the concept of reuse in the software

development process. These methods are proposed based on the

source of software assets regardless the types of software assets
and their usages.

Keywords-Software Reusability; So ftware Library Build for
Reuse; Reuse Alternatives

I. INTRODUCTION

As software system rapidly growth, developing software
system from scratch become more costly

As software systems grow, it becomes more and more
costly to develop them from scratch for every new system.

New horizons are opened, since the idea of software reuse
appeared in 1968 [1], which was introduced in the NATO
Software Engineering Conference in 1968[2]. Software reuse is
an important and relatively new approach to software
engineering [3]. It represents the ability to use part or a whole
of software system in the development of new system [4-7].
This process is related to the functionality of the software
system [8]. Software reuse enhance the productivity,
maintainability, portability and therefore the overall quality of
the end product [9] [10]. This technique reduces the effort,
cost, and time of developing new software system. The USA
department of defense saves 300$ million yearly by increasing
the level of reuse only 1% [11].

 Software reuse is not limited to the source code; it
considers all information related to the process of developing

software system, which includes the requirements, analysis,
design, and test [12] [13]. Although, source code is the most
commonly reused [14], algorithm and any document produced
during software development life cycle are also considered in
the reuse [15].

The reuse concept concerns about designing and
developing software assets and using these assets in the
development of new software systems in the future. Therefore,
the reuse process is divided into two main phases, develop for
reuse and develop by reuse [16] [17]. Develop for reuse
concerns about developing a software asset that could be used
in the future in the development of new software system [18,
19]. In this phase, the ability of adapting the developed asset is
considered, in order to work with different systems in different
environment. Develop by reuse concerns about adapting
existing software asset in new system in order to achieve
specific requirements [20] [21]. In this phase, the ability of
adapting and using the existing software asset is considered, in
addition to the ability to achieve its intended functionality.

AL-Badareen et al. [16, 18] proposed a framework for
extracting, storing and retrieving normal and reusable software
assets during software development lifecycle. The study
presents new alternatives for software reuse, which are not
considered in Tomer et al. [22]. Therefore, AL-Badareen et al.
[23] proposed new model for evaluating the cost of software
reuse taking into account the new alternatives. The proposed
model presents the probable alternatives of developing and
reusing software components.

The main problem faced the software developers is the lack
of clear methods for the use of existing software assets that
could be used in the development of software systems.
Moreover, a systematic method for handling the different types
of software assets exist in different sources is needed.
Therefore, this study discusses the types of software assets that
could be used in the development of software system, the
sources of software assets and the methods of acquiring and
using software assets in the development of new software
systems.

This study discusses four alternatives that consider the
concept of software reuse regardless the types of software
assets or their sources. The proposed alternatives are defined

http://www.ijcit.com/

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 10 – Issue 1, January 2021

www.ijc it .com 19

based on the sources available for software assets and the
probable ways of enhancing the development processes. The
remains of the paper is structure as follows: section two
discusses the elements of software reuse including the sources
of the software assets, the types of software assets and the
reuse operations; section three discusses the reuse alternatives
and the proposed methods; and section four conclude the work
and discusses the future directions.

II. REUSE ELEMENTS

A. Sources of Software Assets

According to the definition of software reuse, the reusable
asset represents any existing software asset that used in the
development of new software system. Existing software assets
could be found in the legacy software systems, software
libraries and the market.

1. Legacy system represents any software system was
developed in the past, its internal content and structure are
available. A part of the legacy system and its related
documents or the whole of it could be used in the
development of new system. However, a modification
might be required on the software assets in order to meet
the requirements of the new system, and for adaptation a
modification might be required on the software asset or on
the architecture of the new software system.

2. However, AL-Badareen et al. [16, 18] discussed the
consideration of the reusability during the development of
new system in order to be reused in the future. In this
method, the developer made a decision of developing
reusable assets instead of normal asset in order to be
categorized in the library and reused in the future.
However, extra cost and effort of the development of
software system is paid, hopping to reduce the time, cost
and effort of developing new software system in the
future. Normal assets could be categorized in the library
without considering the reusability in order to increase the
probability of finding these assets in the future, share
assets with others, and save the time of mining and
retrieving from legacy software system.

3. Software Library is storage where the developed software
assets and its related documents are categorized and
classified. That is in order to be mined and retrieved
efficiently. However, the documents of the software asset
could be the planning, requirements, design, source code,
and anything related to its development process.

4. The market, where an acquisition of close source software
assets is done. Commercial off-the-shelf (COTS) is a
ready-made software component available for sale in the
market. This source of software assets saves the time and
efforts of developing software assets from scratch, where
internal structure and component of the asset are not
available. Therefore, a modification of this type of assets is
not allowed, and any requirements for adaptation have to
be made on the architecture of the new software system
only.

B. Types of Software Assets

Software assets can be classified into three main types
based on the reusability characteristics, normal assets, reusable
assets with internal contents or reusable assets with market
content.

1. Normal assets are software assets are developed in the past
without any consideration of the reusability characteristics.
These assets are developed for the purpose of achieving
the requirements of a legacy software system. The assets
could be found either in legacy software system or stored
in software library. However, an extra cost, time, and
efforts are required in order to modify these assets in order
to achieve the requirements of the new software system
and modification for adaptation might be required.

2. Reusable assets with internal contents are software assets
were developed in the past and the reusability
characteristics were considered. These assets are open
source which are developed in house or shared by other
teams and categorized in the software library. This type of
assets is considered as the most flexible and useful assets
in software reuse, which it could be used with or without
any modifications (either as black box or white box) to
meet the new requirements or for adaptation.

3. Reusable assets with market content or called Commercial
Off-The-Shelf (COTS). This type of assets is acquired
from the market in order to save the time, effort and cost
of developing new software asset. However, the internal
content of the assets are not available and therefore, a
modification for adaptation or to meet new requirements
are not applicable. Moreover, the quality of the assets is
unknown.

C. Reuse Operations

The reuse operation is the elementary activities of using
software assets in the development of new software system.
These operations could be either transition or transformation
based on the type of activities. Transition operations concern
about the movement of software assets, where transformation
concern concerns about the production of software asset.

Transition Operation

Transition operation is a process of transferring software
asset among software products or among software products and
software library.

 Cataloging (C): is a process of categorizing and storing
software assets in the software library. It concerns about
storing software assets and their related details in the
software library in a way that it could be found and
retrieved efficiently.

 Mining (M): is a process of searching and identifying
software assets in a legacy software system (open source
software). This requires analyzing the software system in
order to identify its contents and identifying the required
software asset.

http://www.ijcit.com/

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 10 – Issue 1, January 2021

www.ijc it .com 20

 Catalog Acquisition (CA): is a process of searching,
identifying and acquiring software assets in the software
library. This task is performed based on the requirements
of the new software system, where the asset information
that is stored in the library is used in the search.

 External Acquisition (XA): is a process of searching,
identifying and acquiring software assets in the market.
This process is performed in the market in order to buy
new closed source software asset (COTS).

 Copy and Paste (CP): is a process of copying software
asset from legacy system and use it directly in the
development of new software system. The main idea of
this process is that it’s based on the personnel knowledge
of the software asset and its source.

Transformation Operation

Transformation operation is a process of producing
software asset or modifying existing asset. This process is
performed in order to achieve the requirements of the
development of new software system.

 New Development (ND): is a process of developing new
software asset from scratch, in order to perform specific
task for the purpose of achieving requirements of new
software system. Therefore, the reusability characteristics
are not considered in this process.

 New for Reuse (NR): is a process of developing new
reusable software asset, in order to perform specific task
for the purpose of achieving requirements of new software
systems. Therefore, the reusability characteristics and the
ability of the software asset to work with different
software systems and in different systems platforms are
considered.

 Adaptation for Reuse (AR): is a process of modifying
software asset in order to achieve the new requirements of
the new software system. Therefore, the ability of the
software asset to satisfy the requirements of the new
software system is considered. Moreover, new reusable
asset is produced by considering the reusability
characteristics in addition to the requirements of the new
software system.

 Black Box reuse with Modifying System Architecture
(BBMSA): is a process of using commercial software
assets (Commercial Off-The-Shelf, COTS) in the
development of new software system, where a
modification on the system architecture is made for
adaptation. That is the commercial software assets are
acquired from the market without their internal contents
and a modification is not allowed.

 Black Box as is (BBAI): is a process of using software
assets in the development of new software system without
any modifications. This process is performed when the
intended software asset satisfies all of the requirements of
the new software system including the adaptation
requirements.

 White Box (WB): is a process of using software assets in
the development of new software system, where a
modification for adaptation is performed. This process is
performed on the software assets where their internal
contents and architectures are available and the
modifications of the software assets are allowed.

III. REUSE ALTERNATIVES

The alternatives of software reuse are identified based on
the source of the software assets. In this section, the probable
ways that software assets could be going through are discussed.

A. Software Assets Based on Legacy system

Since, the legacy system represents any software system
was developed in the past either by the development team (in
house) or acquired from outsource. The main idea of the legacy
system that software system is open source, which means all of
its content and structure are available for acquisition and
modification. The whole of the legacy software system or part
of it could be considered as software asset for the reuse.
Software assets that are acquired from legacy system are
normal assets and any consideration for the reuse purposes is
not considered.

As proposed in figure 1, software assets are acquired from
the legacy system for two main purposes, to be reused in the
development of new software system and/or categorized in the
software library. For the development of new software system,
the acquired software asset is tested based on the requirements
of the new software system and a modification for adaptation
could be made. For categorizing software asset in the software
library, software asset could be categorized as it is or tested
based on the reusability requirements in order to produce and
categorize a reusable software asset instead of normal.

Fig. 1 Software Assets Based on Legacy Software System

http://www.ijcit.com/

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 10 – Issue 1, January 2021

www.ijc it .com 21

B. Software Assets Based on the Market (COTS)

Acquiring software assets from the market has its
advantages in avoiding the time, efforts and cost of developing
the asset from the scratch. As proposed in figure 2, this type of
assets could be used in the development of software system as
it is and/or categorizing it in the software library for the future
use.

Fig. 2 Software Assets Based on the Market (COTS)

C. Software Assets Based on Software Library

Software Library is defined as any storage used to
categorize and store software assets. This storage is defined to
reduce the time and efforts of finding and retrieving software
assets and their related documents, increase the probability of
finding and retrieving software assets were developed in the
past, and share software assets with others. However, software
assets categorized in the library could be one of three types:
open source normal asset, open source reusable asset, closed
source reusable asset (COTS).

Open source normal asset is a software asset developed
during the development of software system in the past in order
to satisfy the system requirements. This asset was categorized
in software library directly during the development of software
system or retrieved from a legacy system for the reuse purpose
and then categorized in the software library. Open source
reusable asset is a software asset developed during the
development of software system and the reusability
characteristics were considered, and then categorized in the
software library. The other alternative, a normal asset was
retrieved from legacy system modified in order to produce
reusable asset. Closed source software asset, or called
Commercial of the Shelf (COTS) is software asset acquired
from the market in order to achieve certain system
requirements and categorized in the software library.

However, as proposed in figure 3, software assets acquired
from software library could be used directly in the
development of new software system, if the software asset
achieves the requirements without modifications, or if the
software asset is closed source and modifications are not
allowed. Open source normal assets could be modified to
achieve the requirements of the new software system and/or
modified to produce reusable software asset to be categorized
in the library and/or sent to the market as a commercial asset
(COTS).

Fig. 3 Software Assets Based on Software Library

D. Software Assets Based on the Development of New
Software System

In the development of new software system, the
components (assets) of the software system are developed and
acquired in different ways from different sources. Although,
the reuse strategy is used in the development of new software
system, new software assets are developed from scratch. These
assets are developed when the search of existing assets that
satisfy the new requirements does not return with any results.
The main idea of developing new assets is to satisfy the
requirements of the new software system, where amendment
on the development process could enhance the reusability
concept in the organization. As proposed in figure 4, the
development of new software asset could be done through
different alternatives.

http://www.ijcit.com/

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 10 – Issue 1, January 2021

www.ijc it .com 22

Fig. 4 Software Assets Based on the Development of New Software System

In the development of software system, the purpose of
developing software assets is to achieve the requirements of the
new software system. Nevertheless, the reusability
characteristics could be considered in addition to the main
objectives.

However, the produced assets are sent to be evaluated and
might be modified according to the new requirements of the
new software system, to the requirements of the software
library, or to the requirements of the market (COTS).

IV. CONCLUSION

As software reuse is one of the most efficient techniques for
enhancing software development process in terms of time, cost
and efforts. This study discussed the alternatives applicable for
using the concept of software reuse in the development of
software systems. Four main methods were proposed based on
the sources of software assets. Moreover, the probable usages
of different types of software assets acquired from different
sources were discussed.

For the future work, case study would be conducted in
order to show the applicability of these methods. Moreover, the
cost of following each alternative could be useful for the
selection of probable alternatives; therefore, a comparison
among the different alternatives discussed in this study could
be done in the future.

http://www.ijcit.com/

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 10 – Issue 1, January 2021

www.ijc it .com 23

REFERENCES

[1] P. Gomes and C. Bento, "A case similarity metric for software

reuse and design," Artif. Intell. Eng. Des. Anal. Manuf., vol. 15,

no. 1, pp. 21-35, 2001, doi:

http://dx.doi.org/10.1017/S0890060401151061.

[2] P. Naur, "Software engineering-report on a conference

sponsored by the NATO Science Committee Garimisch,

Germany," http://homepages. cs. ncl. ac. uk/brian.
randell/NATO/nato1968. PDF, 1969.

[3] M. Burgin, H. K. Lee, and N. Debnath, "Software technological

roles, usability, and reusability," in Information Reuse and

Integration, 2004. IRI 2004. Proceedings of the 2004 IEEE

International Conference on , 8-10 Nov. 2004 2004, pp. 210-

214. [Online]. Available: 10.1109/IRI.2004.1431462. [Online].

Available: 10.1109/IRI.2004.1431462

[4] J. A. McCall, P. K. Richards, and G. F. Walters, "Factors in

Software Quality," Griffiths Air Force Base, N.Y. Rome Air

Development Center Air Force Systems Command, 1977.

[5] N. S. Gill, "Reusability issues in component-based

development," SIGSOFT Softw. Eng. Notes, vol. 28, no. 4, pp. 4-

4, 2003, doi: http://doi.acm.org/10.1145/882240.882255.

[6] C. Luer, "Assessing Mo dule Reusability," in Assessment of

Contemporary Modularization Techniques, 2007. ICSE

Workshops ACoM '07. First International Workshop on , 20-26
May 2007 2007, pp. 7-7. [Online]. Available:

10.1109/ACOM.2007.2. [Online]. Available:

10.1109/ACOM.2007.2

[7] F. Haiguang, "Modeling an d Analysis for Educational Software

Quality Hierarchy Triangle," in Web-based Learning, 2008.

ICWL 2008. Seventh International Conference on , 20-22 Aug.

2008 2008, pp. 14-18. [Online]. Available:

10.1109/ICWL.2008.19. [Online]. Available:

10.1109/ICWL.2008.19

[8] J. J. E. Gaffney, "Metrics in software quality assurance,"

presented at the Proceedings of the ACM '81 conference, 1981.

[9] A. Sharma, P. S. Grover, and R. Kumar, "Reusability

assessment for software components," SIGSOFT Softw. Eng.

Notes, vol. 34, no. 2, pp. 1-6, 2009, doi:

http://doi.acm.org/10.1145/1507195.1507215.

[10] I. Bitar, M. H. Penedo, and E. D. Stuckle, "Lessons learned in
building the TRW software productivity system," 1985.

[11] J. S. Poulin, "Measuring software reusability," in Software

Reuse: Advances in Software Reusability, 1994. Proceedings.,

Third International Conference on , 1-4 Nov 1994 1994, pp. 126-

138. [Online]. Available: 10.1109/ICSR.1994.365803. [Online].

Available: 10.1109/ICSR.1994.365803

[12] R. Prieto-Diaz, "Status report: software reusability," Software,

IEEE, vol. 10, no. 3, pp. 61-66, 1993. [Online]. Available:

10.1109/52.210605.

[13] C. V. Ramamoorthy, V. Garg, and A. Prakash, "Support for

reusability in Genesis," Software Engineering, IEEE

Transactions on, vol. 14, no. 8, pp. 1145-1154, 1988. [Online].

Available: 10.1109/32.7625.

[14] B. Jalender, A. Govardhan, and P. Premchand, "Breaking the

boundaries for software component reuse technology,"
International Journal of Computer Applications, vol. 13, no. 6,

pp. 37-41, 2011.

[15] J. Sametinger, Software engineering with reusable

components. Springer Science & Business Media, 1997.

[16] A. B. AL-Badareen, M. H. Selamat, M. A. Jabar, J. Din, and

S. Turaev, "Reusable Software Components Framework,"

presented at the European Conference of COMPUTER

SCIENCE (ECCS'11), Puerto De La Cruz, Tenerife, December

10-12, 2011, 2010.

[17] J. sharma Ms, A. Kumar, and M. Kavita, "A Design Based

New Reusable Software Process Model for Component Based

Development Environment," Procedia Computer Science, vol.

85, pp. 922-928, 2016, doi:

http://dx.doi.org/10.1016/j.procs.2016.05.283.

[18] A. B. AL-Badareen, M. H. Selamat, M. A. Jabar, J. Din, and
S. Turaev, "Reusable Software Component Life Cycle,"

International Journal of Computers, vol. 5, no. 2, pp. 191-199,

2011.

[19] H. Nakano, Z. Mao, K. Periyasamy, and W. Zhe, "An

Empirical Study on Software Reuse," presented at the

International Conference on Computer Science and Software

Engineering., 12-14 Dec. 2008, 2008.

[20] Z. Zhu, "Study and Application of Patterns in Software

Reuse," presented at the International Conference on Control,

Automation and Systems Engineering., 11-12 July 2009, 2009.

[21] M. Kessel and C. Atkinson, "Ranking software components

for pragmatic reuse," in Proceedings of the Sixth International

Workshop on Emerging Trends in Software Metrics, 2015: IEEE

Press, pp. 63-66.

[22] A. Tomer, L. Goldin, T . Kuflik, E. Kimchi, and S. R. Schach,

"Evaluating software reuse alternatives: a model and its
application to an industrial case study," Software Engineering,

IEEE Transactions on, vol. 30, no. 9, pp. 601-612, 2004.

[23] A. B. AL-Badareen, M. H. Selamat, M. A. Jabar, J. Din, and

S. Turaev, "An Evaluation Model for Software Reuse

Processes," in Software Engineering and Computer Systems:

Second International Conference, ICSECS 2011, Kuantan,

Pahang, Malaysia, June 27-29, 2011, Proceedings, Part III, J.

M. Zain, W. M. b. Wan Mohd, and E. El-Qawasmeh Eds.

Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 586-

599.

http://www.ijcit.com/
http://dx.doi.org/10.1017/S0890060401151061
http://homepages/
http://doi.acm.org/10.1145/882240.882255
http://doi.acm.org/10.1145/1507195.1507215
http://dx.doi.org/10.1016/j.procs.2016.05.283

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 10 – Issue 1, January 2021

www.ijc it .com 24

http://www.ijcit.com/

