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Abstract 

Antimicrobial resistance is one of the serious global challenges in the current 

century. The fact that resistance genes transfer between bacteria, coupled with the fact 

that the world is connected through complex dynamics. Studying microbial behavior 

and understanding the different factors coffering microbial resistance to a broad 

spectrum of the available drug classes, parallel with a comprehensive analysis of the 

natural microbial products as the primary source of the novel antibiotics, might shed 

some light on solutions for this problem. 

Microbial environments harbor a wide range of secondary metabolites (SM) with 

different functional groups. SMs are not directly involved in vital microbial processes 

such as reproduction, growth, and development. However, these organic compounds, 

which exist in many different chemical structures, carry out a broad range of functions. 

Some bioactive SMs are widely used in drug development of various therapeutic classes 

such as antibacterial, anticancer, immunosuppressant, diabetic, and cholesterol-

lowering agents. These bioactive compounds’ metabolic pathways are encoded by co-

localized genes collectively called Biosynthetic Gene Clusters (BGCs). The majority of 

the discovered bioactive natural products are from microbial strains that are 

cultivatable. However, the advancement in sequencing techniques, bioinformatics, and 

metagenomics opened unlimited opportunities to reach and study the uncultivatable 

microbial communities, which represent the more significant fraction of the 

underexplored microbial ecology. 

In this study, selected samples of seven selected metatranscriptomic/metagenomic 

datasets were subjected to assembly, taxonomic assignment to the reads, and assembled 

contigs. The aim of this study is two-fold. Firstly, the assembled contigs were then 

investigated by two primary distinct computational methods, namely antibiotics and 

Secondary Metabolite Analysis Shell (antiSMASH) and deep-learning (deepBGC) 

methods. A comparative study was performed to determine the biosynthetic gene 

clusters (BGCs) present in each of the included samples and compare their taxonomic 

differences. Secondly, the assembled contigs were also analyzed to determine the 

antimicrobial resistance (AMR) genes present in each sample by using the Resistance 

Gene Identifier (RGI) algorithm, which is a part of the Comprehensive Antibiotic 

Resistance Database (CARD). A total of 65 samples from the seven selected 
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metagenomic and metatranscriptomic datasets were investigated by antiSMASH, 

deepBGC pipelines, and CARD in the present study. The different classes of detected 

BGCs and their corresponding microbial taxa and the antimicrobial resistance gene 

families and their corresponding resistance mechanisms against specific drug classes 

were reported. 

In the current study, we reported that the datasets with a large extent of variability (i.e. 

sex, age and illness state) due to the nature of their environments, such as host 

microbiome samples of patients in two ecosystems (COVID-19 & Atopic Dermatitis), 

gave the most variable number of BGC classes detected by antiSMASH, where 19 

different classes detected in skin microbiome of AD patients and 16 different classes 

detected in gut microbiome of COVID-19 patients. On the other hand and due to the 

selection pressure on the microbial ecosystems by the wide use of antibiotics, gut 

microbiome of COVID-19 patients’ and water sewage samples had more than 70% of 

the detected AMR gene families where gut microbiome of COVID-19 patients’ sample 

alone reported to had more than 50% of AMR genes detected by CARD. 

In conclusion, ecological characteristics and microbial diversity in terms of composition 

and relative abundance dramatically affect the dynamics of secondary metabolites’ 

production and transferring antimicrobial resistance genes between bacteria. Microbial 

strains with higher biosynthetic and antimicrobial resistance potentials were enriched 

in environments with a rich microbial diversity such as host microbiome (i.e., COVID-

19 patients), with patterns of abundance of biosynthetic gene clusters and AMR genes 

fluctuating by taxonomy. 
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Chapter 1: Literature Review & Study Objectives 

Introduction 

Global health challenges associated with antibiotic and chemotherapeutic 

resistances:  

On 5 February 2018, the WHO summarized the global challenge associated with 

antibiotic resistance as follows, “antibiotic resistance is one of the major threats to 

global health, food security, and development, and its effect could extend to include 

everyone regardless of their ages or their country (Antibiotic resistance, 2020). A 

growing number of infections – such as pneumonia, tuberculosis, gonorrhoea, and 

salmonellosis – are becoming harder to treat as the antibiotics used to treat them become 

less effective”. Moreover, these infections could lead to longer hospital stays, higher 

medical costs, and increased mortality (Antibiotic resistance, 2020). Every year, around 

2 million people in the US are infected by a bacterial strain that is resistant to all existing 

antibiotics (Martens & Demain, 2017). Furthermore, the resistance of chemotherapeutic 

anticancer drugs following therapy is a rising global health challenge (Holohan et al., 

2013). Therefore, there is an unmet need and a great pressure on scientists and the health 

communities for discovering new alternative drugs to the current overused ones. Hence, 

exploring Natural Products (NPs) could provide a rich source of potentially effective 

drugs (Hernando-Amado et al., 2019). Deeper analysis of bacterial behavior in their 

respective communities is very crucial, recent studies shed the light on the key role of 

environments as a corner stone in not only the transmission of resistance genes between 

different bacterial species but also has an important role in emergence of pathogens with 

elevated level of resistance (Bengtsson-Palme et al., 2018).  

Natural Products and their pharmaceutical importance 

In nature, a wide range of secondary metabolites (SM) with different functional 

groups is produced by plants and microbes such as bacteria and fungi (Davies & Ryan, 

2012). Unlike primary metabolites, SMs are not directly involved in vital processes (i.e. 

reproduction, growth & development) of the organism. However, these organic 

compounds which exist in many different chemical structures carry out a broad range 

of functions. In the mid-20th century, after the great discovery that some microbial 

natural products have an antimicrobial activity, an endless intensive research work has 

started and a wide range of microbial strains has been randomly screened for the 
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presence of natural byproducts with potential therapeutic activities (Davies & Ryan, 

2012). These efforts yielded hundreds of thousands of SMs to be extracted and tested 

as antimicrobial agents (Davies & Ryan, 2012). Moreover, scientists harnessed the 

power of SMs to be utilized as antimicrobials, anticancer, immunosuppressant, and 

cholesterol-lowering agents and many others (Ruiz et al., 2010).   

These natural products (NP) play a crucial role in drug discovery and 

development. According to David J. Newman in 2016, about 70% of anti-infective 

medicines originated from natural products (Newman & Cragg, 2016). Over 33 years, 

from 1981 to 2014, 32% of small molecule medicines approved by the FDA were 

natural products either unmodified (6%) or NP derivatives (26%) (Newman & Cragg, 

2020). These drugs include different therapeutic classes such as antimicrobial, 

anticancer, diabetic, immunosuppressant, and cholesterol-lowering agents (Newman & 

Cragg, 2020). 

Natural Products are encoded by Biosynthetic Gene Clusters (BGCs) 

Previous reports investigating the characteristics of bioactive secondary 

metabolites revealed that the metabolic pathways of SMs are encoded by co-localized 

genes collectively called Biosynthetic Gene Clusters (BGCs) (Martin, 1992). Genes 

encoding for the biosynthetic pathway enzymes as well as their respective regulatory 

genes are contained in the BGC region (Keller et al., 2005). Notably, this fact paves the 

way for in silico mining of genomes and metagenomes for secondary metabolites 

through BGC neighborhood identification (Medema & Fischbach, 2015). So far, 

biosynthetic systems could be grouped into two major classes, Non-ribosomal peptide 

synthases (NRPS) and Polyketide synthases (PKS) (Weber & Kim, 2016). On the other 

hand, PKS and NRPS are responsible for synthesizing a wide and varied spectrum of 

bioactive natural products with much biomedical research and therapeutic applications 

such as antimicrobial, antifungal, and immunomodulatory agents, therefore PKS and 

NRPS are prevalent targets in genome mining for NPs (Ayuso-Sacido & Genilloud, 

2005).  
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Tools for BGC mining and NP Discovery 

NP mining: past, present and future 

Prior to the omics era and the advancement of DNA sequencing technologies, 

exploring microorganisms for natural products was mainly conducted in the laboratory 

using culture-dependent techniques (Katz & Baltz, 2016). The classical way of natural 

products discovery typically consists of four main steps, starting with isolating the 

microbial samples, cultures enrichment, extracting candidate products and finally 

screening and screening their activities. One major drawback to this traditional method 

is the difficulty to culture microorganisms in the lab, besides that not all microbes can 

be grown in stable enrichments. To date, only a small fraction of microbial species could 

be cultured in the laboratory (Stewart, 2012). Growing microorganisms in the laboratory 

under diverse conditions was frequently used to produce and identify secondary 

metabolites without being able to specify their biosynthetic pathways at the genetic 

levels (Luo et al., 2014). Secondary metabolites functions and activities are usually 

characterized and validated through different biochemical assays. Recently, high 

throughput biochemical assays enabled the discovery of a wide range of unprecedented 

secondary metabolites with potential antimicrobial activities. One notable example, in 

a study of sugar fermentation in a Vibrio Cholerae culture, 49 out of 39,000 crude 

extracts screened were able to block fermentation pathways and 3 products with novel 

antimicrobial activities were identified representing a new class of broad-spectrum 

antibiotics (Chen et al., 2019). One major limitation linked to solely using biochemical 

assays to detect and characterize SMs is the fact that some SMs are formed at 

undetectable levels. Therefore, it will be more feasible to integrate biochemical assays 

with other approaches to capture a broader range of SMs produced in nature (Luo et al., 

2014). 

Omics Approaches in NP Discovery 

Many pharmaceutical drugs which are approved for use by health authorities all 

over the world, have been discovered as a result of the traditional approaches of NP 

discovery. However, the rate of NP discovery has declined dramatically due to the 

difficulties of identifying novel compounds and the recurrent discovery of known 

compounds (Li & Vederas, 2009). Extraordinary opportunities for NP discovery 

through identification and characterization of biosynthetic gene clusters (BGCs) have 
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been created by genome sequencing technology (Jensen, 2016). While the early 

approaches in genetics were based on progressing from phenotype to genotype, the 

introduction of the next-generation sequencing techniques along with whole-genome 

sequencing approaches, creates databases waiting to be mined for novel BGCs 

discovery, characterization and synthesis through reverse genetic engineering 

approaches, from genotype to phenotype. The massive progress of genomic resources, 

especially microbial whole-genome sequencing, not only for the cultured organisms but 

also for the uncultured ones, has led to a notable paradigm shift in the uses of 

computational approaches in the discovery of bioactive natural products (Hannigan et 

al., 2019). 

Genome mining is considered a highly time and cost effective approach in NP 

discovery because it allows researchers to examine huge genomic datasets whether it 

harbor biosynthetic gene clusters of interest or not, before undertaking any expensive 

and laborious biochemical steps to produce and extract the NP from microbial host. 

Omics approach makes it possible to identify a very large number of BGCs in different 

genomes and explore the chosen BGCs for experimental and systematic 

characterization (Chen et al., 2019). 

In silico Tools for Biosynthetic Gene Clusters Identification 

The rapid advances in the DNA sequencing techniques inspired the development 

of in silico tools and pipelines to mine microbial genomes and metagenomes for the 

presence of biosynthetic gene clusters (Table 1. showing a summary of the tools widely 

used to predict the biosynthetic gene clusters). The vast majority of them utilize Basic 

Local Alignment Search Tool (BLAST) or profile hidden Markov models (HMMs) 

searching tools as a base to identify the genetic signatures accountable for NP 

biosynthesis (Ren et al., 2020). These tools include NAPDOS, antiSMASH, 

NP.searcher and ClustScan, which are known for their high accuracy yet low levels of 

novelty. Moreover, genome mining can be leveraged by the presence of databases for 

the known BGCs such as antiSMASH (antibiotics & Secondary Metabolite Analysis 

Shell) and MIBiG (Minimum Information about a Biosynthetic Gene Cluster) (Blin et 

al., 2017) and (Starcevic et al., 2008).  In 2019, Hannigan, Geoffrey D et al. introduced 

DeepBGC as a novel approach integrating deep machine learning with natural language 
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processing for a better outcome in terms of precision and accuracy in BGCs 

identification in microbial genomes (Hannigan et al., 2019).  

Table 1. List of the widely used tools and pipelines for prediction of BGCs, data was modified from Ren 

H et al., 2020 

Tools Target(s) Predicted BGC class Reference 
AntiSMASH Bacteria & fungi Wide range  Blin et al., 2013 

NP.searcher Bacteria NRPS, PKS & NRPS/PKS Li et al., 2009 

ClustScan Bacteria NRPS & PKS Starcevic et al., 2008 

ClusterFinder Bacteria Wide range Cimermancic et al.,2014 

NaPDoS Metagenomics NRPS & PKS Ziemert et al., 2012 

eSNaPD Bacteria Wide range Reddy et al., 2014 

EvoMining Bacteria Wide range Selem-Mojica et al., 2019 

SMURF Fungi 
NRPS, PKS, NRPS/PKS & 

DMATS 
Khaldi et al., 2010 

PantiSMASH Plant Wide range Kautsar et al., 2017 

BAGEL Bacteria Bacteriocin & RIPP Van Heel et al., 2013 

 

Genomics and High-throughput Sequencing Technologies 

Applying high throughput sequencing techniques in the study of microbial 

communities was the biggest reason behind creation of metagenomics research field; as 

it enables, for the first time, the study of different genomic sequences of co-existing 

microorganisms in a certain community (Ghurye et al., 2016). Sequencing technologies 

have been dramatically advanced during the past four decades. Sanger sequencing 

considered the first revolution discovery in modern genetic analysis because it allow 

complete genome sequencing for the first time. Later, genome sequencing became faster 

and much cheaper when the next-generation sequencing (NGS) technologies had 

appeared, regardless its advancement, NGS technologies have several drawbacks, most 

remarkably the problem of short reads (i.e. it produces up to several hundreds of base 

pairs). Recently, such pitfall has been solved by applying the third-generation 

sequencing technology which can produce long reads, up to several tens of kb, and 

genomic assemblies of extraordinary quality (van Dijk et al., 2018).  

Long-read sequencing approaches had been enhanced over the recent years. 

Therefore, enabling the study of different genomic sequences and transcriptomes at an 

extraordinary resolution, therefore, metagenomics analysis could go deeper to the 

species level (Pootakham et al., 2017); (Kuleshov et al., 2016). In the near future, long-

read sequencing has a great possibility to become a standard method in medical 

diagnosis. A recent SMRT study of a patient’s genomic sequence showing undetected 

SV despite the aggressive genetic testing by other approaches (Merker et al., 2018).  
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Moreover, ambiguous regions in genomes are no longer big issues and can now be 

resolved, and more details will be elaborated from transcriptomes. Thus long-read 

methods are leading a series of revolutionary new discoveries in genomics research. 

Many long-read platforms are now available such as; PacBio, ONT and Illumina/10X 

Genomics SLR, table 2 summarize some of their strengths and highlighting their 

weaknesses (van Dijk et al., 2018).  

Long-read 

platform 

Strengths Weaknesses 

ONT  Ultra long reads; a one Mb reads 

can be obtained 

 Cost effective (e.g. MinION) 

 Epigenetic modifications are 

directly detected 

 Very fast library preparation 

 Portable (e.g. SmidgION)  

 High error rate 

 Library preparation needs big 

amount of starting material 

 Software versions subjected to 

numerous changes 

PacBio  High accuracy with CCS greater 

than 99% at 20 passes. 

 Epigenetic modifications are 

directly detected 

 Overcome repeats problem 

 Expensive with high cost per Gb 

 Library preparation needs big 

amount of starting material 

 High error rate 

 Only Sequel sequencer is 

available. 

 Polymerase reactivity limit read 

length 

 

Illumina/10X 

Genomics SLR 

 High accuracy and low error rate 

 Low cost per Gb 

 No need for special equipment 

 Library preparation needs small 

amount of starting material 

 

 No real long reads 

 Library preparation needs PCR 

amplification 

 Epigenetic modifications 

couldn’t detected directly 

 Limited capacity (i.e. 384 wells) 

 

 

The importance of searching for BGCs in metagenomes 

Metagenomics is the study of genetic material of samples, recovered directly 

from the environment. Unlike the cultivated-based methods such as microbial genome 

sequencing, early environmental genomics rely upon sequencing of cloned specific 

genes (i.e. 16S rRNA gene) to generate a profile showing the microbial biodiversity in 

nature. As a result of applying metagenomics approaches, a whole world of endless 

different species has been discovered (Hugenholtz et al., 1998). 

The vast majority of the discovered bioactive NP are products of microbial 

strains that can be cultivated in the laboratory. However, metagenomics studies open 

Table 2. Strengths and weaknesses of some available long-read platforms, data was modified from van 

Dijk EL et al., 2018 
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unlimited possibilities to reach and study the uncultivated microbial communities which 

represent the bigger fraction of the underexplored microbial ecology. Furthermore, 

novel biosynthetic pathways are being discovered at higher rates compared to the old 

techniques of molecular biology.  In addition, metagenomics would also serve as a great 

tool to study biocatalysts from the previously overlooked cultivated microbial strains 

which reflects a very good probability to discover novel compounds (Wilson & Piel, 

2013). 

AntiSMASH platform to detect BGCs 

AntiSMASH is an inclusive in silico pipeline widely used to explore bacterial 

and fungal genome sequences to identify BGCs regions of a broad range of secondary 

metabolites (Medema & Fischbach, 2015) such as polyketides, terpenes, non-ribosomal 

peptides, bacteriocins, lantibiotics, siderophores, indolocarbazoles, aminocoumarins, 

aminoglycosides, beta-lactams, melanins, butyrolactones and others. Although, 

antiSMASH relies on signature gene profile HMMs for BGCs identification, they apply 

a greedy algorithmic method to extend the explored regions by 5, 10, or 20 kb on both 

sides hence closely localized clusters can be merged into what’s called superclusters.   

In the latest version (v.5.0) of antiSMASH pipeline (Blin et al., 2019), 

superclusters is relabeled as regions, and each region contains several mutually 

exclusive candidate BGCs for improved interpretation of hybrid clusters. Moreover, 

there are others additional options provided by antiSMASH such as, domain analysis 

and annotation of NRPS/PKS, core chemical structure prediction of non-ribosomal 

peptides and polyketides, comparative analysis of gene clusters by ClusterBlast, and 

protein family analysis of secondary metabolites (smCOG). The output can easily be 

visualized through an interactive XHTML page with a user-friendly interface (Ren et 

al., 2020). It is worth mentioning that there is another derivative of antiSMASH used 

for plant genome mining called plantiSMASH and it has ability to identify biosynthetic 

pathways between and within gene clusters by co-expression analysis, and also it can 

be used to study the evolutionary conservation of each gene cluster through comparative 

genomic analysis (Kautsar et al., 2017). 
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Deep learning method to detect BGCs 

While they considered the gold standard for genome mining, current available 

pipelines, such as ClusterFinder and antiSMASH, are based mainly on signature gene 

profile HMMs for BGCs identification but they miss the ability to remember the effects 

of position dependencies between distant units or order information (Yoon, 2009); 

(Eddy, 2004). This leads to the fact that such tools, HMM-based, could not grasp higher 

order information among units (Yoon, 2009; Eddy, 2004), as a result they had a limited 

ability to detect BGCs.  

To address this algorithmic limitation, Hannigan, Geoffrey D et al. implement a 

deep learning approach, DeepBGC, as a novel pipeline integrating deep machine 

learning with natural language processing (NLP) for a better outcome in terms of 

precision and accuracy in BGCs identification in microbial genomes (Hannigan et al., 

2019). To overcome limitation of HMM-based tools, DeepBGC applying both 

Recurrent Neural Networks (RNNs) and vector representations of protein family (Pfam) 

domains (Finn et al., 2016) which together have the ability of inherently sensing short 

and long term effects of position dependency between neighboring and distant entities 

(Sepp Hochreiter et al., 2007).  

DeepBGC applies a Bidirectional Long Short-Term Memory (BiLSTM) RNN 

besides a word embedding skip-gram neural network, word2veclike, called pfam2vec 

(S. Hochreiter & Schmidhuber, 1997). Implementation of DeepBGC produce a higher 

performance compared to the leading algorithms in terms of the accuracy of BGC 

detection from different genome sequences and the ability of identification of novel 

classes of BGCs. Additionally, DeepBGC can classify the identified BGCs based on 

their corresponding product classes and the product molecular activity by using a 

generic random forest classifiers. 

DeepBGC considered a new powerful tool which when applied to bacterial 

reference genomes could identify biosynthetic gene clusters coding for bioactive 

molecules with putative antimicrobial activity that never identified by the other existing 

pipelines. Moreover, the power of this tool might be used in metagenomic analyses in 

addition to microbial reference genome, this might leads to a new era of improved BGC 

detection and unlimited possibilities to identify novel BGCs (Hannigan et al., 2019). 
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Study Objectives  

In this study, selected samples pertaining to seven selected metatranscriptomic 

/ metagenomic projects were subjected to assembly, taxonomic assignment to the reads 

and assembled contigs. Aim of this study is two-fold. Firstly, the assembled contigs 

were then investigated by two major distinct computational methods, namely antibiotics 

and Secondary Metabolite Analysis Shell (antiSMASH) and deep-learning (deepBGC) 

methods. A comparative study was performed to determine the biosynthetic gene 

clusters (BGCs) present in each of the included samples, as well as comparing their 

taxonomic differences. Secondly, the assembled contigs were also analyzed to 

determine the antimicrobial resistance (AMR) genes present in each samples by using 

Resistance Gene Identifier (RGI) algorithm which is a part of the Comprehensive 

Antibiotic Resistance Database (CARD).  
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Chapter 2: Materials & Methods 

Samples and Assembly 

Whole metagenome samples were obtained from NCBI Sequence Read Archive 

(SRA) using prefetch then the downloaded SRA files were converted into paired-ended 

FASTQ using fastq-dump. FASTQ files were processed for quality control to remove 

adaptor sequences, trim low-quality ends, and remove short reads using fastp (Chen et 

al. 2018). Filtered sequences were sub-sampled to one million reads per sample (run) 

using Seqtk https://github.com/lh3/seqtk, Figure 1 showing the distribution of filtered 

reads of all processed samples per each of the seven selected projects. Sequence reads 

were assembled using MEGAHIT (Li et al. 2015), Figure 2 showing the distribution of 

the assembled contigs per each project. Assembled contigs were taxonomically 

classified using Kraken 2 (Wood et al. 2019). Contigs were filtered for a minimum size 

of 1,000 nucleotides. 

 

Figure 1. The distribution of filtered reads of all processed samples per each of the seven selected 

projects. 

 

https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra
https://paperpile.com/c/Fbdr5O/5IOI
https://paperpile.com/c/Fbdr5O/5IOI
https://github.com/lh3/seqtk
https://paperpile.com/c/Fbdr5O/WRlr
https://paperpile.com/c/Fbdr5O/HTYk
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Figure 2. Distribution of the assembled contigs per each project 

Taxonomic analysis, annotation and bioinformatic visualization 

Samples were taxonomically classified on the sequence reads using Kraken 2 

(Wood et al. 2019) with the default taxonomy database. The abundance of the different 

taxonomic levels (species, genus, family, etc.) was estimated using Bracken (Lu et al. 

2017). 

Using deepBGC tool for BGC mining 

 Biosynthetic gene clusters were predicted in the assembled contigs using 

deepBGC (Hannigan et al. 2019). Contigs classified as human were excluded from 

downstream steps (Figure 3). 

https://paperpile.com/c/Fbdr5O/HTYk
https://paperpile.com/c/Fbdr5O/B0rB
https://paperpile.com/c/Fbdr5O/B0rB
https://paperpile.com/c/Fbdr5O/1072
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Figure 3. The distribution of human abundance per each of the seven selected datasets. Excluded from 

downstream analysis 

Using antiSMASH tool for BGC mining 

The antibiotics and secondary metabolite analysis shell (antiSMASH) platform 

was utilized for detection of BGCs. antiSMASH bacterial version 5.0 was used with 

default parameters (Medema et al. 2011). 

Using CARD’s RGI algorithm for AMR genes detection 

The Resistance Gene Identifier (RGI) algorithm present in the Comprehensive 

Antibiotic Resistance Database (CARD) was exploited for determination of AMR 

genes, drug classes and their resistance mechanisms. The following RGI criterions for 

detection were applied, perfect, strict & loose, partial genes included, 95% identity 

nudge used and low quality coverage was used in the sequence quality option. (Alcock 

BP, Raphenya AR, Lau TTY, et al. 2020). Loose hits were excluded from downstream 

steps. 

Statistical Analyses  

Analytical and visualization analyses were performed using R: A language and 

environment for statistical computing. R Foundation for Statistical Computing, Vienna, 

Austria. URL https://www.R-project.org/.   

https://paperpile.com/c/Fbdr5O/GL8C
https://paperpile.com/c/Fbdr5O/GL8C
https://paperpile.com/c/Fbdr5O/GL8C
https://www.r-project.org/
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Chapter 3: Results 

 

Assembly pipeline  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Screening metagenomic & 
metatranscriptomic 

datasets for BGCs & AMR 
genes

(1) Download the 
dataset (by run) 

directly from 
NCBI

(2) Quality 
control

(3) Taxonomic 
classification 
of the reads

(4) Assembly

(5) Taxonomic 
classification 
of the contigs

(6) BGCs 
prediction

deepBGC

antiSMASH

(7) AMR 
genes 

detection
CARD

Figure 4. The Study workflow for the major steps of the pipeline used to screen the selected metagenomic & 

metatranscriptomic projects included in the dataset for BGCs 

The study workflow is illustrated in Figure 4, and the details of samples used in

 this analysis are available in Table 3. In this study, a total number of 65 samples from 

seven selected projects were processed using both antiSMASH and deepBGC pipelines

 for BGCs mining and CARD’s RGI algorithm for AMR genes detection. The 

total number of reads used was 1,139,543,039 yielded 1,100,630,009 filtered reads

 and  generating  a  total  of  4,325,515  contigs  (Table  4).  The  contigs  (assembled 

metagenomes and metatranscriptomes) from the seven selected projects included in the

 dataset  were  investigated  by  two  major  distinct  computational  methods  (i.e. 

antiSMASH and deepBGC) in addition to CARD’s RGI algorithm for BGCs mining

 and AMR genes detection, respectively, the workflow is depicted in Figure 4, and a 

comparative  study  was  performed  to  determine  the  BGCs  present  in  each  of  the 

included  samples  along  with  detection  of  AMR  genes  with  their  corresponding 

mechanisms of action and drug classes which they were confer resistance to it. The 

assembly metrics are denoted in Table 4. 
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Table 3. The selected metagenomic and metatranscriptomic projects included in the dataset. The 

accession numbers of the seven selected datasets along with their corresponding abbreviated names and 

number of processed samples are denoted. A total number of 65 samples were processed using both 

pipelines, antiSMASH and deepBGC for BGCs mining and CAR’s RGI for AMR genes detection.  

# 
Accession number 

Dataset Name 

(Abbreviated) 

Number of processed 

samples per dataset 

1 PRJDB6156 Osaka 9 

2 PRJNA340165 Tonga 5 

3 PRJNA472006 Nose 12 

4 PRJNA489681 Skin AD 10 

5 PRJNA624223 COVID-19 10 

6 PRJNA629394 Mangrove 10 

7 PRJEB13831 Sewage 9 

 Total number of samples 65 
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Table 4. Assembly metrics denoted for each sample from the selected metagenomic and metatranscriptomic projects included in the dataset.  
 

 

Project 

 

Accession 

 

Organism 

 

 

Organism 

Groups 

 

Data type 

 

Location 

 

Reg. 

Date 

 

Sample ID 

 

 

# of Bases 

 

# of Reads 

 

# of Filtered 

Reads 

# of 

Contigs 

Av. 

Contig 

Size 

(bp) 

Largest 

Contig 

Size 

(bp) 
Sequencing of Osaka 

Bay see water 

metatranscriptome 

(at 5 m depth) 

PRJDB6156 Marine 

metagenome 

Metagenomes; 

ecological 

metagenomes 

Transcriptome or 

gene expression 

Japan: Osaka 

Bay 

2019-08-01 DRR099940 387.8 M 2,667,479 2,649,580 7,657 487 9,321 

DRR099941 1.1 G 7,509,742 7,382,595 45,800 559 59,858 

DRR099942 749.7 M 5,334,601 5,239,370 26,283 523 18,690 

DRR099943 864.7 M 5,921,570 5,813,994 36,796 454 139,294 

DRR099944 932.3 M 6,505,903 6,377,636 14,877 945 327,531 

DRR099945 382.6 M 2,612,159 2,581,855 15,734 737 21,593 

DRR099946 397.9 M 2,769,912 2,719,784 8,059 1,216 37,754 

DRR099947 673.22 M 4,642,688 4,581,593 18,774 378 8,907 

DRR099948 663.4 M 4,650,613 4,593,213 13,583 846 48,051 

       TOTAL (M) 6151.62       

Investigation of the 

metagenome of the 

Tonga trench 

sediment 

(at 9.2 km water depth 

and up to 2 m 

sediment depth) 

PRJNA340165 Marine sediment 

metagenome 

Metagenomes; 

ecological 

metagenomes 

Metagenome Pacific Ocean 2016-08-25 SRR4069403 417.20 M 1,846,010 1,804,893 23,966 481 16,294 

SRR4069404 1.30 G 5,826,299 5,732,762 110,986 572 47,068 

SRR4069405 1.03 G 4,564,804 4,443,188 3,675 519 2,701 

SRR4069406 3.09 G 13,747,868 13,377,953 4,220 591 4,378 

SRR4069408 1.34 G 5,974,450 5,868,302 927 375 5,306 

       TOTAL (M) 7177.20      

Comparative 

metagenomic analysis 

to assess the 

relationship between 

human skin 

microbiota stability 

and patients with 

atopic dermatitis 

(49 subjects, 33 AD 

patients and 16 

healthy controls) 

PRJNA489681 Multiple Metagenomes Metagenome Singapore 2018-09-06 SRR7802475 1.87 G 9,346,770 8,963,662 29,068 1,134 327,256 

SRR7802341 1.49 G 7,438,112 7,363,758 43,096 627 388,652 

SRR7802306 1.37 G 6,854,660 6,577,935 81,181 687 160,560 

SRR7802339 1.09 G 5,456,812 5,402,061 23,516 677 312,511 

SRR7802351 1.22 G 6,112,223 5,715,559 29,534 1,386 491,444 

SRR7802349 1.03 G 5,217,253 5,170,642 39,712 811 340,940 

SRR7802476 1.27 G 6,365,734 6,140,000 27,564 943 104,289 

SRR7802335 1.19 G 5,973,209 5,740,124 56,361 673 275,594 

SRR7802352 1.02 G 5,143,013 5,100,160 128,979 815 129,231 

SRR7802406 1.22 G 6,111,603 5,903,453 65,083 712 145,141 

       TOTAL (M) 12770      

Metagenomic data 

from Mangrove 

sediment microbiome 

along South China 

(samples are from 

Aegiceras 

corniculatum soil) 

PRJNA629394 Sediment 

metagenome 

Metagenomes; 

ecological 

metagenomes 

Metagenome South China 2020-04-29 SRR11734720 3.64 G 18,209,386 17,427,535 9,660 422 5,337 

SRR11734598 3.83 G 19,129,190 18,342,777 10,852 424 7,412 

SRR11734613 3.84 G 19,180,698 18,338,146 25,121 461 43,105 

SRR11734656 4.15 G 20,768,796 20,169,382 52,455 465 32,405 

SRR11734640 4.16 G 20,805,669 20,243,850 48,897 516 46,618 

SRR11734616 4.12 G 20,591,363 19,765,013 29,634 459 45,747 

SRR11734716 4.11 G 20,559,523 19,722,052 13,382 423 10,080 

SRR11734719 4.34 G 21,676,963 20,830,425 15,150 426 7,083 

SRR11734596 4.53 G 22,671,952 21,791,702 17,194 426 6,779 

SRR11734597 4.52 G 22,602,093 21,705,388 16,722 424 6,841 

       TOTAL (M) 41240      
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Gut microbiome 

alterations and 

longitudinal kinetics 

in 15 COVID-19 

patients. 

 

Tao Zuo et al., 2020 

PRJNA624223 Feces 

metagenome 

Metagenomes; 

organismal 

metagenomes 

 

Raw sequence reads Hong Kong 2020-04-10 SRR12328926 2.85 G 10,119,197 9,893,607 15,215 1,195 732,744 

SRR12328948 3.10 G 10,831,211 10,698,264 7,994 3,351 403,502 

SRR12328907 3.05 G 10,776,976 10,650,748 156,679 1,299 524,513 

SRR12328910 3.16 G 11,141,802 10,735,634 409,228 490 385,138 

SRR12328904 3.32 G 11,404,379 11,294,382 136,136 1,363 472,741 

SRR12328942 3.20 G 11,471,303 11,240,588 31,516 1,614 585,648 

SRR12328943 3.41 G 12,238,736 12,012,970 14,049 1,123 349,596 

SRR12328897 3.52 G 12,313,208 12,205,473 149,575 1,253 481,689 

SRR12328903 3.68 G 13,018,722 12,883,352 116,637 1,560 493,077 

SRR12328951 3.76 G 13,019,613 12,900,042 25,191 2,502 411,905 

       TOTAL (M) 33050      

Human skin 

metagenome and 16S 

(Epithelium of 

external nose)  

PRJNA472006 Human skin 

metagenome 

Metagenomes; 

organismal 

metagenomes 

Raw sequence reads Denmark: 

Copenhagen 

2018-05-18 SRR9696273 8.2G 32,489,498 31,778,213 94,964 358 37,829 

SRR9696274 13.9G 55,186,070 53,638,515 43,565 337 16,576 

SRR9696275 9.1G 36,087,682 35,391,282 18,676 335 5,245 

SRR9696276 9.1G 35,935,443 35,178,043 30,113 335 16,689 

SRR9696277 8.8G 34,846,139 34,191,678 10,537 376 16,683 

SRR9696278 13.2G 52,223,806 50,934,770 44,869 337 4,667 

SRR9696279 9.6G 37,987,223 37,080,691 44,017 332 16,668 

SRR9696280 8.9G 35,189,492 34,402,185 3,275 329 3,917 

SRR9696281 12G 47,577,639 46,427,813 45,784 339 16,690 

SRR9696282 11.2G 44,434,656 43,402,757 42,952 338 16,668 

SRR9696283 7.8G 30,778,753 30,118,478 7,434 513 147,689 

SRR9696284 11.9G 47,163,030 46,080,142 23,316 331 16,668 

       TOTAL (M) 123700      

Global surveillance of 

infectious diseases and 

antimicrobial 

resistance from 

sewage 

 

PRJEB13831 Sewage Metagenomes Raw sequence reads Global project 2019-02-01 ERR1713410 8.2G 27,296,861 25,450,270 253,567 396 23,682 

ERR1713411 5.8G 19,360,109 18,017,557 233,836 394 32,340 

ERR1726031 1.2G 3,919,046 3,659,867 59,188 382 6,765 

ERR1726032 4.6G 15,288,191 14,959,449 222,760 396 31,300 

ERR1726033 11.5G 38,069,060 36,914,867 236,108 397 27,547 

ERR1726034 1.9G 6,416,235 6,078,322 107,287 386 15,425 

ERR1726035 4.8G 15,847,330 14,650,560 195,063 392 14,190 

ERR2592282 5.8G 19,303,711 18,088,371 232,720 393 38,612 

ERR2592343 13G 43,018,798 36,090,777 218,766 391 12,778 

       TOTAL (M) 56800      

TOTAL       65 Samples 280888.82 1,139,543,039 1,100,630,009 4,325,515         - - 
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Taxonomical Assignment  
  

To understand the dynamics of SM production in the different environments, 

this require to get the taxonomical assignment for the sequence reads of each sample. 

Samples were taxonomically classified on the sequence reads using Kraken 2 with the 

default taxonomy database. The abundance of the different taxonomic levels (species, 

genus, family, etc.) was estimated using Bracken. This exercise resulted into 

understanding the community structure and the abundance of each microbial group 

within each sample under test. Figure 5 showed how the relative abundance at genus 

level differ between samples of each projects, and it was clear that samples of some 

projects were dominated by few signature genera such as the sample of Osaka which 

were dominated mainly by Pseudomonas and Synechococcus. On the other hand, 

metagenomic skin samples of AD patients were dominated mainly by Cutibacterium, 

while Corynebacterium appeared like it stands alone in the samples of the Human skin 

metagenome from epithelium of external nose project (Nose).  

 

Figure 5. Barplot showing the relative abundance of all the detected microbial taxa, at the genus level, 

of the processed samples per each of the seven selected datasets. 
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To show how the different samples will be clustered based on the relative abundance of 

taxa we constructed both a PCA and t-SNE graphs (Figures 6 & 7). Projects like Osaka 

bay and water sewage appeared completely separated from the other five projects, while 

the rest shows some connections which mainly due to the presence of common genera, 

such as Corynebacterium and Cutibacterium which explained the presence of some 

samples from the Human skin metagenome from epithelium of external nose and Tonga 

trench project around the samples of the skin project of AD patients. These findings 

might be of great impact on understanding the dynamics of SM production in different 

environments. 

 
Figure 6. PCA analysis for the ecosystems, based on the assigned microbiome taxa. (A) Plot showing 

the most significant Principal Components, PC1, PC2 & PC3, all together represent 82% variations. (B) 

PCA biplot of the different samples from each of the seven selected datasets. PC1 & PC2 representing 

the most significant principle components and they cumulatively represent 68.7% and different samples 

were clustered separately based on their relative abundance of the taxa. Different datasets were color 

coded.  
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Figure 7. t-SNE analysis for the datasets, based on the assigned microbiome taxa. 

BGC profile of samples in the dataset as detected by antiSMASH   

 

By using antiSMASH a total 776 BGCs regions were detected from the selected 

projects, 45 samples from 65 processed samples gave hits with antiSMASH (Figure 8). 

26 different BGC classes were detected (Figure 9), the seven major detected classes 

which collectively represent about 80% of the total detected BGCs classes were NRPS 

(23%), bacteriocin (15%), NRPS-like (10%), terpene (10%), sactipeptide (9%), 

arylpolyene (7%) and siderophore (5%). About 35% of the detected BGCs came from 

5 different bacterial genera, Pseudomonas contributed the most with 12% and it was 

obvious that the most dominant species was Pseudomonas sp. J380 which contributed 

alone by 10% of the total percentage of the detected BGCs. The genus Gordonia came 

in the second place with 8%, while the genus Corynebacterium produced 7% of the 

detected BGCs and both Cutibacterium and Blautia genera contributed by the same 

percentage of the detected BGCs, about 4% for each genus. To figure out the major 

differences between the processed samples from each environments in terms of BGCs 
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contents and their corresponding microbial contributors, we deeply analyzed the 

processed samples from each dataset and the results were explained in details here-

under. 

 

Figure 8. Distribution  of the detected BGCs by antiSMASH in all datasets (A) Distribution of 

the absolute number of the detected BGCs by antiSMASH (B) Distribution of the normalized 

percentages of the detected BGCs by antiSMASH. Percentages were normalized to the number 

of assembled bases per dataset.  

 

 

Figure 9. Distribution of the absolute number of the detected BGCs classes by antiSMASH in 

all datasets. 
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About 36.48%* (i.e. 101 BGCs) of the detected BGCs of 9 different classes 

were from the metatranscriptomic marine samples from Osaka Bay see water project. 

Only 6 samples out of 9 processed samples gave hits with antiSMASH pipeline. NRPS 

and bacteriocin represent the vast majority of the detected classes by 64%, NRPS class 

came in the first place by 44% while the percentage of the detected bacteriocin class 

was 20% and the percentages of the rest seven detected classes were as follows, 9% 

terpene, 7% NRPS-like, 7% arylpolyene, 5% hserlactone, 5% siderophore, 3% 

betalactone and only 1 BGC was NAGGN. 95% of the detected BGCs was produced 

by two genera, Pseudomonas and Synechococcus.  Pseudomonas contributed the most 

with 82% and it was obvious that the most dominant species was Pseudomonas sp. J380 

which contributed alone by 74% from the total percentage of the detected BGCs. 

Synechococcus came in the second place and contributed by 13% of the total detected 

classes. * Percentage was normalized to the total number of bases. 

 

 The results of metagenomic samples from the gut microbiome project of 

COVID-19 patients were analyzed. In this study, 10 samples were processed, all 

samples gave hits and antiSMASH detected 16 different BGCs classes with a total 

number of 243 BGCs. Only 5 classes out of 16 different classes, represent about 80% 

of the total detected classes as follows; 28% was sactipeptide, NRPS represent 19%, 

bacteriocin was 16%, arylpolyene and lanthipeptide represent 12% and 7% respectively. 

The rest of detected classes (11 classes) which collectively represent about 19% were, 

NRPS-like, terpene, T3PKS, lassopeptide, betalactone, resorcinol, siderophore, 

thiopeptide, nucleoside, butyrolactones and ladderane. About 43% of the detected 

BGCs were from 5 genera, 13% of BGCs was produced by Blautia, and 12% was from 

Lachnospiraceae, 7% was Bacteroides, 6% was Faecalibacterium and Streptococcus 

contributed with 5% of the detected BGCs.  

  

 Ten skin microbiome metagenomic samples were randomly chosen from a 

comparative metagenomic analysis study conducted in Singapore to assess the 

relationship between human skin microbiota stability and patients with atopic 

dermatitis. All samples gave hits with antiSMASH and it detected 19 different BGCs 

classes with a total number of 272 BGCs. Out of the 19 detected classes,  6 represent 

about 81% of the total number of the detected BGCs. These classes were NRPS, NRPS-

like, siderophore, terpene, bacteriocin and T1PKS which represent 27%, 17%, 10%, 
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10%, 9% and 8% respectively. The rest of detected classes (13 classes) which 

collectively represent about 19% were, ectoine, T3PKS, hserlactone, thiopeptide, 

betalactone, lanthipeptide, arylpolyene, CDPS, LAP, hglE-KS, ladderane, 

butyrolactones and lassopeptide. More than half of the detected BGCs (i.e. about 57%) 

were produced by 4 genera; Gordonia, Corynebacterium, Cutibacterium and 

Staphylococcus which represent 24%, 15%, 12% and 6% of the total detected BGCs                                                                        

respectively.  

 

 Five marine sediment metagenomic samples from Tonga trench sediment in the 

Pacific Ocean were processed by antiSMASH to screen for BGCs contents. Only 2 

samples gave hits and antiSMASH detected a total of 23 BGCs with 9 different classes. 

The detected classes with their corresponding percentages were as follows, (17%) 

arylpolyene, (17%) NRPS-like, (17%) hglE-KS, (13%) bacteriocin, (9%) phosphonate, 

(9%) terpene, (9%) hserlactone, (4%) T1PKS and (4%) NRPS. There was no much data 

about the microbial composition of the processed samples because antiSMASH could 

not assign about 43% of the detected BGCs to any microbial species.  

 

Another ten metagenomic samples from Mangrove sediment microbiome along 

South China were processed and 5 of them gave hits with antiSMASH. A total of 12 

BGCs with 6 different classes were detected. The detected classes with their 

corresponding percentages were as follows, (33%) bacteriocin, (17%) arylpolyene, 

(17%) NRPS-like, (17%) terpene, (8%) lassopeptide and (8%) NRPS. There was no 

much data about the microbial composition of the processed samples because 

antiSMASH could not assign about 58% of the detected BGCs to any microbial species. 

 

 Twelve samples were a Human skin metagenome from epithelium of external 

nose from a study conducted in Copenhagen; Denmark. Only 3 samples gave hits with 

antiSMASH and it was obvious that only one dominant genus, Corynebacterium 

produced 5 different classes of BGCs and a total 23 BGCs were detected as follows; 9 

NRPS representing 39%, 5 terpene (22%), 5 siderophore (22%), 2 NRPS-like (9%) and 

2 T1PKS (9%). There was no much data about the microbial composition of the 

processed samples because antiSMASH could not assign about 53% of the detected 

BGCs to any microbial species. 
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 The last 9 samples were from the Global Sewage Project. A total of 102 BGCs 

with 12 different classes were detected. The detected BGCs classes with their 

corresponding percentages were as follows, (30%) bacteriocin, (28%) terpene, (10%) 

hserlactone, (8%) NRPS-like, (7%) arylpolyene, (5%) sactipeptide, (3%) resorcinol, 

(3%) T3PKS, (2%) ectoine, (2%) butyrolactones, (1%) phenazine and (1%) RaS-RiPP.  

Almost 50% of the produced BGCs was from 3 major genera; Streptococcus comes in 

the first place with 27%, Neisseria produced about 15% and 6% was from Polaromonas. 

What is interesting about this project is that there are few unique BGCs classes detected 

by antiSMASH which are not appear in the previous 6 projects, such as resorcinol, 

ectoine, phenazine and RaS-RiPP. Moreover, these classes are not produced by the 

dominant genera (i.e. resorcinol is produced either by Brevundimonas or 

Pasteurellaceae, ectoine produced by Arcobacter and phenazine was produced by 

Escherichia coli) each genera represent only about 1% of the total microbial 

community. We discussed this point with some details elsewhere in this study.   

 

BGC profile of samples in the dataset as detected by DeepBGC  

 

 Before we decide to use deepBGC pipeline, we did a pilot trial to test deepBGC 

output and the results were very interesting and rich with huge amount of data compared 

to antiSMASH. Although it is not an objective of this study to perform a comparative 

analysis between the results obtained by both pipelines, however, we decide to use 

deepBGC to get a deeper insight and grasp more information about the processed 

samples and their corresponding communities.  

 

For a better understanding of deepBGC results here are some important points 

about this algorithm. The current deepBGC pipeline could detects only six different 

BGCs classes, five specific (i.e. Polyketide, NRP, RiPP, Saccharide and Terpene) and 

one unspecific annotated by the algorithm as “other”. In addition to the huge amount of 

data generated by deepBGC there is another major advantage of it because it could 

assign four different products’ activities (i.e. antibacterial, antifungal, inhibitor and 

cytotoxic) to each detected BGCs with a very high coverage percentage, almost 96% of 

processed samples. We tried to figure out the annotation mechanism of deepBGC, we 

discovered that there is a scoring system for both class and product activity annotations, 

the pipeline assigned class and activity for hits with scores ≥ 0.5 and if there are more 
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than one class or activity with a score ≥ 0.5, all will be annotated to the same hit, 

separated by a hyphen sign (-).  

 

Unlike antiSMASH, deepBGC detected large number of BGCs classes and a 

total 79,771 BGCs were detected from the selected datasets (Figure 10), moreover all 

the 65 samples gave hits. DeepBGC assigned BGCs classes to around 20% of hits 

(15,714 hits) as follows; 39% of hits was Polyketide, 18% RiPP, 18% Saccharide, 10% 

others, 7% NRP, 4% Terpene, 2% Polyketide-Terpene, 1% NRP-Polyketide and 1% 

Saccharide-Terpene (Figure 11).  

 

Figure 10. Distribution  of the detected BGCs by deepBGC in all datasets (A) Distribution of 

the absolute number of the detected BGCs by deepBGC (B) Distribution of the normalized 

percentages of the detected BGCs by deepBGC. Percentages were normalized to the number 

of assembled bases per dataset.  
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Figure 11. Distribution of the absolute number of the detected BGCs classes by deepBGC in 

all datasets. 

A major advantage of deepBGC is that it could assign product activity to each single 

detected BGC class with a very high coverage rate. In this study deepBGC assigned 

product activity to 96% of the hits and the results were 97% of hits have an antibacterial 

activity, 1% inhibitor, 1% antibacterial-antifungal and less than 1% cytotoxic (Figure 

12). About 31% of the detected BGCs were products of microbial species belong to one 

of the following eight genera, 7% from Bacteroides, 5% Pseudomonas, 5% 

Corynebacterium, 4% Gordonia, 3% Blautia, 3% Escherichia, 2% Faecalibacterium 

and 2% Cutibacterium. 
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Figure 12. Distribution the assigned product activities by deepBGC in all datasets. (A) 

Distribution of the absolute number of the assigned products’ activities by deepBGC (B) 

Distribution of the normalized percentages of the assigned products’ activities by deepBGC. 

Percentages were normalized to the number of assembled bases per dataset. 

DeepBGC detected 4,795 BGCs from the nine metatranscriptomic marine samples from 

Osaka Bay see water project. All processed samples gave hits with deepBGC pipeline. 

DeepBGC assigned BGCs classes to around 17% of the hits (832 hits) as follows; 49% 

of hits was Polyketide, 13% NRP, 12% RiPP, 8% other, 7% Saccharide, 6% Terpene, 

3% Saccharide-Terpene, 2% Polyketide-Terpene and 1% NRP-Polyketide. In this 

project deepBGC assigned product activity to almost 96% of the hits and the results 

were 97% of hits have an antibacterial activity, 2% inhibitor and 1% antibacterial-

antifungal. DeepBGC specified the microbial species to about 82% of the hits and more 

than 80% of the detected BGCs were products of microbial species belong to one of the 

following 3 genera, 63% from Pseudomonas, 15% Synechococcus, and 4% Candidatus. 

 

The results of metagenomic samples from the gut microbiome project of 

COVID-19 patients were analyzed. In this study, 10 samples were processed, all 

samples gave hits and deepBGC annotated BGCs classes to around 20% of the hits 

(6,852 hits) as follows; 30% of hits was Polyketide, 26% Saccharide, 23% RiPP, 11% 

other, 4% NRP, 3% Terpene, 1% Polyketide-Terpene and 1% NRP-Polyketide. In this 

project deepBGC assigned product activity to almost 96% of the hits and the results 

were 98% of hits have an antibacterial activity, 1% inhibitor, 1% antibacterial-

antifungal and 1% cytotoxic. DeepBGC specified the microbial species to about 79% 

of the hits and about 33% of the detected BGCs were products of microbial species 
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belong to one of the following 4 genera, 16% from Bacteroides, 7% Blautia, more than 

5% Lachnospiraceae and 5% Faecalibacterium. 

A total of 18,683 hits were detected by deepBGC from 10 skin microbiome 

metagenomic samples of patients with atopic dermatitis. DeepBGC annotated BGCs 

classes to around 22% of the hits (4,137 hits) as follows; 46% of hits was Polyketide, 

14% RiPP, 10% Saccharide, 10% NRP, 8% Other, 5% Terpene, 5% Polyketide-

Terpene, 2% Saccharide-Terpene and 1% NRP-Polyketide. Moreover, deepBGC 

assigned product activity to almost 95% of the hits and 96% of hits have an antibacterial 

activity, 2% inhibitor and 2% antibacterial-antifungal. DeepBGC specified the 

microbial species to about 75% of the hits and more than 50% of the detected BGCs 

were products of microbial species belong to one of the following 5 genera, 16% from 

Gordonia, 14% Corynebacterium, 7% Mycolicibacterium, 7% Cutibacterium and 7% 

Micrococcus. 

The five samples from Tonga trench project gave 2,751 hits with deepBGC. The 

pipeline annotated about 21% of these hits (567 hits) with different BGCs classes as 

follow; 52% of hits belonged to Polyketide, 12% RiPP, 11% Terpene, 8% Others, 7% 

NRP, 5% Saccharide, 4% Polyketide-Terpene, 1% Saccharide-Terpene and 1% NRP-

Polyketide. On the other hand, 96% of hits annotated by deepBGC with three different 

activities, the majority about 96% have an antibacterial activity, 3% antibacterial-

antifungal and about 1% inhibitor. The pipeline also specified the microbial species to 

about 45% of the hits and about 20% of the detected BGCs were products of microbial 

species belong to one of the following 2 genera, 16% Cutibacterium and 4% belonged 

to Pseudomonas. 

 

The then metagenomic samples from Mangrove sediment microbiome project 

gave 1,624 hits with deepBGC. The pipeline annotated about 14% of these hits (230 

hits) with different BGCs classes as follow; 46% of hits belonged to Polyketide, 13% 

Saccharide, 11% NRP, 9% RiPP, 8% Others, 6% Terpene, 5% Polyketide-Terpene and 

1% Saccharide-Terpene. On the other hand, 97% of the total detected hits annotated by 

deepBGC with one of two different activities, the vast majority about 99% have an 

antibacterial activity and 1% inhibitor. The pipeline also specified the microbial species 

to about 52% of the hits and about 24% of the detected BGCs were products of microbial 

species belong to one of the following 3 genera, 10% Altererythrobacter, 8% 

Erythrobacter and 6% belonged to Candidatus Plagibacter. 
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The twelve metagenomic samples from a study conducted in Copenhagen; 

Denmark gave about 1,351 hits with deepBGC. The pipeline annotated about 21% of 

these hits (283 hits) with different BGCs classes as follow; 45% of hits belonged to 

Polyketide, 17% RiPP, 12% Other, 9% NRP, 8% Saccharide, 7% Terpene, 1% 

Polyketide-Terpene and 1% NRP-Polyketide. Moreover, about 95% of the total 

detected hits annotated by deepBGC with one of three different activities, the vast 

majority, about 96%, have an antibacterial activity, 2% inhibitor and 1% antibacterial-

antifungal. The pipeline also specified the microbial species to about 81% of the hits 

and the genus Corynebacterium was the most dominant as it represents about 78% of 

the whole microbial community from the processed samples.  

 

The last 9 samples were from the Global Water Sewage Project. DeepBGC 

pipeline gave 16,682 hits, 17% of it (i.e. 2,813 hits) annotated by deepBGC with 

different BGCs classes. The majority 44% were Polyketide, 17% RiPP, 15% 

Saccharide, 12% Other, 5% NRP, 4% Terpene, 2% Polyketide-Terpene, 1% NRP-

Polyketide. The pipeline assigned product activity to almost 97% of the total hits and 

the vast majority, 97%, was antibacterial, 1% was inhibitor and 1% was antibacterial-

antifungal. DeepBGC specified the microbial species to about 77% of the hits and about 

31% of the detected BGCs were products of microbial species belong to one of the 

following 6 genera, 9% Escherichia, 6% Acidovorax, 5% Neisseria, 4% Streptococcus, 

3% Arcobacter and the last 3% belonged to Pseudomonas. 

 

AMR genes profile of samples in the dataset as detected by CARD’s RGI 

 

The second major goal of this study was to detect the antimicrobial resistance 

genes of the samples from the selected metagenomes, along with their mechanisms of 

actions and the drug classes which it confers resistance to. Here we used Resistance 

Gene Identifier (RGI) algorithm from The Comprehensive Antibiotic Resistance 

Database (CARD) with the following criterions for detection (perfect, strict & loose, 

partial genes included, 95% identity nudge used) of AMR genes. Loose hits were 

excluded, here only results of perfect and strict hits were reported to ensure that they 

are either perfect matches or passed the curated bit-score. In our study, the selected sixty 

five samples from the different seven selected projects were analyzed by CARD’s RGI 
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and a total number of around 1216 AMR gene families were detected which confer 

resistance to about 2602 drug classes by 1163 resistance mechanisms. Figures 18 – 20 

show the distribution of the detected AMR gene families, drug classes and resistance 

mechanisms of all samples from the seven selected metagenomes, respectively. Gut 

microbiome of COVID-19 patients’ samples and water sewage samples represent more 

than 70% of antibiotic resistance abundance, while samples of the rest five selected 

metagenomes represent less than 30%.  To eliminate the effect of the number of bases 

all percentages were normalized by dividing the total detected number of AMR gene 

families, drug classes and resistance mechanisms by the total number of used bases per 

each of the seven selected metagenomes.  

 

Figure 13. Distribution the detected AMR genes families by CARD in all datasets. (A) 

Distribution of the absolute number of detected AMR genes families by CARD. (B) Distribution 

of the normalized percentages of the detected AMR genes families. Percentages were 

normalized to the number of assembled bases per dataset. 
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Figure 14. Distribution the detected drug classes by CARD in all datasets. (A) Distribution of 

the absolute number of detected drug classes by CARD. (B) Distribution of the normalized 

percentages of the detected drug classes. Percentages were normalized to the number of 

assembled bases per dataset. 

 

Figure 15. Distribution the detected resistance mechanisms by CARD in all datasets. (A) 

Distribution of the absolute number of detected resistance mechanisms by CARD. (B) 

Distribution of the normalized percentages of the detected resistance mechanisms. Percentages 

were normalized to the number of assembled bases per dataset. 

The results of metagenomic samples from the gut microbiome project of COVID-19 

patients were analyzed. In this study, 10 samples were processed, 9 samples gave 

perfect hits (76 hits) while all samples gave strict hits (468 hits). CARD’s RGI algorithm 

detected a total of 608 AMR genes from different 55 families which represent 48.26% 

of all detected AMR gene families of all processed samples from the seven selected 
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metagenomes. Such AMR genes confer resistance to a total of 1378 drugs from different 

37 classes which represent 51.51% of the overall results (Table 5).  

Table 5. Drug classes detected by CARD's RGI in gut microbiome of COVID-19 patients’ samples. A 

total 1378 drug classes from 32 different classes, according to CARD’s classification were detected. 

# Drug Classes Detected # % 

1 tetracycline antibiotic 203 14.73% 

2 fluoroquinolone antibiotic 174 12.63% 

3 Penam 118 8.56% 

4 Cephalosporin 105 7.62% 

5 macrolide antibiotic 95 6.89% 

6 aminoglycoside antibiotic 73 5.30% 

7 rifamycin antibiotic 69 5.01% 

8 phenicol antibiotic 59 4.28% 

9 glycylcycline 49 3.56% 

10 lincosamide antibiotic 44 3.19% 

11 Cephamycin 43 3.12% 

12 peptide antibiotic 42 3.05% 

13 Triclosan 42 3.05% 

14 aminocoumarin antibiotic 34 2.47% 

15 streptogramin antibiotic 32 2.32% 

16 Carbapenem 23 1.67% 

17 Penem 23 1.67% 

18 diaminopyrimidine antibiotic 20 1.45% 

19 nucleoside antibiotic 20 1.45% 

20 acridine dye 19 1.38% 

21 Monobactam 17 1.23% 

22 Fosfomycin 16 1.16% 

23 glycopeptide antibiotic 16 1.16% 

24 nitrofuran antibiotic 7 0.51% 

25 nitroimidazole antibiotic 6 0.44% 

26 oxazolidinone antibiotic 6 0.44% 

27 pleuromutilin antibiotic 6 0.44% 

28 benzalkonium chloride 5 0.36% 

29 Rhodamine 5 0.36% 

30 elfamycin antibiotic 4 0.29% 

31 aminocoumarin antibiotic 2 0.15% 

32 sulfonamide antibiotic 1 0.07% 

GRAND TOTAL 1378 100.00% 

 

These genes confer resistance to the different drug classes by 6 different 

resistance mechanisms of a total 580 mechanisms, which represent 48.68% of the 

overall detected resistance mechanisms. The top three detected AMR gene families 

were, resistance-nodulation-cell division (RND) antibiotic efflux pump (28.62%), 

major facilitator superfamily (FS) antibiotic efflux pump (17.11%) and tetracycline-

resistant ribosomal protection protein (10.36%), which represent 56.09% of the 608 

detected AMR gene families. Whereas, the top first five drug classes which represent 

50.44% of the detected 1378 drug classes were as follows, tetracycline antibiotic 

(14.73%), fluoroquinolone antibiotic (12.63%), penam (8.56%), cephalosporin (7.62%) 

and macrolide antibiotic (6.89%). On the other hand, the six detected resistance 
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mechanisms by which genes introduce drug resistance, were as follows; antibiotic 

efflux (47.93%), antibiotic target alteration (20%), antibiotic inactivation (13.28%), 

antibiotic target protection (12.24%), antibiotic target replacement (3.97%) and reduced 

permeability to antibiotic (2.59%). 

 

The nine metagenomic samples from the Global Water Sewage Project come in 

the second place after gut microbiome of COVID-19 patients’ samples in terms of 

antibiotic resistance abundance. All samples gave hits with RGI where; 96 of hits were 

perfect matches and 370 of the hits were strict. A total 506 AMR genes belong to 37 

different families was detected, which represent 23.37% of all detected AMR gene 

families. These genes confer resistance to 1031 drugs belong to 29 different classes 

which collectively represent 22.42% of the whole detected drug classes (Table 6).  

 

Table 6. Drug classes detected by CARD's RGI in water sewage samples. A total 1031 drug classes 

from 29 different classes, according to CARD’s classification were detected. 

# Drug Classes Detected # % 

1 tetracycline antibiotic 155 15.03% 

2 Penam 123 11.93% 

3 fluoroquinolone antibiotic 103 9.99% 

4 macrolide antibiotic 90 8.73% 

5 Cephalosporin 87 8.44% 

6 aminoglycoside antibiotic 77 7.47% 

7 phenicol antibiotic 49 4.75% 

8 Cephamycin 37 3.59% 

9 rifamycin antibiotic 35 3.39% 

10 Glycylcycline 30 2.91% 

11 Triclosan 29 2.81% 

12 aminocoumarin antibiotic 25 2.42% 

13 peptide antibiotic 22 2.13% 

14 sulfonamide antibiotic 20 1.94% 

15 acridine dye 18 1.75% 

16 nucleoside antibiotic 17 1.65% 

17 diaminopyrimidine antibiotic 15 1.45% 

18 lincosamide antibiotic 15 1.45% 

19 streptogramin antibiotic 15 1.45% 

20 Monobactam 14 1.36% 

21 Penem 14 1.36% 

22 oxazolidinone antibiotic 9 0.87% 

23 pleuromutilin antibiotic 9 0.87% 

24 Carbapenem 7 0.68% 

25 nitroimidazole antibiotic 5 0.48% 

26 Fosfomycin 4 0.39% 

27 Carbapenem 3 0.29% 

28 benzalkonium chloride 2 0.19% 

29 Rhodamine 2 0.19% 

GRAND TOTAL 1031 100.00% 
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These genes confer resistance to the different drug classes by 6 different 

resistance mechanisms of a total 487 mechanisms, which represent 23.78% of the 

overall detected resistance mechanisms. Three major AMR gene families which 

represent 55.73% of 506 detected AMR genes were as follows; major facilitator 

superfamily (MFS) antibiotic efflux pump (24.90%), resistance-nodulation-cell 

division (RND) antibiotic efflux pump (20.75%) and tetracycline-resistant ribosomal 

protection protein (10.08%). Out of the 29 different drug classes, there were 6 major 

classes which represent 61.59% from the total number of 1031 detected drugs, and they 

were as follows; tetracycline antibiotic (15.03%), penam (11.93%), fluoroquinolone 

antibiotic (9.99%), macrolide antibiotic (8.73%), cephalosporin (8.44%) and 

aminoglycoside antibiotic (7.47%). As in gut microbiome of COVID-19 patients’ 

samples, there were six different resistance mechanisms detected but with different 

percentages as follows; antibiotic efflux (45.38%), antibiotic inactivation (27.72%), 

antibiotic target protection (13.14%), antibiotic target replacement (6.78%), antibiotic 

target alteration (6.37%) and reduced permeability to antibiotic (0.62%). 

 

The results of the rest five selected metagenomes represent less than 30% 

(normalized value) in terms of AMR gene family, drug classes and resistance 

mechanisms. No perfect hits were detected from the nine metatranscriptomic marine 

samples from Osaka Bay see water project while there were 26 strict hits from 5 samples 

detected. A total of 36 AMR genes from different 5 families which represent 15.35% 

of all detected AMR gene families of all processed samples from the seven selected 

metagenomes. The detected AMR genes confer resistance to a total of 77 drugs from 

different 11 classes which represent 15.46% of the overall results (Table 7).  

 

Table 7. Drug classes detected by CARD's RGI in Osaka bay samples.  A total 77 drug classes from 11 

different classes, according to CARD’s classification were detected. 

# Drug Classes Detected # % 

1 aminoglycoside antibiotic 10 12.99% 

2 fluoroquinolone antibiotic 15 19.48% 

3 tetracycline antibiotic 15 19.48% 

4 triclosan 6 7.79% 

5 cephalosporin 5 6.49% 

6 glycylcycline 5 6.49% 

7 penam 5 6.49% 

8 acridine dye 5 6.49% 

9 rifamycin antibiotic 5 6.49% 

10 phenicol antibiotic 5 6.49% 

11 macrolide antibiotic 1 1.30% 

GRAND TOTAL 77 100.00% 
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The detected AMR genes confer resistance to the different drug classes by 3 

different resistance mechanisms of a total 31 mechanisms, which represent 13.98% of 

the overall detected resistance mechanisms. The five detected AMR gene families were, 

resistance-nodulation-cell division (RND) antibiotic efflux pump (41.67%), major 

facilitator superfamily (MFS) antibiotic efflux pump (16.67%), APH(3'') (13.89%), 

APH(6) (13.89%) and ATP-binding cassette (ABC) antibiotic efflux pump (13.89%), 

which all represents 14.52% of the 36 detected AMR gene families. However, the first 

major three drug classes which represent 51.95% of the 77 detected drug classes were 

as follows, tetracycline antibiotic (19.48%), fluoroquinolone antibiotic (19.48%) and 

aminoglycoside antibiotic (12.99%). The three detected resistance mechanisms by 

which genes introduce drug resistance, were as follows; antibiotic efflux (51.61%), 

antibiotic inactivation (32.26%) and antibiotic target alteration (16.13%).  

On the other hand, from the ten samples of Skin AD metagenomes, only 4 

samples gave 7 perfect hits whereas all samples gave strict hits and the total detected 

number was 53 hits. The processed samples yielded a total number of 61 AMR genes 

from different 25 families which represent 12.53% of all detected AMR gene families 

compared to the rest of samples from the seven selected projects. These AMR genes 

confer resistance to a total of 101 drugs from different 23 classes which represent 9.77% 

of the overall results (Table 8).  

Table 8. Drug classes detected by CARD's RGI in skin AD patients’ samples.  A total 101 drug classes 

from 23 different classes, according to CARD’s classification were detected. 

# Drug Classes Detected # % 

1 aminoglycoside antibiotic 15 14.85% 

2 macrolide antibiotic 11 10.89% 

3 lincosamide antibiotic 11 10.89% 

4 streptogramin antibiotic 11 10.89% 

5 fluoroquinolone antibiotic 9 8.91% 

6 phenicol antibiotic 7 6.93% 

7 Penam 6 5.94% 

8 tetracycline antibiotic 5 4.95% 

9 peptide antibiotic 4 3.96% 

10 oxazolidinone antibiotic 3 2.97% 

11 pleuromutilin antibiotic 3 2.97% 

12 fusidic acid 2 1.98% 

13 lincosamide antibiotic 2 1.98% 

14 diaminopyrimidine antibiotic 2 1.98% 

15 acridine dye 2 1.98% 

16 aminocoumarin antibiotic 1 0.99% 

17 elfamycin antibiotic 1 0.99% 

18 Cephalosporin 1 0.99% 

19 Fosfomycin 1 0.99% 

20 glycopeptide antibiotic 1 0.99% 

21 Mupirocin 1 0.99% 

22 rifamycin antibiotic 1 0.99% 

23 sulfonamide antibiotic 1 0.99% 

GRAND TOTAL 101 100.00% 
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The detected AMR genes confer resistance to the different drug classes by 5 

different resistance mechanisms of a total 60 mechanisms, which represent 13.03% of 

the overall detected resistance mechanisms. The most abundant detected AMR gene 

families which represent 52.46% of all detected AMR genes were as follows, major 

facilitator superfamily (MFS) antibiotic efflux pump (18.03%), Erm 23S ribosomal 

RNA methyltransferase (13.11%), blaZ beta-lactamase (8.20%), APH(3'') (6.56%) and 

APH(6) (6.56%). However, the first major five drug classes which represent 56.44% of 

the 101 detected drug classes were as follows, aminoglycoside antibiotic (14.85%), 

macrolide antibiotic (10.89%), lincosamide antibiotic (10.89%), streptogramin 

antibiotic (10.89%) and fluoroquinolone antibiotic (8.91%). While the five detected 

resistance mechanisms by which genes introduce drug resistance, were as follows; 

antibiotic inactivation (35%), antibiotic target alteration (28.33%), antibiotic efflux 

(23.33%), antibiotic target protection (10%) and antibiotic target replacement (3.33%). 

 

The next samples from the last three selected metagenomes represent the 

smallest fraction of all results. Their combined results gave less than 1% compared to 

the rest of results. No perfect hits were detected and only few strict hits were reported 

as follows, 3 hits, 1 hit and 1 hit from Nose, Tonga and Mangrove projects, respectively. 

These results reflect a few number of detected AMR gene families (i.e. 3, 1 and 1 for 

each projects on the same stated order, Nose, Tonga and Mangrove), which represent 

only 0.49% from the whole results. The detected AMR gene families were as follows, 

3 Erm 23S ribosomal RNA methyltransferase, 1 TEM beta-lactamase and 1 resistance-

nodulation-cell division (RND) antibiotic efflux pump for samples of Nose, Tonga and 

Mangrove projects, respectively. Regarding the detected drug classes, we reported a 

total of 15 drug classes from the three projects, Nose samples came in the first place by 

9 classes, then Tonga with 4 classes and last place was for Mangrove samples with only 

2 classes. These 15 drug classes represent 0.84% from the overall results (Tables 9 – 

11). The nine drug classes of Nose project were from three different classes, macrolide 

antibiotic, lincosamide antibiotic and streptogramin antibiotic which share the same 

percentage 33%. While the four detected drug classes of Tong project were from four 

different classes as follows; monobactam, cephalosporin, penam and penem. We also 

reported only 2 drug classes from samples of Mangrove project as follows; 

fluoroquinolone antibiotic and tetracycline antibiotic. Five resistance mechanisms, 

represent 0.52%, were also reported from the three projects, 3 from Nose, 1 from Tonga 
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and 1 from Mangrove. These five mechanisms belong to three different types as 

follows; antibiotic target alteration, antibiotic inactivation and antibiotic efflux for 

Nose, Tonga and Mangrove metagenomes, respectively.  

 
Table 9. Drug classes detected by CARD's RGI in nose samples.  A total 9 drug classes from 3 

different classes, according to CARD’s classification were detected. 

# Drug Classes Detected # % 

1 macrolide antibiotic 3 33% 

2 lincosamide antibiotic 3 33% 

3 streptogramin antibiotic 3 33% 

GRAND TOTAL 9 100.00% 

 

Table 10. Drug classes detected by CARD's RGI in Tonga trench samples.  A total 4 drug classes from 

4 different classes, according to CARD’s classification were detected. 

# Drug Classes Detected # % 

1 Monobactam 1 25% 

2 Cephalosporin 1 25% 

3 Penam 1 25% 

4 Penem 1 25% 

GRAND TOTAL 4 100.00% 

 

Table 11. Drug classes detected by CARD's RGI in Mangrove samples.  A total 2 drug classes from 2 

different classes, according to CARD’s classification were detected. 

# Drug Classes Detected # % 

1 fluoroquinolone antibiotic 1 50% 

2 tetracycline antibiotic 1 50% 

GRAND TOTAL 2 100.00% 
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Chapter 4: Discussion  
 

According to WHO, antimicrobial resistance is considered one of the most 

complex global health challenges and should be a political priority. Dr Chan, WHO 

Former Director-General, said "The World Bank has warned that antimicrobial 

resistance could cause as much damage to the economy as the 2008 financial crisis." 

Moreover, with the limited choices of replacement products, WHO experts expect that 

the world is heading toward a post antibiotic era and the common infectious diseases 

will be mortal once again. This put a great pressure on the scientific community all over 

the world to discover new classes of antibiotics with new mechanisms of actions against 

the rising number of antimicrobial resistant bacterial strains.  

Over the third of small molecule medicines approved by the FDA were microbial 

natural products encoded by neighboring genes called Biosynthetic Gene Clusters 

(BGCs) (Newman & Cragg, 2020 & Martin, 1992). To date, the gold standard way for 

discovering bioactive natural products is the culture-dependent techniques which 

considered a major challenge due to the fact that only small fraction of bacterial species 

could be cultured under the current laboratory conditions (Stewart, 2012). The 

advancement of sequencing technologies and omics approaches unleash the power of 

natural products discovery through exploring the uncultivated microbial species which 

represent the biggest fraction of microbial community.  Here we tried to positively 

contribute in solving the antimicrobial resistance problem by two different ways. 

Firstly, we tried to support researchers who interested in natural products discovery 

through catalog the bacterial BGCs in the selected metagenomes by conducting a 

comparative analysis to determine the different BGCs’ classes present in each of the 

selected samples along with highlighting the major bacterial species contributors. 

Secondly, we did a thorough analysis to detect the antimicrobial resistance genes with 

their resistance mechanisms along with the drug classes they confer resistance to, in 

order to shed the light on this crises with deeper insights.  

Different environments have different microbial taxa profile  

Each environments comprise huge microbial communities live in complex 

interactions that greatly impact our life. Therefore, such comparative studies aiming to 

precisely profile the microbial communities’ compositions and their corresponding 

contributions in terms of production of secondary metabolites, are of fundamental 
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interest. Our results show that the different environmental conditions are the major 

determinants of the microbial composition. By screening 65 samples from seven 

different metagenomic and metatranscriptomic projects we discovered reads belong to 

a wide range of different microbial taxa, at the genus level, and some of them was found 

to be unique and characteristic to their corresponding environments. For example, 

samples from Osaka bay project were characterized by the presence of three major 

genera, in terms of their BGC contribution, the first place goes to Pseudomonas which 

contribute alone by more than 60% of the detected BGCs, Synechococcus comes in the 

second place by more than 15% while the third place goes to Candidatus Plagibacter 

by about 4% of the detected BGCs. Moreover, Synechococcus was not recognized in 

any other samples from the other 6 projects therefor it was unique and characteristic to 

this environment at the time of sampling. Mangrove samples, on the other hand, were 

characterized by the presence of two unique genera which not reported elsewhere in our 

study, Altererythrobacter and Erythrobacter which contributed by about 10% and 8% 

of the detected BGCs respectively. Candidatus, which appeared to be characteristic also 

to Osaka bay environment, comes here in the third place contributing by about 6% of 

the detected BGCs (Figure 16). 

 

Figure 16. Distribution of the number of contributed genus to BGCs with their respective 

contribution percentages as assigned by antiSMASH per dataset. 
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Table 12 has a complete comparison between antiSMASH and deepBGC results in 

terms of the detected BGC classes with their corresponding percentages and the most 

abundant genera with their contributions’ percentages. It was obvious that each 

environment had a signature microbial taxa profile, at the time of sampling, in terms of 

the relative abundance and sometimes there is a unique genera specific to each particular 

environments. In Tonga trench samples two genera were contributed the most to the 

detected BGCs, Cutibacterium (~16%) and Pseudomonas (~4%) while Shewanella was 

unique to this environment, although, it present in a relatively low abundance it survived 

and this case and other similar cases will be explained with some details in the next 

sections.  

Table 12. Comparison between antiSMASH and deepBGC in terms of the detected BGCs’ classes with their 

corresponding percentage and the most abundant genera with their percentage of contribution. 

Projects 
antiSMASH deepBGC 

BGC classes % Genus % BGC classes % Genus % 

Osaka 

Bay 

NRPS 44% Pseudomonas 82% Polyketide 49% Pseudomonas 63% 

Bacteriocin 20% Synechococcus 13% NRP 13% Synechococcus 15% 

Terpene 9% 

  

RiPP 12% 
Candidatus 

Plagibacter 
4% 

Arylpolyene 7% Other 8% 

  

NRPS-like 7% Saccharide 7% 

Siderophore 5% Terpene 6% 

hserlactone 5% 
Saccharide-

Terpene 
3% 

betalactone 3% 
Polyketide-

Terpene 
2% 

NAGGN 1% 
NRP-

Polyketide 
1% 

COVID-

19 

sactipeptide 28% Blautia 13% Polyketide 30% Bacteroides 16% 

NRPS 19% Lachnospiraceae 12% Saccharide 26% Blautia 7% 

bacteriocin 16% Bacteroides 7% RiPP 23% Lachnospiraceae 5% 

arylpolyene 12% Faecalibacterium 6% Other 11% Faecalibacterium 5% 

lanthipeptide 7% Streptococcus 5% NRP 4%   

NRPS-like 5%   Terpene 3% 

Terpene 2% 

Polyketide-

Terpene 1% 

T3PKS 2% 

NRP-

Polyketide 1% 

lassopeptide 2% 
Saccharide-

Terpene 

0.13

% 

Betalactone 2%   

Resorcinol  2% 

Siderophore 2% 

Thiopeptide 0.4% 

Nucleoside 0.4% 

butyrolactone 0.4% 

Ladderane 0.4% 

Skin 

(AD) 

NRPS 27% Gordonia 24% Polyketide 46% Gordonia 16% 

NRPS-like 17% Corynebacterium 15% RiPP 14% Corynebacterium 14% 

Siderophore 10% Cutibacterium 12% Saccharide 10% Mycolicibacterium 7% 

Terpene 10% Staphylococcus 6% NRP 10% Cutibacterium 7% 

Bacteriocin 9%   Other 8% Micrococcus 7% 

T1PKS 8% Terpene 5%   

Ectoine 4% 

Polyketide-

Terpene 5% 

T3PKS 3% 

Saccharide-

Terpene 2% 

Hserlactone 3% 

NRP-

Polyketide 1% 
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Thiopeptide 2%   

Betalactone 1% 

lanthipeptide 1% 

Arylpolyene 1% 

CDPS 1% 

LAP 1% 

hglE-KS 1% 

Ladderane 1% 

butyrolactone 0.4% 

lassopeptide 0.4% 

Tonga 

Arylpolyene 17% Shewanella 

Unique genus and 

produce unique 

product 

(phosphonate) 

NA Polyketide 52% Cutibacterium 16% 

NRPS-like 17%  RiPP 12% Pseudomonas 4% 

hglE-KS 17%  Terpene 11%   

Bacteriocin 13%  Other 8%   

phosphonate 9%  NRP 7%   

Terpene 9%  Saccharide 5%   

Hserlactone 9% 

 Polyketide-

Terpene 4% 

  

T1PKS 4% 

 Saccharide-

Terpene 1% 

  

NRPS 4% 

 NRP-

Polyketide 1% 

Mangrov

e 

Bacteriocin 33% - - Polyketide 46% Altererythrobacter 10% 

Arylpolyene 17%   Saccharide 13% Erythrobacter 8% 

NRPS-like 17% NRP 11% 

Candidatus 

Plagibacter 6% 

Terpene 17% RiPP 9%   

lassopeptide 8% Other 8% 

NRPS 8% Terpene 6% 

  Polyketide-

Terpene 5% 

Saccharide-

Terpene 1% 

NRP-

Polyketide 0.4% 

Skin 

(Nose) 

NRPS 39% Corynebacterium 
100

% 
Polyketide 

45% 

Corynebacterium 78% 

Terpene 22%   RiPP 17%   

Siderophore 22% Other 12% 

NRPS-like 9% NRP 9% 

T1PKS 9% Saccharide 8% 

  Terpene 7% 

Polyketide-

Terpene 1% 

NRP-

Polyketide 1% 

Sewage 

Bacteriocin 30% Streptococcus 27% Polyketide 44% Escherichia 9% 

Terpene 28% Neisseria 15% RiPP 17% Acidovorax 6% 

hserlactone 10% Polaromonas  6% Saccharide 15% Neisseria 5% 

NRPS-like 8%   Other 12% Streptococcus 4% 

arylpolyene 7% NRP 5% Arcobacter 3% 

sactipeptide 5% Terpene 4% Pseudomonas 3% 

resorcinol 3% 
Polyketide-

Terpene 2% 

  

T3PKS 3% 

NRP-

Polyketide 1% 

Ectoine 2% 

Saccharide-

Terpene 0.3% 

butyrolactone 2%   

phenazine 1% 

RaS-RiPP 1% 
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It was expected that similar environments in terms of their nature, most probably 

would have similar microbial composition. This was reported in our study as follows, 

samples from two different skin environments were addressed; samples of the Human 

skin metagenome from epithelium of external nose project were characterized and 

dominated by Corynebacterium while the samples from metagenomic skin of patients 

with AD were characterized by the following genera, Corynebacterium and 

Cutibacterium. Here Corynebacterium was the first contributors in both skin 

environments by more than 75% and about 14% of the detected BGCs in nose & skin 

AD samples respectively. Cutibacterium comes in the second place in terms of BGCs 

contribution by about 7% in skin AD patients samples and this might be due to an arm 

race between Corynebacterium and Cutibacterium and both genera were trying to create 

their own niche at the time of sampling. Three water in nature environments, Osaka, 

Tonga and Sewage, also were characterized by the presence of Pseudomonas genera 

with a high relative abundance in Osaka bay and very low abundance in both Tonga and 

Sewage samples. Moreover, samples from both COVID-19 patients and sewage 

represent gut microbiome community and this could explain the presence of 

Streptococcus genera in both samples. The Barplot in Figure 4 in results section, 

showing the relative abundance of all the detected microbial taxa, at the genus level, of 

the 65 processed samples per each of the seven selected projects.  

Our analysis also shows that there might be common bacterial strains between 

irrelevant environments, such as the presence of Cutibacterium in samples from both 

skin AD patients and Tonga trench. Moreover, we reported the presence of Candidatus 

in both samples from Osaka bay and Mangrove with relatively low abundance in both. 

To show how the different samples will be clustered based on the relative abundance of 

taxa we constructed both a PCA and t-SNE graphs (Figures 5 & 6 in results section). 

Projects like Osaka bay and water sewage which dominated by Pseudomonas and 

Streptococcus respectively with a high abundance, appeared completely separated from 

the rest five projects, while there were many connections between the other projects, 

which mainly due to the presence of common genera, such as Corynebacterium and 

Cutibacterium which explained the presence of some samples, appeared on both figures 

as colored dots, from the Human skin metagenome from epithelium of external nose 

and Tonga trench project around the samples of the skin project of AD patients (Table 

12).  
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It was also obvious that samples of some projects were dominated by few unique 

genera such as the samples from Osaka bay project which were dominated mainly by 

Pseudomonas with very large percentage followed by Synechococcus with relatively 

high percentage. Moreover, samples from the project of metagenomic skin of patients 

with AD were dominated mainly by Cutibacterium which is characteristic to skin 

environment, while Corynebacterium stands alone in the samples of the Human skin 

metagenome from epithelium of external nose project. Species like Streptococcus 

agalactiae were unique and characteristic to the samples of the water sewage projects. 

Although Streptococcus agalactiae present in a very low abundance it survived at the 

time of sampling. To understand the reason behind the presence of different microbial 

profiles in each environments, where some genera stands alone in some samples while 

there are samples with many different species live together and how could some species 

survive with a very low abundance, we analyzed the microbial biosynthetic potential of 

each environment on the next section.  

The biosynthetic potential of the selected microbial metagenomes  

 The importance of secondary metabolites came from their potential applications, 

as assigned by deepBGC the vast majority, about 95%, of the detected BGCs have an 

antibacterial activity. According to antiSMASH results, 45 out of 65 samples from the 

seven selected projects give hits of a total 776 BGCs regions of different 26 classes. We 

found that the number of BGCs and their classes directly proportional with the degree 

of microbial diversity (Figure 17).  

 

Figure 17. Distribution absolute number the different BGCs classes detected by antiSMASH per 

dataset. 
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Environments with a high degree of microbial diversity such as skin AD, gut 

microbiome of COVID-19 patients and sewage were very rich in terms of total number 

of detected BGCs and also in the number of BGCs’ classes. Ten samples from skin AD 

come in the first place with 272 detected BGCs belong to 19 different classes with 2 

unique classes (i.e. CDPS & LAP) which not reported elsewhere in our study. About 

57% of the detected BGCs belongs to four genera, Gordonia, Corynebacterium, 

Cutibacterium and Staphylococcus. There might be an arm race between these genera 

and each one trying to use as many weapons (i.e. SMs) as they can to create their own 

niche. Figure 18 showing BGC hits detected by antiSMASH boxplot for each dataset, 

in relation to its assigned genus. 

 

Figure 18. BGC hits detected by antiSMASH boxplot for each dataset, in relation to its assigned genus. 
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The majority of the detected BGCs has antimicrobial activity such as NRPS, 

represents 27% of BGCs, which was reported to have antibacterial activity and one 

major example of this group is β-lactams and some has also an antitumor activity 

(Felnagle et al., 2008). Terpene, bacteriocin, T1PKS, T3PKS, thiopeptide, betalactone, 

lanthipeptide, LAP and lassopeptide are also examples of such classes with an 

antimicrobial activity. On the other hand there should be a dialog and some sort of 

coordination between the community members through quorum sensing, this could be 

explained by the presence of homoserine lactone cluster (hserlactone) which known to 

has a rule in quorum sensing (Churchill et al., 2011). Butyrolactone also was detected 

which considered a type of signaling molecules that manage group of genes involved in 

the bacterial specialized metabolism and morphological differentiation (Horinouchi et 

al., 2001). Table 13 has more example of the potential use of the secondary metabolites 

detected in our analysis. 

Table 13. Potential application of some detected secondary metabolites 

BGC class Potential application Reference 

NRPS 
The majority has antibacterial activity (e.g. β-lactams) and 

antitumor effect (e.g. bleomycin)  
Felnagle et al., 2008 

Saccharides Some have antibacterial activity Weitnauer et al., 2001 

Terpene Subgroup of terpenes have antibacterial activity  
Brahmkshatriya & 

Brahmkshatriya, 2013 

Polyketides 

(T1PKS) 

Subgroup of T1PKS are involved in antibiotic synthesis (e.g. 

erythromycin) 
Yu et al., 2012 

Polyketides 

(T3PKS) 
Antibacterial and antitumor activity Lim et al., 2016 

Phosphonate Have antibacterial activity (e.g. fosfomycin)  
Metcalf & van der Donk, 

2009 

Ectoine Have a potential use in prevention of Alzheimer’s Jorge et al., 2016 

Ras-RiPP 
Can produce peptides involved the control of a quorum sensing 

(QS) system 
Ye et al., 2020 

Phenazine Has a role as cell signals that regulate patterns of gene expression Pierson & Pierson, 2010 

Bacteriocin 
Peptidic toxins inhibit the growth of similar or closely related 

bacterial strains 
Cotter et al., 2013 

Arylpolyene 
Antioxidants which protect the bacteria from reactive oxygen 

species. 
Carter, J.; et al., 2016 

Siderophore Responsible mainly for iron transportation across cell membranes 
Cornelis P & Andrews 

SC, 2010 

Hserlactone Quorum sensing Churchill et al., 2011 

NAGGN Contribute to bacterial cell survival  
Matthias Kurz et al., 

2010 

RiPP 

Has more than 20 sub-classes with many applications (i.e. 

Antibiotics, food preservative, animal feed additives and in cell 

biology anantin is used as an atrial natriuretic peptide receptor 

inhibitor) 

Arnison PG et al., 2013 

Wyss DF et al., 1993 

Betalactone 

β-lactones appear in different NP classes, such as PKs, 

nonribosomal peptides and terpenoids. It has inhibition activities 

for ligases, transferases, oxidoreductases and hydrolases. 

Robinson et al., 2018 

Lehmann et al., 2018 

Sactipeptide A member of bacteriocin class I which has antimicrobial activity. Arnison PG et al., 2013 

Lanthipeptide A member of bacteriocin class I which has antimicrobial activity. Arnison PG et al., 2013 

Lassopeptide A member of bacteriocin class I which has antimicrobial activity. Arnison PG et al., 2013 
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Resorcinol 

Has a structural roles in membrane formation and associated with 

wide biological activities such as antibacterial, cytotoxic, 

dermatotoxic, antioxidant and genotoxic  

H. Kikuchi et al., 2017 

Thiopeptide 
Has antimicrobial activity against several drug-resistance 

pathogens 
R Liao et al., 2009 

Nucleoside 
Could inhibit bacterial RNA polymerase and has antibacterial 

activity against drug-resistance bacteria  
SI Maffioli et al., 2017 

Butyrolactone 

Type of signaling molecule that manages group of genes 

involved in the bacterial specialized metabolism and 

morphological differentiation. 

Horinouchi et al., 2001 

Ladderane Potential biofuel  Javidpour, P et al., 2016 

LAP Has antibacterial activity  DY Travin et al., 2019 

hglE-KS 

Type of Polyketide synthases (PKS) which has many 

pharmaceutical activities such as antibacterial, antifungal & 

antitumor. 

Jenke-Kodama et al., 

2005 

 

Another example of such complex and diverse environment is COVID-19 patients’ 

samples. Five genera, Blautia, Lachnospiraceae, Bacteroides, Faecalibacterium and 

Streptococcus contribute by about 43% from a total number of 243 detected BGCs 

belong to 16 different classes. Nucleoside which could inhibit bacterial RNA 

polymerase and has antibacterial activity against drug-resistance bacteria, was unique 

to this environment (SI Maffioli et al., 2017). Gut microbiome of COVID-19 patients’ 

samples also were characterized by the presence of a wide array of bacteriocin, peptidic 

toxins which have the ability to inhibit the growth of similar or closely related bacterial 

strains (Cotter et al., 2013) in addition to the presence of sactipeptide, lanthipeptide and 

lassopeptide which considered members of bacteriocin class I which have antimicrobial 

activity (Arnison PG et al., 2013). Moreover, thiopeptide was also detected which has 

an antimicrobial activity against several drug-resistance pathogens (R Liao et al., 2009). 

Figure 19 is a heatmap for each dataset with each of the BGC hits from antiSMASH in 

relation to its assigned genus. 
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Figure 19. Heatmap for each dataset with each of the BGC hits from antiSMASH in relation to its 

assigned genus. 

Sewage samples comes in the third place in terms of the number of detected BGCs with 

a total of 102 BGCs belonging to 12 different classes. Here about 50% of the detected 

BGCs comes from 3 different genera, Streptococcus, Neisseria and Polaromonas. 

Different BGCs classes with antimicrobial activity were detected such as bacteriocin, 

terpene, NRPS-like, sactipeptide and T3PKS.  This environment was characterized also 

by the presence of many signaling and regulating classes such as hserlactone, 

butyrolactone, phenazine and RaS-RiPP. The last two classes were unique to this 

environments where phenazine, has a role as cell signals that regulate patterns of gene 

expression (Pierson & Pierson, 2010) while RaS-RiPP, a product of Streptococcus 

Agalactiae, can produce peptides involved in the control of a quorum sensing (QS) 

system (Ye et al., 2020). On the other hand, phenazine could be a good example to 

prove that some species might produce new metabolites under different environmental 

conditions, in this study we noticed that Escherichia coli from sewage water samples 

only produce phenazine in such environment and we didn’t recognize this elsewhere 

from any other projects. 
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Many other BGCs’ classes were detected in other samples such as saccharides which 

also have antibacterial activity especially the subset which has a cellular diffusible 

ability (Weitnauer et al., 2001). Type 1 Polyketides were reported to be involved in 

antibiotic synthesis such as erythromycin and oxytetracycline (Yu et al., 2012), while 

type 3 Polyketides were known about their antibacterial and antitumor activities (Lim 

et al., 2016). 

In this study, some environments such as Tonga trench doesn’t have a signature 

microbial composition. However, the genus Chewanella was characteristic to this 

environment by producing a unique product (i.e. Phosphonate) which had been reported 

to have antibacterial activity and one famous example is fosfomycin (Metcalf & van der 

Donk, 2009), at the time of sampling, this species might started to fight to create its own 

niche. This could be studied over a course of time to detect the environmental microbial 

composition change over time.  

Comparison of BGCs as detected by DeepBGC and antiSMASH  

 

By using both pipelines we noticed some major differences between them and 

could be summarized in the following points; antiSMASH was more power in detecting 

the exact BGC class, on the other hand, deepBGC detects a huge amount of BGCs 

compared to antiSMASH. A total 776 BGCs were detected by antiSMASH from the 

selected projects and only 45 samples from 65 processed samples gave hits, while 

deepBGC detected large number of BGCs, a total 79,771 BGCs were detected from the 

selected projects, moreover all the 65 samples gave hits. AntiSMASH detected 26 

different BGC classes and the seven major classes detected in this study which 

collectively represent about 80% of the total detected BGCs classes were NRPS (23%), 

bacteriocin (15%), NRPS-like (10%), terpene (10%), sactipeptide (9%), arylpolyene 

(7%) and siderophore (5%). On the other hand, deepBGC assigned BGCs classes to 

only around 20% of hits (15,714 hits) as follows; 39% of hits was Polyketide, 18% 

RiPP, 18% Saccharide, 10% others, 7% NRP, 4% Terpene, 2% Polyketide-Terpene, 1% 

NRP-Polyketide and 1% Saccharide-Terpene. Although deepBGC could annotate only 

six classes (i.e. Alkaloid, NRP, Polyketide, RiPP, Saccharide and Terpene), however it 

has a major advantage as it could assign product activity to each single detected BGC 

class with a very high coverage rate (Figure 20). In this study deepBGC assigned 

product activity to 96% of the hits and the results were 97% of hits have an antibacterial 



48 

activity, 1% inhibitor, 1% antibacterial-antifungal and less than 1% cytotoxic. Table 5 

had a detailed comparison between antiSMASH and deepBGC in terms of the detected 

BGC classes with their corresponding percentage and the name and percentage of the 

most abundant contributed genera. 

 

(chair) J., 2014). According to ECDC,  the European Center of Disease Prevention and 

Control, antimicrobial resistance infections cause every year around 23,000 and 25,000 

deaths in the US and Europe, respectively (CDC infographic, 2019).  Such figures 

mandate the need of novel natural products discovery with novel mechanisms of action. 

To reach this goal, we tried to contribute in the first part of our study through catalog 

the BGCs of different bacterial species from the selected metagenomes as this would 

help a lot in understanding the dynamics of SMs between related or different microbes 

and hopefully this would help. In the same context, the second major goal of this 

Figure 20. BGC hits detected by DeepBGC (product activity assigned) boxplot for each dataset, 

in relation to its assigned genus. 

AMR genes profile of samples in the dataset as detected by CARD’s RGI 

Around 700,000 deaths yearly due to infection by resistant microbes (O’Neill 
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research was to detect the antimicrobial resistance genes of the samples from the 

selected metagenomes, along with their mechanisms of actions and the drug classes 

which it confers resistance to. This also would greatly help to understand the different 

factors affecting the development of resistance and the possibility of spreading this 

resistance between closely related or even different bacterial strains through Horizontal 

Gene Transfer (HGT). Here we used Resistance Gene Identifier (RGI) algorithm from 

The Comprehensive Antibiotic Resistance Database (CARD) for AMR genes detection. 

From the sixty five processed samples from the different seven selected metagenomes, 

CARD’s RGI recognized a total number of around 1216 AMR gene families which 

confer resistance to about 2602 drug classes by 1163 resistance mechanisms. The largest 

percentages of results, more than 70%, were from the samples of both gut microbiome 

of COVID-19 patients and water sewage (Figures 8 – 10) and they also share many of 

aspects as follows; among the fifty five and thirty seven different AMR gene families 

of gut microbiome of COVID-19 patients and water sewage, respectively, the first 

major two AMR gene families were resistance-nodulation-cell division (RND) 

antibiotic efflux pump and  major facilitator superfamily (MFS) antibiotic efflux pump 

they represent the highest percentages; 45.75% and 45.65% of gut microbiome of 

COVID-19 patients and water sewage samples, respectively. Therefore, the major 

resistance mechanism in both samples was antibiotic efflux which represents 47.93% 

in gut microbiome of COVID-19 patients’ samples and 45.38% in water sewage 

samples. Although, gut microbiome of COVID-19 patients’ samples comes in the first 

place in the number of the detected drug classes, 1378 drugs of different 32 classes, and 

water sewage comes next with 1031 drugs from different 29 classes, they were also 

relatively similar in terms of kind of drug classes. The first three major drug classes 

detected in both samples were tetracycline antibiotic, fluoroquinolone antibiotic and 

penam which collectively represent around 35.92% and 36.95% of all detected drug 

classes from gut microbiome of COVID-19 patients and water sewage samples, 

respectively.   

The rest of samples from the other projects show also similar results with a very 

low abundance compared to gut microbiome of COVID-19 patients’ samples and water 

sewage samples. Antibiotic efflux pump AMR gene families both RND and MFS also 

represent the highest percentages; they represent 58.33% & 19.67% of all detected 

AMR gene families of Osaka and skin AD samples, respectively. However, there was 
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a slight difference in the order of resistances mechanisms between them, antibiotic 

efflux comes in the first place and represents 51.61% of the three detected mechanisms 

of Osaka samples while antibiotic inactivation comes first by 35% and antibiotic efflux 

was in the third place by 23.33% from the five different detected resistance mechanisms 

of skin AD patients samples. Moreover, the major drug class detected in both samples 

was aminoglycoside antibiotic by 14.85% and 12.99% from skin AD and Osaka 

samples, respectively. The results of the last samples from the rest three metagenomes, 

Nose, Tonga and Mangrove, represent the smallest fraction of all results. Their 

combined results were less than 1% compared to the rest of results. No perfect hits were 

detected and only few strict hits were reported as follows, 3 hits, 1 hit and 1 hit from 

Nose, Tonga and Mangrove projects, respectively. 

The effect of antibiotic use in AMR genes transfer between microbial communities  

We tried to find a connection between the detected BGCs in the first part of our 

study and AMR genes detected by CARD. Although, the ten samples of skin AD 

patients were the first among the rest metagenomes in terms of the number of detected 

BGCs, 272 BGCs from 19 different classes, it comes in the 4th place in terms of the 

normalized percentage of detected AMR genes after the samples of gut microbiome of 

COVID-19 patients, Sewage and Osaka metagenomes. Therefore, another reason other 

than the degree of microbial diversity should be responsible for putting the microbial 

communities under stress and bush them to share their resistance genes horizontally. 

This might be the reason behind the high abundance of the detected AMR genes, around 

70%, from gut microbiome of COVID-19 patients and water sewage samples. To 

eliminate the effect of sample size on results, this percentage was normalized to the total 

number of bases per each project. Results show a degree of similarity between both 

samples, this might be due to a common factor drives their respective bacterial 

communities toward sharing their AMR genes. Microbial communities of both gut 

microbiome of COVID-19 patients’ samples and water sewage sample exposed to 

abroad spectrum of antibiotics from different classes with different doses, such common 

factor would be of a great impact on the development of a huge number of highly 

resistant bacterial strains. In the next part, we will try to highlight some important results 

from both environments and trying to relate this to the recent researches. 
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AMR genes in gut microbiome of COVID-19 patients’ samples 

Regardless the fact that COVID-19 is a viral infection, many people around the 

world in low, middle and also high-income countries think that the use of antibiotics 

would help in the treatment and/or prevention of infection. In the same context and 

according to the European division of WHO, there were results of behavioural insight 

research from nine European countries prove that the antibiotic use increasing along 

with cases throughout the pandemic, around 79 – 96% of those taking antibiotics, were 

reported not infected with COVID-19 but they believe that the use of antibiotics is the 

proper preventive action. Moreover, results show that 75% of COVID-19 patients used 

antibiotics while only 15% of them develop bacterial co-infection and could need 

antibiotics (WHO, 2020). On the other hand, in Italy when the pandemic strikes, 

according to Dr Nino Berdzuli, Director of WHO/Europe’s Division of Country Health 

Programmes, they gave COVID-19 patients broad spectrum antibiotics such as 

cephalosporins and azithromycin, this was the routine treatment of community-acquired 

pneumonia cases. To date, azithromycin still used as the first choice antibiotic in such 

cases worldwide on the basis of its immunomodulatory action. Here we reported that 

about 15% AMR genes confer resistance to cephalosporin and macrolide antibiotic 

drugs classes, azithromycin belongs to macrolides, and this would show a direct relation 

between the use of antibiotics and the development of antimicrobial resistance. A recent 

recovery trial in the UK published on 14 December, 2020 shows that azithromycin with 

no benefit to patients hospitalized with COVID-19. In this trial a total 2582 patients 

taking azithromycin were compared to 5182 patients randomized to the usual care alone 

(Horby et al., 2020). The situation is even worse, a study published on March, 2020 

conducted in intensive care units from 88 countries on total 15165 COVID-19 patients, 

showed that 70% of them received antibiotics, at least one, for treatment or even 

prophylaxis purposes where only 54% of them had proven bacterial co-infection 

(Vincent JL et al., 2020). The wide use of biocidal agents as disinfectants in non-

clinical, would be another possible threat. It has been reported that even the low 

exposure to these agents leads to the selection of drug resistance microorganisms, 

particularly gram negative bacteria (Kampf G., 2018). Our results showed that gut 

microbiome of COVID-19 patients’ samples were the first among the selected 

metagenomes in terms of number of detected hits with total 544 hits. Moreover, it has 

the highest percentage of detected AMR gene families (48.26%) of different 55 families 
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which confer resistance to around 51.51% of drugs from different 37 classes by six 

different mechanisms. This might explain the reported fatal co-infection by 

exceptionally antibiotic resistance bacteria in gut microbiome of COVID-19 patients 

(Sharifipour E. et al, 2020). There should be a strict regulation from the health 

authorities around the world to avoid using antibiotics in cases where no sign of 

bacterial co-infection.  

AMR genes in water sewage 

Although, spread of antimicrobial resistance is a global clinical concern, this 

issue is not limited to the clinic. Antibiotics used by humans will at the end of the day 

end up in sewage, therefore waste water considered one of the biggest reservoir of 

antibiotics, AMR genes and bacterial from diverse sources and waste water treatment 

plants are usually one of the main sources of antibiotic-resistance bacteria and AMR 

genes spread into the environment (Rizzo, L. et al., 2013).  In our study, we reported 

466 hits from all samples of water sewage, 96 of hits were perfect and 370 were strict 

hits. This represents 23.37% of the detected AMR gene families from different 37 

families which confer resistance to 22.42% drugs from different 29 classes with 

different 6 resistance mechanisms. Waste water considered a hotspot of spreading 

resistance genes not only between closely related bacterial strains but also this could be 

happen between phylogenetically distant strains (Jiang, X. et al, 2017) this might be due 

to the selection pressure caused by pollutant compounds such as heavy metals, 

antimicrobial agents, biocides and drugs which could promote horizontal gene transfer 

(Aminov, R.I, 2011). Such selection pressure is a significant issue in the presence and 

spreading of AMR genes in sewage. Whenever there is a selection pressure for 

antimicrobial resistance bacteria, they overgrow the sensitive ones and they can share 

their resistance genes, which are usually included in mobile genetic elements (MGE), 

through one of the three major mechanism, transformation, transduction and 

conjugation (Karkman A et al., 2018). We reported here relatively big numbers of AMR 

gene families, 55 from gut microbiome of COVID-19 patients’ samples and 37 from 

water sewage, which confer resistance to many drug classes, 37 and 29, from gut 

microbiome of COVID-19 patients’ samples and water sewage samples, respectively. 

This could be explained by the fact that each MGE usually contains AMR genes for 

more than on antimicrobial compound. Therefore, AMR gene could be selected by a 

wide array of antibiotics which is the case in both environments. Moreover, the same 
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MGE might also contain AMR gene for heavy metal or disinfectant, this can also lead 

to a selection pressure for transferring antibiotic resistance between different bacterial 

species (Karkman A et al., 2017). Waste water contributed the most in transmission of 

AMR genes. Results from 63 studies, published between 2009 and 2019, were reviewed 

elsewhere, confirming the presence of wide range of AMR genes and antibiotic-

resistance bacteria in waste water around the world (Fouz N. et al., 2020). 

Antibiotic efflux resistance mechanism in gut microbiome of COVID-19 patients’ 

and water sewage samples 

 In bacterial drug efflux pumps have many functions other than their key role in 

drug resistance and there are escalating number of multiple drug efflux pumps reported 

from bacteria isolated from different ecological samples (Li X-Z and Nikaido H, Drugs, 

2009). In the current study, antibiotic efflux was the major detected resistance 

mechanism from both gut microbiome of COVID-19 patients’ and water sewage 

samples. It comes in the first place by 47.93% and 45.38% of the total detected 

resistance mechanisms from gut microbiome of COVID-19 patients and water sewage 

samples, respectively. It has been reported that efflux mediate drug resistance usually 

acts concurrently with other resistance mechanisms which reflects higher resistance to 

abroad spectrum of drugs. On the other hand, expression of drug pumps usually induced 

by many molecules such as antimicrobial agents, bile salts and biocides (Li X-Z and 

Nikaido H, Drugs, 2009), coupled with the fact that resistance genes usually present on 

plasmids and other mobile genetic elements, the possibilities of their induction and 

transfer between other bacteria in both gut microbiome of COVID-19 patients and waste 

water are very high. It has been reported that aminoglycosides and macrolides induce 

the expression of MexXY efflux pumps in P. aeruginosa (Jeannot K et al., 2005). 

Fluoroquinolones were also responsible of induction the expression of both AcrAB and 

PatAB pumps in S. pneumonia (Marrer E et al., 2006). 
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Chapter 5: Conclusions and Future Perspectives 

Conclusions 

 This study has two main objectives. Firstly, the assembled contigs were 

investigated by two major distinct computational methods, namely antiSMASH and 

deepBGC methods. A comparative study was performed to determine BGCs present in 

each of the included samples, as well as comparing their taxonomic differences. 

Secondly, the assembled contigs were also analyzed to determine AMR genes present 

in each samples by using RGI algorithm which is a part of CARD. A total number of 

sixty five samples pertaining to seven selected metagenomic / metatranscriptomic 

projects were assembled, a total 1,139,543,039 reads were filtered to 1,100,630,009 

filtered reads and the obtained reads and assembled contigs (4,325,515 contigs) were 

subjected to taxonomic assignment. All assemblies were then investigated by two 

different computational tools in addition to CARD, the first tool was antiSMASH, the 

second tool was deepBGC and finally we used CARD to determine AMR genes in each 

ecosystem.  

 To determine BGC content in each environment, our first goal, both 

computational tools, antiSMASH and deepBGC, were run in parallel for BGC mining. 

Although both tools were complementary to each other, however, there were major 

differences between them, generally in terms of total number of the detected BGCs and 

the number of annotated BGC classes. AntiSMASH detected only 776 BGCs which 

represents less than 1% of the total number of detected BGCs by deepBGC (79,771 

BGCs). However, antiSMASH showed a higher accuracy in detecting the exact classes 

of BGCs and a higher annotation level. In this study antiSMASH annotated 26 different 

classes of BGCs compared to only 6 fixed classes annotated by deepBGC (i.e. Alkaloid, 

NRP, Polyketide, RiPP, Saccharide and Terpene) in addition to one extra unknown class 

named “other”. A major advantage of deepBGC was its ability to assign product activity 

to more than 95% of hits regardless the fact that only 20% of hits were got BGC class 

annotation by deepBGC. The majority of product activities assigned by deepBGC were 

97% antibacterial, 1% inhibitor, 1% antibacterial-antifungal and less than 1% cytotoxic. 

For more detailed comparison between antiSMASH and deepBGC in terms of the 
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detected BGC classes with their corresponding percentage and the name and percentage 

of the most abundant contributed genera, see (Table 5). 

 The taxonomical assignment were of great impact to understand the dynamics 

of SM production and the differences of BGCs classes detected from the different 

environments. We clustered all samples based on their relative abundance of taxa and 

their microbial composition by both PCA and t-SNE tools (Figures 5 & 6). Some 

samples from the same projects had a characteristic relative microbial abundance so 

they appeared nicely separated from the rest of samples such as the samples from both 

Osaka bay project which dominated mainly by Pseudomonas and water sewage project 

which had a very high relative abundance of and Streptococcus. Although, these two 

environments dominated mainly be one genus and it was expected to have a slightly 

low range of BGCs and if there a unique class of BGCs will be produced by other 

predominated genera to protect their niche, however, Pseudomonas from Osaka project 

produced a class of BGCs called N-γ-acetylglutaminyl glutamine 1-amide (NAGGN), 

has a role in bacterial cell survival (Matthias Kurz et al., 2010) and it was not detected 

elsewhere from any of the selected samples from all other projects, Streptococcus also 

from water sewage project produced Ras-RiPP, has a role in quorum sensing, which 

also was not detected in any other samples. Such examples are good evidence that, also 

microorganisms have characteristic behavior, however, it might behave in a different 

ways under different environmental conditions. This needs further investigations of 

such environments over a course of time to see how their behavior changes over time, 

could be a clear limitation of this study.  

On the other hand, we also expect to detect unique classes from some species 

which present in a very low abundance in some environments, here we reported two 

cases. In Tonga trench project antiSMASH detected a BGC class called phosphonate 

which was belonging to a genus called Shewanella which existed in a very low relative 

abundance compared to Cutibacterium. The second example was from the water sewage 

project, BGC class called phenazine was detected by antiSMASH and it was produced 

by E. coli which exhibits a low relative abundance compared to Streptococcus. 

We also noticed that the samples which had a large extent of variability (i.e. sex, 

age and illness state) due to the nature of their environments, such as microbiome 

samples of patients in two projects (COVID-19 & Atopic Dermatitis), gave the most 
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variable number of BGC classes detected by antiSMASH, where 19 different classes 

detected in skin microbiome of AD patients and 16 different classes detected in gut 

microbiome of COVID-19 patients’ samples while the third place in terms of total 

number of detected classes went to the water sewage project with 12 different classes 

detected and this could be also due to the same reason. AntiSMASH did not detect more 

than 10 different classes in the rest of projects.  

The second goal of this study was to determine the AMR genes in the selected 

metagenomes using CARD’s RGI algorithm. Due to the selection pressure on the 

microbial communities by the wide use of antibiotics, gut microbiome of COVID-19 

patients’ and water sewage samples had more than 70% of the detected AMR gene 

families as detected by RGI. Gut microbiome of COVID-19 patients’ samples came in 

the first place among the seven selected metagenomes by almost 50% of the total 

detected AMR genes, while samples of water sewage came in the second place by 

almost 25%. This might be a logical result of the misuse of antibiotics all over the world 

as the majority of people believe this could help in the prevention or treatment of the 

infection, as reported in many studies. In addition to the misuse of antibiotics, the wide 

use of disinfectants for environmental and personal hygiene was also a potential reason 

of spreading of antimicrobial resistance genes between different bacterial species. 

Under specific harsh conditions bacterial species behave in adaptive way to survive. 

One major mechanism, by which the resistant bacterial species would help the sensitive 

ones to survive is through sharing their resistance gene horizontally by well-known 

mechanism called horizontal gene transfer (HGT). Mobile genetic elements, transferred 

during HGT, such as plasmids often contain resistance genes for more than one 

antibiotic, moreover, in some cases the same element might contain resistance gene for 

a specific metal or disinfectant. Consequently, such resistance genes might be selected 

by the use of wide range of antibiotics, disinfectant and heavy metals. This applied to 

both environments (i.e. gut microbiome of COVID-19 patients and water sewage) 

because antibiotics and the other pharmaceutical drugs consumed by humans will 

eventually end up in sewage.   

Recent studies conducted on COVID-19 patients globally show the improper 

use of antibiotics along with many cases of fatal co-infection with highly resistant 

bacterial strains. In our study, gut microbiome of COVID-19 patients’ samples harbor 

bacterial species resistant to 37 different classes of antibiotics. About 15% of the 
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detected AMR genes were resistant to the two major antibiotic classes used in COVID-

19 infection, cephalosporins and macrolides. Despite the fact that the majority of cases, 

even if they are diagnosed as positive COVID-19, don’t need antibiotics as long as there 

is no sign of bacterial infection, 75% of patients take antibiotics. On the other hand, a 

recovery study conducted in the UK revealed that the use of azithromycin with COVID-

19 patients was with no effect compared to patients with same conditions randomized 

on the routine treatment without azithromycin.  

Overall, diverse environments harbor different microbial composition with 

dissimilar relative abundance of taxa and this leads to the presence of a wide variety of 

secondary metabolites in each environments in addition to the presence of a wide range 

of AMR genes in environments under specific selection pressure such as gut 

microbiome of COVID-19 patients’ and water sewage samples. Environments with 

high microbial diversity such as host microbiome (i.e. skin AD & gut COVID-19) 

harbor large percentage of BGCs, maybe due to the arms race between co-existing 

microorganisms. Both antiSMASH and deepBGC complemented each other to get a 

clearer picture about the nature of different environments in terms of the relative 

microbial abundance and their corresponding BGCs content. In addition to the degree 

of microbial diversity, environments under specific selection pressure by antibiotics, 

disinfectants and heavy metals, had the biggest percentages of AMR genes. COVID-19 

and water sewage harbor more than 70% of AMR genes detected by CARD’s RGI.  
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Future Perspectives  

There is no question that there is an escalating interest to investigate biosynthetic 

pathways to discover new natural products. Environments with rich microbial diversity 

such as host microbiome and marine ecosystems should be thoroughly mined for 

biosynthetic gene clusters and antimicrobial resistant genes using different 

computational tools in order to find explanation on how novel secondary metabolites 

are assembled and which microorganisms carry AMR genes and to what extent they are 

mobile. The information in this study will be of great value to other researchers who 

interested in either isolation of natural products or studying the antimicrobial resistance 

mechanisms. In addition to their therapeutic use, understanding the dynamics of 

secondary metabolites is crucial for studying different microbial populations and their 

effects on substance turnover. 

On the other hand, a time dimension could be a major limitation to this study, 

sampling over a course of time is critical to clearly understand the dynamics in each 

ecosystem. Few cases of interest were reported, we detect many SMs with antibacterial 

activity belonging to some genera, present in a relatively low abundance in highly 

diverse ecosystems, such as Pseudomonas from Osaka and Streptococcus from sewage 

water, they might be under stress and were trying to fight to create their own niche by 

producing their own weapons (i.e. SMs) at the time of sampling but we do not know 

how the situation could be changed over time. Moreover, the use of antibiotics and other 

factors such as disinfectants shift microbial populations toward sharing their resistance 

genes. Therefore, monitoring microbial environments over a course of time is very 

crucial to understand the microbial behavior under different conditions such as high 

competition and other stress environmental conditions such as antibiotics, disinfectants 

and heavy metals.  

Many evidences suggested that, the misuse of antibiotics has a direct 

contribution to the global widespread of antibiotic resistance. In this study, samples 

from gut microbiome of COVID-19 patients from Hong Kong showed very interesting 

results, it harbors the largest percentage of AMR genes, more than 50% of the detected 

AMR genes in all datasets. Many factors might be contributed to such results, it would 

be very important to compare our results with COVID-19 patients’ results from 

different places around the world, this would clearly unleash the role of the different 
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environmental factors contributed to the escalating burden of antibiotic resistance 

among COVID-19 patients.   

In the near future, we should see a new era of development of bioinformatics 

tools and software based on different machine learning approaches to eliminate any 

current limitations and also trying to put a clear workflow optimizing the mechanism of 

BGC and AMR gene detection and expression of their corresponding secondary 

metabolites and AMR genes, respectively. 

A final word to all people around the world, please keep antibiotics for patients 

with clear and documented signs of bacterial infection, the misuse of antibiotic will 

accelerate the arrival of the post-antibiotic era. Dr. Nino the director of WHO, European 

division said, “Everyone has a role to play as an antibiotic guardian, whether they are a 

parent, a prescriber or a policy-maker.” 
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