
American University in Cairo American University in Cairo

AUC Knowledge Fountain AUC Knowledge Fountain

Papers, Posters, and Presentations

2011

4-Bit Adder Design and Simulation 4-Bit Adder Design and Simulation

Amin Atwa

Ahmed Samir

Fady Soliman

Follow this and additional works at: https://fount.aucegypt.edu/studenttxt

 Part of the Other Engineering Commons

Recommended Citation Recommended Citation
Atwa, Amin; Samir, Ahmed; and Soliman, Fady, "4-Bit Adder Design and Simulation" (2011). Papers,
Posters, and Presentations. 11.
https://fount.aucegypt.edu/studenttxt/11

This Other is brought to you for free and open access by AUC Knowledge Fountain. It has been accepted for
inclusion in Papers, Posters, and Presentations by an authorized administrator of AUC Knowledge Fountain. For
more information, please contact mark.muehlhaeusler@aucegypt.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AUC Knowledge Fountain (American Univ. in Cairo)

https://core.ac.uk/display/386968253?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://fount.aucegypt.edu/
https://fount.aucegypt.edu/studenttxt
https://fount.aucegypt.edu/studenttxt?utm_source=fount.aucegypt.edu%2Fstudenttxt%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/315?utm_source=fount.aucegypt.edu%2Fstudenttxt%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
https://fount.aucegypt.edu/studenttxt/11?utm_source=fount.aucegypt.edu%2Fstudenttxt%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mark.muehlhaeusler@aucegypt.edu

Department of Electronics Engineering

ENGR 318 – VLSI Design

Spring 2011

4-Bit Adder

Project Report

Instructor: Dr. MohabAnis

Assistant: Mr. AmrAbdulZahir

Submitted by:

Amin Atwa 900071590

Fady Reefaat 900072491

Ahmed Samir 900072617

1

Contents

Executive Summary .. 2

Introduction ... 3

Assumptions .. 3

Research Phase.. 4

Adder Architectures Comparison.. 4

Gate Level Implementation of the Full Adder .. 8

Logic Families Comparison forXOR and NAND of full adder .. 10

Gates Implementation of Half Adder .. 14

Simulation Phase ... 16

Optimization of the logic gates ... 16

DPL XOR gate .. 17

CPL NAND Gate .. 18

CMOS NAND Gate .. 19

TG AND ... 20

Inverter Gate ... 21

Testing Circuit Logic Output .. 22

Evaluation Phase ... 23

Measuring worst case delay .. 23

Calculating number of transistors ... 24

Measuring power consumption ... 24

Re-evaluation Phase: ... 25

2

Executive Summary

The project is to design a 4-bit digital adder, while taking care of performance parameters: area,

speed and power consumption, the team has chosen to design according to the cost function:

Area*Delay*Power.

The project is implemented in three phases: research phase, simulation phase, and evaluation/re-

evaluation phase.

The adder circuit implemented as Ripple-Carry Adder (RCA), the team added improvements to

overcome the disadvantages of the RCA architecture, for instance the first 1-bit adder is a Half

Adder, which is faster and more power-efficient, the team was also carefully choosing the gates

to match the stated cost function. Gates are implemented using different logic families, according

to each gate usage and functionality in the circuit in order to achieve the desired performance.

Transistor sizes are also selected based upon simulation and optimization, to reach the needed

performance according to the specified cost function.

The team was able to reach a 4-bit ripple carry adder that has delay of 1.22 ns with 0.6 uW

power consumption (measured at 10 MHz), with 109 transistors. In the re-evaluation phase, the

team was able to further improve this to reach 0.99 ns delay with 0.25 uW power consumption

(10 MHz) with 97 transistors only.

3

Introduction

The topic of the course project is to design a 4-bit adder in the standard 0.25 um CMOS

Technology. The main objectives of the project is to minimize the total delay of the adder (i.e.

the worst case delay of the circuit), the area used to implement the adder, and its average power

consumption. That in mind, the team was able to split the project into 2 phases: the research

phase and the simulation phase.

In the research phase, the team had to compare different adder architectures clearly defining the

advantages and disadvantages of each one in terms of area and delay to be able to choose what

could be the most efficient adder architecture for the design of a 4-bit adder. Another essential

task in the research phase was to decide on the gate level implementation of the circuit, compare

the different logic families’implementations for each gate, and finally decide on the proper logic

family implementation for each gate in light of the project objectives stated beforehand.

Once the research phase was accomplished, the team had to move on to the simulation phase. In

the simulation phase, the team had to design each gate separately and optimize it to achieve the

optimum delay and powerconsumption,thensimulate a 1-bit full adder, and finally simulate the

whole 4-bit adder. The simulation phase concludes the project by estimating the worst case delay

of the 4-bit adder design and the average power consumption of the circuit.

Assumptions

Design Criteria

The group members are not designing this adder for a very specific application that dictates

certain design criteria or puts different weights on timedelay or circuit area, that is why group

members assumed it is better to implement a design that balances between time delay, power

consumption and area used in the implementation of the 4-bit adder without giving different

weights to any of the design criteria. Therefore, the design criteria will be [A*(T^2)*(P^2)] (T:

time delay, A: area, P: power) not T^2*A or T*A^2.

Half Adder

As the project description is to design a 4 bit adder, group members assumed they have 8 inputs

which are the 2 sets of 4 bits to be added, so in the design it is more efficient in terms of delay,

area, and power to design a half bit adder for the first bit adder as there is no carry-in bit for the

first adder. This will show great performance improvement because the Cout bit will be result of 2

gate delays instead of 3.

4

Research Phase

“Research is formalized curiosity.” In this section, the team presents the results of the research

phase which was an integral part of the project. Research phase was divided into 3 sub phases:

adder architectures comparison, gate level implementation of the chosen architecture, and logic

families’ comparison for gates of the chosen gate level implementation. The results the team

came up with from each sub phase is of paramount importance for the 4-bit adder design.

Adder Architectures Comparison

In this section, a short description of the adder architecture and the exact time delay (T) and area

(A) complexity based on unit gate model is presented. In the unit gate model each gate has a

gate-count of one and a gate-delay of one excluding XOR and XNOR gates having gate counts

and gate delays of two, while the gates with more than 2 inputs, the gate-counts and gate-delays

can be computed in terms of the ones given for the gates with two inputs; also, inverters and

buffers are ignored.

Ripple Carry Adder (RCA)is the simplest carry-propagate adder.Its time delay and area

complexity are as followsforan n-bit RCA adder:

T = 2n

A = 7n + 2

Carry Skip Adder (CSKA) is the concatenation scheme with a carry-skip scheme. Its time delay

and area complexity are as follows for an n-bit CSKA adder:

K= (n – 1)
½

T = 4k

A = 8n + 6k – 6

Carry Select Adder (CSLA) is the concatenation scheme with a selection scheme. Its time delay

and area complexity are as follows for an n-bit CSLA adder:

K = 1/2*(8n – 7)
½

– ½

T = 2k + 2

A = 14n – 5k – 5

Carry Look Ahead Adder (CLA) uses direct parallel-prefix scheme for carry computation. Its

time delay and area complexity are as follows for an n-bit CLA adder:

T = 2 log(n) + 4

A = 3/2*n*log(n) + 4n + 5

5

Results of the comparison can be clearly summarized in the following tables.

 K T A

RCA 2*n 7*n+2

CSKA (n – 1)^0.5 4*k 8*n+6*k-6

CSLA 0.5*(8*n – 7)^0.5-0.5 2*k+2 14n-5k-5

CLA 2*log(n)+4 1.5*n*log(n)+4*n+5

Equations for Time delay (T) and Area (A) complexity of each architecture.

n
RCA CSKA CSLA CLA

T A T*A K T A T*A K T A T*A T A T*A

2 4 16 64 1 4 16 64 1.621 5.243 14.89 78.08 6 16 96

4 8 30 240 1.732 6.928 36.39 252.1 3.036 8.071 35.82 289.1 8 33 264

8 16 58 928 2.646 10.58 73.87 781.8 4.839 11.68 82.81 966.9 10 73 730

16 32 114 3648 3.873 15.49 145.2 2250 7.278 16.56 182.6 3023 12 165 1980

32 64 226 14464 5.568 22.27 283.4 6312 10.66 23.32 389.7 9086 14 373 5222

Different architectures delay (T) and area (A) for different number of bits (n).

Graphic representation of the results in previous table

0

2000

4000

6000

8000

10000

12000

14000

16000

0 5 10 15 20 25 30 35

T*
A

n

RCA

CSKA

CSLA

CLA

6

K T A T*A (T^2)*A T*(A^2)

RCA

8 30 240 1920 7200

CSKA 2 8 46 368 2944 16928

CSLA 2 6 41 246 1476 10086

CLA

8 33 264 2112 8712

Equations of Time delay (T) and Area (A) complexity for each architecture when n=4 and rating their performance

for different design criteria (T*A, T^2*A and T*A^2).

T*A for different adder architectures (4-bit)

A clear conclusion is that for small n-bit adders and design criteria balancing between area and

time delay or giving more weight to area, the ripple carry is a better architecture, while for higher

n-bit adders carry skip, carry select or carry look ahead might be a better choice for the designer.

Since in this project, the team is designing a 4-bit adder and assuming same weights for area and

delay, the team concluded that the ripple carry could be the most efficient implementation for

the 4-bit adder design.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

RCA CSKA CSLA CLA

7

Schematic 1.1: Ripple Carry adder schematic adders level.

The ripple carry is probably the simplest architecture for an adder. In this architecture the delay

simply propagates from one Full-adder to the next one, therefore the implementation of the full

adder is all that matters in its design.

8

Gate Level Implementation of the Full Adder

In this section, a description of the gate level implementation of the 4-bit ripple carry adder is

presented. After the group agreed on implementing ripple carry adder, it was crucial to research

what available gate level implementation are there for the full adder, and mainly 3

implementations were compared.

Implementation 1 uses only NAND gates to implement the logic of the full adder.

Implementation 2 uses 2 XOR gates and 3 NAND to implement the logic.

Implementation 3 uses 2 XOR, 2 AND and 1 OR to implement the logic.

Schematic 1.2.1: Gate level implementation 1 of the full adder

Schematic 1.2.2: Gate level implementation 2 of the full adder

9

Schematic 1.2.3: Gate level implementation 3 of the full adder

Comparing these different implementations in terms of area and delay, it was clear that

implementation 1 will be too slow and takes too much area, while the other 2 implementations

do not differ too much. However, as NAND gates can be implemented using CMOS logic

family without the need for an inverter at the output, while AND and OR cannot, the team

decided to choose implementation 2 to have the option of using CMOS logic whenever it is

needed without the need to use inverters.

Schematic 1.2.4: Comparing implementation 2 and 3 of the full adder

Therefore, the final implementation of the full adder in this project is as follows:

Sum = A XOR B XOR C

Carry out = (A NAND B) NAND [(A XOR B) NAND Cin]

The next step will be to decide the logic family implementation for each gate.

10

Logic Families Comparison for XOR and NAND of full adder

In this section, a description for the different logic families to implement XOR and NAND gates

of the full adder gate level implementation that was agreed upon in the previous section.

XOR gate has mainly 3 implementations:

Complementary Pass-transistor Logic XOR

(CPL)

The main advantage of the CPL logic family

is that it uses few numbers of transistors so

in terms of area it has an edge over other

implementations. However, CPL has a

reduced swing so it cannot be used as the

output of any adder since according to

project description; reduced swing at the

output is unacceptable.

Schematic: XOR CPL implementation

Double Pass-transistor LogicXOR(DPL)

The main advantages of the DPL logic

family is that its delay is low since always 2

transistors are ON in any charging or

discharging input combinations.Also it has

an advantage over the CPL that it has a full

swing at the output and uses a reasonable

number of gates.

Schematic: XOR DPL implementation

Transmission gateXOR(TG)

Transmission gate is another implementation

for the XOR function. However, its worst

case delay is probably higher that the DPL

since when A is HIGH only 1 transistor is

charging or discharging the output compared

to two in the DPL implementation. So in

terms of delay DPL has an edge over

transmission gate. However, it uses less

number of transistors than DPL.

Schematic: XOR Transmission gate implementation

11

NAND gate has mainly 3 implementations:

CPL NAND

Schematic: NANDCPL implementation

NAND DPL

Schematic: NANDDPL implementation

CMOS NAND

CMOS logic family has an advantage over

DPL that it uses less number of transistors

(no need for inverters), and has an edge over

CPL that its output is full swing.

Schematic: NANDCMOS implementation

12

After comparing the different logic families in the different logic families in terms of swing, delay,

and area, the team made some educated assumptions. First of all for the XOR, the CPL was excluded

since the project description a full swing output. So, comparing DPL and transmission gate, the group

assumed it is more efficient to use DPLXORas XOR gatesmust be very fast since it is on the track of

propagation of the delay.

As for the NAND gate, it is also important for it to be fast but still we need the output to be full

swing, so the team assumed it is more efficient to implement 2 CPL NAND gates which outputs are

input to a CMOS NAND to ensure full swing at the output (thanks to its Pull-Up Network). Another

reason for choosing CMOS NAND to calculate the carry-out is that it uses only 4 transistors

compared to DPL that needs 8 because it requires inverters at the inputs.

The following schematic shows the logic family of each gate in the project.

Schematic: Logic Family for each gate.

This schematic also ensures there will be no more than 2 transistors in series as CPL requires

inverters so input is buffered, and CMOS NAND acts as a buffer since its inputs are to the gate of the

transistors. We took the advantage of the CMOS NAND following this reduced swing CPL NAND to

return output to full swing. But we had to take care of the Short Circuit Power dissipation!

CPL

CPL

CMOS

DPL
DPL

13

However a threat was that CPL could cause static power due to its reduced swing and since itis

driving a CMOS NAND gate. So, the group needed to prove during simulation that this reduced

swing will not cause a static power dissipation phenomenon, which is due to the situation that the

reduced swing may lead to the PMOS devices in the CMOS NAND to be ON, while NMOS devices

are ON as well, so a short circuit current can find its path from Vdd to ground causing power

dissipation.

Testing actually showed that that the value of the output swing of the CPL ranges from 0 to 2.1 V

(ieVthn is around 0.4V), and then Vthp was found to be around 0.6V, therefore no static power will

take place which ensures that there will be no short circuit power dissipation as the PMOS device will

not be on by the reduced input swing output (Vdd-Vthn) of the CPL.

Schematic:PMOS device tested to measure Vthp output signal low=Vthp

14

Gates Implementation of Half Adder

As previously stated, we assume inputs are 2 sets of 4 bits, so it is more efficient to implement a half

adder for the first bit as there is no input carry.

Schematic of Half Adder

The half adder consists of a XOR and an AND gate. So based on previous analysis, the team agreed

to use DPL family for XOR, and also use transmission gate(TG) for the AND gate since the AND

is on the carry propagation path and transmission is probably the fastest logic implementation for the

AND gate and uses only 3 transistors and 1 inverter, and outputs a full swing.

SchematicTG-AND implementation

DPL

TG

15

Multisim Scheme for the circuit before substituting the first full adder with a half adder

16

Simulation Phase

“Simplicity is the ultimate sophistication”. In this section, the team presents results of the simulation

for the 4-bit adder. Since optimization is a very complex task as delay, area, and power are all

affected whenever size of transistors are changed, the team decided to simply design each gate

separately first to ensure the logic is correct, then optimize it to find the size that gives the lowest

worst case delay and lowest power consumption for each gate. Then, concatenate gates together to

form the 1-bit full adder and 1-bit half adder, before actually implementing the whole 4-bit adder and

estimating the worst case delay and the average power consumption of the adder.

As the project objective is to balance area, power and delay, and since the group has chosen Ripple

Carry Adder Architecture that has an edge over other architectures that it requires less area, the group

decided that during optimization they will give higher weight to time delay and power over area to

ensure this balance(because it is know that RCA is disadvantageous when it comes to speed).

Optimization of the logic gates

Optimization is finding optimum values of transistor W/L that would achieve the desired performance

balance between area, power and delay.

Note: during optimization and simulation of individual gates, a 40fF capacitor was put at the output

terminal (CL) and frequency pulse used was 10 MHz. Also, higher weights was given to power and

delay as the team’s decision to use ripple carry adder gives the adder an edge in terms of area, so it

can give away part of this advantage to ensure low delay and power consumption. However, in the

overall balance is the ultimate goal of the design.

17

DPL XOR gate

The following graphs show the design and the optimization of the DPL XOR gate. In DPL, there is

no worst delay as always an NMOS and a PMOS are ON.

DPL XOR

 A(W/L)n TpHL(ps) P(uW) A*(T^2)*(P^2)

1 0.25/0.25 373 0.975 132259.5056

2 0.5/0.25 190 1.03 76596.98

3 0.75/0.25 150 1.075 78004.6875

4 1/0.25 132 1.16 93782.9376

5 1.25/0.25 119 1.22 105386.162

6 1.5/0.25 112 1.28 123312.5376

7 1.75/0.25 107 1.33 141764.9527

8 2/0.25 104 1.4 169594.88

18

CPL NAND Gate

The CPL NAND gate worst case delay is TpLH since it has a reduced swing from 0 to Vdd-Vth. The

following table and graphs present the design and results of the optimization.

CPL NAND

 A(W/L)n TpLH(ps) P(uW) A*(T^2)*(P^2)

1 0.25/0.25 771 1.9 8583728.04

2 0.5/0.25 434 1.98 5907446.899

3 0.75/0.25 327 2.03 5287724.593

4 1/0.25 268 2.08 4971829.658

5 1.25/0.25 231 2.12 4796513.568

6 1.5/0.25 214 2.17 5175570.826

7 1.75/0.25 202 2.22 5630756.141

8 2/0.25 192 2.26 6025170.125

19

CMOS NAND Gate

The worst case delay of the CMOS is either when only one input is low or both inputs are high. . The

following table and graphs present the design and results of the optimization.

CMOS NAND

 A(W/L)n TpHL(ps) P(uW) A*(T^2)*(P^2)

1 0.25/0.25 565 2.8 2502724

2 0.5/0.25 300 2.825 1436512.5

3 0.75/0.25 205 2.875 1042088.672

4 1/0.25 162 2.91 888947.2656

5 1.25/0.25 128 2.925 700876.8

6 1.5/0.25 110 2.975 642555.375

7 1.75/0.25 97 3 592767

8 2/0.25 88 3.025 566899.52

20

TG AND

The following table and graphs present the design and results of the optimization.

TG AND

 A(W/L)n TpHL(ps) P(uW) A*(T^2)*(P^2)

1 0.25/0.25 368 0.117 1853.819136

2 0.5/0.25 201 0.257 5336.891298

3 0.75/0.25 143 0.4 9815.52

4 1/0.25 116 0.54 15695.0784

5 1.25/0.25 97 0.675 21434.87813

6 1.5/0.25 86 0.825 30203.415

7 1.75/0.25 79 0.97 41105.0983

8 2/0.25 73 1.11 52526.8872

21

Inverter Gate

Note:(PUN W/L)p=2 (PDN W/L)nto ensureVm sets to Vdd/2. The following table and graphs present the

design and results of the optimization.

Inverter

 A(W/L)n TpHL(ps) P(uW) A*(T^2)*(P^2)

1 0.25/0.25 367 2.725 1000150.006

2 0.5/0.25 193 2.75 563391.125

3 0.75/0.25 140 2.78 454429.92

4 1/0.25 103 2.81 335078.8996

5 1.25/0.25 85 2.845 292396.6531

6 1.5/0.25 72 2.87 256200.5376

7 1.75/0.25 62 2.89 224738.3068

8 2/0.25 55 2.925 207046.125

22

Testing Circuit Logic Output

To prove that the adder is working and producing correct logic, we did some waveform tests:

We put these input combinations, and monitor the output form:

 0101+ xy01where x is a pulse from 0 to 1

For instance when x=0 & y=1, output should be 1010

 When x=0 & y=0, output should be 0110

 When x=1 & y=0, output should be 1110

And the output waveform figure below proves that the adder produces the expected output

Note: x resembles B3, y resembles B2, MSB for sum=S3, then S2

The following graph shows the output of the adder.

In the 256 outputs logic diagram of the 4-bit adder, some spices appear due to errors

in synchronization between the inputs of some gates. To get rid of that a simple solution can be to add

buffers to the faster signal; however these spices do not affect the logic of the design.

23

Evaluation Phase

This section presents the methodology used to test and measure performance parameters.

Measuring worst case delay

Based on critical path analysis, we applied an input such that the LSB of one of the inputs triggers the

MSB of the sum (last bit in the sum), so that the signal can ripple through the critical path of the

Ripple-Carry Adder, going from Cout of a 1-bit adder to the Cin of the other.

Inputs illustrated in this diagram:

Initial condition Final condition

 A: 0111 A: 0111

+ B: 0000 +B: 0001

--------------- -------------

 S: 0111 S: 1000

Where the MSB of the sum will change from low to high, in response to the LSB of the B signal

transiting from low to high. Showing in the following schematic the critical path for this adder:

Measured quantities:

TpLH: 0.92 ns

Rise time: 557 ps

24

Calculating number of transistors

Gate/Unit Composed of #transistors

DPL-XOR 4+ 2 inv. 8

TG- AND 5(3+ 1 inv.) 5

CMOS-NAND 4 4

CPL-NAND 2+ 2 inv. 6

Inverter 2 2

Half-Adder 1 DPL- XOR + 1 TG-AND

= 8 + 5

13

Full-Adder 2 DPL-XOR + 2 CPL-NAND+ 1

CMOS-NAND=16+12+4

32

Four-bit adder = 1 HA + 3 FA= 13 + (3x32)=109 transistors

Measuring power consumption

Power consumption was measured by measuring average current supplied by Vdd and multiplying it by Vdd

Frequency used: 10 MHz

I(Vdd)=0.28uA

Power= 0.24x2.5 = 0.7uW

25

Re-evaluation Phase:

We decided to do some other testing, we realized that we can replace the two CPL NAND of the Full Adder

with CMOS NAND, based on simulation results, the CPL is better in terms of power, while CMOS is better

in terms of delay.

After we did the simulation to the 4-bit adder, one time using the CPL NAND, while the other time

replacing the two CPL NANDs with CMOS NANDs, in the Full Adder Circuit above, we got these results:

 4-bit RCA

using CPL NAND in FA

4-bit RCA

using CMOS NAND in FA

transistors 109 97

Power 0.7uW 0.25uW

Area 815 707

Delay (tpLH) 0.92 ns 0.99 ns

Operating frequency=10 MHz

Trise&TpLH for the improved/re-evaluated adder

26

This proves that using the CMOS NAND instead of the CPL NAND is actually a better option. Measuring

our cost functionA*T*Pfor:

4-bit RCA using CPL NAND: cost function= 524.86

4-bit RCA using CMOS NAND: cost function= 174.98

It is obvious that using CMOS NAND is a great and major improvement in the performance of the adder,

and is surely considered instead of the CPL NAND.

	4-Bit Adder Design and Simulation
	Recommended Citation

	Four-Bit Adder

