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In this thesis, we propose different MAC protocols based on three Rein-
forcement Learning (RL) approaches, namely Q-Learning, Deep Q-Network
(DQN), and Deep Deterministic Policy Gradient (DDPG). We exploit the
primary user (PU) feedback, in the form of ARQ and CQI bits, to enhance
the performance of the secondary user (SU) MAC protocols. Exploiting the
PU feedback information can be applied on the top of any SU sensing-based
MAC protocol. Our proposed model relies on two main pillars, namely, an
infinite-state Partially Observable Markov Decision Process (POMDP) to
model the system dynamics besides a queuing-theoretic model for the PU
queue; the states represent whether a packet is delivered or not from the
PU’s queue and the PU channel state. The proposed RL access schemes are
meant to design the best SU’s access probabilities in the absence of prior
knowledge of the environment, by exploring and exploiting discrete and
continuous action spaces, based on the last observed PU’s feedback. The
performance of the proposed schemes show better results compared to con-
ventional methods under more realistic assumptions, which is one major

advantage of our proposed MAC protocols.
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Chapter 1

Introduction

1.1 Cognitive radio

Radio spectrum utilization has increased to an extreme degree with the
increase in demand for wireless service deployment. The ever-increasing
demand for multimedia services has highlighted the frequency shortage
problem more than before. This leads to higher auction rates for spectrum
globally, which in turn, is passed on as a burden to the service users [1, 2].

A fixed radio spectrum is allocated to licensed users for various applica-
tions, such as TV, military, and cellular. The radio spectrum bands are con-
trolled by a regulatory organization in the united states known as the Fed-
eral Communication Commission (FCC). The FCC found that the majority
of the existing fixed available spectrum is not entirely used [2]. According
to the Spectrum Policy Task Force study, only six percent of the overall fixed
frequencies available are used [2]. However, the other ninety-four percent
are being unutilized and causing inefficiency of the entire network. This
problem has forced the FCC to develop a new scheme that allows the usage
of that part of the spectrum, which is not being accessed by the licensed
user in order to enhance its utilization and efficiency.

The proposed scheme that was introduced is the Cognitive Radio (CR).
It was introduced by Miltola in 1999 as a combination between Software De-
fined Radio (SDR) and intelligent developed software-based package called
cognitive engine. It enables the secondary users (SUs) to share information
and communicate using that part of the spectrum, which the licensed user

or primary user (PU) do not use, with the PU [1, 2, 3].
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In April 2012, the FCC has adopted new rules concerning CR applica-
tions. It enabled access to unlicensed devices using an approach to white
space TV database through Channels usable in the Ultra High Frequency
(UHF) TV Bands. As a consequence, numerous researchers have presented
several works in CR technology field, focusing primarily on its current and
emerging potential applications, and the impact of its spectrum use from a
technological point of view. In CR network, the concept of providing access
to the unlicensed users to access the unutilized part of the spectrum, with-
out affecting the PU is known as Dynamic Spectrum Access (DSA). DSA en-
ables spectrum scarcity management and problems of use to be addressed
[1,2,3].

In Feb 1958, The United States established the Defence Advanced Re-
search Projects Agency (DARPA) for national securities. It is an indepen-
dent division or agency of the pentagon. Nowadays, DARPA is encourag-
ing and creating innovative new technologies for advanced military and
civilian applications. For spectrum scarcity, DARPA launches Spectrum
Collaboration Challenge (SC2) competition regularly. SC2 competition aims
to solve spectrum scarcity by developing ways to share the PU’s unused
spectrum with the SU. SC2 combines CR with Artificial Intelligent tech-
nologies. It started in 2016, and the last one was in January 2020 [1, 2, 4].

CR is an adaptive radio technology or a communication system func-
tions that change its performance by its own. The highest priority in CR for
both PU and SU is the Quality-of-Service (QoS) when the SU accesses the
free channels in a radio environment that changes with time and location.
Also, the SU should not interfere with the PU services while sensing the
spectrum for available channels; otherwise, it will degrade the entire net-
work performance. The SU periodically senses the channel while utilizing
it. If it senses the PU existence, it should switch to the other channel. Ac-
cordingly, the fact that spectrum resources vary with time and geographical

location must be taken into account [1, 2, 3].



1.2. Cognitive radio cycle and management 3

1.2 Cognitive radio cycle and management

CRis an intelligent radio technology that observe its surrounding environ-
ment and automatically change its parameters to maximize the utilization
of the unused bands in the PU without affecting its QoS. It monitors the fre-
quency spectrum bands in a cognitive radio cycle, acquiring the necessary
information and detecting holes in the spectrum through spectrum sensing.
It senses the spectrum to enable the system to determine the characteristics
of the spectrum holes. Based on that, a suitable spectrum band is selected.
Once the spectrum band is chosen, the user can initiate its communication
over it. Moreover, CR empowers each user to periodically sense the envi-
ronment to look out for any PU who is about to start its communication on
the current band [2, 5].

Along with numerous advantages, CR comes with particular challenges,
such as spectrum sensing technique, spectrum management, and unlicensed
spectrum usage. The first CR based international standard designed to op-

erate with a frequency band was IEEE 802.22 [2, 5, 6].

RADIO
ENVIRONMENT

Transmission Observation

Spectrum
Awareness

SPECTRUM PU Detection

SPECTRUM
SHARING

SPECTRUM Ca—— SENSING

MOBILITY

Request for
Handoff

SPECTRUM

Spectrum Hole

Adaptation Detection

DECISION

FIGURE 1.1: Cognitive Radio Cycle [2]
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CR cycle and management process is divided into four main steps:

1.2.1 Spectrum sensing

It is the first and most important phase of CR process in which the SU ob-
serves the radio channel status and characteristics, such as channel inter-
ference level, PU’s existence in the channel. Also, it identifies the available
spectrum holes that it can use for communication. There are three kinds of
spectrum sensing techniques, such as are energy detection, cyclostationary

feature detection, and matched filter [2, 7]:

e Energy detection based spectrum sensing

It is the most common way of sensing the spectrum. It has low com-
putational and implementation complexity. It decides whether the
PU is present in a channel or not from the received signal through the
energy strength level. It has an advantage that no prior information
about PU signal features is required. However, it is affected by noise

uncertainty. It is classified into two types [2].

1. Hard detection (HD):

In HD, the SU compares the received energy signal level to a
threshold. If this level is greater, then the PU is present, and
it refrains from accessing the channel. However, if the energy
level is below the threshold, it indicates the PU’s absence, and it

accesses the channel with probability one [8].

2. Soft detection (SD):

In SD, the SU compares the received energy signal level to a
threshold. If this level is greater, then the PU is present, and
it refrains from accessing. However. If the energy level is be-
low the threshold, it indicates the PU’s absence, and it accesses
the channel with probability based on the received signal energy

level [9].

o Cyclostationary feature detection based spectrum sensing;:
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This method involves the auto-correlation of the signal received. If the
auto-correlation result is periodic, it exhibits PU’s presence. However,
if it is aperiodic, then it means noise, and the PU is absent. One of
the advantages that it is immune to noise. However, it is complex,
requires considerably more extended observation periods, and a high

cost for implementation [2].

e Matched filter:

This method detects whether the PU is active or not based on know-
ing prior information about the PU signal. It convolves the received
signal with a mirror version of itself and shifted in time. Afterwards,
it add it to a noise. This method maximizes the signal to noise ra-
tio so that the received signal can be easily detected at different time

instances [7].

1.2.2 Spectrum decision

Once the available spectrum bands are thoroughly sensed, the most suit-
able band for SUs transmission is chosen, that perfectly satisfies its QoS
requirements. Spectrum decision process takes the following steps [2]:
e First step
It classifies the available spectrum bands based on local observation
of the SU’s, PU receiver interference, and path loss.
e Second step
A list of available channels is prepared to satisfy SU and PU activity
based on the information gathered at a fusion center.
e Third step

Lastly, these selected channels are transmitted to the SUs to prepare

for communication by adjusting their transceiver parameters [2].
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1.2.3 Spectrum sharing

In spectrum sharing, the SUs and PUs share the detected band between
them in a coordinated way, so that they do not affect each other’s commu-

nication. Spectrum Sharing can be made based on two categories.
e Spectrum sharing based on behavior of allocation

1. Cooperative spectrum sharing:

In this method, each user takes into account what impact its
transmission would have on other user’s requirements. This ap-

proach maximizes throughput and reduces interference.

2. Non-cooperative spectrum sharing:

In this method, each user only greedily considers how it would
access the resources without taking into account other users’ re-

quirements. It has a high level of interference.

e Spectrum sharing based on access method

1. Over-lay Spectrum Sensing;:

This approach allows the SU to transmit in available spectrum

band opportunistically when the PU is absent.

2. Under-lay Spectrum Access:
In this method, a permissible received power of SU at the pri-
mary receiver is set as an "Interference Temperature Threshold"
limit under which the SU is allowed to transmit information si-
multaneously with PU. Once the threshold limit is crossed, the

SU transmission is stopped [2].

1.2.4 Spectrum mobility:

Spectrum mobility is when the SU switches to a separate empty band to
prevent the disconnection of communication if the PU wishes to access the
current channel. This channel switching is called Spectrum Handoff. There

are two types of handoffs:
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e Spectrum handoff based on PU arrival

1. Reactive spectrum handoff:

The SU senses the target channel on demand, then switches to
that channel on request. This process causes delays since the

switching of channels takes place after the handover action.

2. Proactive spectrum handoff:
In this scenario, the users of the CR track a PU’s activity consis-
tently, so the SU conducts the handoff and spectrum sensing as
soon as it detects the behavior of the PU’s arrival. It has no la-
tency, yet due to the inaccurate PU estimation of arrival, it may

perform a wrong handoff.

e Spectrum handoff based on guard channels

In this case, as long as there is no interference caused to adjacent users,
the SU can use guard channels for communication when no vacant

band is found [2].

1.3 PU reverse traffic

In this thesis, we are interested in the design of the SU access schemes based
on the PU feedbacks. In the CR, the PU transmitter-receiver feedback mes-
sage plays a significant rule as it offers the PU transmitter an indicator of
the quality of transmission at the receiver. Furthermore, the SU can use this
feedback to estimate the PU activity. There are two different PU feedbacks

which can be used by the SU:

e Automatic Repeat Request (ARQ)

ARQ originally referred to controlling error in data transmission by
sending back acknowledgment (ACK) when a correct data is received
or negative acknowledgment (NACK) when a false data is received.
In this process, the error in the received packet is detected by the re-

cipient with error detection code. In case when there is detection from



Chapter 1. Introduction

the receiver for no error in the data received, it notifies the sender with
(ACK). Whereas, when there is detection for a code error, it drops the
data packet and sends (NACK) to the sender; this (NACK) serves as
a request to attempt retransmission of the data. These (ACK/NACK)
signals are a short text, which indicates the correctness in the receipt
of the received data. The sender also triggers retransmission in case
of absence of (ACK/NACK) in the defined time interval. The sender
waits for the (ACK/NACK) till it times out and then retransmits the
data up to a certain number of retrials. Similarly, it can be used for
detecting the PU activity. In the ARQ based system, we have three
possible PU ARQ feedback states: ACKs, NACKSs, and No-Feedback
(No-FB). An ACK denotes a successful transmission, a NACK denotes
a failed transmission, and No-FB means that the PU did not attempt
any transmission in the last time slot. In an ideal, or perfect-sensing
system, the SU will have complete knowledge of the PU state if it is
active or idle in each time slot. On the contrary, in our system, we

assume that The SU gets only feedback from the PU information [10].

Channel Quality Indicator (CQI)

CQI indicates how good or bad a communication channel is. The SU
decides to access the channel through the CQI feedback. If the CQI
feedback from the PU is bad, then it indicates that the PU is not going
to transmit considering the bad channel state; hence, the SU can ac-
cess the channel with probability one. Whereas, if the CQI feedback is
good, it indicates that the PU may or may not be accessing the chan-
nel depending on the arrival rate. In practice, there can be more than
these two (good/bad) CQI levels. For example, LTE networks have
16 different CQI levels, where each level corresponds to a coding and
modulation selection. When the CQI level is minimum, the transmit-

ter chooses not to transmit, considering the channel’s bad state [11].
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1.4 Cognitive radio challenges

The study and analysis of this extraordinary technology will be among the
most exciting and compelling findings of the scientific world in the 21st cen-
tury. Several researchers targeted CR systems (CRS) due to its application
in different disciplinary areas and acquired near-optimal results. Never-
theless, CRS has multiple operating modes and complex architectural de-
sign and has particular challenges, such as decision making, cross-layers
design, security breaches, learning process, and spectrum sensing tech-
niques. However, The most significant aspect of CR networks and their
implementation is spectrum sensing. Spectrum sensing opportunistically
exploits the underused resources, such that the available resources can be
used efficiently [5, 12]. Moreover, learning in CR aims only on collecting
and analyzing data.

CR’s main idea is its cycle. As the cycle repeats itself, the radio should
be able to learn from experience actions. However, that does not happen as
it misses the intelligence part of not repeating the faults. Taking advantage
of the Al technology, CR can learn from past actions. Reinforcement Learn-
ing (RL) model-free algorithms are sub-fields of Al that learn and adapt to
the entirely unknown system dynamics. Besides, Machine Learning (ML),
which is a sub-field of Al, is used with RL to enhance the action decision

making [12, 13, 14].

1.5 Summary of latest work on MAC protocols access

Schemes for Cognitive Radio Systems

The evolution of CR by authorizing the SUs to exploit the underutilized
spectrum of the PUs is essential for solving the scarcity problem of the un-
used frequencies. However, the SUs access is constrained by not affecting
the PUs network. QoS level is always guaranteed for the PUs in the pres-
ence of SUs. SUs Medium Access Control (MAC) schemes have attracted

much interest over the last few years [15].
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Many papers have focused on using the PU’s feedback information to
devise better SU’s MAC schemes. Eswaran et al. in [16] have considered
the use of ARQ messages received by the SU, to perceive the packet rate
achieved by the PU; the aim is to maximize the secondary throughput while
ensuring a minimal PU packet rate. Furthermore, based on the primary link
teedback, secondary power control is explored in [17]. While maintaining
particular PU QoS requirements, the goal was to maximize the SU utility
in a distributed scheme. Moreover, a PU retransmission based error control
scheme is studied in [18] for the sake of designing an optimal transmission
policy for the SU. Based on the PU retransmission packet state, the SU de-
termines its transmission strategy:.

Seddik et al. presented in [19] a secondary access scheme that exploits
the ARQ feedback; the SU refrains from accessing the channel upon hear-
ing a NACK feedback (FB) from the primary receiver to allow for collision-
free retransmission and avoid certain collisions with the PU. The scheme
is shown to achieve higher secondary user throughput while guarantee-
ing the PU QoS constraint. Beside soft-energy sensing, the authors in [20]
proposed PU feedback information for designing the SUs” access scheme
under a PU stability constraint. Afterward, the work in [21] introduced a
POMDP framework to design a SUs” MAC protocol exploiting the history
of the PU feedback bits. Intuitively, a greedy algorithm was proposed to
simplify the solution for the proposed POMDP problem. The greedy algo-
rithm proposed an approximation threshold number for the SU to take the
access decision. The greedy algorithm’s goal was to maximize the instan-
taneous SU reward. However, the work assumed perfect knowledge of the
PU arrival rate, which might not be available in many real-life scenarios.

Moreover, there has been another direction for designing SUs” access
schemes by exploiting the CQI feedback [8]. Attalla et al. in [8] and [22]
implemented the same system with two models; one with single SU and
PU and other with multiple SUs and PUs. Their experiment showed that
SUs only use the CQI feedback knowledge from the PUs. In combination

with soft energy sensing, the system showed gains in performance. The
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SU is accessing the primary channel with chosen access probabilities to op-
timize the SU rate of service while maintaining the QoS for the PUs. A
multidimensional Markov chain was used to design the proposed system.
The estimated packet delays and closed-form expressions of SUs were cal-
culated. Besides, the selection of access probabilities of SUs is formulated
as a restricted problem of optimization. Regarding the SU service rate and
the initial delay of the user, the implemented scheme’s output is shown
to be superior concerning others where SUs do not take advantage of CQI
feedback data from PUs.

Besides, the work in [23] examined the design of hybrid schemes that
exploit both ARQ and CQI feedback with hard and soft energy sensing
techniques, which enables better monitoring of the activities of the PUs.
Comparing hard energy-sensing in [24], where the expected PU state is
busy or idle, the significant advantage of using soft energy sensing in [23]
is helping the SUs to make better decisions in accessing that rely on their
confidence in the existence of PUs. A Markov chain of three-dimensional
homogeneous quasi birth and death was studied to determine the stable-
state distribution of the queue. The optimization problem of increasing the
secondary network throughput depending on the performance limitations
of the PU queues. ARQ allows preventing PU collisions when PUs retrans-
mit failed packets, and CQI allows SU to transmit when PUs refrain from
the transmission.

In this thesis, we focus on the design of SUs’ access schemes exploiting
the primary network available feedback information in the form of ARQ
and CQI feedback bits. The problem of the design of the SUs” access scheme
is formulated as a POMDP. We focus on the use of different model-free RL
approaches, namely Q-Learning, Deep Q-Network (DQN), and Deep De-
terministic Policy Gradient (DDPG), to design SUs” access schemes (i.e.,
solve the formulated POMDP problem) that require minimal knowledge
about the PU parameters. The proposed RL based schemes are shown to
achieve the same performance of the previously proposed schemes, which

have some impractical, or hard to achieve, assumptions like knowing the
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PUs’ arrival rate. Our proposed schemes would allow for online imple-
mentations that can adapt to variations in the primary network, which is

not the case with the previously proposed "static" algorithms.

1.6 Thesis organization

This thesis presents a contribution to the access schemes of the cognitive
MAC protocol layer by using Reinforcement Learning algorithms to ex-
plore the environment and exploit different feedbacks information from the

primary user. The thesis is organized as follows:

o Chapter (2) presents background on Reinforcement Learning

e Chapter (3) discusses the access techniques utilizing solely ARQ or
CQI feedback using RL algorithms Q-learning, DQN, and DDPG.

e Chapter (4), discusses the access techniques utilizing both ARQ and
CQI, namely, the hybrid system, using RL algorithms Q-learning, and
DDPG.

e Chapter (5) concludes the thesis and presents directions for future

work.

1.7 Thesis contributions
In the following, we list the thesis’s major contributions:

1. We propose a SU access scheme that exploits the PU ARQ and/or
CQI feedback (on the top of any spectrum access scheme). We
formulate the problem of the SU access decision as a POMDP
and use different RL algorithms to approach solving this prob-

lem.

2. We show that our proposed RL based approach achieves results

that are comparable to other previously proposed algorithms while
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not requiring minimal information about the PU; unlike the pre-
vious work which has made some unrealistic assumptions (like
the knowledge of the PU arrival rate, probability of detection,

probability of false alarm, etc).

3. We achieved minor throughput gain by using DDPG RL algo-
rithm that takes better access probabilities by using continuous

action space rather than a discrete one.
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Chapter 2

Background on Reinforcement

Learning

This chapter provides a background on a branch of Machine Learning (ML),
which is RL. RL started with model-based algorithms such as Dynamic Pro-
gramming (DP). Afterward, a model-free algorithm was introduced, which
is the Temporal Difference (TD). TD consists of two algorithms, Sarsa and
Q-learning. For better performance, algorithms such as DQN and DDPG

were introduced, which combines deep learning with RL .

2.1 Machine learning classifications

ML is a branch of Al that studies algorithms and develop an intelligent
system based on the human mind. They are explicitly programmed to en-
able the learning skills of the program. It is a concept and not language-

dependent. Its algorithm has three classified classes [25]:

e Supervised learning:

The machine is trained to predict the outcome based on labeled data.
The model planned for a solution may be a classification or a regres-
sion problem. Some of its applications are image classification, object

detection, and augmentation [25].

e Unsupervised learning;:
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FIGURE 2.1: Markov Decision Process [25]

The machine is trained to find patterns in the data, based on unlabeled
data. The model could be solved by clustering. One of its applications

is the difference between genes in the DNA micro-array data [25].

e Reinforcement learning:

RL is the agent or machine that is like humans or animals in the way
it learns. It learns by trial and error interactions with the environ-
ment through mapping state to action and receiving a reward with-
out the need for prior knowledge about the dynamics of the environ-
ment. After a short time, it becomes an expert with the best policy that
maximizes long-term rewards. Some of its applications are Robotics,

Telecommunication, and control theory [25, 26, 27, 28].

2.2 MDP model

The dynamics of the environment in RL can be modeled as a Markov deci-
sion process (MDP) as shown in Fig. 2.1.

There is an interaction between two entities; The agent, which is the SU,
and the environment, the surroundings, or everything the agent interacts
with. Through sequential discrete time steps ¢ = 0, 1, 2, 3, the agent forms
a sequence of interactions. For example, at time step ¢, it observes a state
St from the environment. Based on that, it perform action A;. Afterward,
the environment replies with a reward in the next time step ;11 and a new
state S;y1 and so on. At the end, the MDP forms a group of sequential

observations, actions, and rewards.
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R; and S; are random variables that depend only on the previous state

and action due to Markovian properties as show in equation (2.1)

P(s'|s,a) = p(si=s|si-1=5.4, 1_0) = Y _ P(5',7]s,a) @.1)

reR
The agent’s main goal is to increase the amount of rewards it receives
Ri+1, and Ryyo9,.... which can be presented by G; from a specific actions

taken in a states observed. It can be presented as in equation (2.2)

oo
Gy = Rip1 +7 X Riyo +9% X Ryyg + oo = Z Y X Ryyrra (2.2)
k=0

where  is the discount rate, and it takes values from zero to one. The
main function of Gamma is to prevent G; from becoming infinity in contin-
uous tasks. If Gamma is set to zero, that means the agent cares more about
the current step’s reward. However, if it is one, it means that the agent gives

the same value for the reward of the current to the last step [25].

2.2.1 Policy function

The policy maps states to actions. It can be categorized into three types,
Deterministic, Stochastic, and Random policy. Besides, there are on-policy
and off-policy algorithms. In stochastic policy, the agent will be following
a policy 7 under a probability of selecting specific action given a state a =
m(a|s). In deterministic policy, the agent will select one action for a given
state a = 7(s). In random policy, the agent randomly selects any action to
maximize the rewards a = rand(A).

In on-policy algorithms, the value of the action taken by the agent is
considered, while in off-policy algorithms, the value may or may not be of

the action taken by the agent [28, 29].

e Exploration vs Exploitation

The main goal for the agent in both methods is to find the best pol-

icy that maximizes the reward gained from the environment. It is a
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trade-off between selecting the best action or trying a new one. Ex-
ploitation is when the agent has information and acts greedily upon
it to maximize the return reward. However, during exploration, the
agent chooses to randomly explore all possible actions that can result
in a better reward. There is a technique called e-greedy method, which
means that the agent will behave randomly with probability € and act
greedily with probability 1 — e. This € value can be adjusted based on

the demand for exploration and exploitation in the environment [28].

Episodic task vs. Continuous task

In some cases, the environment has a terminal state. A terminal state
is defined as the final state. For example, in a game, the terminal
states would be a win, lose, or draw. In a continuous task, there are
no terminal states. For example, when the agent is learning how to
drive, it does not stop learning. However, in episodic tasks, there are
terminal states. Therefore, in episodic tasks, the episode ends when

the agent reaches a terminal state [25, 28].

2.2.2 Value function and Action-Value function

The value function is the measure of how good the agent is doing in each

state by following a policy m and continuing to play to the end before the

step is taken as shown in equation (2.3)

vr(s) = E[R¢|st = s] (2.3)

Adding Bellman equation to solve the MDP and find a relation between the

current state and its successors as in equation (2.4)

vx(s) = ZTI’(CL|S) X Zp(s’,r|s,a)[r + 9 x ve(s)]) (2.4)

a s'r
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The optimal value function is the goal to reach for convergence which is the

maximum value function achieved as in equation (2.5)

V4(8) = maz vz (s) (2.5)

The action-value function is the measure of how the agent is doing well
after each action in each state S by following a policy m and continuing to

play to the end as shown in equation (2.6)

qﬂ'(S? a) = E[Rt‘st =S, at:a] (26)

Adding Bellman equation to solve the MDP and find a relation between the

current action-value pair and its successors as in equation (2.7)
ar(s.0) = S p(srls )l 9 S w(@])an(sL )] @7
s'r a’

The optimal action-value function is the goal to reach for convergence

which is the maximum action value achieved as in equation (2.5)

q«(s,a) = maxrq(s,a) (2.8)

4u(s,0) = 3 pls' rls, a)lr + 7 x mazygz(s',a))] 2.9)

s'r

[26]

2.3 Model-based vs Model-Free algorithm

There are two different ways to optimize the model’s policy to give the

highest reward, which is model-based and model-free. The main difference
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FIGURE 2.2: Policy Iteration

is that in model-based, the states’ transition probabilities and the rewards
are known and can be calculated before the game to estimate the policy.
However, model-free method assumes no prior information of the model
and follow a random policy until reaching the optimal and get the max-
imum reward. For model-based methods, there is DP algorithm that ac-
quires transition state and complete prior information about the model. On
the other hand, for model-free methods, there are Monte Carlo and Tempo-
ral Difference (TD) Algorithms that require no complete prior knowledge

of the environment [25].

2.3.1 Dynamic Programming (DP) (Model-based) algorithm

After inheriting Bellman equation in the value and action-value function,
we still can not mathematically solve the RL problem with a large state
number. For that reason, DP was introduced in 1957 to find the optimal
value policy function iteratively. We assume that we know the environ-
ment’s states transition matrix and rewards function. It consists of policy
Evaluation, Improvement, and Iteration.

Policy evaluation is about calculating the value functions and the updates

as in equation (2.10)

vr(s) = Zw(a|s) X Zp(s',ﬂs, a)lr +v x v (s)]) (2.10)

a s'r
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Policy Improvement is about calculating the maximum action value func-

tion as shown in equation (2.11)

/

7 (8) = argmaxaqr(s,a)
— argmazaE[Res1 +70n(SetlSicotr_,) @11)

= argmaz, Zp(sl, rls, a)[r + yvx(s")])

s',r
Policy iteration is about to keep iterating until satisfying Bellman equa-
tion and reaching the optimal policy and value, which is convergence, as

shown in Fig. 2.2 [25].

2.3.2 Monte Carlo (MC) (Model-Free) algorithm

Unlike DP, MC is a model-free algorithm that works without any prior in-
formation about the environment dynamics. However, it assumes that the
agent has a terminal state and endpoint regardless of the action selected.
It is considered to be repeated trials of random paths that consist of states,
actions, and rewards by the interactions with the environment. The action
is non-deterministic or random. The method calculates the average return
(v(s)) for all states after reaching a final state. As soon as the average re-
turns for all states become constant, the agent stops as it reached conver-
gence. Therefore, all states inside the model have been visited or explored

[25].

2.3.3 Temporal Difference (TD) (Model-Free) algorithm

TD is a model-free algorithm that combines MC and DP. It learns as MC.
Nevertheless, it updates its estimate each time step as DP. It experiences
the next states and received rewards by using the value and action-value

function. The action is deterministic. It consists of two known algorithms

[26]:

e Sarsa
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It is an on-policy method where in the Q-values are updated every
time step. When the agent moves from time step ¢ to ¢t + 1, the five ele-
ments used in the update equation are (St, A¢, Riy1, St+1, Ae41). These
five elements what gives SARSA its name. The update equation for

SARSA is showing in equation (2.12).

Q(s,a) = Q(s,a) + afr +vQ(s',a’) — Q(s,a)] (2.12)

Q-learning

Q-learning is an off-policy model-free algorithm that started in 1989.
It was an evolution for RL. Its main objective is to learn the policy,
enabling the agent to take action under specific situations. Also, it
stores data in tables and infers the action to improve the policy. In
tables, we keep states, and for each state, we have available sets of
actions. The update equation (2.13) is similar to that of SARSA, except
in Q-learning, the maximum overall Q-values corresponding to s’ and

a’ is selected [26].

Q(s,a) = Q(s,a) + afr + ymazyQ(s',d') — Q(s,a)] (2.13)

24 Deep reinforcement learning

Machine Learning was integrated with RL due to the demand to solve the

high-dimensional input system space problems. Also, due to the neural

network’s efficiency in extracting important features and finding the non-

linear relation between the input and the output. Multi-layer perceptrons

were introduced. Its main function is to approximates the action-value

function ¢(s, a, ) as well as the policy function 7 (als, 0) [26, 28].

24.1 Deep learning

Deep Learning is a subfield of machine learning. It beat humans in games as

it is much more efficient to read the environment, take actions, and improve
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FIGURE 2.3: An Artificial Neural Network (ANN)

by playing. It is based on neural networks called Artificial Neural Network
(ANN), but with more than two hidden layers. Neural network is a group
of nodes (or neurons), fully connected in columns as layers, as shown in
Fig. 2.3. It consists of three types of layers: the input, the hidden, and
the output layer. First, the input layer takes the features, which can be
the observation states and actions. Second, there can be more than one
hidden layer in a fully connected neural network. Lastly, the third layer
is for the output layer, which result can be a classification or regression
problem to define the relation between the predicted data and the ground
truth. There are forward and backward propagation in the neural network.
In forward propagation, the input nodes are multiplied by weights, which
are summed in each neuron of all hidden layers. Afterwards, it is added
to the neuron’s bias and passes through activation function function. This
activation functions” main goal is to set a threshold for the neuron to be
activated or not. One of the famous examples of activation functions is the
sigmoid function. Finally, The output layer receives the multiplication and
the fired neurons of the hidden [26, 30, 31].

For measuring how good the model is, a loss function is calculated. It
is the difference between the actual value and the predicted one. One of
the loss functions is called the mean square error (MSE). The more the loss

function’s value is small, the more the agent is getting close to the optimum
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value. In the back propagation, all the weights are updated by taking its
partial derivatives as part of the optimization method. There are different
types of weights gradient descent methods to decrease the error function.
Finally, we keep iterating forward and backward until convergence and

reaching the global minimum point [26, 30, 31].

2.4.2 Deep Q-Network (DQN)

Q-learning algorithm was unable to handle large-state input space, due to
the demand for high-dimensional input state problems. For that reason,
DNN was inherited with RL. Neural network is a non-linear approximation
function that is trained with ¢(#) parameters. Besides, neural network can
better estimate the () values due to its better feature extraction. That led
to speed increase, and helped in removing hardware limitations in case of
large state-input dimensional. DQN makes use of both Q-learning as well
as neural network. It uses neural networks instead of Q-tables to store and

show the state-action value, as shown in Fig. 2.4 [26, 32, 33].

L(69) = [Y; = Q(s, ayge))? (2.14)

Yy = [req1 + ymaza,,, Q(se1, ai1|09)] (2.15)
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2.4.3 Deep Deterministic Policy Gradient (DDPG)
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FIGURE 2.5: Deep Deterministic Policy Gradient

DQON achieved great results in high dimensional state space applica-
tions. However, its action space is discrete, which could not be the best
choice for exploration in some applications. RL is all about exploring states
and actions. Continuous action space is crucial for applications like angular
wheel drive, Telecommunications, and military applications, etc.

In order to make the action space continuous, the policy should be in
a separate network, as shown in Fig. 2.5. DDPG combines both the value
function and the policy function. The policy function is for the actor net-
work to make it continuous and regression problem instead of classifica-
tion. While, the value function is for the critic network for classification

problem [26, 27, 34].
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Automatic Repeat Request
(ARQ) and Channel Quality
Indicator (CQI) based Access

Schemes

In this chapter, a CR system is designed whereby the SU utilizes the ARQ
or CQI reverse traffic of the PU. Based on the SU spectrum sensing outcome
and PU feedback, it randomly accesses the PU channel. Also, we consider
the hard detection (HD) sensing technique in the CQI feedback model. RL
algorithms that are used to learn policies for access probabilities to solve

the proposed POMDP problem are, Q-Learning, DQN, and DDPG.

3.1 Automatic Repeat Request (ARQ) based access scheme

In this feedback system, whenever a packet arrives in the PU’s queue, the
PU transmits to the receiver. The SU has access to feedback between the
primary transmitter and receiver. Observing No-FB from the SU means
that the PU’s queue is empty, while ACK indicates a successful packet was
sent from the primary TX to the primary RX. Consequently, the SU access
the channel based on the packet arrival rate in the PU’s queue with an ac-
cess probability as. On the other hand, upon receiving NACK feedback, it

means that there was a collision between the PU and the SU’s packets, and
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FIGURE 3.1: The System model

the PU’s packet was not delivered. So, the SU refrains from accessing as
the PU TX will be retransmitting its last unsuccessful packet attempt in the

next time slot [21].

3.1.1 System model

A time-slotted system is considered in all our models, consisting of one PU
and one SU, as shown in Fig. 3.1. The PU hosts an infinite buffer to store in-
coming packets. The PU average arrival rate is A, packets per time slot; the
arrival process is assumed to be a Bernoulli process with independent and
identically distributed arrivals. The packet’s transmission time is assumed
to fit exactly within the duration of one slot. Therefore, A, will assume val-
ues in the range 0 < )\, < 1. Otherwise, the stability of the PU queue will
not be attained. Also, it is assumed that the SU’s queue is always back-
logged, i.e., the SU will always have a packet to transmit. The SU employs
a random access scheme with access probability as(.), i.e., a slotted ALOHA
access scheme is adopted. The access probability will be adapted depend-
ing on the SU estimate of the PU activity (PU state). In our proposed model,
the access probability will be a function of the PU feedback, whether ARQ
and/or CQI feedback states as will be discussed later. In addition, we as-
sume a collision channel model. If either the PU or the SU transmits in any
time slot, this will result in a successful transmission. However, packets can
only be lost in communication in the case of concurrent PU and SU trans-

missions. In this case, a collision is declared, and all the packets involved
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FIGURE 3.2: Two-dimensional MC model for the PU queue

will be lost. The PU receiver will send a NACK feedback for the PU to re-
transmit its packet. We also assume that all feedback information is always
received correctly at the receiving nodes as these feedback bits usually are

well protected by secure channel codes [21].

3.1.2 The PU queue model

We model the system dynamics between the PU TX and RX as a Two-
dimensional MC model by exploiting the ARQ feedback, as shown in Fig.
3.2. Inside each circle there are two parameters, which are the state space,
the number of packets in the queue, and the ir’s and ir’s states. The sub-
script F' refers to the first transmission, while the subscript R indicates the
PU re-transmission state, after receiving a NACK feedback. The arrows rep-
resent the transition from one state to another. For example, going from 0F
to 1F can happen if there is arrival (A). Also, going from 1F to 0F happens

if there is no arrival (NA) and no collision (NC) [21].

3.1.3 POMDP environment framework

A POMDP is defined by the tuples (S, A, O, T, Q, R), where the set A
denotes the set of SU actions (which correspond to different SU access prob-

abilities). The set S denotes the PU Markov chain states S = {{ir}, {jr}},
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1 =0,1,---and j = 1,2,---. The set O defines the observations set that is
presented by O = {ACK, NACK, No-FB}. The function 7'(.) denotes the
transition probabilities function, where T'(s'|s, a) indicates the likelihood to
go from state s to state s’ given action a. To better illustrate it and following
the formulation in [21], which is reproduced here for convenience, we give

few examples below for T'(s'|s, a), for different values of s, s’ and a.

T(ig|jr, no access) = 0, Vi, j
T(ip|jr, access) =0, Vi, j #0
T(1p|0p, access) = \p,

T(1r|0F, no access) = Ap,

1—), ifi=4j#0
o (3.1)
T(irljr, access) =4\, ifi=j4+1,5#0

0 otherwise,
1-), ifi=j—1
T(irljn, noaccess) =4\, ifi=

0 otherwise.
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The function Q(o|s’, a) denotes the probability of observing o given that

action a is applied to result in state s'. It can be estimated as !

Q(o|s’ = ip, no access)
¢

0 o =NACK and Vip

Pack(0p) o0=ACK,ir =0

Pnor(0p) =1 — Pack(0p) o=No-FB,ip =0

(3.2)

= PACK(lp) 0=ACK,ip =1
PNo—FB(lF) =1- PACK(lp) 0 = NO-FB, iF =1

1 O:ACK,ZFZQ

0 0 =No-FB, ir > 2

If we begin with a certain vector of belief b(s;) = [b(0r )¢, b(1r):, b(1R)s,
---], where t is the index of time, then the new vector of belief is given after
the action a; observing some o;1. However, the formula values will not be

affected since, the reward of SU will always be zero in the no-access state

(as described later) [21].

;

0 Voandip > 2

Q(olir, access) = {1 o= No-FB,ip =0,1 (3.3)

0 o=ACKorNACK,ir=0,1

Q(olir, noaccess) =0 Vo (34)

!By abuse of notations, we set Pr(A|B) = 0 if Pr(B) = 0 (for example we set
Q(olir, no access) = 0 since Pr(ig, no access) = 0 under our collision system model as-
sumption).
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1 o=NACK
Q(oligr,access) = . (3.5)

0 otherwise

The function R(.) denotes the reward function calculated as follows.

r a = access, s = O

—1 a =no access, Vs = 0p
R(s,a) = . (3.6)

1 a = no access, Vs # Op

—1 a=access, s # 0p

It is an immediate reward that the SU has earned to take a specific ac-
tion and reach a new state. If the queue of the PU is empty, i.e,, s = Op
and the SU accessed the channel, it will gain a positive reward. However,
in this same case and if the SU does not access the channel, it receives a
penalty due to the lost transmission opportunity. Moreover, if the queue
is not empty and the SU accessed, it also receives a penalty. On the other
hand, if the SU does not access the channel, it receives a positive reward for
avoiding a certain collision with the PU [21].

The belief vector is given by b(s;) = [b(0r)¢, b(1F)¢, b(1R)t, - -], where
t is the time index. Its the probability distribution over states based on the
history at time ¢. After taking an action a; and observing some o1, the

new belief for some state s, at time (¢ + 1) is given by

b(st41) = nors1|ser1,a0) D Tsera]se, ar)b(st), (3.7)
st€S

As 7 is considered to be the variable of normalization shown by

1
D sines oet1]srrs ar) 3o, e5 T(ser1|se, ar)b(se)

’]7:



3.1. Automatic Repeat Request (ARQ) based access scheme 33

3.1.4 POMDP MAC Policy

This section describes the mapping of the belief vector to the action space.
This mapping is affected by the reward of the current state and the expected
reward in the following states, which is governed by the dynamics of the
Markov chain. This is attributed to the fact that the belief vector in the next
time instant will be affected by the present action. It is possible to model the
MAC policy as a Markov decision process based on the belief vectors (belief
MDP). Based on a belief vector b and an action a, the expected reward is
given by

r(b,a) = b(s)R(s,a). (3.8)

seS
For any belief vector b, the SU access policy 7 is defined by an action
ar = w(b)?. Over an infinite horizon, the accumulated reward is the ob-
jective function to be maximized. Starting with a belief vector by, the esti-

mated reward for policy 7 is given by
Jw(bo) = Z ’yt’l“(bt, at) = Z ’ytE |:R(St, (It) | b(), ™ (39)
t=0 t=0

where 0 < v < 1is a discount factor. The optimal policy 7* is given by

7" = argmax J"(by) (3.10)

™

where by is the initial belief vector as defined above [21].
For each belief state, the maximum expected reward value specifies the

*

optimal policy, 7*. It is closely modeled by the best value function V*,

which is the solution for the following Bellman equation

V*(b) = max [r(b, a) + Z Qo | b,a)V*(7(b,a,0))|, (3.11)
0O

where 7(+, -, ) is the belief state transition function [21].

*Note the optimal policy can be defined as a probability measure over the action space
that is a function of the belief vector, i.e., the policy defines the probability for each action
under a certain belief vector.
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TABLE 3.1: ARQ Feedback
s(t-1) q(t) = a(t+1) S(t+1) r(t+1) q(t+1) q(t+2)
length of queue because of action because of arrival
0=No-FB 0 0 =no access | 0 = No-FB -1 0
0 =No-FB 0 1 = access 0 =No-FB 1 0
0=No-FB | Greater thanor | 0 =noaccess | 1=ACK 1 q=g9-1
equal to 1
0=No-FB | Greater thanor | 1=access |2=NACK | -1 q(because it has to
equal to 1 send the same packet again
1=ACK 0 0 =no access | 0 = No-FB -1 0
1=ACK 0 1 = access 0 =No-FB 1 0
1=ACK | Greater thanor | 0=noaccess | 1=ACK 1 q=g-1 depends on the
equal to 1 arrival rate
1=ACK | Greaterthanor | 1=access |2=NACK | -1 q(because it has to
equal to 1 send the same packet again
2 =NACK 0 0 =no access Non-existent cases because in case of NACK,
2 =NACK 0 1 = access the length of queue will never be zero
2=NACK | Greater thanor | 0 =noaccess | 1=ACK 1 q=g-1
equal to 1
2=NACK | Greater thanor | 1=access |2=NACK | -1 q(because it has to
equal to 1 send the same packet again

3.1.5 Transition states

Table 3.1 shows the transitions probabilities for each time step. Each state
s(t), which depends on PU’s queue, is received by the SU. The SU replies in
the next time slot with the possible action. Then environment replies with
the next state s(t + 1) and a reward. A reward or penalty is given for the
SU if it succeeded or failed at each time step. Also, the queue is updated,
depending on the arrival rate.

For Example, If the queue is empty, a No-FB state will be sent, and the
reward is given if the SU accessed. However, there will be a penalty of neg-
ative one if it did not access, and the next state will be No-FB for both No-FB
cases. On the other hand, if the queue is not empty, and the SU accessed,
it gets a penalty, and the next state is NACK because a collision will arise
between the PU and the SU since the PU has priority to transmit as soon
as a packet is received. However, if the SU did not access, it gets a positive
reward as it saved a collision incident, and the next state is ACK, as the PU
succeeded in sending its packet. Also, the queue will be updated. When
an ACK is received, and the queue is empty, a reward is gained if the SU
accessed. However, if it did not access, it gets a negative reward, and the

next state is No-FB as well, and the next state for both ACK cases depends
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on the arrival rates of packets in the queue, which the SU does not know.
In contrast, if the queue was not empty, the SU gets a positive reward if it
did not access, then the queue decreases by one, and the next state is ACK
as the PU succeeds in its transmission. However, if it accessed, it gets a
penalty, and the queue remains the same as the collided packet needs to be
retransmitted, and the next state is NACK. The NACK state is an indication
for the SU to back off. When a NACK is received, the SU gets a positive re-
ward if it backs off, and the next state will be ACK, and the queue decrease
by one. Nevertheless, if it accessed, it gets a penalty, and the next state is

NACK, and the queue is the same.

After introducing our POMDP model and the MAC design policy, it
should be noted that in a real-life scenario we might not be able to con-
struct our belief vectors b based on the transition probability function 7(.).
For example, if the SU does not know A, then it will not be able to con-
struct the belief vector, b, of the PU. Therefore, and unlike the work in [21],
we propose to implement an RL based MAC that can efficiently learn in a
model-free systems in which the underlying dynamics are not fully charac-
terized. Next, we will present different RL algorithms that can be employed
to design our SU MAC scheme and compare their performance later via ex-

tensive simulations.

3.1.6 Epsilon-Greedy Q-learning algorithm

Q-Learning is one of the most common approaches in reinforcement learn-
ing. Asin [35] and [36], at each time step, the SU in state s, chooses an action
a; and goes to the next state s;,; while receiving reward r;. Through com-
puting and collecting the experiences s;, a;, r;, and s;41, the RL agent (SU
in our case) can compute the state-action value function Q(s, a), which is
the expected overall future discounted reward when the SU takes an action

a in state s. The update equation for the Q-values is given by:

Q(st,at) « Q(st,at) + « [Tt + ymaz Q(sty1,a) — Q(sg,ar)| . (3.12)
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Algorithm 1: The Q-learning Algorithm

REPEAT for each arrival rate
INITIALIZE Q-table of dimensions (numstates) * (numactions) with all
Zeros
INITIALIZE environment
REPEAT for each episode
INITIALIZE state
Reset queue =0
Perform epsilon decay step
REPEAT for each time step
Take action a on env based on epsilon-greedy policy
Update state
Collect reward
Update queue
Update Q-table using the following equation:
Q(state, action) < Q(state, action) + (learningrate * (reward+
discount factor * (max@(nextstate, allactions))))
Calculate throughput

In the given formula, two major parameters that influence the equation
are o and ~y. The parameter « is the learning rate where 0 < o < 1. It affects
the extent to which the Q-values are changed by following an action. On
the other hand, v denotes the discount factor. It takes values in the range
from zero to one and controls the influence of future rewards on the Q-
value. The Q-Learning algorithm builds a lookup table that lists a Q-value
for each state-action pair. The SU optimal policy is the deterministic policy
that selects the action that has the highest Q-value in each state. Therefore,

the optimal policy, 7*(s), is given by
7 (s) = argmax Q(s, a).

To learn the Q-values, we adopt the e-greedy approach [25]. Accord-
ingly, the agent decides between exploiting the best-known action so far
(i.e., the one that results in the highest Q-value) and exploring new actions
that might result in higher rewards. The parameter e is used as the proba-
bility of exploring new actions. Usually, we start with a high e to explore
more and not be trapped in a local minimum. The value of ¢ should decay
with time.

As shown in Algorithm 1, for each arrival rate, we start our code by

initializing the Q-table with dimensions (numstates) * (numgctions) with
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zeros values. We initialize the environment code by importing the state,
the reward, and the queue with initial values of zero. Afterward, for each
episode, based on epsilon, which is the exploration term, we choose our
action, either to be random or by selecting the maximum action in the Q-
table if it was not zeros. The Q-learning equation calculates the maximum
action, then restored in the Q-table. By each episode, the epsilon number
decreases by a factor to give more space for exploiting the learned informa-

tion and actions in the Q-table [25, 37, 38, 39].

3.1.7 Deep Q Network (DQN) algorithm

Deep Q-Learning is a combination of Reinforcement Learning and Deep
Learning. DQN emerged to solve infinite-state MDP problems by learn-
ing a parametric approximation to the Q(s, a) function. Moreover, the e-
greedy policy is used with DQN. This gives more opportunity for random
exploration of actions as our machine learns to approximate the Q-values.
Through exploration, the SU will explore a variety of actions in different
states at different arrival rates [40].

By discretizing the action space (i.e., discretizing the values of the access
probabilities), DON can be used to learn the best action for each PU feed-
back state. We model the access decision as a classification neural network,
and for each feedback state, the machine should output the best action from
the set of discrete actions. The machine does this by estimating the Q-value
for each action (i.e., the machine will have several outputs that equal the
number of actions, each estimating the Q-value corresponding to a specific
action). The best action at each state will be the action that results in the
highest Q-value [40].

For forward and backward propagation, the expected Q-value for the
state is called the target function. The Q-value related to the action taken by
the agent is updated while the other actions” Q-values are kept untouched.
The target function uses the Bellman equation to estimate the value function

of the action as in equation (3.12). Therefore, we have the following update
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rule for the target Q-value at the i + 1-th iteration
Q" (s,a) =1+ ymaz Q'(s', ), (3.13)
a/

where s represents the state, a corresponds to the action, r is the instanta-
neous reward, and s is the next state. Equation 3.13 estimates Q(s,a) as
the reward plus the maximum predicted Q-value of the following state dis-
counted by v, which is a discount factor as defined before. Eventually, this
value is supposed to be predicted and learned by the model for every pair
(s,a). After estimating the action-value target function, the best policy is
shown to be a greedy policy, i.e., in each state s, the policy selects the action
a as m*(s) = argmax, Q*(s, a) [40].

The loss function we adopt in our work is the Mean square error (MSE),
which calculates the square of the difference between the predicted Q-value

and the current estimate of the Q-value as follows [40]

L(09) = B[4 - Q(s,a:0%))’]

y) = E [r +ymaa Qs d 9(1‘—1))|s,a] ;

where §() represents the set of the neural network parameters at iteration
i.

As shown in Algorithm 2, for each arrival rate, we start by initializing
the Q-table with zero weights. The input is the states, and the output is the
values of each action. We initialize the algorithm by importing the state,
the reward, and the queue with initial values of zero. Afterward, based on
epsilon, the action is selected to be random for exploring or by selecting
the action with the highest Q-value. Also, the next Q-value for the next
state and action is calculated. Then, we subtract both the current predicted
Q-value with the maximum possible Q-value for the next state. By cal-
culating the error difference, we keep doing the gradient for the equation

until reaching zero difference, and hence, convergence. By each episode,
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Algorithm 2: The Q-learning algorithm

REPEAT for each arrival rate
INITIALIZE Neural Network with zero weights. The
input and output dimensions of the neural network are
num_states and num_actions, respectively.
INITIALIZE environment
REPEAT for each episode
INITIALIZE state
Reset queue = 0
Perform epsilon decay step
REPEAT for each time step
Take action a on env based on epsilon-greedy policy
Update state
Collect reward
Update queue
Update the weights using the following equation:
Loss = meansquareerror[reward + discount factor x (maz(predicted
valuesofQ(nextstate, allactions))) — predictedvalueo f Q(state,
action))
Calculate throughput

the epsilon number decrease by a factor to give more space for exploiting

the learned information and actions in the Q-table [40, 41, 42].

3.1.8 Deep Deterministic Policy Gradient (DDPG)

DDPG is an off-policy model-free algorithm. It is a combination of pol-
icy gradient and DOQN in order to learn continuous action space. It uses
experience replay and target networks to stabilize the training process. Ex-
perience replay, which store (reward, action, S(t), S(t+ 1)), is used to break
temporal correlation between inputs. on the other hand, target networks
are used to converge faster by updating the networks slowly to keep the
estimated targets stable and separable from the actual networks. In DDPG
architecture, we have four neural networks: two for the actor u(s|6*) and
the critic Q(s,al0?) as shown in Fig. 3.3 and the other two for the target
actor 1/ (s|0*') and the target critic Q’(s, al69)[26, 27, 34]:

The steps of the DDPG algorithm can be summarized as follows:

1. An actor-network, critic network, target actor, target critic network,

and replay buffer are initialized.
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Q(s,al6®)

u(slo*) =a

FIGURE 3.3: Deep Deterministic Policy Gradient

. The state is passed to the actor to estimate the deterministic policy.

For better exploration, an Ornstein-Uhlenbeck (OU) noise is added

to the action.

. The deterministic policy and the state are passed to the critic network

to produce the Q(s,a|0?). It learns to estimate the best action value

(Q-value) based on the best action from the Actor-network.

. The target networks are frozen and are updated after every few episodes

for better convergence stability.

. Each time step, the agent takes action A and receives reward R and

moves to new state

. The agent’s state, action, reward and next state are stored in the replay

buffer in order to training take samples that are not correlated.

. After training the networks using a mini batch of samples, the critic

loss is calculated as the Mean-Squared Error (MSE) between the Q(s, a|6?)
and Q'(s,al6?") as in equation (2.14) and (2.15) like in DQN but here,

the Q'(s, a|#?") is taken from the target critic network.

. To minimize the loss, a gradient descent is applied .

. For the actor network, gradient ascent is applied as in equation (3.14)

Voutt = Bu[VouQ(s, 1(s10")[09)] = E,[VaQ(5,al0%) - Voupu(s]0")]
(3.14)
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10. Repeat steps until convergence or reaching maximum number of iter-

ations.

3.1.9 Simulation models

We compare our result with two conventional methods which are baseline

system 1, and baseline system 2.

e Baseline system 1: The feedback (FB) system’SU relies on accessing
the channel if there is an ACK or nothing is received. The optimum
access probability is calculated by solving the balance equation based

on MC model as shown in equation (3.15) [19].

ay; =min(1 —X,/2),, 1) (3.15)

e Baseline system 2: The greedy algorithm is based on calculating the
belief probability based on the history of the PU queue being empty or
not, then comparing it to a threshold and take access decision for the
SU if higher, or refrain from accessing if lower as shown in equation

(3.16).

access 7 bQ:O > w/(1+w
GreedyAlgorithm = foo(Q F) /( )

no —access if b(Qr=0r) <w/(1+w)

(3.16)
In the greedy approach, if the SU accesses in case the PU’s queue was
empty, it will take a positive reward. However, if it didn’t access, it
will not be given anything. In case it accessed simultaneously with
the PU, it will take a negative reward —w as shown in equation (3.17).
In the simulation, w = 0 means that the SU will always attempt trans-
mission in the ACK or No-FB case. As a consequence, it degrades the
SU throughput at high PU arrival rates due to frequent collisions. As
w increases, there is less tendency for the SU to access the channel.

Hence, losing more transmission opportunities over the channel for
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low PU arrival rates.

1 a = access s=0p
R(s;a)=1 0 a=no— access Vs (3.17)
—w a = access s #0p

3.1.10 ARQ performance results

In our simulations, for discrete action space case, Q-Learning and DQN,
we assume eleven possible actions for the SU: A = {no access, access with
probabilities 0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9, 1}. We start with e = 1 to
favor exploration as the SU begins to learn to explore all sates, and actions
in all arrival rate . We also set a decaying e; the decaying factor is 0.999, with
a min exploration rate of 0.01 to guarantee certain level of exploration. The
learning rate is set to be w = 0.0001. The discount factor v = 0.95, which is
the discount factor for future rewards [36, 42, 43].

Based on the throughput metric, several parameters were tuned to achieve
maximum SU throughput, and the models were retrained multiple times to
achieve maximum throughout in all RL systems.

Through observation, Setting epsilon = 1 is to converge faster as we have
eleven actions that need to be explored in every arrival rate. Moreover,
there are two access decisions inside each of the eleven actions, which are
the probability of access or no access. The access decision is based on the
probability percentage of the action. So, it takes long to explore the best ac-
tion all states. For example, the No-FB state at high arrival rate 0.8 and 0.9
is not visited frequently compared with the ACK state in the ARQ feedback
system. Hence, it was beneficial to start at epsilon = 1 to guarantee that all
states are visited. However, acting greedy or exploiting was crucial, so we
set a decaying epsilon = 0.999 for the SU to start acting greedily after some
time of collecting information about the PU activity and knowing its pat-
tern. Also, if we set epsilon = 1 for a long time, the PU queue will rapidly
increase, and then the SU will decides not to access, especially at the high

arrival rates and result in a bad throughput. Lastly, a minimum exploration
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Episode Reward over Time (Smoothed over window size 10)
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FIGURE 3.4: Rewards vs number of episodes

value is maintained to guarantee a certain level of exploration. Due to the
fact that, in the low arrival rate 0.1, the SU refrains from accessing in the
NACK state and converges fast, unlike the No-FB in the high arrival rate,
which requires exploration.

It is noticed that the RL SU agent accesses with probability 1 most of the
time until 0.3 arrival rate without affecting the PU QoS. On the other hand,
Starting from 0.7 arrival rate, it backs off. Most of the optimization is done
in the middle range arrival rate.

It is observed that setting o = 0.0001 stabilizes the action-value func-
tion. So each time the code run, the SU takes the same actions, unlike if we
increase it to 0.001. It will converge faster, but will give different close ac-
tions each time. Thus, it is better to decrease the learning rate and increase

the convergence time to reach more stable system.

Fig. 3.4 shows the accumulated rewards for the SU against the number
of episodes for ARQ FB-system using Q-learning algorithm with r = 1.
The SU reached convergence at episode number 5000. Similarly, Fig. 3.5
shows the accumulated rewards for the SU against the number of episodes
for the ARQ FB-system using DQN algorithm with » = 10. The SU reached

convergence at episode number 1000.
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Episode Reward over Time (Smoothed over window size 10)
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FIGURE 3.5: Rewards vs number of episodes

It is noticed that increasing the SU’s reward for its success access en-
courages the SU to access more in the No-FB state and less in the ACK
state. However, pushing the reward for more than 50 in the ARQ system
results in a high collision. Thus, high number of packets will be accumu-
lated in the PU queue. As a result, an unstable system will appear with low
throughput. On the other hand, if a penalty is applied to the SU in case of
collision, it will adopt non-accessing behavior in all arrival rates. Thus, a
moderate tuning is preferable to achieve best result.

First, we investigate the effect of the reward function on our SU through-
put system performance. We compare five different values for r, as shown
in Fig. 3.6 for the Q-Learning based approach. The reward is given for
the agent in case it accessed and succeeded when the queue is empty as it
may access but make a collision with the PU. As a result, a penalty will be
applied. However, higher values for r resulted in slightly degraded perfor-
mance since they caused the SU to aggressively access the channel, which
resulted in collisions with the PU. The algorithm achieved the best perfor-
mance with r = 1,2, 10,50 with a slight difference in the resulting access
probabilities (actions) for different arrival rates. The best performance cor-
responds to the case of RL with » = 50. It causes the SU to greedy access
the channel compared to the cases with a lower r. For example, at 0.5 ar-

rival rate, the access probability is 1 for the No-FB and 0.1 for ACK state.
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FIGURE 3.6: ARQ feedback using RL (Q-Learning) with
different rewards

However, with r = 200, the access probabilities are 1 for the No-FB and 0.9
for the ACK state, which caused collision and slight degradation.

Fig. 3.7 depicts a performance comparison in terms of the SU through-
put between the Q-Learning » = 50 algorithm, the greedy algorithm pro-
posed in [21], and the FB-based approach proposed in [19]. The best perfor-
mance relates to Q-Learning algorithm. Although the conventional meth-
ods assumes the knowledge of the arrival rate, they were accessing only in
the ACK or No-FB state. However, our proposed SU model access in the
No-FB and ACK states, which showed better performance. Moreover, our
model works in an incomplete environment.

Fig. 3.8 shows a comparison between two ARQ Q-learning algorithms.
One used the last PU feedback, while the other used the last two. Start-
ing from 0.3 to 0.6 arrival rate , the results showed that the two feedback
systems slightly outperformed the one feedback system, because the SU

succeeded more in estimating the behavior of the PU in the next time slot.



Chapter 3. Automatic Repeat Request (ARQ) and Channel Quality

46
Indicator (CQI) based Access Schemes
1% . .
\ — 6 — FB —no sensing
B Greedy w =10
— — —Greedy w=1
——Greedy w = 1.5
0.8 O Greedy w =2 i
RL(Q — Learning r = 50)
5
206 -
en
=]
o
=
=
=
— 0.4 T
n
0.2 T
\ B \8\\\\
0 e i
0 0.2 0.4 0.6 0.8 1
PU Arrival Rate

FIGURE 3.7: ARQ feedback-based access using RL
(Q-Learning) with r = 50 versus the greedy algorithm [21]
and the FB-based approach of [19]
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FIGURE 3.8: ARQ using the last FeedBack VS the last Two
FeedBacks

The slight improvement is only achieved in the middle range due to the fact
that before 0.3 arrival rate both systems access with probability one in the
No-FB and the ACK. On the other hand, after 0.6 arrival rate, the SU starts
to refrain from accessing in both system showing similar performance. So,
the only range of improvement is the middle range. Thus, the more history
or information we know about the PU, the more estimation for its behavior,
which results in higher throughput.

Next, we consider the DQN approach. The deep Q-Learning network
architecture consists of three layers: the input layer, one hidden layer, and
the output layer. First, the network input layer is composed of three nodes
of one-hot encoded state vector (3 x 1). It represents the three observations
(ACK, NACK, and No Feedback). Second, we have a hidden layer with ten
fully connected neurons (10 x 1) with a Sigmoid activation function. Finally,
the output layer consists of eleven nodes that correspond to the eleven ac-

tions of the SU (11 x 1) with a linear activation function. The optimizer used
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FIGURE 3.9: ARQ feedback using RL (DQN) with different
rewards

in the prediction is the Adaptive Moment Estimation (ADAM) [41].

Fig. 3.9 shows the effect of the reward function value on the perfor-
mance of the DQN-based approach. Similar to Fig. 3.6 in Q-Learning al-
gorithms, again, the value of r presents a trade-off between aggressively
accessing the channel for higher r values and missing transmission oppor-
tunities for smaller r values. All algorithms show same performance at
the low arrival rate. However, at high arrival rate, the best performance is
achieved by r = 10 algorithm as r = 2 algorithm showed slight degradation
at 0.8 arrival rate. Also, r = 1 algorithm showed less performance at 0.6 ar-
rival rate, and refrained from accessing at 0.7 arrival rate. » = 50 algorithm
showed waek performance at 0.2 arrival rate due to its aggressiveness to
access the channel. » = 200 algorithm showed the worst degradation case

as a result from the collision between the PU and the SU.

Similar to the Q-Learning, Fig. 3.10 compares the performance of the
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FIGURE 3.10: ARQ feedback using RL (DQN with r = 10)
vs conventional methods

DQN approach for » = 10, which showed the best performance, to the
greedy algorithm for different w values in [21] and also to the FB-based
approach in [19]. The DQN-based approach outperforms the two access
schemes while assuming minimal information about the primary user (e.g.,
it does not assume any knowledge of the PU arrival rate while the other
approaches assume perfect knowledge of the PU arrival rate).

Comparing RL algorithms, we compare Q-Learning » = 50 to DQN
r = 10 in Fig. 3.11. The two algorithms show similar SU throughput with
close access probabilities. Both algorithms use discrete action space, and
value-based function dependant. In Q-learning, the agent needs to visit
each state-action pair finite number of times to get the true Q-values and
converges. On the other hand, DON is a function-approximator that learns

mapping between the state-action pairs and their Q-values in case of large
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FIGURE 3.11: ARQ feedback using RL (DQN vs
Q-Learning algorithm)
input state space that can not be visited individually. DQN is better in fea-
ture extraction and taking the right action due to its neural network’s fea-
ture extraction. However, in our ARQ case, the input state is only three
bits of one hot encoder, which does not require high dimensional feature
extraction tool and can be easily handled and converged by Q-learning. As
a result, both algorithms showed similar performance [40, 44, 45].

Next, we consider the DDPG-based approach. The actor-critic network
architecture comprises four layers: one input layer, two hidden fully con-
nected layers of 64 neurons, and one output layer. ADAM is used to learn
the neural network parameters with a learning rate of 10~% and 1073, re-
spectively. A non-linear rectifier is used in all hidden layers beside a tanh
function in the output layer for bounding the actions. The mini-batch size
is set to be 64, and the replay buffer size is set to be 10°. For exploration,

Ornstein-Uhlenbeck noise was added to the action output [46, 47].
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FIGURE 3.12: ARQ feedback using RL (DQN vs DDPG)

We compare DON to DDPG in Fig. 3.12, which shows comparable per-
formance for both algorithms. However, DDPG has minor gain over DQN.
This is because DDPG has a continuous action space, while DQN is re-
stricted to discrete action space. For example, at 0.6 arrival rate, DDPG
access with probability of 0.17867616 in the ACK and 1 in the No-FB, which
results in a throughput of 0.10732, whereas DQN accesses with probabil-
ity 0.2 in the ACK and 1 in the No-FB, which results in a slightly lower
throughput of 0.104. Finally, the continuous access probability of DDPG
led to a minor decimal throughput gain. This minor access probabilities
and throughput gain, could have a huge impact on/or result in a success-
ful access attempt, or saving call drop, which is crucial in some applications

as military, business, and emergency cases [46, 48, 49].

ag = (1= Xp) \ 2, (3.18)

Fig. 3.13 shows the SU access probabilities in the ARQ feedback scheme
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FIGURE 3.13: ARQ Access probabilities for No-FB state
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FIGURE 3.14: ARQ Access probabilities for the ACK state

at the (No-FB state). It compares the old method (FB-based system) with Q-
learning, DON, and DDPG algorithms. The old method relied on a closed-
form expression of equation (3.18) from [19] for the access probabilities,
assuming it knows the arrival rate. Q-learning, DQN, and DDPG access
with probability one until 0.8 arrival rate, because of the high reward given
and greediness to access. The rewards for accessing for the three algorithms
are 50, 10, and 30 respectively. However, that did not affect the PU QoS.
The access with probability 1 until 0.8 arrival rate. Starting from 0.8 arrival
rate, all RL algorithms showed a sharp decline in the access probabilities to
avoid collision with the PU. DQN shows the sharpest decline, while, DDPG
shows smoother decline because of its continuous action space.

Fig. 3.14 shows the SU access probabilities in the ARQ feedback scheme

at the (ACK state). It compares the old method (FB-based system) with
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Q-learning, DQN, and DDPG algorithms. The SU agent tends to be less
aggressive toward accessing the ACK state than in the No-FB state in all
algorithms. This is due to the RL agent’s (SU) sensitivity to guess the prob-
ability of PU arrival in the next time slot of the ACK state than the No-FB.
The probability of arrival in the ACK is more than the No-FB state. DDPG
algorithm showed slightly better performance. For example, at 0.4 arrival
rate, Q-learning, DQN, and DDPG access with probability 0.4, 0.8, and 1.
As a result, DDPG showed minor throughput gain, because it accesses with

high probability in the No-FB and the ACK states, as shown in Fig. 3.12..
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3.2 Channel Quality Indicator (CQI) based access scheme

In this section, the system is using HD sensing with the CQI feedback val-
ues. The SU is assumed to have access to the PU CQI feedback. We assume
that we have a binary CQI feedback in the form of “GOOD” or “BAD” chan-
nel. The PU transmits its packet as soon as arrival happens in its queue in
the good CQI state. Upon receiving (good) channel CQI feedback, the SU
transmits and access the PU channel with an access probability of as, af-
ter HD sensing, and based on the arrival rate. on the other hand, Upon
receiving (bad) channel CQI feedback, the SU access the PU channel with
probability one as the PU refrains from accessing the channel to save failed

transmission [19].

3.2.1 Channel model

The PU channel is modeled as “GOOD” and “BAD” states. Let ps denotes
the probability of the channel being in the good state, and pp denotes the
probability of the channel being in the bad state, as shown in Fig. 3.15. Let
(¢ and (p be the steady-state probabilities of the channel being in the good

and bad states, respectively, as shown in equation (3.19) [19].

1—py
2_pB_pg

1—pB

= (3.19)
2—pB— Dg

, and (p=

Co

Further, it is assumed that the channel state does not change during a
one-time slot. A collision channel model is assumed, i.e., if both the PU
and SU transmit their packets simultaneously in the next time slot, then the
packets collide with each other, and both packets are lost.

The closed form expression of the SU throughput for the perfect sensing

curve can be shown in the following equation (3.20) [19]:

1=y, if Ay >(p—1.
Hsp = . (320)

(B, otherwise
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(1-ps)

(1 - ps)

FIGURE 3.15: The channel model

FIGURE 3.16: Two-dimensional MC model for the PU
queue

3.2.2 System model

We consider a CR system that has a system model, as shown in subsection

3.1.1.

3.2.3 PU queue model

We present our PU queue as a two dimensional Markov chain model as
shown in Fig. 3.16. It consists of two types of states (K, G) and (K, B). K
denotes the number of packets in the PU’s queue. Whereas, G and B denote
that the PU’s channel is in the good or bad state. This strategy models the
SU access decision scheme as a POMDP.
The transitions between states are as follows:

From (K, G) to (K +1, G): in this case, the transition occurs according to the
following equation: Pr(X(n+1) = (K +1,G)|X(n) = (K, G)) = Pr((a new
packet arrives at the PU queue) N (SU does not detect the PU presence and
decides to access the channel) N (the channel in the next time slot remains

in the good state))= \,as(1 — pqs)pg, where p, is the detection probability of
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TABLE 3.2: Transition probabilities of Markov chain of the
CQI feedback- (HD) system.

Number Transition Probability
1 (1= Xp) + Ap((1 = as)(1 = pa) + pa))Pc
2 (1—Xp)(1 —pB)
3 (1—Ap)ps
4 (1= Ap) + Ap((1 — as)(1 — pa) +pa))(1 — pc)
5 (1 = 2p)((A = as)(1 — pa) + pa))Pc
6 (1 = 2p)((X = as)(1 — pa) + pa)(1 — pc)
7 (Ap((l - as)(l _pd) +pd) =+ )\pas(l - pd)>pG
8 (Ap(L —as) + (1 = Ap)as)(1 — pi)
9 (1 _ )‘p)(l _pB)
10 (1—-Xp)pB
11 )\pas(l _pd)pG’
12 Apas(1 —pa)(1 —pc)
13 Ap(1—pB)
14 ApPB

the spectrum sensor.

From (K, G) to (K + 1, B): it is same as the above transition but here the
term p, is replaced by (1 — p,), which indicates the probability of the next
time slot is bad. Therefore, the transition probability is equal to: Apas(1l —
pa)(1 = pg)-

The rest of the transition probabilities can be deduced easily from Fig. 3.16

and listed in Table 3.2 [19].

3.24 POMDP environment framework

A POMDP is defined by the tuples (S, A, O, T, Q, R), where the set A
denotes the set of SU actions (which correspond to different SU access prob-
abilities). The set S denotes the PU Markov chain states S = {{ir},{jr}},
1 =0,1,---and j = 1,2, ---. The set O defines the observations set that is
presented by O = {Good, Bad, } [19].

The function 7'(.) denotes the transition probabilities function, where

T(s'|s, a) indicates the likelihood to go from state s to state s’ given action
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a. To better illustrate it, and following the formulation in [21], which is re-
produced here for convenience, we give few examples below for T'(s'|s, a),

for different values of s, s’ and a [19].

T((1,B) 1 (j,G), no access) =0, Vj <1

T((i,B)|(3,G), no access) =0, Vj <i
T((i,B)|(j,G), access) =0, Vj > i
T((1,G)|(4,G), access) =0, Vi, j#0
T((1,G)|(0,G), access) = \p,

T((1,G)|(0,G), no access) = Ay,
T((i,G)|(4,B), noaccess) =1— A, Vi=j,j7#0

1—), ifi=4,j#0

T((i,B)|(4,G), access) = Ap ifi=j+1,7#0

0 otherwise,
(3.21)
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The function Q(o|s’, a) denotes the probability of observing o given that

action a is applied to result in state s’. It can be estimated as °

Q(o|s’ = (i, G), no access)

0 o =Bad and Vs’
Ps(¢) o =Good, s = (0,G)
Ps(sy=1—P5 (s') o=Bad, s =(0,G)

(3.22)
=4 Ps(s) 0o=Good, s =(1,G) -
Ps(s'y=1—Pg(s’) o=Bad, s =(1,G)

1 0o=Good, s’ > (2,G)

0 0o=No-FB, s’ > (2,G)

If we begin with a certain vector of belief b(s;) = [b(0F)¢, b(1F):, b(1R)¢,

---], where t is the index of time, then the new vector of belief is given after
the action a(t) observing some o(t + 1). However, the formula values will
not be affected since, the reward of SU will always be zero in the no-access

state (as described later) [19].

0 VYoandi > 2
Q(o|(i,G), access) =1 o =Good,i=0,1 (3.23)

0 o=Bad,i=0,1

Q(o|(i, B), no access) = 0 Vo (3.24)

*By abuse of notations, we set Pr(A|B) = 0 if Pr(B) = 0 (for example we set
Q(olir, no access) = 0 since Pr(ig, no access) = 0 under our collision system model as-
sumption).
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1 o=Bad
Q(o|(3, B), access) = . (3.25)

0 o=Good

The R, reward function is calculated as follows.

w  a=access, s = (0,G)

—1 a=no access, Vs = (O, G)

R(s,a) (3.26)

1  a=noaccess, Vs # (0,G)

—1 a=access, s # 0p
\

It is an immediate reward that the SU has earned to take a specific ac-
tion and reach a new state. If the queue of the PU is empty, i.e,, s = Op
and the SU accessed the channel, it will gain a positive reward. However,
in this same case and if the SU does not access the channel, it receives a
penalty due to the lost transmission opportunity. Moreover, if the queue
is not empty and the SU accessed, it also receives a penalty. On the other
hand, if the SU does not access the channel, it receives a positive reward for
avoiding a certain collision with the PU [19].

The belief vector is given by b(s;) = [b(0r)¢, b(1p):, b(1R)t, - -], where
t is the time index. After taking an action a; and observing some 0,41, the

new belief for some state s, at time (¢ + 1) is given by

b(sei1) = 1ot1lsern,ar) Y T(sialse, ar)b(se), (3.27)
st€S

As 7 is considered to be the variable of normalization shown by

1
D sines oet1]srrs ar) 3o, es T(ser1|se, an)b(se)

’]7:
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3.2.5 POMDP MAC Policy

We consider a POMDP MAC policy similar, as shown in subsection 3.1.4.

3.2.6 RL algorithms

We propose two RL algorithms to solve the CQI POMDP problem, Q-Learning

as shown in subsection 3.1.6 and DDPG in subsection 3.1.8.

3.2.7 Simulation models

We compare our result with the conventional method which is the baseline

approach.

e Baseline system: It drives a closed form expression based on a steady
state distribution calculation of two dimensional MC model, given
the know the arrival rate. The optimum access probability is shown
in equation (3.28). The closed form expression for the throughput is
shown in equation (3.29). Also, the perfect sensing curve is shown
in equation (3.30) where the SU access whenever the PU’s queue is

empty and in the bad channel state [50].

0 = (P +/Op(Ps — 1)(Pp + Po —2) = 1))\ (Pp + Ps — PPy — 1),
(3.28)

1—A if A <(Cp—1
hap = ’ PP (3.29)
(B otherwise.

s = (B +Ca(l — Py), (3.30)
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FIGURE 3.17: CQI feedback with RL (Q-Learning, DDPG)
vs HD-CQI [8]

3.2.8 CQI performance results

Fig. 3.17 compares the throughput of the three models. The Two proposed
algorithms, namely, Q-Learning and DDPG, and the baseline approach of
[50], where a closed-form expression is derived. The perfect sensing upper
bound curve is drawn based on the equation (3.30). The probability of false
alarm pp is set to 0.1 and the probability of detection pp is set to 0.9. More-
over, the probability of the channel staying in the good pg, and the bad
are 0.9 and 0.3, respectively. DDPG approach yields the best performance
with a minor gain over Q-Learning approach. It is attributed to the fact
that DDPG exploits the whole space of action probabilities, and it does not
discretize the action space. For example, at 0.6 arrival rate, the SU through-
put by Q-Learning in the good state is 0.18104 as the access probability
0.4, while DDPG is 0.19138 as the access probability is 0.41840127, which is
slightly better. That was due to allowing continuous action space in the case

of DDPG can, in general, result in higher rewards. It should be noted that at
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FIGURE 3.18: SU Access probabilities for CQI in the Good
state
(pB = O.3,pG = O.Q,CB = 0.125,CG = 0.875,pD = 0.9,pF =
0.1)

zero PU arrival rate, the throughput is limited by the false alarm probability
as the PU queue is always empty in this case, whichis 1 —pr = 0.9. Also, at
high arrival rates, the throughput converges to the steady-state probability
of the channel being in the bad state, which is 0.125. However, adding HD
sensing enhanced the throughput compared to the ARQ model, where no
sensing was added, by decreasing collision between the PU and the SU. For
instance, at 0.6 arrival rate Q-learning r = 50 algorithm in the ARQ system
achieved 0.10445, while it achieved with » = 10, 0.18104 in the CQI.

Fig. 3.18 shows the SU access probabilities for the proposed algorithms
in the CQI feedback scheme at the good state channel with the old method
in [50], Q-learning, and DDPG algorithms. The closed-form expression for

the access probabilities of the old method is shown in equation (3.18). The
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three algorithms shows close performance. However, DDPG shows slight
advantage in the throughput as shown in Fig. 3.17. For instance, at 0.4 ar-
rival rate, Q-learning and DDPG accessed with probabilities 0.7, 0.6475508
with throughput 0.30070763 for Q-learning, and 0.30808 for DDPG. More-
over, at 0.6 arrival rate, Q-learning and DDPG accessed with probabilities
0.4, 0.41840127, with throughput 0.18117183, and 0.19138. This minor gain
can be crucial in applications that give high priority for every SU’s timeslot

value and success access.
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Chapter 4

Hybrid (ARQ-CQI)

feedback-based access scheme

In this chapter, A CR system is introduced whereby the SU utilizes both
ARQ and CQI (Hybrid) PU feedbacks in the access scheme. Based on the
SU spectrum HD sensing outcome, and PU feedback, it randomly accesses
the PU channel. As a solution for the Hybrid POMDP problem, we propose
the two RL model-free algorithms to teach the SU the access probabilities,
which are Q-Learning, and DDPG.

4.1 Hybrid feedback Hard Detection (HD) based ac-

cess scheme

The CR system’s hybrid access scheme is one in which the SU combines
both CQI and ARQ feedbacks from the PU to identify the probability of ac-
cessing the channel. When a bad CQI is received with any ARQ feedback,
this means the channel state in the next time slot will be bad to deliver any
message upon. Consequently, the PU will refrain from accessing the chan-
nel, and the SU will access with probability one. On the other hand, when
a good CQI is received with (No-FB) or (ACK) ARQ feedback, the SU will
transmit its packet in the next time slot, depending on the arrival rate, af-
ter applying HD sensing. However, When there is a (good) CQI feedback
observed with (NACK) ARQ feedback, the SU will not access the channel
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as the PU will retransmit its packet in the next time slot. The hybrid mech-
anism has proved to show better performance over the other approaches
where either none of ARQ or CQI is utilized or only of them is used at one

time [24].

4.1.1 Channel model

We consider a Hybrid system that has a channel model, as shown in sub-

section 3.2.1.

4.1.2 System model

We consider a CR system has the system model, as shown in subsection

3.1.1.

4.1.3 PU queue model

We present three-dimensional Markov chain model for our PU queue as
shown in Fig. 4.1. The state-space of this Markov chain, which is the set of
values that the chain is allowed to take, is given by

S={(K,D,T): K=0,1,2,.....D € {F,R},T € {G, B}}. K denotes the
number of packets present in the PU’s queue, D is the ARQ feedback, which
contains first transmission F' and re-transmission R request feedbacks. F
means the first transmission of the PU packet that is at the head of the
queue. When the first transmission of the packet fails, it is retransmitted,
denoted by R. So R is the re-transmission of the packet present at the head
of the queue. T  represents the CQI feedback, where G and B denote the PU
good channel and bad channel state [24].

The transitions probabilities between different states are derived as fol-
lows: Transition from (K, F,G) to (K — 1, F,G), K > 0 : this transition oc-
curs according to the following equation: Pr(X (n+1) = (K—1, F,G)X(n) =
(K, F,G))=Pr((no new packet arrives at the PU queue) (SU does not detect
the PU presence and decides not to access the channel) (the channel in the

next time slot remains in the good state)) Pr(no new packet arrives at the
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FIGURE 4.1: Three-dimensional MC model for the PU
queue
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PU queue) (SU detects the PU presence))= (1 — Xp)((1 — as)(1 — pa) + pa)pg
[24].

Transition from (K, F,G) to (K — 1, F, B), K > 0 :it is the same as the
previous transition but p, replaced by (1 — p,). Therefore the transition
probability equals to (1 — A,)((1 — as)(1 — pg) + pa)(1 — pg). Transition
from (K, R,G) to (K,F,G), K > 0: as the MC is in (K, R, G) the packet
at the head of the queue will be transmitted successfully with probability
1. The transition in this case occurs according to this equation: Pr(X(n +
1) =(K,F,G)|X(n) = (K, R,G))=Pr((new packet arrives at the PU queue)
(the channel in the next time slot remains in the good state))= A,p,. All

remaining transition probabilities can be extracted from Fig. 4.1 and Table

4.1 [24].
TABLE 4.1: Transition probabilities of the Markov Chain
for the ARQ-CQI feedback HD system.
Number Transition Probability

1 (1= Ap) + Ap((X = as)(1 — pa) + pa)lpg

2 (1= Ap) + Ap((1 = as)(1 = pa) + pa)|(1 — pg)

3 Apas(1 — pa)pg

4 Apas(1 = pa)(1 — pg)

5 (1—=Ap)(A —pB)

6 (1 - /\p)pB

7 Ap(1—pB)

8 ApPB

9 (1= Ap)[(1 — as)(1 — pa) + palpy

10 (1 =)A= as)(1 = pa) + pa)(1 — py)

11 )‘P[(l — as)(l - pd) + pd]pg

12 Apl(1 — as)(1 — pa) + pal(1 — pg)

13 (1 —Xp)as(1 — pa)pg

14 (1 = Ap)as(l —pa)(1 — pg)

15 (1= Ap)pg

16 (1 —Ap)(1 —pg)

17 ApPyg

18 Ap(1 —pyg)

4.1.4 Transition states

State transitions in the Hybrid system consists of six states, No-FB (bad),
No-FB (good), ACK (bad), ACK (good), NACK (bad), and NACK (good).

As shown in Table 4.2 and 4.3, there are two tables, one for arrival and
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no arrival cases. In no arrival cases, the queue is always zero. Also, the
possible states are only (No-FB good or bad), and (ACK good) feedbacks. If
the SU receives (No-FB, good), (No-FB, bad), (ACK, good), or (ACK, bad),
it gets a negative reward in case it did not access as it loses opportunity.
However, it will receive a positive reward, if it accessed and the next state
will be (No-FB good) or (No-FB bad) [24].

TABLE 4.2: Hybrid feedback for no arrival cases

q(t-1) q(t) S(t) a(t+1) S(t+1) r(t+1) q(t+1)
after arrival because of action

No Arrival Cases

0 0 1 =No-FB (good) | 0 =no access | 0 =No-FB (bad),1 = No-FB (good) -1 0

0 0 1 = No-FB (good) 1 = access 0 = No-FB (bad),1 = No-FB (good) 1 0

0 0 1=No-FB (bad) | 0=no access | 0 =No-FB (bad),1 = No-FB (good) -1 0

0 0 1 = No-FB (bad) 1 = access 0 = No-FB (bad),1 = No-FB (good) 1 0

1 0 3=ACK(good) | 0=noaccess | 0=No-FB (bad),1 = No-FB (good) -1 0

1 0 3 = ACK (good) 1 = access 0 = No-FB (bad),1 = No-FB (good) 1 0

1 0 3=ACK(good) | 0=noaccess | 0=No-FB (bad),1 = No-FB (good) -1 0

1 0 3 = ACK (good) 1 =access | 0=No-FB (bad), 1 =No-FB (good) 1 0

For arrival cases, the queue can be higher than zero, with an infinite
number of states. If the SU receives (No-FB bad), and it did not access, it
gets a negative reward. Nevertheless, if it accesses, it will receive a positive
reward, and the next state could be No-FB (good or bad). On the other
hand, if (No-FB good) is received, the SU gets a positive reward if it did
not access, the next state is ACK (good or bad), and the queue will decrease
by one. However, if it accessed, it gets a negative reward, the next state is
NACK (good or bad), and the queue remains the same.

When the SU receives (ACK bad), if it did not access, it gets a negative
reward, and the next state is ACK (good or bad). However, if it accesses,
it receives a positive reward, and the next state is ACK (good or bad). On
the other hand, if (ACK good) is received, the SU gets a positive reward if
it did not access, the next state is ACK (good or bad), and the queue will
decrease by one. However, if the SU accessed, it gets a negative reward, the
next state is NACK (good or bad), and the queue remains the same.

When the SU receives (NACK bad), if it did not access, it gets a negative
reward, and the next state is Nack (bad or good). Nevertheless, if it accesses,

it gets a positive reward, and the next state is NACK (good or bad). On the
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other hand, if (NACK good) is received, the SU should back off, and it gets a
positive reward if it did not access, the next state is ACK (good or bad), and
the queue decrease by one. However, if the SU accessed, it gets a negative
reward, the next state is NACK (good or bad), and the queue remains the
same.

The next state is (bad or good), depending on the transition probability
condition to stay in the current channel state or to change. For example,
if the current channel state is bad, then the next state is bad if a random
number is less than the probability of being in the bad channel, which is
0.3 and 0.9 respectively in the good channel, else it switches to the other

channel condition.
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TABLE 4.3: Hybrid feedback for arrival cases

q(t-1) q(t) S(t) a(t+1) S(t+1) r(t+1) q(t+1)
(after arrival) (because of action)
Arrival Cases
any value of q q 0=No-FB (bad) | 0 =noaccess | 0=No-FB (bad), -1 q
1 =No-FB (good)
any value of q q 0 = No-FB (bad) 1 = access 0 = No-FB (bad) 1 q
1 =No-FB (good)
any value of q q+l 0=No-FB (bad) | 0 =noaccess | 0=No-FB (bad) -1 g+l
1 = No-FB (good)
any value of q q+l 0 = No-FB (bad) 1 = access 0 = No-FB (bad) 1 q+l
1 =No-FB (good)
Greater than or q 1=No-FB (good) | 0 =noaccess | 2=ACK (bad), 1 g-1
equal to 1 3 = ACK (good)
Greater than or q 1 =No-FB (good) 1 = access 4-Nack (bad), -1 q
equalto1 5 = Nack (good)
any value of q q+1 1 =No-FB (good) | 0 =no access 2=ACK (bad), 1 q
3 = ACK (good)
any value of q q+1 1 =No-FB (good) 1 = access 4-Nack (bad), -1 g+l
5 = Nack (good)
any value of q q 2=ACK (bad) 0=no access | 0=No-FB (bad), -1 q
1 =No-FB (good)
any value of q q 2=ACK (bad) 1 = access 0 = No-FB (bad) 1 q
1 =No-FB (good)
any value of q q+l 2=ACK (bad) 0 =no access | 0=No-FB (bad) -1 q+l
1 =No-FB (good)
any value of q q+l 2=ACK (bad) 1 = access 0 = No-FB (bad) 1 q+l
1 =No-FB (good)
Greater than or q 3=ACK(good | 0=noaccess | 2=ACK (bad), 1 g1
equal to 1 3 = ACK (good)
Greater than or q 3 = ACK (good 1 = access 4-Nack (bad), -1 q
equal to 1 5 = Nack (good)
any value of q g+l 3=ACK(good) | O=noaccess | 2=ACK (bad), 1 q
3 = ACK (good)
any value of q q+1 3 = ACK (good) 1 = access 4-Nack (bad), -1 g+l
5 = Nack (good)
Greater than or q 4 =NACK (bad) | 0=noaccess | 0=No-FB (bad), -1 q
equal to 1 1 = No-FB (good)
Greater than or q 4 = NACK (bad) 1 = access 0 = No-FB (bad), 1 q
equal to 1 1 =No-FB (good)
Greater than or q+1 4 =NACK (bad) | 0 =no access | 0=No-FB (bad), -1 g+l
equal to 1 1 =No-FB (good)
Greater than or q+1 4 = NACK (bad) 1 = access 0 = No-FB (bad), 1 g+l
equal to 1 1 =No-FB (good)
Greater than or q 5=NACK (good) | 0 =no access 2=ACK (bad), 1 g-1
equal to 1 3 = ACK (good)
Greater than or q 5=NACK (good) 1 = access 4-NACK (bad), -1 q
equal to 1 5 =NACK (good)
Greater than or q+1 5=NACK (good) | 0 =no access | 2=ACK (bad), 1 q
equal to 1 3 = ACK (good)
Greater than or q+1 5=NACK (good) | 1=access 4-NACK (bad), -1 g+l

equal to 1

5 =NACK (good)
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4.1.5 POMDP environment framework

We consider a CR system with a POMDP environment framework, as shown

in subsection 3.1.3 and 3.2.4.

4.1.6 POMDP MAC Policy

We consider a CR system that has the POMDP MAC Policy, as shown in

subsection 3.1.4.

4.1.7 RL algorithms

We propose two RL algorithms to solve the Hybrid POMDP problem, Q-

Learning as shown in subsection 3.1.6 and DDPG in subsection 3.1.8.

4.1.8 Simulation models

We compare our result with the conventional method which are the base-

line approach.

e Baseline system The HD-Hybrid system drives a closed form expres-
sion based on a steady state distribution calculation of three dimen-
sional MC model, given the know the arrival rate. The optimum ac-
cess probability is shown in equation (4.1.8). The closed form expres-
sion for the throughput is shown in equation (3.29). Also, the perfect
sensing curve is shown in equation (3.30) where the SU access when-

ever the PU’s queue is empty and in the bad channel state [23].

a: = ()\pPB — Pg — 2)\p + )\pPG + 1)/(4)\p — 4)\pPD — 2)\pPB — QAPPG + QAPPDPB + 2)\pPDPO),
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FIGURE 4.2: Hybrid feedback with RL (Q-Learning,
DDPG) vs HD-Hybrid [23]

4.1.9 Hybrid Performance results

Finally, Fig. 4.2 compares the SU throughput for three access schemes,
namely the baseline system approach in [23], the proposed Q-Learning with
r = 20, and DDPG with » = 10 algorithm. At zero PU arrival rate, the
throughput is 0.9, limited by the probability of detection and false alarm.
Similarly, at arrival rate of 1, the throughput is 0.125, which is the proba-
bility of the PU being in the bad state. We use the same simulation param-
eters of sensing as Fig. 3.17. The DDPG-based approach yields the best
performance with minor gain over Q-learning algorithm. For example, at
0.6 PU arrival rate, the SU access probability learned by Q-Learning in the
(ACK and good) feedback is 0.5, which achieved throughput 0.208989. On
the other hand, with DDPG, the learned access probability is 0.44 which
achieved better throughput 0.21926. Therefore, allowing continuous action
space in the case of DDPG can, in general, result in higher rewards. Also,
The hybrid feedback system achieved higher throughput gain than using
ARQ or CQI feedback alone. For example, at 0.6 arrival rate Q-learning
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Hybrid Access probabilities for NO-FB state Good
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FIGURE 4.3: SU Access probabilities for Hybrid in the
No-FB-Good state
(pB = 0.3,pG = 0.9,(3 = 0.125,(@ = 0.875,pD = O.9,pF =
0.1)

r = 10 algorithm in the CQI system achieved 0.18104, while it achieved
with r = 10, 0.208989 in the hybrid.

Fig. 4.3 compares the access probabilities of the three proposed algo-
rithms in the (No-FB and good state); namely, the baseline method in [24]
using closed-form expression in equation (4.1.8), Q-Learning, and DDPG.
In the throughput graph, both algorithms Q-learning and DDPG showed
almost the same result with a slight advantage for DDPG. However, the
throughput gap was wider between both algorithms and the old method,
the same as in the access probability graph, which explains the advantage
for using greedy RL algorithms besides accessing in the No-FB and the ACK
state. DDPG algorithm accessed with probability one untill 0.7 arrival rate,

then started to decrease as the arrival rate of the PU increases. However,
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FIGURE 4.4: SU Access probabilities for Hybrid in the
(ACK-Good state)
(pB = O.3,pG = O.Q,CB = 0.125,CG = 0.875,pD = 0.5,pF =
0.1)

that did not affect the QoS of the PU. For example at 0.8 arrival rate, Q-
learning accesses with probability 0.7, and 0 in the (ACK and good state)
achieving throughput 0.120902. However, DDPG accesses with probability
0.3822977 with throughput 0.14188.

Fig. 4.4 shows the Hybrid system’s access probabilities in the (ACK and
Good state). It compares Q-learning, DDPG, and the old method. (ACK
and good state) showed less tendency toward accessing as compared to
(No-FB and good state) due to the SU’s sensing behavior to predict the PU
availability in the next time slot. Similarly, the (ACK state) compared to
the (No-FB state) in the ARQ systems. DDPG throughput showed slightly

better performance due to its approximation access probability number out

of the continuous action space, which can result in more successful access
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decisions.
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FIGURE 4.5: All RL algorithms for all PU feedback systems

Fig. 4.5 shows the comparison of the SU throughput achieved by our
best proposed RL algorithms, namely Q-learning, DQN, and DDPG, used
in all feedbacks systems ARQ, CQI, and Hybrid. CQI showed advancement
over the ARQ since, in the bad channel, the SU knows that it will always
send its packet. Moreover, after adding a HD sensing technique, the per-
formance enhanced by making less collision with the primary user through
the probability of detection and false alarm. Furthermore, the Hybrid sys-
tem surpasses both the ARQ and the CQI by combining both feedbacks
beside using HD sensing technique. For example, at 0.6 arrival rate, DDPG
achieved 0.10732 throughput in the ARQ model, 0.19138 in the CQI, and
0.208989 in the Hybrid model. RL algorithms surpassed all the conven-

tional methods by exploring and exploiting an unknown environment.
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In the end, RL (Q-learning, DQN, and DDPG) algorithms have shown
better throughput than conventional methods that require known parame-
ters of the environment, such as the arrival rate and transition probabilities.
Exploring and exploiting the environment devises an optimal strategy to
learn the best action in each state, which is crucial in the absence of prior
knowledge of the system. Being an Al system, RL proved to learn indepen-

dently in any stochastic environment.






79

Chapter 5

Conclusions and future work

5.1 Conclusions

In this thesis, we consider the problem of designing the SU’s access scheme
in a cognitive radio system by exploiting the available PU’s feedback infor-
mation in the form of ARQ or/and CQI feedback to improve sensing. We
consider three systems; one in which the SU has access only to the ARQ
feedback, one in which the SU has access only to the CQI feedback, and one
which the SU has access to both the ARQ and CQI feedback. The problem
of the SU’s access decision is modeled as a POMDP, which is solved us-
ing different RL-based approaches, namely, Q-Learning, DQN, and DDPG.
Contrary to prior work, all of the RL based approaches assumed mini-
mal knowledge about the PU activities to learn about the enviroment. Q-
learning and DQN showed similar performance as they relied on discretiz-
ing the action space, which limits the access decisions. However, DDPG
succeeded in fully exploring the whole continuous action space to make
better access decisions, which resulted in minor throughput gain. This mi-
nor gain is crucial for the SU to make successful access attempts on the
channel. For example, gaining access during congestion to one-time slot
could deliver a message or part of a speech, which is vital in a battlefield,

business world, or in emergency cases.
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5.2 Future directions

We list a few potential recommendations for future studies to expand our

current study.

o A multi-users model could be applied for PUs and SUs in CR in which
one SU can access the unused channel of multiple PUs, hence, gaining

more throughput.

o Soft sensing detection can be applied instead of Hard sensing to im-

prove performance.

e Another direction is to extend the RL algorithm to consider other PU
feedback information, or the history to better estimate PU’s activity.
We only studied ARQ, CQI, and Hybrid feedback in the RL based

access scheme.

e Another direction is to try exploring different sensing approaches.
It should be noted that the spectrum sensing approaches, as energy
sensing, in this thesis can be used on top of any other PU sensing

scheme and are always guaranteed to result in a performance gain.
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