Journal of Advances in Science and Engineering 4 (2021) 13 - 23

S

Journal of Advances in Science and Engineering

Journal homepage: www.sciengtexopen.org/index.php/jase

ool of Aduazes i
Science and
Engineering

(JASE)

Analysis of critical imposed load of plate using variational

calculus

Festus C. Onyeka

*, Thompson E. Okeke @b

2 Department of Civil Engineering, Edo University Iyamho, Edo State, Nigeria
b pepartment of Civil Engineering, University of Nigeria, Nsukka, Enugu State, Nigeria

ARTICLE INFO

ABSTRACT

Article history:

Received 12 September 2020

Received in revised form
1 October 2020

Accepted 20 October 2020

Available online
24 October 2020

Keywords:

CCFS plate

Critical lateral imposed load
Elastic yielding point

Shear deformation plate
theory

This work studied the critical load analysis of rectangular plates,
carrying uniformly distributed loads utilizing direct variational energy
calculus. The aim of this study is to establish the techniques for
calculating the critical lateral imposed loads of the plate before
deflection attains the specified maximum threshold, giw as well as its
corresponding critical lateral imposed load before the plate reaches an
elastic yield pointq;,. The formulated potential energy by the static
elastic theory of the plate was minimized to get the shear deformation
and coefficient of deflection. The plates under consideration are
clamped at the first and second edges, free of support at the third edge
and simply supported at the fourth edge (CCFS). From the numerical
analysis obtained, it is found that the critical lateral imposed loads (giw
and gip) increase as the thickness (t) of plate increases, and decrease
as the length to width ratio increases. This suggests that as the
thickness increases, the allowable deflection improves the safety of the
plate, whereas an increase in the span (length) of the plate increases
the failure tendency of the plate structure.

1. Introduction

because the critical load puts the plate in a
state of unstable equilibrium.

Plates have wide applications in floor slabs
for buildings, flat panels for aircrafts and
bridge decks [1]. Relying on the linear strain—
displacement methods for non-linear stress
and bending analysis is proven to adversely
affect the strength and deflection of plates [2].
This becomes one of the greatest bending and
even stability problems with the plate
structures. Nevertheless, the object of the
solution is to find the smallest load that causes
deflection in the plate by developing a non-
linear strain—-displacement expressions. This
smallest load can be said to be critical
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As a result of rising usage of plate in
engineering, the need for the advanced
approach become easily exposed. Some cases
of plate material, transverse strains and
stresses influence the flexural characteristics
very much. There is a need to develop the
displacement model that will assume care of
effect of transverse shear stress so as to
generate a reliable formulation of whatever
type of plate at given boundary condition [3]-
[7].

Isotropic plates are being extensively
utilized in structures that are subjected to
severe uniformly distributed loads that bring
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out relatively great stresses on it. In order to
evaluate the actual load in the plate when
large stresses characterized by non-negligible
shear deformations, refined theories are
developed [8]-[12]. Results established by
applying the trigonometric, exponential and
hyperbolic shear deformation theories show
inconsiderable fluff in estimating reactions of
lateral loads on the structures as a result of
wearisome whatness and uncertainty of works
involving the application of Fourier series in
the thick plate analysis.

In [13], the authors applied polynomial
shear deformation theory (PSDT) in analyzing
isotropic thick plate. The stress solution
deduced is devoid of analytical fluff, but did
not consider critical lateral loads in
anticipating responses of applied loads that
could lead to failure on the structures. In
[14], PSDT was utilized for the analysis of
critical lateral loads in anticipating responses
of applied loads for rectangular thick plates.
These studies [13], [14] neither checked for
the effect of shear stress, nor worked for other
boundary conditions.

In this study, the bending analysis of
rectangular plates, carrying uniformly
distributed loads was performed in a thick
considering shear deformation effect using the
direct variational energy calculus. The
formulas for calculating the critical laterally
imposed loads of the plate were found out and
used to solve bending problem of plate
clamped at two edges, free of support at the
other edge and simply supported at the
remaining edge (CCFS). This will check the
deflection and shear in the plate.

2. Methodology

2.1. Kinematics and Constitutive Relations

The deflection and in—-plane displacement
functions (w, v and u) of the plate were
obtained from the displacement-strain
relations and stress-strain relations. Taking a
rectangular plate subjected to a uniformly
distributed load as shown in Fig. 1, the
corresponding relationship was demonstrated
by applying hooks law.

The in-plane displacement components
along x-axis (u) and in-plane displacement
components along y-axis (v) are presented in
equations (1) and (2) respectively:

d

u= Zd:/‘l' F'HSX; (1)
d

v= %+ F.0; (2)

given that, F = F(z) and w = w(x, y).

o
L2

Fig. 1 CCFS Rectangular plate subjected to a
uniformly distributed load.

Substituting appropriately (see [14]) gives
the following equations:

zd?*w  Fdé zd?w Fdbs
g. = E( dx2 dex)_ (dy2 ' dyy) (3)
* (1-u2)
zd?w  Fdbg zd?w \ FdeSy
G _E( dy? dxx)_<dx2' dy) (4)
y (1-u?)
_ _Zazw dfs, , dbsy
Ty = 26 | 9xdy + F( dy +d_x)] (5)
_ o [20%w dfsx | dfs,
Tz = 26 | 0x0z + F( dz + dx )] (6)
_ 20w dbsy, | dbg,
Tyz = 26|55, F F( dz +d_y)] (/)
As described in [14]:
_ EQ-p
G= 2(1-p?) (8)
3 473
) =3(2-35) (©)
The symbol w denotes deflection, F(z)

denotes shear deformation profile, 65, and 65,
denotes shear deformation rotation along x-
axis and y-axis, respectively; u denotes poison
ratio, E denotes modulus of elasticity of the
plate, o, and o, denotes stress normal to the
x-axis and y-axis, respectively; and t,,, T,
and 7,, denotes shear stress along x-y, x-z
and y-z axis, respectively.

2.2. The Total Potential Energy Equation

The total potential energy (IT) of a plate is
given as [13]:
n=u+Vv, (10)
given that U and V are the strain energy and
external work respectively; expressed in
equations (11) and (12); where, q is the
uniformly distributed load, ¢,, and ¢, denotes
normal strain along x-axis and y-axis,
respectively; and y,,, ¥ and y,, denotes
shear strain along x-y, x-z and y-z axis,
respectively. Thus, the total potential energy
of a plate is given in equation (13).
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— [ JY qw(x, y)9xdy,

t
1t
U= E.Uf_zg( Ox€x+0yEy+TxyVxy T TxzVoz + Tyzyyz)dxdydzr
2

2

15

(11)

(12)

_ D a b 22w\ 2 22w 90, 9055\ 2 2w 2w 965y
=3l [91 (5) —20:(55-5%2) +95 (%) | + |291 Geay) — 292 G5y 52)
_ 2%w 905y 205y (00sy - 205\ ? 265\ 2
Zgz(axay' 6x)| |(1+u)g3( )(6x)| T g3(6y) +g3(6x)
22w 32w 08 205y\?| | |a-w (1-w) 2
91 (55 ) -29, (55 52) + 95 (52) |+ 94052 )? +5794(6sy ) ” 0xdy
b
= J, aw(e y)oxdy . (13)
Where; Now, consider the plate in Fig. 1 for
BN /12 numerical analysis; when equation (13) is
91 = (5) (t—3) =1, (14a)  subjected to boundary conditions of the plate
in the Fig. 1, the actual deflection of the plate
g2 = 1.5. ( ) =12, (14b)  becomes:
g:=15(1-2) =133, (14c) w="222(R? - 2R% + R%) X

(2.8Q0% — 5.203 + 3.80* — 05);

(19)

amplitude, As and shape function, h are

3t2z—4z 2 2
2 12
9a = (1-5<7< - )> ) (ﬁ) =144,  (14d)  gjven as shown in equations (20) and (21),
-t

respectively.

R . . . __ Fay.bs
and the rigidity, D is defined as: s = T7380° (20)
_ B 14
T 12(1-p?2) (14e) h=(R?-2R3*+ R%
x (2.802% — 5.203 + 3.80* — Q°). (21)
2.3. Governing Energy Equation
g 9y =4 Therefore:
General governing equation: Differentiating
the total potential energy equation (13) with f f (M) dRdQ (22)
respect to w, 6, and 6, gives: dR*
on _ onm _ om _ = [, [} (=) dRdQ (23)
ow  80sy 365, 0. (15) ° (deQ)
Thus: 1 1 /d2n\2
- 4 ks = J; (W) dRdQ (24)
w= (a0+ a;R + azR + 8K &(ﬂ).R— X
6 . D wss 24/ 1 (1 (dh)>2
(bO + le + bZQ _|_b3_Q+ ﬂ(ﬂ)Q_) (16) k4 = fO fO (E) deQ (25)
6 D \wz/ 2
Simiary; L = I3 1y (52) arda (26)
05 = (a4 + a5R+a6R + %(g";)%)x
2¥3 1 1
(b7+ byQ + ng +ZM(;_Q3+%)I (17) kq = J, J, h-dRdQ (27)
B2 aB  amd The values of stiffness coefficient
Osy = (a; + agR + 25+ 10 4 21T ) (ky, ky, ks, ks, ks and k,) obtained from equations
(b4 + b +b60 N &(@).0_3)_ (18) (22) to (27) are presented in Table 1.
D \g,01 6
Table 1 Values of stiffness coefficient, k for various support.
Type Plate k1 k> k3 ks ks kq
1 CCFS 0.1231792 0.0162176 0.0197152 0.0058657 0.00142656 0.017
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Direct governing equation: The direct
variational technique is utilized to obtain the
direct governing differential equation by
differentiating the total potential energy with
respect to the coefficient of deflection A,
coefficient of shear deformation with respect
to x-axis, A, and coefficient of shear
deformation with respect to y-axis, 4,.

The non-dimensional values of quantities
along the x- and y-axis respectively is
presented as follows, let:

x =aRandy = bQ (28)
The length to breath aspect ratio is:
x=2 (29)

a

and the span to thickness ratio is:
p= % . (30)
The deflection, w is the product of shape

function of the plate and deflection coefficient,
expressed as:

w = h.A. (31)

As is the coefficient of deflection and h being
the plate shape function.

The shear deformation rotation along the x-
axis and y-axis, respectively become:

65, = | 55| [4x] (32)

05y = | 53] [44]- (33)

Given A, and A, are the shear deformation
along x- and y- axis respectively. By
substituting equations (28) to (33) into
equation (13), gives equation (34).

Et3 1,1
H - 24(1_H2)a4 f() fo [

a2\ 2 A% [ 92 \2 AsAy [ 32 \2
+934° (W) + |2g1 o<_sz (aRaQ) — 29, :czx (aRaQ)

an 2

Gi1As° (ﬁ)z — 29,454 (ZZT:)

o AsAy (9% \? AxAy (2R \?| | (-w
29, «2 (BRBQ) +|A+wgs 2 (6R6Q) + 2

2 2 2 2p\2
B (D0Y g A2 a7 (20
9372 ARAQ T 93z ARAQ 917a 902
2 2 275 2
AsAy (9%h Ay® (8%h a-p 5
2927 (ﬁ) +93?(ﬁ) *

— PG4 X
2 ()2, A=) pPgshy? (on? _
A, (aR) +28, (aQ) abdRAQ

«2

2
X

+

Jy J; aAsh aboRQ. (34)

Thus:
om _om _on _ .
04 04y 04, '

gives:

21 T22 T23

[7’11 T2 T13
31 132 T33

o I [%’]
Ay b 0
Let:
2 1
1 = 91 (k]_ +;k2 +;k3)
1
T2 = —92 (k]_ + ;kz)
1 1
T3 = g2 (zkz + §k3)-
1
21 = —92 (k1 + ;kz)-
a-p a-p
T22 = (g3k1 + ;71;93"2 + 1TMP294k4)-

(1+u)
T3 = G35 Ka-

31 = —92 (ékz + $k3)-

(1+w)
3 2«2

2

T33 = (%M(l k, +$k3 ) +g4(1—u) 2

2 <2 20c2 p

T, = 7217337723731
2

T22.133~ 123.732

T. = 121132 722.131
123.13277122.733

Therefore;

A — —qa4 (_ kq )
$ D \1r11T1—712T2-713T3

That is:

A = qa* kq
s — 5 _ _ 1]
D \r11-112T2-713T3
where;
T, =1.

Recall;

4
As = %(k),

where;
_ Et3
T 12(1-p2)’
f=1a
kr'

2 1
kT = kl +§k2 +;k3

(35)

(36)

(37)
(38)
(39)
(40)
(41)
(42)
(43)
(44)
(45)
(46)

(47)

(48)

(49)

(50)

(51)

(52)
(53)

(54)
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2.4. Formulation of the Critical Lateral
Imposed Load in the Rectangular Plate

Formulation of expression for the critical
imposed load before deflection reaches
specified maximum limit, qw: In order to
ensure that deflection does not exceed
specified maximum limit (see [2]);

w = Ash < wj,. (55)
Substituting equations (51) - (53) into
equation (55), gives:

12(1-p*)qa* kq h<w
S ar

Et3 kr (56)

given that wa is the allowable deflection.
Let,

qa=Y + Qw, (57)
this gives:
qu < Et3 —2akr ., (58)

(1-p2)12.kg.ha*

Given that, y is the self-weight of the plate,
qiw 1S the critical imposed load of the plate and
i is the specific thickness.

Formulation of expression for the critical
load before plate reaches elastic yield stress,
gip: In order to ensure that the plate did not
yield beyond the elastic yield stress, the
critical lateral imposed load determined
according to [14]:

t

Uu = %fffjgn dxdydz; (59)
2

where;

n= OxEx+0yEy+ TxyVxy + TozVuz T TyzVyz- (60)

Substituting values of ¢,, ¢, , ¥y, Y2y @and y,,, into
equation (60) gives:
1
n=— [04%— 1oyoy— poyoy, + 0% + 2(1 + )T,
+2(1+ W12 + 2(1 + W1y (61)
But;

17 2 2
N [ax — UOx0y— 050y + Oy

TE
+2(1 4 W7y % 4+ 2(1 + W1y,
+2(1+ wty,%] <np. (62)

N, is the yielding point of the plate. For a bar,

ox = fY, (63)
Oy = Tyy = Tyz = Ty; = 0. (64)
Therefore;

n< ng> nyz (65)

Substituting equation (62) into (65) gives:

1
= [0,2— 2n0,0, + 0% + 2(1 + )T,y °

+2(1 + @12 +2(1 + wry,%] < nyz . (66)
Let,
0y = N,0y . (67)
Tyxy = N0y . (68)
Ty = N30, (69)
Ty, = NyOy . (70)

Therefore, substituting equations (67) to
(70) into equation (66) gives:
0,2 — 2un 0,2 + %0, % + 2(1 + wny2o,?
+2(1 + ns20,2 + 2(1 + wWn, o2 < fy? (71)

fy
oy <
\/[1— 2ung +12+2(1+ Ny 2+2(1+pw)ng 2 +2(1+1)n, %]
(72)
The value of g, according to [14] gives:
_ _EstAs (dPh . pdh
Ox = (1-p?)x? (atR2 o2 sz)' (73)
Thus:
o, = S(@ _|_idz_h)q_a2 12k (74)
x drR?2 ~ a2dQ?) t? )
Equating equations (72) and (74), gives
equation (75):
12.qa’ k. fy.
0, < C—Z, (75)
where;
_ (d?n u d?h
bo = (G + i) (76)
and
Bz =V[1 = 2un, + ny2 + 2(1 + p)n,?
+2(1+wWnz2 +2(1 + u)nf]. (77)

Making g, the subject of expression in
equation (75), gives:

fyt?
q < 12.a2.k.S.C2.C3 ' (78)
Let;
q=4qs +qp- (79)
This gives:
fyt? .
Tip S T azkscycs IS (80)

_ fyer L.
Up < Zazkscyc,  VE7 (81)

Qip < Pat?-vt; (82)
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where;

k
ﬁ4 = fy/lz.az.k_’;{.st. Cz.C3 s (83)

qip is the critical imposed lateral load before
plate reach yield stress, f, is the strength, i is

the specific thickness and g, is the self-weight
of the plate.

3. Results and Discussion

Figs. 2 to 4 show the CCFS plate with span
of 1000mm at allowable deflection (wa), value

250

between 1 mm to 5 mm. It is shown that
failure neither occurs on giw nor gip at any
thickness and length to width ratio. In the
span of 3000 mm as presented in Fig. 5, it is
also seen that failure neither occurs on giw nor
gip at any thickness and length to width ratio.
It's worth to note that the positive value of the
load, q;, and q;, shows that the plate neither
fail in giw nor gip for plate all span at specified
deflection, wa of 1000 mm to 5000 mm. This
means that the plate structure is safe.

200 /\"‘—O—Q—H_._._.

100 *—o—0—q¢

0 S===S=====°

e e W W v v v v v

0 0.5 1

1.5 2 2.5

length to width ratio (b/a)

—&—qw @ t=5mm
—8®—qw @ t=12.5mm

—8—qgx @ t=5mm
gx @ t=12.5mm

—8—qw @ t=15mm

gw @ t=10mm —8—qgx @ t=10mm

—&—gx @t=15mm

Fig. 2 Graph of critical load versus length to width ratio of CCFS plate for span, a = 1.0 m at
Wa = 3.0 mm.

250

E 200 /\..*'—.—0—._._._.

£
~
< 150

&

3 100 —90—0—o

32

0 000009080008
0 0.5 1 15 2 25

length to width ratio (b/a)

—&—qw @ t=5mm
—0—qx @ t=10mm

—@—qx @ t=5mm
—&—qw @ t=12.5mm

gqw @ t=10mm
gx @ t=12.5mm

Fig. 3 Graph of critical load versus length to width ratio of CCFS plate for span, a = 1.0 m at
Wa = 3.0 mm.
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250

(Ao & Qip ) N/mm

200 ‘/'\'“’-H-._._._,_.

P ===
0 000000000

0 0.5 1

1.5 2 25

length to width ratio (b/a)

—&—qw @ t=5mm
—@—qw @ t=12.5mm

—8—qx @ t=5mm

qw @ t=10mm —@—qgx @ t=10mm

gx@t=125mm —@—qw @ t=15mm —@—qgx @ t=15mm

Fig. 4 Graph of critical load versus length to width ratio of CCFS plate for span, a = 1.0 m at
Wa = 5.0 mm.

25

= = P
=1 L =1

(Qaw & Qip) N/mm

0 0.5

ST

e Tt eeee

*=—F 00—

E 15 E 2.5

length to width ratio (b/a)

——qw @ t=5mm
—@—gqw @ t=12.5mm

—§—qx (@ t = Smm

g@t=125mm =—@—gw @ t=15mm

gw (@ t=10mm —— qx @ t = 10mm

—— x @ t = 15mm

Fig. 5 Graph of critical load versus length to width ratio of CCFS plate for span, a = 3.0 m at
Wa = 3.0 mm.

Looking closely at Figs. 6 to 10 illustrating
the CCFS plate with span between 1000 mm
and 5000 mm, at allowable deflection
(w,) value between 1 mm and 5 mm. It finds
that failure in q;, only occurs at all length to
width ratio (1 to 2) with the highest value of -
1.0347 N/mm at all thickness. The negative
value of critical lateral imposed load, q;,, (and
positive value of q;)only reveals that the
plate fails in q;,, for the entire plate, w, (5 mm
to 15 mm) and a span of 3000 mm to 5000
mm. This means that the plate structure is not
safe rather required maintenance.

In summary, failure in deflection (q;,) is
seen in the CCFS plate, but failure in shear
(a;p), which leads to crack is not seen in all the
aspect ratio in consideration. Furthermore,
from the numerical analysis obtained as
presented in the Figs. 2 to 10. It is found that
the wvalue of critical lateral imposed
load (q;, &q;p), increase as the specified
thickness (t), of plate increases and decrease
as the length to width ratio increases. This
implies that as we increase the thickness and
allowable deflection improve the safety at the
plate, whereas an increase in the span
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(length) of the plate increases the failure
tendency of the plate structure. It is also
observed that the value of critical lateral load
increase as the specified thickness (t) of plate
increases, and decrease as the length to width

thickness is increased, the allowable
deflection improves the safety of the plate,
whereas an increase in the span (length) of
the plate increases the failure tendency of the
isotropic rectangular CCFS plate structure.

ratio increases. This implies that as the
250
g 200 M
E
= 150
2100 —.—s
&
B 50 M o I PPN
= =000 0004
0 e e ———
0 05 1 15 2 25
length to width ratio (bfa)

—a— W @ t =5mm
—— W @ t=12.5mm

—a—x @t =5mm

O @t =12.5mm = @ t=15mm

gw@t=10mm  —a—qgqx@1t=10mm

—— @t =15mm

Fig. 6 Graph of critical load versus length to width ratio of CCFS plate for span, a = 3.0 m at
Wa = 3.0 mm.

m S ———

E
E
S
=
;'_&10 ./"*-0—0—-._._.._._._.
o
E
g

5
PR S PP P PP
0 — 00— —9——0——b
0 05 1 1.5 2 25
-5
length to width ratio (b/a)

—A_qw @ t=5mm

g (@ t=12.5mm

—B_qx @ t=5mm

gx@ t=125mm  =—=—gw @ t=15mm

qw @ t=10mm —A_x @ t= 10mm

e % (@ £ = 15mm

Fig. 7 Graph of critical load versus length to width ratio of CCFS plate for span, a = 3.0 m at
Wa = 5.0 mm.
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3
7 /"‘_'—.q._'_'_H
[
X ,//":tln:o:o:.:mq
—
= 4
g} 3
& 2
£
- e
0
-2
length to width ratio (b/a)

—@—gw @ t=5mm —@—qx @ t=5mm —8—gw @ t=10mm —8—qx@ t=10mm
——gw @ t=12.5mm —#—qx @ t=12.5mm ——gw @ t=15mm —=—gx @ t=15mm

Fig. 8 Graph of critical load versus length to width ratio of CCFS plate for span, a = 5.0 m at
Wa = 1.0 mm.

[,
8 = S S

(Aow & dp) N/mm
= | s W8] =Y ¥ L= ~J o0

000009009
-2
length to width ratio (b/a)

—8—qw @ t=5mm ——x @ t=5mm —P—gqw @ t=10mm —@—gx@ t=10mm
——qw @ t=12.5mm —®—gx@t=12.5mm —@—qw @ t=15mm —@=—gx @ t=15mm

Fig. 9 Graph of critical load versus length to width ratio of CCFS plate for span, a = 5000 mm
at wa = 3.0 mm.
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u/._“_._‘_._‘—U—U—-H
o 00— 000

length to width ratio (b/a)

—&—qw @ t=5mm
—&—qw @ t=12.5mm

—&—qx @ t =5mm
gx@t=12.5mm —@—qw @ t=15mm —@—qx@ t=15mm

gw @ t=10mm —@—qx@ t=10mm

Fig. 10 Graph of critical load versus length to width ratio of CCFS plate for span, a = 5.0 m at
wa = 5.0 mm.

4. Conclusion

Based on the result of the analysis, the
following conclusions are made:

(a)

(b)

()

(d)
(e)

(f)

shear
shear

the theory considered
deformation effect without
correction factor inclusion;

the constitutive relations used satisfied
transverse shear stress variation while
predicting the bending of CCFS thin and
thick rectangular plate;

critical lateral load increase as the
thickness (t) of plate increases;

critical lateral load decrease as the
length to width ratio increases;

the value of q;, if greater than that
ofq;,, can be said that the failure of
plate in q;, is like a warning requesting
maintenance whereas failure in q,
means total failure and cannot be
maintained; and

the failure in deflection (q;,) is seen in
the CCFS plate but failure in shear (q;,),
which leads to crack is not seen in all
the aspect ratio in consideration.
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